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Abstract. It is rigorously proved that a Li–Yorke chaotic perturbation of a system with
a homoclinic orbit creates chaos along each periodic trajectory. The structure of the
chaos is investigated, and the existence of infinitely many almost periodic orbits out
of the scrambled sets is revealed. Ott–Grebogi–Yorke and Pyragas control methods are
utilized to stabilize almost periodic motions. A Duffing oscillator is considered to show
the effectiveness of our technique, and simulations that support the theoretical results
are depicted.
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1 Introduction

Traditionally, analysis of nonlinear dynamical systems has been restricted to smooth problems,
that is, to smooth differential equations. Besides stability analysis of fixed points and periodic
orbits, another fascinating phenomenon is the existence of chaotic orbits. The presence of
such orbits has the consequence that the motions of the system depend sensitively on initial
conditions, and the behavior of orbits in the future is unpredictable. Such a chaotic behavior of
solutions can be explained mathematically by showing the existence of a transverse homoclinic
point of the time map with the corresponding invariant Smale horseshoe [21,33,34]. In general,
however, it is not easy to demonstrate the existence of a transverse homoclinic point. The
perturbation approach, which is now known as the Melnikov method, is a powerful tool
for that purpose [17–19]. The starting point is a nonautonomous system, the unperturbed
system/equation, with a (necessarily) nontransverse homoclinic orbit. It is known that if
we set up a perturbed system by adding a periodic (or almost periodic) perturbation of a
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sufficiently small amplitude to the unperturbed system and a certain Melnikov function has a
simple zero at some point, then the perturbed system has a transverse homoclinic point with
the corresponding Smale horseshoe [11].

Endogenously generated chaotic behavior of systems are well investigated in the litera-
ture. The systems of Lorenz [28], Rössler [36] and Chua [13–15] as well as the Van der Pol
[12, 24, 25] and Duffing [29, 31, 41, 42] oscillators can be considered as systems which are ca-
pable of generating chaos endogenously. Chaotification of systems with asymptotically stable
equilibria through different types of perturbations can be found in the papers [1–3] and the
book [5]. Moreover, the study [4] is concerned with the existence of homoclinic and hetero-
clinic motions in economic models perturbed with exogenous shocks. In the present study, we
consider a system with a homoclinic solution under the influence of a chaotic forcing term.
The formation of exogenous chaos is theoretically investigated. Our results are based on the
Li–Yorke definition of chaos [27] in a modified sense that was introduced in the papers [6, 8].
To emphasize the role of the homoclinic solution in the paper, we call the dynamics Li-*Yorke
homoclinic chaos. An example based on Duffing oscillator is presented to show the effective-
ness of our results. Moreover, the controllability of the obtained chaos is shown by means of
the Ott–Grebogi–Yorke (OGY) [32] and Pyragas [35] control methods.

Our suggested results are of a significant interest due to the theoretical importance and
perspectives for applications. This is the first time in the literature that chaos is obtained
as a union of infinitely many sets of chaotic motions for a single equation by means of a
perturbation. It was observed from experimental data that chaos is a positive factor for brain
activities [39] as well as for robotic dynamics [30, 40]. This is the reason why the presence of
infinitely many sets of chaotic motions in the dynamics of a single equation may shed light
on the capacity of the brain and provide an opportunity for new designs in robotics.

In the next section, we will introduce the systems which are the main objects of our inves-
tigation and will give information concerning their properties under some conditions.

2 The model

Let A be an equicontinuous family of functions defined on R with range Λ, where Λ is a
compact subset of Rm. In order to generate chaos, we perturb the system

z′ = f (z, t) (2.1)

with the elements of the family A and set up the system

u′ = f (u, t) + h(x(t)), (2.2)

where x(t) ∈ A , the function f : Rn ×R → Rn is twice continuously differentiable in u and
continuous in t, and the function h : Λ→ Rn is continuous.

In the remaining parts of the paper, we will make use of the usual Euclidean norm for
vectors and the norm induced by the Euclidean norm for matrices.

The following conditions are required.

(C1) f (u, t + 1) = f (u, t) for all u ∈ Rn and t ∈ R;

(C2) There exist positive numbers L1 and L2 such that

L1 ‖x1 − x2‖ ≤ ‖h(x1)− h(x2)‖ ≤ L2 ‖x1 − x2‖

for all x1, x2 ∈ Λ.
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We suppose that system (2.1) has a hyperbolic periodic solution p(t) with a homoclinic
solution q(t) such that the variational equation w′ = Du f (q(t), t)w has only the zero solution
bounded on the real axis. Under this assumption, it is known that q(t) is a transversal homo-
clinic orbit, i.e., the 1-time map G : Rn → Rn of system (2.1) has a hyperbolic fixed point p(0)
with a transversal homoclinic orbit {q(j)}j∈Z. Following Sections 3 and 4 of [33], especially
Theorem 4.8 of [33], we get a collection of uniformly bounded solutions

{
νβ(t)

}
β∈Sσ

of system
(2.1) orbitally near q(t), where the index set Sσ, σ ≥ 2, is the set of doubly infinite sequences
d =

(
. . . , d−1, d0, d1, . . .

)
with di ∈ {1, . . . , σ} for all i ∈ Z, i.e., Sσ = {1, 2, . . . , σ}Z such that

each linear system
w′ = Du f (νβ(t), t)w (2.3)

has an exponential dichotomy on R with uniform positive constants K and α, and projections
Qβ: ∥∥Wβ(t)QβW−1

β (s)
∥∥ ≤ Ke−α(t−s) for all t, s, t ≥ s,∥∥Wβ(t)(I −Qβ)W−1

β (s)
∥∥ ≤ Keα(t−s) for all t, s, t ≤ s,

(2.4)

where I is the n× n identity matrix and Wβ is the fundamental matrix of system (2.3) satisfying
Wβ(0) = I. It is worth noting that system (2.2) may not possess a homoclinic solution.

By Theorem 4.8 of [33], an iterative Gk0 , for some fixed k0 ∈N, is conjugate to the Bernoulli
shift on an invariant compact subset H ⊂ Rn, Gk0 : H → H . So Gk0 has i-periodic orbits
in H for any natural number i. This gives that the map G has periodic orbits with periods
ik0 starting in H . Since by definition νβ(0) = ςβ for some ςβ ∈ H and then Gj(ςβ) = νβ(j)
for any j ∈ Z, we see that among these νβ(t) there are ik0-periodic solutions of (2.1) for any
i ∈N. In what follows we will denote by Pσ ⊂ Sσ, σ ≥ 2, the index set for which the bounded
solutions

{
νβ(t)

}
β∈Pσ

of system (2.1) are periodic.

3 Bounded solutions

Introducing the new variable y through y = u− νβ(t), β ∈ Sσ, system (2.2) can be written in
the form

y′ = Du f (νβ(t), t)y + Fβ(y, t) + h(x(t)), (3.1)

where the function Fβ : Rn ×R→ Rn is defined as

Fβ(y, t) = f (y + νβ(t), t)− f (νβ(t), t)− Du f (νβ(t), t)y. (3.2)

Using the dichotomy theory [16], one can verify that for a fixed x(t) ∈ A , a function
y(t) which is bounded on the real axis is a solution of system (3.1) if and only if the integral
equation

y(t) =
∫ ∞

−∞
Gβ(t, s)[Fβ(y(s), s) + h(x(s))]ds (3.3)

is satisfied, where

Gβ(t, s) =

{
Wβ(t)QβW−1

β (s), t > s,

−Wβ(t)(I −Qβ)W−1
β (s), t < s.

(3.4)

Since f is twice continuously differentiable in u, under the condition (C1), there exist
positive numbers N1 and N2 such that

sup
t∈R, β∈Sσ

∥∥Du f (νβ(t), t)
∥∥ ≤ N1
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and
sup

t∈R, β∈Sσ

∥∥Duu f (νβ(t), t)
∥∥ ≤ N2

for each bounded solution νβ(t), β ∈ Sσ, of (2.1).
The following condition is also required.

(C3) Mh <
α2

16K2N2
, where Mh = sup

x∈Λ
‖h(x)‖ .

Under the condition (C3), let us denote

R0 =
α−

√
α2 − 16K2N2Mh

4KN2
.

The following lemma is concerned with the existence and uniqueness of bounded solutions
of system (3.1).

Lemma 3.1. Suppose that the conditions (C1)–(C3) hold. For each x(t) ∈ A system (3.1) possesses a
unique solution φ

β

x(t)(t), β ∈ Sσ, which is bounded on the real axis such that supt∈R

∥∥φ
β

x(t)(t)
∥∥ ≤ R0.

Proof. Let C0 be the set of uniformly bounded, continuous functions w(t) : R→ Rn satisfying
‖w‖∞ ≤ R0, where the norm ‖·‖∞ is defined by

‖w‖∞ = sup
t∈R

‖w(t)‖ . (3.5)

One can confirm that C0 is complete with the metric induced by the norm ‖·‖∞.
Fix an arbitrary function x(t) ∈ A and define an operator Π on C0 through the equation

Πw(t) =
∫ ∞

−∞
Gβ(t, s)[Fβ(w(s), s) + h(x(s))]ds, (3.6)

where Fβ and Gβ are defined by (3.2) and (3.4), respectively. Let w(t) belong to C0. One can
obtain for each t ∈ R that

‖Fβ(w(t), t)‖ ≤ ‖w(t)‖
∫ 1

0

∥∥Du f (θw(t) + νβ(t), t)− Du f (νβ(t), t)
∥∥ dθ

≤ ‖w(t)‖2
∫ 1

0

∫ 1

0

∥∥Duu f (τθw(t) + νβ(t), t)
∥∥ dτdθ

≤ N2‖w(t)‖2.

(3.7)

The inequality (3.7) yields

‖Πw‖∞ ≤
2K(N2‖w‖2

∞ + Mh)

α
≤ R0,

and therefore, Π (C0) ⊆ C0.
Now, suppose that w1(t) and w2(t) belong to the set C0. It can be verified that

Πw1(t)−Πw2(t) =
∫ ∞

−∞
Gβ(t, s)F̃β(w1(s), w2(s), s)ds,

where the function F̃β : Rn ×Rn ×R→ Rn is defined through the equation

F̃β(z1, z2, t) = f (z1 + νβ(t), t)− f (z2 + νβ(t), t)− Du f (νβ(t), t)(z1 − z2). (3.8)
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For each t ∈ R, we have that

‖F̃β(w1(t), w2(t), t)‖

≤ ‖w1(t)− w2(t)‖
∫ 1

0

∥∥Du f (θw1(t) + (1− θ)w2(t) + νβ(t), t)− Du f (νβ(t), t)
∥∥dθ

≤ ‖w1(t)− w2(t)‖
∫ 1

0

∫ 1

0

∥∥Duu f (τ(θw1(t) + (1− θ)w2(t)) + νβ(t), t)
∥∥

× (θ‖w1(t)‖+ (1− θ)‖w2(t)‖)dτdθ

≤ ‖w1(t)− w2(t)‖max{‖w1(t)‖, ‖w2(t)‖}

×
∫ 1

0

∫ 1

0

∥∥Duu f (τ(θw1(t) + (1− θ)w2(t)) + νβ(t), t)
∥∥ dτdθ

≤ N2‖w1(t)− w2(t)‖max{‖w1(t)‖, ‖w2(t)‖}.

(3.9)

One can confirm using the last inequality that

‖Πw1 −Πw2‖∞ ≤
2KN2R0

α
‖w1 − w2‖∞ <

1
2
‖w1 − w2‖∞ .

Hence, the operator Π is a contraction. Consequently, for each x(t) ∈ A , there exists a unique
solution φ

β

x(t)(t) of system (3.1) which is bounded on the real axis such that supt∈R

∥∥φ
β

x(t)(t)
∥∥ ≤

R0.

4 Li–Yorke chaos

In the pioneer paper [27], chaos is considered with infinitely many periodic solutions sep-
arated from the elements of a scrambled set. In the present study, we will make use of a
modified version of Li–Yorke chaos such that infinitely many almost periodic motions take
place in the dynamics instead of periodic ones. Such a modification was first considered in
the paper [8]. Since the concept of chaotic set of functions will be used in the theoretical dis-
cussions, let us explain the ingredients of Li–Yorke chaos with infinitely many almost periodic
motions [6–8].

Let Γ be a set of uniformly bounded functions ψ : R → Rr. A couple of functions(
ψ(t), ψ(t)

)
∈ Γ × Γ is called proximal if for an arbitrary small number ε > 0 and an ar-

bitrary large number E > 0 there exists an interval J ⊂ R with a length no less than E such
that

∥∥ψ(t)− ψ(t)
∥∥ < ε for all t ∈ J. Besides, a couple of functions

(
ψ(t), ψ(t)

)
∈ Γ × Γ is

frequently (ε0, ∆)-separated if there exist numbers ε0 > 0, ∆ > 0 and infinitely many disjoint
intervals each with a length no less than ∆ such that

∥∥ψ(t)− ψ(t)
∥∥ > ε0 for each t from these

intervals. It is worth noting that the numbers ε0 and ∆ may depend on the functions ψ(t) and
ψ(t).

We say that a couple of functions
(
ψ(t), ψ(t)

)
∈ Γ×Γ is a Li–Yorke pair if they are proximal

and frequently (ε0, ∆)-separated for some positive numbers ε0 and ∆.
The description of a Li–Yorke chaotic set with infinitely many almost periodic motions is

given in the next definition [6–8].

Definition 4.1. Γ is called a Li–Yorke chaotic set with infinitely many almost periodic motions
if:

(i) there exists a countably infinite set C ⊂ Γ of almost periodic functions;
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(ii) there exists an uncountable set U ⊂ Γ, the scrambled set, such that the intersection of
U and C is empty and each couple of different functions inside U ×U is a Li–Yorke
pair;

(iii) for any function ψ(t) ∈ U and any almost periodic function ψ(t) ∈ C , the couple(
ψ(t), ψ(t)

)
is frequently (ε0, ∆)−separated for some positive numbers ε0 and ∆.

In order to study the existence of chaos theoretically in the dynamics of system (2.2), let
us introduce the sets of functions

Bβ =
{

φ
β

x(t)(t) : x(t) ∈ A
}

, β ∈ Sσ. (4.1)

Lemma 4.2. Under the conditions (C1)–(C3), if a couple (x(t), x(t)) ∈ A ×A is proximal, then
the same is true for the couple

(
φ

β

x(t)(t), φ
β

x(t)(t)
)
∈ Bβ ×Bβ, β ∈ Sσ.

Proof. Fix an arbitrary small positive number ε, and let µ be a number such that

µ ≥ 1 +
2KL2

α− 2KN2R0
.

Suppose that E is an arbitrary large positive number satisfying E > 1
δ ln

( 2H0µ
ε

)
, where

δ =
√

α2 − 2KN2R0α

and

H0 =
2
(

α−
√

α2 − 2KN2R0α
) (

Mh + N2R2
0
)

αN2R0
.

Because the couple (x(t), x(t)) ∈ A × A is proximal, there exist a real number a0 and a
number E0 ≥ E such that the inequality ‖x(t)− x(t)‖ < ε

µ holds for all t ∈ [a0, a0 + 3E0].

The bounded solutions φ
β

x(t)(t) and φ
β

x(t)(t) of system (3.1) satisfy the relation

φ
β

x(t)(t)− φ
β

x(t)(t) =
∫ ∞

−∞
Gβ(t, s)

(
F̃β

(
φ

β

x(t)(s), φ
β

x(t)(s), s
)
+ h(x(s))− h(x(s))

)
ds,

where the functions Gβ and F̃β are defined by (3.4) and (3.8), respectively. According to (3.9)
we have for t ∈ R that∥∥∥F̃β

(
φ

β

x(t)(t), φ
β

x(t)(t), t
)∥∥∥ ≤ N2R0

∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ ≤ 2N2R2

0. (4.2)

Making use of the inequality (4.2) it can be verified for t ∈ [a0, a0 + 3E0] that∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ ≤ 2KL2ε

µα
+

2K(Mh + N2R2
0)

α

(
e−α(t−a0) + e−α(a0+3E0−t)

)
+ KN2R0

∫ a0+3E0

a0

e−α|t−s|
∥∥∥φ

β

x(t)(s)− φ
β

x(t)(s)
∥∥∥ ds.

Now, we obtain by applying Theorem A.1 given in the Appendix that∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ ≤ 2KL2ε

µ(α− 2KN2R0)
+ H0

(
e−δ(t−a0) + e−δ(a0+3E0−t)

)
.
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Since E > 1
δ ln

( 2H0µ
ε

)
, the inequality

H0

(
e−δ(t−a0) + e−δ(a0+3E0−t)

)
<

ε

µ

is valid for t ∈ J, where J = [a0 + E0, a0 + 2E0]. Thus, if t belongs to the interval J, then we
have that ∥∥∥φ

β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ <

(
1 +

2KL2

α− 2KN2R0

)
ε

µ
≤ ε.

Consequently, the couple
(
φ

β

x(t)(t), φ
β

x(t)(t)
)
∈ Bβ ×Bβ is proximal.

Remark 4.3. The interval J mentioned in the proof of Lemma 4.2 is uniform for each β ∈ Sσ.

The next assertion is concerned with the second ingredient, the frequent separation feature,
of Li–Yorke chaos.

Lemma 4.4. Assume that the conditions (C1)–(C3) hold. If a couple (x(t), x(t)) ∈ A × A is
frequently (ε0, ∆)-separated for some positive numbers ε0 and ∆, then the couple

(
φ

β

x(t)(t), φ
β

x(t)(t)
)
∈

Bβ ×Bβ is frequently (ε1, ∆)-separated for some positive numbers ε1 and ∆ uniform for each β ∈ Sσ.

Proof. Because the couple (x(t), x(t)) ∈ A × A is frequently (ε0, ∆)-separated, there exist
infinitely many disjoint intervals Jk, k ∈ N, each with a length no less than ∆ such that
‖x(t)− x(t)‖ > ε0 for each t from these intervals.

Suppose that h(x) = (h1(x), h2(x), . . . , hn(x)), where each hj, j = 1, 2, . . . , n, is a real valued
function. The function h̃ : Λ × Λ → Rn defined by h̃(z1, z2) = h(z1) − h(z2) is uniformly
continuous on Λ×Λ. Since A is an equicontinuous family on R, the set of functions whose
elements are of the form hj(x(t))− hj(x(t)), j = 1, 2, . . . , n, where x(t), x(t) ∈ A , is also an
equicontinuous family on R. Therefore, there exists a positive number τ < ∆, which does not
depend on the functions x(t) and x(t), such that for every t1, t2 ∈ R with |t1 − t2| < τ, the
inequality

∣∣(hj (x(t1))− hj (x(t1))
)
−
(
hj (x(t2))− hj (x(t2))

)∣∣ < L1ε0

2
√

n
(4.3)

holds for all j = 1, 2, . . . , n.
Fix a natural number k. Let us denote ξk = ηk − τ/2, where ηk is the midpoint of the

interval Jk. There exists an integer jk, 1 ≤ jk ≤ n, such that

∣∣hjk(x(ηk))− hjk(x(ηk))
∣∣ ≥ L1√

n
‖x(ηk)− x(ηk)‖ >

L1ε0√
n

. (4.4)

For t ∈ [ξk, ξk + τ], one can confirm by means of (4.3) that

∣∣hjk (x(ηk))− hjk (x(ηk))
∣∣− ∣∣hjk (x(t))− hjk (x(t))

∣∣ < L1ε0

2
√

n
.

Accordingly, the inequality (4.4) yields

∣∣hjk (x(t))− hjk (x(t))
∣∣ > L1ε0

2
√

n
, t ∈ [ξk, ξk + τ] .



8 M. Akhmet, M. Fečkan, M. O. Fen and A. Kashkynbayev

Since there exist numbers c1, c2, . . . , cn ∈ [ξk, ξk + τ] such that the equation∥∥∥∥∥
∫ ξk+τ

ξk

(h(x(s))− h(x(s))) ds

∥∥∥∥∥ = τ

(
n

∑
j=1

(
hj(x(cj))− hj(x(cj))

)2

)1/2

,

is valid, we have∥∥∥∥∥
∫ ξk+τ

ξk

(h(x(s))− h(x(s))) ds

∥∥∥∥∥ ≥ τ
∣∣hjk(x(cjk))− hjk(x(cjk))

∣∣ > τL1ε0

2
√

n
. (4.5)

The bounded solutions φ
β

x(t)(t) and φ
β

x(t)(t) satisfy the equation

φ
β

x(t)(t)− φ
β

x(t)(t) = φ
β

x(t)(ξk)− φ
β

x(t)(ξk)

+
∫ t

ξk

[
F̃β

(
φ

β

x(t)(s), φ
β

x(t)(s), s
)
+ Du f (νβ(s), s)

(
φ

β

x(t)(s)− φ
β

x(t)(s)
)]

ds

+
∫ t

ξk

(h(x(s))− h(x(s))) ds,

where the function F̃β is defined by (3.8). Therefore, making use of the inequalities (4.2) and
(4.5) we obtain that∥∥∥φ

β

x(t)(ξk + τ)− φ
β

x(t)(ξk + τ)
∥∥∥ >

τL1ε0

2
√

n
− [1 + (N1 + N2R0)τ] max

t∈[ξk ,ξk+τ]

∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ .

Hence, the inequality

max
t∈[ξk ,ξk+τ]

∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ >

τL1ε0

2 [2 + (N1 + N2R0)τ]
√

n

holds.
Now, suppose that

max
t∈[ξk ,ξk+τ]

∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ =

∥∥∥φ
β

x(t)(ρk)− φ
β

x(t)(ρk)
∥∥∥

for some ρk ∈ [ξk, ξk + τ].
Let us define the numbers

ε1 =
τL1ε0

4 [2 + (N1 + N2R0)τ]
√

n

and

∆ = min
{

τ

2
,

τL1ε0

8 [2 + (N1 + N2R0)τ] [Mh + (N1 + N2R0)R0]
√

n

}
.

It is worth noting that ε1 and ∆ do not depend on β ∈ Sσ. Moreover, we denote θk = ρk if
ξk ≤ ρk ≤ ξk + τ/2 and θk = ρk − ∆ if ξk + τ/2 < ρk ≤ ξk + τ.

Using the inequality∥∥∥φ
β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ ≥ ∥∥∥φ

β

x(t)(ρk)− φ
β

x(t)(ρk)
∥∥∥

−
∣∣∣∣∣
∫ t

ρk

∥∥∥F̃β

(
φ

β

x(t)(s), φ
β

x(t)(s), s
)
+Du f (νβ(s), s)

(
φ

β

x(t)(s)− φ
β

x(t)(s)
)∥∥∥ ds

∣∣∣∣∣
−
∣∣∣∣∣
∫ t

ρk

‖h(x(s))− h(x(s))‖ ds

∣∣∣∣∣
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together with (4.2), it can be verified for t ∈
[
θk, θk + ∆

]
that∥∥∥φ

β

x(t)(t)− φ
β

x(t)(t)
∥∥∥ >

τL1ε0

2 [2 + (N1 + N2R0)τ]
√

n
− 2[Mh + (N1 + N2R0)R0]∆ ≥ ε1.

One can confirm that the intervals [θk, θk +∆], k ∈N, are disjoint. Consequently, the couple(
φ

β

x(t)(t), φ
β

x(t)(t)
)
∈ Bβ ×Bβ is frequently (ε1, ∆)-separated uniform for each β ∈ Sσ.

Next, we deal with the almost periodic solutions of system (3.1). A continuous function
ϑ : R → Rr is said to be almost periodic, if for any ε > 0 there exists l > 0 such that for any
interval with length l there exists a number T in this interval satisfying ‖ϑ(t + T)− ϑ(t)‖ < ε

for all t ∈ R [22, 26, 37].
In the proof of the following assertion, we will make use of the operator Π defined by (3.6).

Lemma 4.5. Suppose that the conditions (C1)–(C3) are satisfied. If x(t) ∈ A is an almost periodic
function, then the bounded solution φ

β

x(t)(t), β ∈ Pσ, of system (3.1) is also almost periodic.

Proof. Let us denote by C1 the set of continuous almost periodic functions w(t) : R → Rn

satisfying ‖w‖∞ ≤ R0, where the norm ‖·‖∞ is defined by (3.5). If w(t) ∈ C1, then one
can confirm using the results of [22] that the functions Aβ(t) = Du f (νβ(t), t) and fβ(t) =

Fβ(w(t), t)+ h(x(t)) are almost periodic for β ∈ Pσ. On the other hand, according to [16, p. 72],
Πw(t) is also almost periodic, where Π is the operator defined by (3.6). Therefore, Π(C1) ⊆ C1.
Since the operator Π is contractive as shown in the proof of Lemma 3.1, its fixed point φ

β

x(t)(t)
is almost periodic for each β ∈ Pσ.

Now, we state and prove our main theorem.

Theorem 4.6. Suppose that the conditions (C1)–(C3) are valid. If the collection A is Li–Yorke
chaotic with infinitely many almost periodic motions, then the same is true for each of the collections
Bβ, β ∈ Pσ.

Proof. Let C ⊂ A be a countably infinite set of almost periodic functions, and for each β ∈ Pσ

define the set

Cβ =
{

φ
β

x(t)(t) : x(t) ∈ C
}

.

Condition (C2) implies that there is a one-to-one correspondence between the sets C and
Cβ, β ∈ Pσ. Therefore, Cβ ⊂ Bβ is also countably infinite for each β ∈ Pσ. Furthermore,
Lemma 4.5 implies that Cβ, β ∈ Pσ, consists of almost periodic functions.

Next, we denote by U ⊂ A an uncountable scrambled set. Let us introduce the sets

Uβ =
{

φ
β

x(t)(t) : x(t) ∈ U
}

,

where β ∈ Pσ. It can be verified using condition (C2) one more time that the sets Uβ,
β ∈ Pσ, are all uncountable, and no almost periodic functions take place in these sets, i.e., the
intersection of Uβ and Cβ is empty.

Because each couple of functions inside U ×U is proximal, Lemma 4.2 implies that the
same is true for each couple inside Uβ × Uβ, β ∈ Pσ. On the other hand, according to
Lemma 4.4, there exist positive numbers ε1 and ∆ such that each couple of functions inside
Uβ ×Uβ is frequently

(
ε1, ∆

)
-separated. Lemma 4.4 also implies the presence of the frequent

separation feature for each couple inside
(
Uβ × Cβ

)
, β ∈ Pσ. Consequently, each of the

collections Bβ, β ∈ Pσ, is Li–Yorke chaotic.
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Remark 4.7. System (2.1) may possess bounded solutions other than
{

νβ(t)
}

β∈Sσ
. Therefore,

there may exist a chaotic set corresponding to each of such solutions, but its verification is a
difficult task in general, which would require additional assumptions on the system.

It is worth noting that the criterion in Definition 4.1 for the existence of a countably infinite
subset of almost periodic functions in a Li–Yorke chaotic can be replaced with the existence
of a countably infinite subset of quasi-periodic functions [7]. In the following section, we will
exemplify Li–Yorke homoclinic chaos with infinitely many quasi-periodic motions.

5 An example

This part of the paper is devoted to an illustrative example. First of all, we will take into
account a forced Duffing equation, which is Li–Yorke chaotic with infinitely many quasi-
periodic motions, as the source of chaotic perturbations. A relay function will be used in
this equation as the forcing term to ensure the presence of chaos. Detailed theoretical as
well as numerical results concerning relay systems can be found in the studies [1, 2, 5]. Next,
to provide the Li–Yorke homoclinic chaos, we will perturb another Duffing equation, which
admits a homoclinic orbit, by the solutions of the former one.

Another issue that we will focus on is the stabilization of unstable quasi-periodic motions.
In the literature, control of chaos is understood as the stabilization of unstable periodic orbits
embedded in a chaotic attractor [20, 38]. However, we will demonstrate the stabilization of
quasi-periodic motions instead of periodic ones. The presence of chaos with infinitely many
unstable quasi-periodic motions will be revealed by means of an appropriate chaos control
technique based on the Ott–Grebogi–Yorke (OGY) [32] and Pyragas [35] control methods.

Let us consider the following forced Duffing equation,

x′′ + 0.82x′ + 1.4x + 0.01x3 = 0.25 sin(3t) + v(t, ζ, λ), (5.1)

where the relay function v(t, ζ, λ) is defined as

v(t, ζ, λ) =

{
0.3, if ζ2j < t ≤ ζ2j+1, j ∈ Z,

1.9, if ζ2j−1 < t ≤ ζ2j, j ∈ Z.
(5.2)

In (5.2), the sequence ζ =
{

ζ j
}

j∈Z
, ζ0 ∈ [0, 1], of switching moments is defined through the

equation ζ j = j + κj, j ∈ Z, and the sequence
{

κj
}

j∈Z
is a solution of the logistic map

κj+1 = λκj(1− κj), (5.3)

where λ is a real parameter. The interval [0, 1] is invariant under the iterations of (5.3) for the
values of λ between 1 and 4 [23], and the map possesses Li-Yorke chaos for λ = 3.9 [27].

Making use of the new variables x1 = x and x2 = x′, one can reduce (5.1) to the system

x′1 = x2

x′2 = −1.4x1 − 0.82x2 − 0.01x3
1 + 0.25 sin(3t) + v(t, ζ, λ).

(5.4)

For each ζ0 ∈ [0, 1], system (5.4) with λ = 3.9 possesses a solution which is bounded on
the whole real axis, and the collection A consisting of all such bounded solutions is Li–
Yorke chaotic with infinitely many quasi-periodic motions [2, 6, 7]. Moreover, for each natural
number ρ, system (5.4) admits unstable periodic solutions with periods 2ρ.
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Figure 5.1 shows the solution of system (5.4) with λ = 3.9 and ζ0 = 0.41 corresponding to
the initial data x1(0.41) = 0.8, x2(0.41) = 0.7. The simulation results seen in Figure 5.1 confirm
the presence of chaos in (5.4).

0 50 100 150 200 250

0

0.5

1

1.5

t

x 1

0 50 100 150 200 250

−1

0

1

t

x 2

Figure 5.1: The chaotic behavior of system (5.4).

Next, let us consider the following Duffing equation [9],

z′′ + 0.15z′ − 0.5z(1− z2) = 0.2 sin(0.9t). (5.5)

It was mentioned in paper [9] that the equation (5.5) is chaotic, and it admits a homoclinic
orbit.

By means of the variables z1 = z and z2 = z′, equation (5.5) can be written as a system in
the form,

z′1 = z2

z′2 = −0.15z2 + 0.5z1(1− z2
1) + 0.2 sin(0.9t).

(5.6)

We perturb system (5.6) with the solutions of (5.4) and set up the system

u′1 = u2 + 1.9(x1(t) + 0.4 sin(x1(t)))

u′2 = −0.15u2 + 0.5u1(1− u2
1) + 1.3x2(t) + 0.2 sin(0.9t).

(5.7)

System (5.7) is in the form of (2.2) with

f (u1, u2, t) =

(
u2

−0.15u2 + 0.5u1(1− u2
1) + 0.2 sin(0.9t)

)

and

h(x1, x2) =

(
1.9(x1 + 0.4 sin(x1))

1.3x2

)
.

According to Theorem 4.6, system (5.7) possesses Li–Yorke chaos with infinitely many quasi-
periodic motions.

In order to simulate the chaotic behavior, we use the solution (x1(t), x2(t)) of (5.4) which
is represented in Figure 5.1 as the perturbation in (5.7), and depict in Figure 5.2 the solution
of (5.7) with the initial data u1(0.41) = 0.12, u2(0.41) = 0.013. Figure 5.2 supports the result of
Theorem 4.6 such that the perturbed system (5.7) exhibits chaos.
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Figure 5.2: The chaotic solution of system (5.7) with u1(0.41) = 0.12 and
u2(0.41) = 0.013. The solution (x1(t), x2(t)) of (5.4), which is represented in
Figure 5.1, is used as the perturbation in (5.7).

Next, we depict in Figure 5.3 the trajectories of (5.6) and (5.7) corresponding to the initial
data z1(0.41) = 0.12, z2(0.41) = 0.013 and u1(0.41) = 0.12, u2(0.41) = 0.013, respectively.
Here, the trajectory of (5.6) is depicted in blue and the trajectory of (5.7) is shown in red. It
is seen in Figure 5.3 that even if the same initial data is used, systems (5.6) and (5.7) generate
completely different chaotic trajectories.

−4 −3 −2 −1 0 1 2 3 4
−10

−8

−6

−4

−2

0

2

4

6

u
1
, z

1

u 2, z
2

Figure 5.3: Chaotic trajectories of systems (5.6) and (5.7). The trajectory of (5.6)
with z1(0.41) = 0.12, z2(0.41) = 0.013 is represented in blue color, while the
trajectory of (5.7) corresponding to u1(0.41) = 0.12, u2(0.41) = 0.013 is shown in
red color. One can observe that the unperturbed system (5.6) and the perturbed
system (5.7) possess different chaotic motions.

Now, we will confirm the presence of chaos with infinitely many quasi-periodic motions
in the dynamics of (5.7) by stabilizing one of them through a control technique based on the
OGY [32] and Pyragas [35] methods. The idea of the control procedure depends on the usage
of both the OGY control for the discrete-time dynamics of the logistic map (5.3), which the
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source of chaotic motions in the forced Duffing equation (5.4), and the Pyragas control for the
continuous-time dynamics of (5.7). The simultaneous usage of both methods will give rise
to the stabilization of a quasi-periodic solution of (5.7) since (5.4) and (5.6) admit unstable
periodic motions with incommensurate periods.

Let us explain briefly the OGY control method for the map (5.3) [38]. Suppose that the
parameter λ in the map (5.3) is allowed to vary in the range [3.9− ε, 3.9 + ε], where ε is a
given small positive number. Consider an arbitrary solution

{
κj
}

, κ0 ∈ [0, 1], of the map and
denote by κ(i), i = 1, 2, . . . , p, the target p-periodic orbit to be stabilized. In the OGY control
method [38], at each iteration step j after the control mechanism is switched on, we consider
the logistic map with the parameter value λ = λj, where

λj = 3.9

(
1 +

(2κ(i) − 1)(κj − κ(i))

κ(i)(1− κ(i))

)
, (5.8)

provided that the number on the right hand side of the formula (5.8) belongs to the in-
terval [3.9 − ε, 3.9 + ε]. In other words, formula (5.8) is valid if the trajectory

{
κj
}

is suffi-
ciently close to the target periodic orbit. Otherwise, we take λj = 3.9 so that the system
evolves at its original parameter value and wait until the trajectory

{
κj
}

enters in a suffi-
ciently small neighborhood of the periodic orbit κ(i), i = 1, 2, . . . , p, such that the inequality

−ε ≤ 3.9 (2κ(i)−1)(κj−κ(i))

κ(i)(1−κ(i))
≤ ε holds. If this is the case, the control of chaos is not achieved im-

mediately after switching on the control mechanism. Instead, there is a transition time before
the desired periodic orbit is stabilized. The transition time increases if the number ε decreases
[20].

On the other hand, according to the Pyragas control method [20, 35], an unstable peri-
odic solution with period τ0 can be stabilized by using an external perturbation of the form
C[s(t− τ0)− s(t)], where C is the strength of the perturbation, s(t) is a scalar signal which is
given by some function of the state of the system and s(t− τ0) is the signal measured with a
time delay equal to τ0.

To stabilize an unstable quasi-periodic solution of (5.7), we set up the system

w′1 = w2

w′2 = −1.4w1 − 0.82w2 − 0.01w3
1 + 0.25 sin(w5) + v(t, ζ, λj)

w′3 = w4 + 1.9(w1 + 0.4 sin(w1))

w′4 = −0.15w4 + 0.5w3(1− w2
3) + 1.3w2 + 0.2 sin(0.9w5) + C[w4(t− 2π/0.9)− w4(t)]

w′5 = 1,

(5.9)

which we call the control system corresponding to the coupled system (5.4)+(5.7).
Let us use the OGY control method around the fixed point 2.9/3.9 of the logistic map (5.3)

so that λj in (5.9) is given by the formula (5.8) with κ(i) ≡ 2.9/3.9. The control mechanism is
switched on at t = ζ70 using the values ε = 0.085 and C = 2.6. The OGY control is switched off
at t = ζ350 and the Pyragas control is switched off at t = ζ400. More precisely, we take λj ≡ 3.9,
C = 2.6 for ζ350 ≤ t < ζ400, and we take λj ≡ 3.9, C = 0 for ζ400 ≤ t ≤ ζ550. Figure 5.4 shows
the simulation results for the w3 and w4 coordinates of the control system (5.9) corresponding
to the initial data w1(0.41) = 0.8, w2(0.41) = 0.7, w3(0.41) = 0.12, w4(0.41) = 0.013, and
w5(0.41) = 0.41. It is seen in Figure 5.4 that one of the quasi-periodic solutions of (5.7) is
stabilized such that the control becomes dominant approximately at t = 144 and its effect lasts
until t = 400, after which the instability becomes dominant and irregular behavior develops
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again. To present a better visuality, the stabilized quasi-periodic solution of (5.7) is shown in
Figure 5.5 for 200 ≤ t ≤ 300. Both of the Figures 5.4 and 5.5 confirm the presence of infinitely
many quasi-periodic motions in the dynamics of (5.7).
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Figure 5.4: Chaos control of system (5.7). We make use of the OGY control
method around the fixed point 2.9/3.9 of the logistic map (5.3). The values
ε = 0.085 and C = 2.6 are used in the simulation.
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Figure 5.5: The stabilized quasi-periodic solution of system (5.7).

Appendix

For the convenience of the reader, we present and prove a Gronwall–Coppel type inequality
(see [10]) result used in this paper.

Theorem A.1. Let a, b, c, and γ be constants such that a ≥ 0, b ≥ 0, c > 0, γ > 0, and suppose that
ϕ(t) ∈ C([r1, r2], R) is a nonnegative function satisfying

ϕ(t) ≤ a + b
(

e−γ(t−r1) + e−γ(r2−t)
)
+ c

∫ r2

r1

e−γ|t−s|ϕ(s)ds, t ∈ [r1, r2].
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If 2c < γ, then

ϕ(t) ≤ aγ

γ− 2c
+

b
c
(γ− δ)

(
e−δ(t−r1) + e−δ(r2−t)

)
for any t ∈ [r1, r2], where δ =

√
γ2 − 2cγ.

Proof. According to Theorems 2.3, 2.4 [10], the functions

ϕ1(t) =
b
c
(γ− δ)e−δ(t−r1), t ≥ r1,

ϕ2(t) =
b
c
(γ− δ)e−δ(r2−t), t ≤ r2,

ϕ3(t) =
aγ

γ− 2c

satisfy the relations

ϕ1(t) = be−γ(t−r1) + c
∫ ∞

r1

e−γ|t−s|ϕ1(s)ds,

ϕ2(t) = be−γ(r2−t) + c
∫ r2

−∞
e−γ|t−s|ϕ2(s)ds,

ϕ3(t) = a + c
∫ ∞

−∞
e−γ|t−s|ϕ3(s)ds,

respectively. Since ϕ1(t), ϕ2(t), and ϕ3(t) are all nonnegative, the inequality

ϕ4(t) ≥ a + b
(

e−γ(t−r1) + e−γ(r2−t)
)
+ c

∫ r2

r1

e−γ|t−s|ϕ4(s)ds,

is valid for t ∈ [r1, r2], where the function ϕ4(t) is defined by

ϕ4(t) = ϕ1(t) + ϕ2(t) + ϕ3(t).

Next, let us consider the operator Ω : C([r1, r2], R)→ C([r1, r2], R) given by

Ωϕ(t) = a + b
(

e−γ(t−r1) + e−γ(r2−t)
)
+ c

∫ r2

r1

e−γ|t−s|ϕ(s)ds.

Then it is nondecreasing, and according to [10, p. 14] it is contractive. So it has a unique
fixed point ϕ∗(t) ∈ C([r1, r2], R), i.e., ϕ∗ = Ωϕ∗. Since ϕ(t) ≤ Ωϕ(t) and ϕ4(t) ≥ Ωϕ4(t),
by standard arguments (see [10, Theorem 2.2]), we get ϕ(t) ≤ ϕ∗(t) ≤ ϕ4(t). The theorem is
proved.
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