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Abstract. For the polynomial system ẋ = ix + xx̄(ax2 + bxx̄ + cx̄2) the study of critical
period bifurcations is performed. Using calculations with algorithms of computational
commutative algebra it is shown that at most two critical periods can bifurcate from
any nonlinear center of the system.
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1 Introduction

For the plane real system of differential equations

u̇ = −v +
n

∑
p+q=2

αpqupvq, v̇ = u +
n

∑
p+q=2

βpqupvq (1.1)

the singularity at the origin is either a focus or a center. In the first case the trajectories in a
neighborhood of the origin spirals either towards or away from the singularity. In the second
case the trajectories are ovals, which means that the solutions are periodic functions. For a
point A with the coordinates u = r, v = 0 (where r is sufficiently small) let T(r) be the least
period of the periodic solution with the initial data u(0) = r, v(0) = 0. The function T(r)
is called the period function of system (1.1). It is said that a center at the origin of (1.1) is
isochronous if T(r) is constant, that is, all solutions in a neighborhood of the origin have the
same period. If a center at the origin of (1.1) is not isochronous, that is, T(r) 6≡ const, and for
r0 > 0 it holds that T′(r0) = 0, then it is said that r0 is a critical period of system (1.1).
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The problem of interest for us in this paper, the so-called problem of critical period bi-
furcations, was considered for the first time by Chicone and Jacobs in [8]. The problem is
to estimate the number of critical periods that can appear near the center when system (1.1)
with arbitrary chosen parameters is slightly perturbed within the family in such a way that
the singularity at the origin remains a center. After the pioneering work [8] the problem has
been intensively studied by many authors. Bifurcations of critical periods for a linear center
perturbed by homogeneous cubic polynomials were investigated in [18, 29]. The problem has
also been studied for reversible and Hamiltonian cubic systems [34, 35], the reduced Kukles
system [30], Liénard systems ([33, 37]), generalized Lotka–Volterra systems [32], generalized
Loud systems [31], and some other systems (see e.g. [5, 6, 9, 16, 22, 25, 36]).

To study the critical period bifurcations it is convenient to consider along with system (1.1)
its complexification obtained as follows. Introducing the complex variable x = u + iv (where
i =
√
−1) we get from (1.1) an equation, which can be written in the form

ẋ = ix−
n−1

∑
j+k=1

ajkxj+1 x̄k. (1.2)

Equations of the form (1.2) are often referred as real systems in the complex form. Let

y = x̄, bkj = ājk. (1.3)

We associate to equation (1.2) the two-dimensional complex system

ẋ = ix−
n−1

∑
j+k=1

ajkxj+1yk = ix + P(x, y),

ẏ = −iy +
n−1

∑
j+k=1

bkjxkyj+1 = −iy + Q(x, y),

(1.4)

which is the so-called complexification of system (1.1). If for system (1.4) condition (1.3) is
fulfilled then system (1.4) is equivalent to equation (1.2). In this case the complex line y = x̄
is invariant for system (1.4) and viewing the line as a two-dimensional hyperplane in R4, the
flow on the line is precisely the original flow of (1.1) on R2 (see e.g. [28] for more details).

In the recent paper [15] García et al. investigated small limit cycle bifurcations in a neigh-
borhood of the origin for a real system which can be written in the complex form (1.2) as

ẋ = ix(1− a21x2 x̄− a12xx̄2 − a03 x̄3), (1.5)

where a21, a11, a03 are complex parameters. In this paper we perform the further bifurcation
analysis of system (1.5) studying its critical period bifurcations from the center at the origin.
Using algorithms of computational commutative algebra we perform the study of the ideal
generated by the coefficients of the period function of system (1.5) establishing that at most
two critical periods can bifurcate from any nonlinear center of the system. In most of the
works devoted to critical period bifurcations authors compute the period function for each
of components of the center variety. One of essential differences of our approach is that we
obtain only one series expansion of the period function which is valid on each component of
the center variety. This allows to reduce the amount of computations significantly.
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2 Preliminaries

For an ideal I in the polynomial ring C[x1, . . . , xn] we let V(I) denote the affine variety of I,
that is, the set of common zeros in Cn of elements of I. For any subset S in Cn we let I(S)
denote the ideal of S , that is, the set of all polynomials vanishing on S .

Let ` denote the number of parameters ajk in equation (1.2). Since for each ajk there is the
parameter bkj in the second equation of (1.4), system (1.4) has 2` parameters, which we order
in some manner and write the 2`-tuple of the parameters as

(ap1q1 , . . . , ap`q` , bq`,p` , . . . , bq1 p1), (2.1)

which we shorten to (a, b). We write C[a, b] for the ring of complex polynomials in the vari-
ables ap1q1 , . . . , bq1 p1 .

The first step in the investigation of critical period bifurcations is the computation of few
first terms of the Taylor series expansion of the period function. In most works devoted to the
problem the calculation of the period function is computed using polar coordinates. However
using this approach one has to find the isochronicity variety first, and then compute the period
function for each component of the variety. We will use another approach where the period
function is derived from the normal form of the system as follows.

Performing a change of coordinates of the form

x = y1 + ∑
j+k≥2

h(j,k)
1 yj

1yk
2 , y = y2 + ∑

j+k≥2
h(j,k)

2 yj
1yk

2 , (2.2)

we transform system (1.4) to the normal form

ẏ1 = y1

(
i +

∞

∑
j=1

Y(j+1,j)
1 (y1y2)

j

)
= y1(i + Y1(y1y2)),

ẏ2 = y2

(
−i +

∞

∑
j=1

Y(j,j+1)
2 (y1y2)

j

)
= y2(−i + Y2(y1y2)).

(2.3)

The coefficients Y(j+1,j)
1 and Y(j,j+1)

2 of the series in (2.3) are elements of the polynomial
ring C[a, b]. They generate the ideal

Y :=
〈

Y(j+1,j)
1 , Y(j,j+1)

2 : j ∈N
〉
⊂ C[a, b]. (2.4)

For any K ∈N we set
YK :=

〈
Y(j+1,j)

1 , Y(j,j+1)
2 : j = 1, . . . , K

〉
.

Clearly, the normal form of a particular system with fixed parameters (a∗, b∗) is linear
when all the coefficients Y(j+1,j)

1 (a, b), Y(j,j+1)
2 (a, b) (j ∈ N) vanish at (a∗, b∗), that is, when

the point (a∗, b∗) belongs to the variety of ideal Y . The variety VL := V(Y) is called the
linearizability variety of system (1.4).

By the Poincaré–Lyapunov theorem linearizability of (1.1) or (1.2) is equivalent to its
isochronicity, and existence of a center at the origin of (1.1) or (1.2) is equivalent to exis-
tence of an analytic first integral near the origin (see, for example, [28]). The latter observation
allows to extend the concept of a center from real systems (1.2) to systems of the form (1.4)
on C2. Namely, it is said that system (1.4) has a center at the origin if it admits an analytic first
integral in a neighborhood of the origin.
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Introducing the functions

G = Y1 + Y2, H = Y1 −Y2,

we have that the origin is a center for (1.4) if and only if G ≡ 0 (see, for instance, Theorem 3.2.7
of [28]), in which case H has purely imaginary coefficients and the distinguished normalizing
transformation converges (see, for example, Theorem 3.2.5 and Remark 3.2.8 of [28]). The
variety of the ideal 〈

Y(j+1,j)
1 + Y(j,j+1)

2 : j ∈N
〉
⊂ C[a, b] (2.5)

is called the center variety and denoted by VC .
We define the function H̃ by

H̃(w) = − 1
2 iH(w),

where w = y1y2. If system (1.4) is the complexification of a real system we recover the real
system (up to a near-identity change of coordinates) by replacing every occurrence of y2 by ȳ1

in each equation of (2.3). Setting y1 = reiϕ we obtain from (2.3)

ṙ = 1
2r (ẏ1ȳ1 + y1 ˙̄y1) = 0, ϕ̇ = i

2r2 (y1 ˙̄y1 − ẏ1ȳ1) = 1 + H̃(r2) . (2.6)

Integrating the expression for ϕ̇ in (2.6) yields

T(r) =
2π

1 + H̃(r2)
= 2π

(
1 +

∞

∑
k=1

p2kr2k

)
(2.7)

for some coefficients p2k, which are polynomials in the parameters (a, b) of system (1.4). The
center is isochronous if and only if p2k = 0 for k ≥ 1. We call the polynomial p2k the k-th
isochronicity quantity.

The isochronicity quantities p2k lose their geometric meaning when (1.4) does not corre-
spond to the complexification of any real system (1.2), however they still exist as implicitly
defined by (2.7), hence so does the function

T(r, a, b) = 2π

(
1 +

∞

∑
k=1

p2k(a, b)r2k

)
,

which coincides with the period function (2.7) when b = ā.
Introducing the notation

P = 〈p2k : k ∈N〉 ⊂ C[a, b]

and for K ∈N

PK = 〈p2, . . . , p2K〉

we have from Propositions 4.2.13 and 4.2.14 of [28]:

V(P) ∩VC = V(Y) ∩VC and V(PK) ∩VC = V(YK) ∩VC for all K ∈N. (2.8)

The ideal P is called the isochronicity ideal of system (1.4).
As it was shown in [14, 28] the following statement holds.
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Theorem 2.1. Assume that for (a, ā) ∈ U, where U is an open subset of VC , the function

T (r, (a, ā)) = T(r, a, ā)− 2π =
∞

∑
k=1

p2k(a, ā)r2k, (2.9)

computed for system (1.2), can be expressed as

T (r, (a, ā)) = p2(a, ā)rj1(1 + ψ1(r, (a, ā)) + · · ·+ p2s(a, ā)rjs(1 + ψs(r, (a, ā)).

Then at most s− 1 critical period bifurcates from the origin of any system from U under small pertur-
bations.

For our study we will also need the following statement proven in [14] (see also [21]).

Proposition 2.2. Suppose I = 〈h1, . . . , hr〉, A and B are ideals in C[x1, . . . , xn], A is radical, and
I = A ∩ B. Let

W = V(I) = V(A) ∪V(B).

Then for any f ∈ I(W) and any x∗ ∈ Cn \ V(B) there exist a neighborhood U∗ of x∗ in Cn and
rational functions f1, . . . , fr on U∗ such that

f = f1h1 + · · ·+ frhr on U∗.

3 An upper bound for critical periods bifurcating from centers of
(1.5)

With system (1.5) we associate its complexification

ẋ = ix(1− a21x2y− a12xy2 − a03y3),

ẏ = −iy(1− b30x3 − b21x2y− b12xy2).
(3.1)

Computing the normal form of system (3.1) up to order 19 we find the first three non-zero
pairs of coefficients Y(4,3)

1 , Y(3,4)
2 , Y(7,6)

1 , Y(6,7)
2 , Y(10,9)

1 , Y(9,10)
2 of the normal form of system (3.1)

presented in Appendix A. Then straightforward calculations give that the first three reduced
isochronicity quantities are:

p6 = a12a21 − 2a21b12 + 4a12b21 + b12b21 + 2a03b30,

p12 = (−4a2
12a2

21 − 2a12a2
21b12 − 4a2

21b2
12 + 16a2

12a21b21 − 4a03a2
21b21 + 8a12a21b12b21 − 2a21b2

12b21

+ 32a2
12b2

21 − 14a03a21b2
21 + 16a12b12b2

21 − 4b2
12b2

21 + 44a03b3
21 + 44a3

12b30 − 3a03a12a21b30

− 14a2
12b12b30 − 4a12b2

12b30 + 105a03a12b21b30 − 3a03b12b21b30 + 4a2
03b2

30)/4,

p18 = (−16800a3
12a3

21 + 9450a03a12a4
21 + 34020a2

12a3
21b12 + 39060a12a3

21b2
12 − 44520a3

21b3
12

− 60480a3
12a2

21b21 + 5180a03a12a3
21b21 − 99540a2

12a2
21b12b21 − 8960a03a3

21b12b21

− 10080a12a2
21b2

12b21 + 39060a2
21b3

12b21 + 216720a3
12a21b2

21 − 229810a03a12a2
21b2

21

+ 171360a2
12a21b12b2

21 − 3640a03a2
21b12b2

21 − 99540a12a21b2
12b2

21 + 34020a21b3
12b2

21

+ 215040a3
12b3

21 + 93380a03a12a21b3
21 + 216720a2

12b12b3
21 − 47880a03a21b12b3

21

− 60480a12b2
12b3

21 − 16800b3
12b3

21 + 458640a03a12b4
21 + 222600a03b12b4

21 + 222600a4
12a21b30

− 185745a03a2
12a2

21b30 + 3360a2
03a3

21b30 − 47880a3
12a21b12b30 − 31500a03a12a2

21b12b30
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− 3640a2
12a21b2

12b30 + 76524a03a2
21b2

12b30 − 8960a12a21b3
12b30 + 458640a4

12b21b30

+ 340305a03a2
12a21b21b30−27748a2

03a2
21b21b30+93380a3

12b12b21b30−66276a03a12a21b12b21b30

− 229810a2
12b2

12b21b30 − 31500a03a21b2
12b21b30 + 5180a12b3

12b21b30 + 9450b4
12b21b30

+ 1647660a03a2
12b2

21b30− 224756a2
03a21b2

21b30 + 340305a03a12b12b2
21b30− 185745a03b2

12b2
21b30

+ 626010a2
03b3

21b30 + 626010a03a3
12b2

30 − 45922a2
03a12a21b2

30 − 224756a03a2
12b12b2

30

− 30604a2
03a21b12b2

30 − 27748a03a12b2
12b2

30 + 3360a03b3
12b2

30 + 654698a2
03a12b21b2

30

− 45922a2
03b12b21b2

30 + 5320a3
03b3

30)/3360,

where p12 is reduced modulo 〈p6〉 and p18 is reduced modulo the ideal 〈p6, p12〉.
The center variety of system (3.1) (found in [13, 15]) consists of the following five compo-

nents:
1) a3

12b30 − b3
21a03 = a21b2

21a03 − b12a2
12b30 = a21a12 − b12b21

= a2
21b21a03 − b2

12a12b30 = a3
21a03 − b3

12b30 = 0,

2) 5a21b12 − 6a03b30 = b21 = a12 = 0,

3) 2b12 − a12 = 2a21 − b21 = 0,

4) b30 = b12 − 2a12 = a21 − 2b21 = 0,

5) a03 = b12 − 2a12 = a21 − 2b21 = 0.

(3.2)

Computing with minAssGTZ (the routine of the library primdec.lib [12] of the computer
algebra system Singular [11] which is based on the algorithm of [17]) the decomposition of
the variety of the ideal 〈

Y(4,3)
1 + Y(3,4)

2 , Y(7,6)
1 + Y(6,7)

2 , Y(10,9)
1 + Y(9,10)

2

〉
we find that it is different from the decomposition of the center variety given in (3.2). It
means that the center variety is defined not by the first 3 pairs of non-zero coefficients of
the normal form, but the first 4 pairs. Since the computation of normal forms is highly
time and memory consumptive, we were not able to compute Y(13,12)

1 and Y(12,13)
2 using our

computational facilities. However the center variety of a polynomial system can be found
using the so-called focus quantities which are much easier to compute and which are obtained
from the equation

[ix + P̃(x, y)]Ψx(x, y) + [−iy + Q̃(x, y)]Ψy(x, y) = g11(xy)2 + g22(xy)3 + · · · ,

where

Ψ(x, y) = xy +
∞

∑
j+k=3

Ψjkxjyk. (3.3)

The coefficients gkk are polynomials in the coefficients of system (1.4) called the focus quantities.
The ideal

B := 〈gkk : k ∈N〉 ⊂ C[a, b]

is called the Bautin ideal of system (1.4). Its variety is the same as the center variety VC defined
by (2.5) (see e.g. Theorem 3.2.7 in [28]). We also use the notation

BK := 〈gkk : k = 1, . . . , K〉 ⊂ C[a, b]

for the ideal generated by the first K focus quantities.
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It follows from the results of [13, 15] that

g3k+1,3k+1 ≡ g3k+2,3k+2 ≡ 0

for all k ∈ N0 and four first nonzero focus quantities define the variety of the Bautin ideal of
system (3.1), that is,

V(B) = V(B12), (3.4)

where B12 = 〈g33, g66, g99, g12,12〉 (the polynomials g99, g12,12 are given by long expressions, so
we do not write out the polynomials gkk here, but the reader can obtain them from polynomials
gc

kk given in Appendix B applying map (3.13) to gc
kk). Since V(B) is a complex variety, by (3.4)

we have that
√

B =
√

B12.

Lemma 3.1. For system (3.1),
VL = V(Y9) = VC ∩V(P9). (3.5)

Proof. Computing with the routine minAssGTZ minimal associate primes of the ideals Y9 and
〈B12, P9〉 we find that in both cases they are

J1 = 〈b30, b21, a12, b12〉,
J2 = 〈b30, b21, a21〉,
J3 = 〈b30, a03, b12 + a12, a21 + b21〉,
J4 = 〈b30, b12 − 2a12, a21 − 2b21〉,
J5 = 〈a03, a12, b12〉,
J6 =〈b21, a12, b2

12 + a21a03, , a21b12 − a03b30, a2
21 + b12b30〉,

J7 = 〈a03, b21, a12, a21〉,
J8 = 〈a03, b12 − 2a12, a21 − 2b21〉.

It follows from the results of [13] that each system from the varieties Vi = V(Ji) (i =

1, . . . , 8) is linearizable. Therefore (3.5) holds.

To get an upper bound for the number of bifurcating critical periods we can use some
results of [14]. By Theorem 4.1 of [14] it is easy to obtain an upper bound for the number
of bifurcating critical periods if for the complexification (1.4) of (1.2) it holds that for some
K ∈ N VL = V(PK) ∩VC and 〈PK,

√
B〉 is a radical ideal. However computing the radical of

〈P9,
√

B12〉 with the routine radical of Singular we see that the ideal is not a radical ideal.
Therefore this theorem cannot be applied for system (1.5).

Another way to study the critical period bifurcations is based on the next theorem which
follows from Theorem 5.2 and Remark 5.3 of [14].

Theorem 3.2. Let P̃K be the ideal generated by p2, p4, . . . , p2K in the coordinate ring C[VC ] of the
variety VC and let m be the cardinality of the minimal basis of P̃K

1. Suppose that for the complexification
(1.4) of the family (1.2) it holds that VL = V(PK) ∩ VC and a primary decomposition of PK +

√
B

can be written as R ∩ N, where R is the intersection of the ideals in the decomposition that are prime
and N is the intersection of the remaining ideals in the decomposition.

Then for any system of family (1.2) corresponding to (a∗, ā∗) ∈ VC \V(N), at most m− 1 critical
periods bifurcate from a center at the origin.

1 For an ordered set { f0, f1, f2, . . .} in a Noetherian ring R the minimal basis of the ideal 〈 f0, f1, f2, . . .〉 in R is
the set M generated in the following recursive fashion: initially set M = { f J}, where J is the smallest index j
for which f j is not the zero of R, then successively check elements f j, j ≥ J + 1, adjoining f j to M if and only if
f j /∈ 〈M〉.
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Using this theorem in [27] for the system

ẋ = ix + xx̄(ax3 + bx2 x̄ + cx̄2 x̄ + dx̄3) (3.6)

it was proved that at most 3 critical periods bifurcate from any nonlinear center of the system.
It is possible to perform the study of critical periods bifurcations for system (1.5) using Theo-
rem 3.2, however since the bound obtained with this approach is not valid for all parameters of
the system, we present here the study of critical periods of (1.5) with another approach which
exploits the special structure of focus and isochronicity quantities and which sometimes gives
a better bound, than the one provided by Theorem 3.2 (as it is shown in [14]).

The special structure of the quantities is described as follows. For the ordering of the
coefficients given in (2.1) any monomial in C[a, b] will be written

[ν] := aν1
p1q1
· · · aν`

p`q`b
ν`+1
q`,p` · · · b

ν2`
q1 p1 , ν = (ν1, . . . , ν2`). (3.7)

We define a mapping L : N2`
0 → Z2 by

L(ν) = ν1(p1, q1) + · · ·+ ν`(p`, q`) + ν`+1(q`, p`) + · · ·+ ν2`(q1, p1). (3.8)

By Corollary 3.4.6 and Proposition 5.1.6 of [28] it holds:

(i) the focus quantities gkk of family (1.4) have the form

gkk =
1
2 ∑
{ν:L(ν)=(k,k)}

g(ν)kk ([ν]− [ν̂]); (3.9)

(ii) the isochronicity quantities p2k of family (1.4) have the form

p2k =
1
2 ∑
{ν:L(ν)=(k,k)}

p(ν)2k ([ν] + [ν̂]), (3.10)

where for ν = (ν1, . . . , ν2`) ∈N2`
0 , ν̂ = (ν2`, . . . , ν1).

We recall that the Sibirsky ideal of system (1.4) is the ideal

IS = 〈[ν]− [ν̂] : L(ν) = (k, k)〉,

where [ν] is defined by (3.7) and L(ν) by (3.8). To find the Sibirsky ideal of system (3.1) we
introduce the ideal

H = 〈1− αw, a21 − t1, b12 − αt1, a12 − t2, αb21 − t2, a03 − t3, α3b30 − t3〉.

Computing a Gröbner basis of H with respect to the lexicographic monomial order with
w > α > t1 > t2 > t3 > a21 > a12 > a03 > b30 > b21 > b12 we obtain the ideal

〈a03b3
21 − a3

12b30, a03a21b2
21 − a2

12b12b30, a12a21 − b12b21, a03a2
21b21 − a12b2

12b30, a03a3
21 − b3

12b30,

− a03 + t3,−a12 + t2,−a21 + t1,−a12 + αb21,−a03a2
21 + αb2

12b30,−a03a21b21 + αa12b12b30,

− a03b2
21 + αa2

12b30, a21α− b12,−a03a21 + α2b12b30,−a03b21 + α2a12b30,

− a03 + α3b30,−a21 + b12w,−α2b30 + a03w,−b21 + a12w,−1 + αw〉.

By the results of [26] the Sibirsky ideal of system (3.1) is generated by the polynomials of
the above ideal which do not depend on α, t1, t2 and t3, that is, by the first five binomials in the
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basis of the ideal presented above. It follows from (3.9) and (3.10), and the results of [26], that
the focus and isochronicity quantities of system (3.1) belong to the polynomial subalgebra of
C[a, b] generated by the monomials of these five binomials, that is,

a03b3
21, a3

12b30, a03a21b2
21, a2

12b12b30, a12a21, b12b21, a03a2
21b21, a12b2

12b30, a03a3
21, b3

12b30,

along with the monomials
a21b12, a12b21, a03b30.

We will map our ideals to this subalgebra and study their structure there. To this end, we
denote the monomials listed above by h1(a, b), . . . , h13(a, b), respectively, and consider the
ideal J = 〈hk(a, b)− ck : k = 1, . . . , 13〉 ⊂ C[a, b, c] (where c = (c1, . . . , c13)).

The mapping
F : C6 → C13 : (a, b) 7→ (c1, . . . , c13) (3.11)

defined by
c1 = h1(a, b) = a03b3

21, . . . , c13 = h13(a, b) = a03b30 (3.12)

induces the homomorphism of C-algebras

F] : C[c]→ C[a, b]

: ∑ d(α)c
α1
1 · · · c

α13
13 7→∑ d(α)h

α1
1 (a, b) · · · hα13

13 (a, b), d(α) ∈ C.
(3.13)

If I = { f1, . . . , fs}, where f j ∈ Image(F]) for each j, then we let Ic denote the ideal 〈 f c
1 , . . . , f c

s 〉
in C[c]/R, and similarly if I is infinite.

The following theorem can be derived using Theorem 6.3 of [14] but for reader’s conve-
nience we present the direct proof.

Theorem 3.3. At most two critical periods bifurcate from any nonlinear center at the origin of system
(1.5).

Proof. The first step of the proof is to map the focus and isochronicity quantities from the ring
C[a, b] to the ring C[c], that is, to rewrite them as polynomials in variables ck, where ck are
related to akl , blk by (3.12). It can be done as follows.

Let W ⊂ C13 denote the image of C6 under F, which is not necessarily a variety, and let
W ⊂ C13 be the Zariski closure of W. Denote by R the kernel of (3.13), R = ker(F]) ⊂ C[c].
Clearly, R is a prime ideal, and W = V(R).

From Theorem 2.4.2 of [1] we have R = ker(F]) = J ∩ C[c]. Let JG ⊂ C[a, b, c] denote a
Gröbner basis of J with respect to any monomial ordering with

{a21, a12, a03, b30, b21, b12} > {c1, c2, . . . , c13}. (3.14)

Then by the Elimination Theorem (see e.g. [10, 28]) RG = JG ∩ C[c] is a Gröbner basis of R.
Computing a reduced Gröbner basis JG of J with ordering (3.14) we obtain the Gröbner basis
RG = JG ∩C[c] of R presented in Appendix C.

From (3.9) and (3.10) we see that gkk and p2k have the form gkk = ∑ g̃(α)kk hα1
1 · · · h

α13
13 and

p2k = ∑ p̃(α)2k hα1
1 · · · h

α13
13 , respectively. That is, for each k gkk, p2k ∈ Image(F]) and there are

their preimages gc
kk and pc

2k in C[c]/R. According to Proposition 7(i) in §7.3 of [10], to find
the preimages of gkk and p2k we divide each of these quantities by JG, then the remainder of
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the division is the preimage. Dividing the polynomials gkk by JG we obtain the polynomials
gc

33, gc
66, gc

99, gc
12,12 presented in Appendix B, and for polynomials p2k we have the expressions:

pc
6 = − c5 − c6 + 2c11 − 4c12 − 2c13,

pc
12 = 1/4(44c1 − 24c2

11 + 112c11c12 − 96c2
12 + 30c11c13 + 21c12c13 − 6c2

13 + 44c2 − 14c3 − 14c4

+ 16c11c6 − 32c12c6 − 16c13c6 − 8c2
6 − 4c7 − 4c8)/4,

pc
18 = (−912240c1c11 + 534240c3

11 + 3608640c1c12 + 20720c10c12− 4183200c2
11c12 + 9696960c11c2

12

− 6048000c3
12 − 3451140c1c13 + 13440c10c13 + 50736c2

11c13 − 986244c11c12c13

+ 3944640c2
12c13 + 675498c11c2

13 − 12082821c12c2
13 − 1233594c3

13 + 868560c11c2

+ 47040c12c2 − 5231940c13c2 + 214760c11c3 − 190960c12c3 + 995806c13c3 + 214760c11c4

− 190960c12c4 + 995806c13c4 + 890400c1c6 + 37800c10c6 − 890400c2c6 + 29680c11c7

− 1080520c12c7 + 430388c13c7 + 29680c11c8 − 1080520c12c8 + 430388c13c8 + 75600c11c9

− 130480c12c9 − 62160c13c9 − 37800c6c9)/13440.

This completes the first step of the proof.
We denote Bc = 〈gc

kk : k ∈ N〉, Bc
12 = 〈gc

11, . . . gc
12,12〉, Pc = 〈pc

2k : k ∈ N〉, and Pc
9 =

〈pc
6, pc

12, pc
18〉 considering them as ideals in C[c]/R.

By (3.4) and Lemma 3.1 for system (3.1) VL = V(P9) ∩ VC and VC = V(B12), hence

VL = V(P9 + B12). Define Vc
L

def
= F(V(P + B)) = F(V(P9 + B12)). The set Vc

L which is the
image of VL under the map F is not necessary a variety, so the second step of the proof is to
check that all polynomials pc

2k vanish on the Zariski closure Vc
L of Vc

L .
Let H = (C[a, b, c]P9 + C[a, b, c]B12 + J) ∩ C[c]. Applying the results of §1.8.3 in [19] we

obtain that
V(H) = F(V(P9 +B12)) ⊂W.

Thus
Vc

L = V(H) = V(H) ∩W. (3.15)

If some polynomials f1, . . . , fs are in Image(F]) then

F(V( f1, . . . , fs)) = W ∩V( f c
1 , . . . , f c

s ). (3.16)

Hence, Vc
L = F(V(P +B)) = W ∩V(Pc +Bc), so

Vc
L ⊂W ∩V(Pc +Bc) ⊂W ∩V(Pc

9 +Bc
12). (3.17)

Computing the 6-th elimination ideal of the ideal H = C[a, b, c]P9 + C[a, b, c]B12 + J in
C[a, b, c] we find, that it is the same as the ideal

Q := Pc
9 +Bc

12 + R

in C[c]. Therefore, H ∩C[c] = (C[a, b, c]P9 + C[a, b, c]B12 + J) ∩C[c] = Q.
Hence V(Pc

9 +Bc
12 + R) = V(Pc

9 +Bc
12) ∩W, and by (3.15),

Vc
L ∩W = V(Pc

9 +Bc
12) ∩W.

Along with (3.17) it yields

V(Pc
9 +Bc

12) = V(Pc +Bc) = V(Pc) ∩V(Bc) ∩V(R)
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implying that for all k, pc
2k ∈ I(V(Q)). Thus, the second step of the proof is completed.

The third step is to find the primary decomposition of the ideal Q. Computing the decom-
position with the routine primdecGTZ of Singular we find that

Q = ∩7
k=1Qk,

where Q1, . . . , Q6 are prime ideals defined as:

Q1 = 〈c13, c12, c11, c10, c8, c7, c6, c5, c4, c3, c2, c1〉,
Q2 = 〈c13, c12, c11, c9, c8, c7, c6, c5, c4, c3, c2, c1〉,
Q3 = 〈c13, c11 − 4c12, c10, c8, 2c7 − c9, c6 − 2c12, c5 − 2c12, c4, 4c3 − c9, c2, 8c1 − c9〉,
Q4 = 〈c13, c11 − 4c12, c9, 2c8 − c10, c7, c6 − 2c12, c5 − 2c12, 4c4 − c10, c3, 8c2 − c10, c1〉,
Q5 = 〈c13, c11 − c12, c10, c9, c8, c7, c6 + c12, c5 + c12, c4, c3, c2, c1〉,
Q6 = 〈c12, c11 − c13, c9 − c10, c8, c7, c6, c5, c4, c3, c2, c1, c2

13 + c10〉,

and Q7 is a primary ideal generated by 59 polynomials. We do not present here the generators
of Q7, however the reader can easily compute it with Singular using the polynomials pc

2k
given above, the polynomials gc

kk from Appendix B and the ideal R from the Appendix C.
Although the ideal Q7 is complicate, its associate prime is just

√
Q7 = 〈cj : 1 ≤ j ≤ 13〉, so

V(Q7) is the origin 0 of C13.
Now, the last step of the proof is to find the expression for the period function using the

obtained decomposition of the ideal Q. To this end, we note that by Proposition 2.2 there exist
rational functions αj, β j, γj on C13 \ 0 such that

pc
2k =

3

∑
j=1

αj pc
6j +

4

∑
j=1

β jgc
3j,3j +

44

∑
j=1

γjrj, (3.18)

where {r1, . . . , ru} = RG is the generating set of R (given in Appendix C). The map F] extends
to rational functions in a natural way. Applying it to (3.18) and recalling that rj ∈ R = ker(F])

for each j, we obtain

p2k =
3

∑
j=1

α′j p2j +
4

∑
j=1

β′jg3j,3j, (3.19)

valid on C13 \ 0, where the α′j and β′j are rational functions of a and b.
Thus, for system (1.5) function (2.9) can be represented in the form

T (r, (a, ā)) = T(r)− 2π =
3

∑
j=1

(1 + ψj(r, a, ā))p6j(a, ā)r6j +
4

∑
j=1

Wj(r, a, ā)g3j,3j(a, ā), (3.20)

where the Wj are analytic functions and the ψj are real analytic functions. On the center variety
VC the polynomials g3j,3j evaluate to zero. The preimage F−1(0) in the set of parameters of
system (1.5) is the point (a12, a21, a03, b30, b12, b21) = (0, 0, 0, 0, 0, 0). Therefore by Theorem 2.1 at
most two critical periods bifurcate from any nonlinear center at the origin of system (1.5).

In summary, to obtain the bound for the number of critical periods we have performed
the decomposition of the ideal generated by isochronicity quantities in the ring C[c]/R. The
bound is obtained for all centers except the linear one. As it is shown in [14] sometimes the
study in the ring C[c]/R can give a better result than the study in the ring C[a, b]. We also



12 W. Huang, V. Basov, M. Han and V. G. Romanovski

have performed the analysis of isochronicity quantities using Theorem 3.2 and obtained the
same result – the upper bound is two for all nonlinear centers. Thus, for system (1.5) the
method used in this paper does not give a better result than the one used in [27]. However
our study has shown that the ideal generated by p6, p12, p18 in C[c]/R has a simpler structure
than the ideal 〈P9,B12〉 in C[a, b], since in the first case it has 7 components and only one of
them is non-radical (that is, the ideal in the primary decomposition defining the component
is not prime), whereas in the second case it has 15 components and 7 of them are non-radical.
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Appendix A

Coefficients of the normal form of system (3.1):

Y(4,3)
1 = − i(−a12a21 + a21b12 − 2a12b21 − a03b30),

Y(3,4)
2 = i(−a21b12 + 2a12b21 + b12b21 + a03b30),

Y(7,6)
1 =

i
4
(8a2

12a2
21 + 4a2

21b2
12 − 24a2

12a21b21 + 8a03a2
21b21 − 8a12a21b12b21 + 4a21b2

12b21

− 32a2
12b2

21 + 4a03a21b2
21 − 8a12b12b2

21 − 40a03b3
21 − 48a3

12b30 − 3a03a12a21b30

+ 24a2
12b12b30 − 105a03a12b21b30 + 9a03b12b21b30 − 4a2

03b2
30),

Y(6,7)
2 =

i
4
(−4a12a2

21b12 − 4a2
21b2

12 + 8a2
12a21b21 + 8a12a21b12b21 + 32a2

12b2
21 − 24a03a21b2

21

+ 24a12b12b2
21 − 8b2

12b2
21 + 48a03b3

21 + 40a3
12b30 − 9a03a12a21b30 − 4a2

12b12b30

− 8a12b2
12b30 + 105a03a12b21b30 + 3a03b12b21b30 + 4a2

03b2
30),

Y(10,9)
1 =

i
1680

(16800a3
12a3

21 − 9450a03a12a4
21 − 37380a2

12a3
21b12 + 1050a03a4

21b12 − 1680a12a3
21b2

12

+ 22260a3
21b3

12 + 62160a3
12a2

21b21 − 140a03a12a3
21b21 + 34020a2

12a2
21b12b21

+ 5740a03a3
21b12b21 + 5040a12a2

21b2
12b21 − 37380a2

21b3
12b21 − 137760a3

12a21b2
21

+161490a03a12a2
21b2

21−85680a2
12a21b12b2

21+6510a03a2
21b12b2

21+65520a12a21b2
12b2

21

+ 3360a21b3
12b2

21 − 107520a3
12b3

21 − 93940a03a12a21b3
21 − 78960a2

12b12b3
21

− 22540a03a21b12b3
21 − 1680a12b2

12b3
21 − 218400a03a12b4

21 − 87360a03b12b4
21

− 135240a4
12a21b30 + 139335a03a2

12a2
21b30 − 2940a2

03a3
21b30 + 70420a3

12a21b12b30
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− 16275a03a12a2
21b12b30 − 2870a2

12a21b2
12b30 − 38262a03a2

21b2
12b30

+ 3220a12a21b3
12b30 − 1050a21b4

12b30 − 240240a4
12b21b30 − 256305a03a2

12a21b21b30

+ 28364a2
03a2

21b21b30 + 560a3
12b12b21b30 + 33138a03a12a21b12b21b30

+ 68320a2
12b2

12b21b30 + 47775a03a21b2
12b21b30 − 5040a12b3

12b21b30

− 823830a03a2
12b2

21b30 + 80878a2
03a21b2

21b30 − 84000a03a12b12b2
21b30

+ 46410a03b2
12b2

21b30 − 300720a2
03b3

21b30 − 325290a03a3
12b2

30 + 13791a2
03a12a21b2

30

+ 143878a03a2
12b12b2

30 + 15302a2
03a21b12b2

30 − 616a03a12b2
12b2

30 − 420a03b3
12b2

30

− 327349a2
03a12b21b2

30 + 32131a2
03b12b21b2

30 − 2660a3
03b3

30),

Y(9,10)
2 =

i
1680

(−3360a2
12a3

21b12 + 1050a03a4
21b12 + 37380a12a3

21b2
12 − 22260a3

21b3
12 + 1680a3

12a2
21b21

+ 5040a03a12a3
21b21 − 65520a2

12a2
21b12b21 − 3220a03a3

21b12b21 − 5040a12a2
21b2

12b21

+ 1680a2
21b3

12b21 + 78960a3
12a21b2

21 − 68320a03a12a2
21b2

21 + 85680a2
12a21b12b2

21

+ 2870a03a2
21b12b2

21 − 34020a12a21b2
12b2

21 + 37380a21b3
12b2

21 + 107520a3
12b3

21

− 560a03a12a21b3
21 + 137760a2

12b12b3
21 − 70420a03a21b12b3

21 − 62160a12b2
12b3

21

− 16800b3
12b3

21 + 240240a03a12b4
21 + 135240a03b12b4

21 + 87360a4
12a21b30

− 46410a03a2
12a2

21b30 + 420a2
03a3

21b30 + 22540a3
12a21b12b30 − 47775a03a12a2

21b12b30

− 6510a2
12a21b2

12b30 + 38262a03a2
21b2

12b30 − 5740a12a21b3
12b30 − 1050a21b4

12b30

+ 218400a4
12b21b30 + 84000a03a2

12a21b21b30 + 616a2
03a2

21b21b30 + 93940a3
12b12b21b30

− 33138a03a12a21b12b21b30 − 161490a2
12b2

12b21b30 + 16275a03a21b2
12b21b30

+ 140a12b3
12b21b30 + 9450b4

12b21b30 + 823830a03a2
12b2

21b30 − 143878a2
03a21b2

21b30

+ 256305a03a12b12b2
21b30 − 139335a03b2

12b2
21b30 + 325290a2

03b3
21b30

+ 300720a03a3
12b2

30 − 32131a2
03a12a21b2

30 − 80878a03a2
12b12b2

30 − 15302a2
03a21b12b2

30

− 28364a03a12b2
12b2

30 + 2940a03b3
12b2

30 + 327349a2
03a12b21b2

30 − 13791a2
03b12b21b2

30

+ 2660a3
03b3

30).
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Appendix B

Focus quantities of (3.1) in the ring C[c]:

gc
33 = c5 − c6,

gc
66 = − 2c1 + 2c2 + 5c3 − 5c4 − 2c7 + 2c8,

gc
99 =

1
144

(2640c3c6 − 2640c4c6 − 1056c6c7 + 1056c6c8 + 10026c6c9 − 10026c6c10 + 41484c3c11

− 41484c4c11 − 24392c7c11 + 24392c8c11 − 180c9c11 + 180c10c11 − 37452c3c12

+ 37452c4c12 + 76174c7c12 − 76174c8c12 − 41020c9c12 + 41020c10c12 + 135c3c13

− 135c4c13 − 378c7c13 + 378c8c13 + 216c9c13 − 216c10c13),

gc
12,12 = − 1

1756339200
(294427766556000c2

6c9−294427766556000c2
6c10−257886290914560c6c7c11

+ 257886290914560c6c8c11 − 5799959172047880c6c9c11

+ 5799959172047880c6c10c11 − 24193200762002160c3c2
11

+ 24193200762002160c4c2
11 + 14207671214436000c7c2

11

− 14207671214436000c8c2
11 + 104367598448400c9c2

11

− 104367598448400c10c2
11 + 2023605788006880c6c7c12

− 2023605788006880c6c8c12 + 3379521209100120c6c9c12

− 3379521209100120c6c10c12 + 40707323816443200c3c11c12

− 40707323816443200c4c11c12 − 55274290966560120c7c11c12

+ 55274290966560120c8c11c12 + 23637679447583040c9c11c12

− 23637679447583040c10c11c12 − 17231252638274640c3c2
12

+ 17231252638274640c4c2
12 + 35135306197334280c7c2

12

− 35135306197334280c8c2
12 − 19056888587797200c9c2

12

+ 19056888587797200c10c2
12 − 10714397601600c6c7c13

+ 10714397601600c6c8c13 − 16212085119762c6c9c13

+ 16212085119762c6c10c13 − 185198720154312c3c11c13

+ 185198720154312c4c11c13 + 281266716188144c7c11c13

− 281266716188144c8c11c13 − 124812089888220c9c11c13
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+ 124812089888220c10c11c13 + 152720019740160c3c12c13

− 152720019740160c4c12c13 − 355884591752158c7c12c13

+ 355884591752158c8c12c13 + 195477929237452c9c12c13

− 195477929237452c10c12c13 − 321831822915c3c2
13 + 321831822915c4c2

13

+ 900296097570c7c2
13 − 900296097570c8c2

13 − 513264903480c9c2
13

+ 513264903480c10c2
13 − 5466800908800c2c3 + 10228431628800c2

3

+ 5466800908800c2c4 + 13667002272000c3c4 − 23895433900800c2
4

− 8671827225600c2c7 − 36783919307520c3c7 + 13915742510208c4c7

+ 13077018662400c2
7 + 8671827225600c2c8 + 2297024644992c3c8

+ 20571152152320c4c8 − 8671827225600c7c8 − 4405191436800c2
8

+ 19627210359680c2c9 + 25183513555200c3c9 − 38297829056256c4c9

− 11212840235520c7c9 + 16700529871872c8c9 − 19627210359680c2c10

− 10770196842944c3c10 + 23884512344000c4c10 + 2926680487808c7c10

− 8414370124160c8c10).

Appendix C

The ideal of relations R for system (3.1) defined by its Gröbner basis RG:

〈c5c10 − c8c11, c6c9 − c7c11, c2
8 − c4c10, c6c8 − c10c12, c5c8 − c4c11, c4c8 − c2c10, c2

7 − c3c9,

c6c7 − c3c11, c5c7 − c9c12, c3c7 − c1c9, c5c6 − c11c12, c4c6 − c8c12, c3c6 − c1c11, c2c6 − c4c12,

c4c5 − c2c11, c3c5 − c7c12, c1c5 − c3c12, c2
4 − c2c8, c2

3 − c1c7, c7c8c11 − c9c10c12, c3c8c11 − c7c10c12,

c1c8c11 − c3c10c12, c4c7c11 − c8c9c12, c2c7c11 − c4c9c12, c3c4c11 − c7c8c12, c1c4c11 − c3c8c12,

c2c3c11− c4c7c12, c1c2c11− c3c4c12, c3
12c13− c1c2, c11c2

12c13− c3c4, c6c2
12c13− c1c4, c5c2

12c13− c2c3,

c2
11c12c13−c7c8, c6c11c12c13−c3c8, c5c11c12c13−c4c7, c2

6c12c13−c1c8, c2
5c12c13−c2c7, c3

11c13−c9c10,

c6c2
11c13 − c7c10, c5c2

11c13 − c8c9, c2
6c11c13 − c3c10, c2

5c11c13 − c4c9, c3
6c13 − c1c10, c3

5c13 − c2c9〉.

References

[1] W. W. Adams, P. Loustaunau, An introduction to Gröbner bases, Graduate Studies in
Mathematics, Vol. 3, American Mathematical Society, Providence, RI, 1994. https:
//doi.org/10.1090/gsm/003; MR1287608

https://doi.org/10.1090/gsm/003
https://doi.org/10.1090/gsm/003
https://www.ams.org/mathscinet-getitem?mr=1287608


16 W. Huang, V. Basov, M. Han and V. G. Romanovski

[2] N. N. Bautin, On the number of limit cycles which appear with the variation of coeffi-
cients from an equilibrium position of focus or center type, Math. Sbornik N. S. 30(1952)
181–196; Translation Amer. Math. Soc. 100(1954) 181–196. MR0045893

[3] Y. N. Bibikov, Local theory of nonlinear analytic ordinary differential equations, Lecture Notes
in Mathematics, Vol. 702, Springer-Verlag, New York, 1979. https://doi.org/10.1007/
BFb0064649; MR547669

[4] J. Chavarriga, M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst.
1(1999), 1–70. https://doi.org/10.1007/BF02969404; MR1747197

[5] X. Chen, W. Huang, V. G. Romanovski, W. Zhang, Linearizability and local bifurcation
of critical periods in a cubic Kolmogorov system, J. Comput. Appl. Math. 245(2013), 86–96.
https://doi.org/10.1016/j.cam.2012.12.003; MR3016237

[6] X. Chen, V. G. Romanovski, W. Zhang, Critical periods of perturbations of reversible
rigidly isochronous centers, J. Differential Equations 251(2011), 1505–1525. https://doi.
org/10.1016/j.jde.2011.05.022; MR2813887

[7] C. Chicone, The monotonicity of the period function for planar Hamiltonian vec-
tor fields, J. Differential Equations 69(1987), 310–321. https://doi.org/10.1016/
0022-0396(87)90122-7; MR903390

[8] C. Chicone, M. Jacobs, Bifurcation of critical periods for plane vector fields,
Trans. Amer. Math. Soc. 312(1989), 433–486. https://doi.org/10.2307/2000999;
MR930075

[9] S. N. Chow, J. A. Sanders, On the number of critical points of the period, J. Dif-
ferential Equations 64(1986), 51–66. https://doi.org/10.1016/0022-0396(86)90071-9;
MR849664

[10] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms. An introduction to compu-
tational algebraic geometry and commutative algebra, Springer, New York, 1997. https:
//doi.org/10.1007/978-1-4757-2693-0; MR1417938

[11] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-6—A Computer
Algebra System for Polynomial Computations. http://www.singular.uni-kl.de (2012).

[12] W. Decker, S. Laplagne, G. Pfister, H. A. Schönemann, primdec.lib Singular 3-1-6
library for computing the primary decomposition and radical of ideals (2010).
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