
Electronic Journal of Qualitative Theory of Differential Equations
2018, No. 64, 1–18; https://doi.org/10.14232/ejqtde.2018.1.64 www.math.u-szeged.hu/ejqtde/

Schrödinger–Maxwell systems
on compact Riemannian manifolds

Csaba Farkas1,2

1Department of Mathematics and Computer Science, Sapientia University, Târgu Mures, , Romania
2Institute of Applied Mathematics, Óbuda University, 1034 Budapest, Hungary

Received 24 March 2018, appeared 26 July 2018

Communicated by Dimitri Mugnai

Abstract. In this paper, we are focusing to the following Schrödinger–Maxwell system:{
−∆gu + β(x)u + euφ = Ψ(λ, x) f (u) in M,
−∆gφ + φ = qu2 in M,

(SMe
Ψ(λ,·))

where (M, g) is a 3-dimensional compact Riemannian manifold without boundary,
e, q > 0 are positive numbers, f : R → R is a continuous function, β ∈ C∞(M) and
Ψ ∈ C∞(R+ ×M) are positive functions. By various variational approaches, existence
of multiple solutions of the problem (SMe

Ψ(λ,·)) is established.
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1 Introduction and statement of the main results

We are concerned with the nonlinear Schrödinger–Maxwell system{
−∆gu + β(x)u + euφ = Ψ(λ, x) f (u) in M,

−∆gφ + φ = qu2 in M,
(SMe

Ψ(λ,·))

where (M, g) is a 3-dimensional compact Riemannian manifold without boundary, e, q > 0
are positive numbers, f : R→ R is a continuous function, β ∈ C∞(M) and Ψ ∈ C∞(R+ ×M)

are positive functions.
From physical point of view, the Schrödinger–Maxwell systems{

− h̄2

2m ∆u + ωu + euφ = f (x, u) in R3,

−∆φ = 4πeu2 in R3,
(1.1)

describe the statical behavior of a charged non-relativistic quantum mechanical particle inter-
acting with the electromagnetic field. More precisely, the unknown terms u : R3 → R and
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φ : R3 → R are the fields associated to the particle and the electric potential, respectively,
the nonlinear term f models the interaction between the particles and the coupled term φu
concerns the interaction with the electric field. Note that the quantities m, e, ω and h̄ are the
mass, charge, phase, and Planck’s constant.

In fact, system (1.1) comes from the evolutionary nonlinear Schrödinger equation by using
a Lyapunov–Schmidt reduction.

The Schrödinger–Maxwell system (or its variants) has been the object of various investiga-
tions in the last two decades, the existence/non-existence of positive solutions, sign-changing
solutions, ground states, radial, non-radial solutions, and semi-classical states has been in-
vestigated by several authors. Without sake of completeness, we recall in the sequel some
important contributions to the study of system (1.1). Benci and Fortunato [7] considered the
case of f (x, s) = |s|p−2s with p ∈ (4, 6) by proving the existence of infinitely many radial
solutions for (1.1); their main step relies on the reduction of system (1.1) to the investigation
of critical points of a “one-variable” energy functional associated with (1.1).

Based on the idea of Benci and Fortunato, under various growth assumptions on f further
existence/multiplicity results can be found in Ambrosetti and Ruiz [4], Azzolini [5], in [6]
Azzollini, d’Avenia, and Pomponio were concerned with the existence of a positive radial
solution to system (1.1) under the effect of a general nonlinear term, in [11] the existence of
a non radially symmetric solution was established when p ∈ (4, 6), by means of a Pohozaev-
type identity, d’Aprile and Mugnai [12, 13] proved the non-existence of non-trivial solutions
to system (1.1) whenever f ≡ 0 or f (x, s) = |s|p−2s and p ∈ (0, 2] ∪ [6, ∞), the same authors
proved the existence of a non-trivial radial solution to (1.1), for p ∈ [4.6). Other existence and
multiplicity result can be found in the works of Cerami and Vaira [8], Kristály and Repovs
[23], Ruiz [27], Sun, Chen, and Nieto [28], Wang and Zhou [31], and references therein.

In the last five years Schrödinger–Maxwell systems has been studied on n−dimensional
compact or non-compact Riemannian manifolds (2 ≤ n ≤ 5) by Druet and Hebey [14], Farkas and
Kristály [16], Hebey and Wei [19], Ghimenti and Micheletti [17, 18] and Thizy [29, 30]. More
precisely, in the aforementioned papers various forms of the system{

− h̄2

m ∆gu + ωu + euφ = f (x, u) in M,

−∆gφ + φ = 4πeu2 in M,
(1.2)

have been considered, where (M, g) is a Riemannian manifold.
The aim of this paper is threefold. First, we consider the system (SMe

Ψ(λ,·)) with Ψ(λ, x) =
λα(x), where α is a suitable function and we assume that f is a sublinear nonlinearity (see the
assumptions ( f1)–( f3) below). In this case, we prove that if the parameter λ is small enough
the system (SMe

λ) has only the trivial solution, while if λ is large enough then the system
(SMe

Ψ(λ,·)) has at least two solutions, see Theorem 1.1. It is natural to ask what happens
between this two threshold values. In this gap interval we have no information on the number
of solutions (SMe

Ψ(λ,·)); in the case when q → 0 these two threshold values may be arbitrary
close to each other. Similar bifurcation type result for a perturbed sublinear elliptic problem
was obtained by Kristály, see [20].

Second, we consider the system (SMλ
Ψ(λ,·)) with Ψ(λ, x) = λα(x) + µ0β(x), where α and β

are suitable functions. In order to prove a new kind of multiplicity for the system (SMλ
Ψ(λ,·))

(i.e. e = λ), we show that certain properties of the nonlinearity, concerning the set of all global
minima, can be reflected to the energy functional associated to the problem, see Theorem 1.3.

Third, as a counterpart of Theorem 1.1 we will consider the system (SMe
Ψ(λ,·)) with

Ψ(λ, x) = λ, and f here satisfies the so called Ambrosetti–Rabinowitz condition. This type
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of result is motivated by the result of Anello [3] and Ricceri [24], where the authors studied
the classical Ambrosetti–Rabinowitz problem, without the assumption limt→0

f (t)
t = 0, i.e. the

authors proved that if the nonlinearity f satisfies the so called (AR) condition and a subcritical
growth condition, then if λ is small enough the problem{

−∆u = λ f (u) in Ω,

u = 0 on ∂Ω,

has at least two weak solutions in H1
0(Ω).

In the sequel we present precisely our results. As we mentioned before, we first consider
a continuous function f : [0, ∞)→ R which verifies the following assumptions:

( f1) f (s)
s → 0 as s→ 0+;

( f2) f (s)
s → 0 as s→ ∞;

( f3) F(s0) > 0 for some s0 > 0, where F(s) =
∫ s

0 f (t)dt, s ≥ 0.

Due to the assumptions ( f1)–( f3), the numbers

c f = max
s>0

f (s)
s

and

cF = max
s>0

4F(s)
2s2 + eqs4

are well-defined and positive. Now, we are in the position to state the first result of the paper.
In order to do this, first we recall the definition of the weak solutions of the problem (SMe

λ):
The pair (u, φ) ∈ H1

g(M)× H1
g(M) is a weak solution to the system (SMe

λ) if∫
M
(〈∇gu,∇gv〉+ β(x)uv + euφv)dvg =

∫
M

Ψ(λ, x) f (u)vdvg for all v ∈ H1
g(M), (1.3)∫

M
(〈∇gφ,∇gψ〉+ φψ)dvg = q

∫
M

u2ψdvg for all ψ ∈ H1
g(M). (1.4)

Our first result reads as follows.

Theorem 1.1. Let (M, g) be a 3-dimensional compact Riemannian manifold without boundary, and
let β ≡ 1. Assume that Ψ(λ, x) = λα(x) and α ∈ C∞(M) is a positive function. If the continuous
function f : [0, ∞)→ R satisfies assumptions ( f1)–( f3), then

(a) if 0 ≤ λ < c−1
f ‖α‖

−1
L∞ , system (SMλ

Ψ(λ,·)) has only the trivial solution;

(b) for every λ ≥ c−1
F ‖α‖

−1
L1 , system (SMλ

Ψ(λ,·)) has at least two distinct non-zero, non-negative
weak solutions in H1

g(M)× H1
g(M).

Remark 1.2.

(a) Due to ( f1), it is clear that f (0) = 0, thus we can extend continuously the function
f : [0, ∞)→ R to the whole R by f (s) = 0 for s ≤ 0; thus, F(s) = 0 for s ≤ 0.
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(b) ( f1) and ( f2) mean that f is superlinear at the origin and sublinear at infinity, respectively.
Typical functions which fulfill hypotheses ( f1)–( f3) are

f (s) = min (sr, sp) , 0 < r < 1 < p, s ≥ 0

or
f (s) = ln(1 + s2), s ≥ 0.

(c) By a three critical points result of Ricceri [26], one can prove that the number of solutions
of the problem (SMe

Ψ(λ,·)) for λ > λ̃ is stable under small nonlinear perturbations g :
R→ R of subcritical type, i.e., g(s) = o(|s|2∗−1) as |s| → ∞, 2∗ = 2N

N−2 , N > 2.

In order to obtain new kind of multiplicity result for the system (SMλ
Ψ(λ,·)) (with the

choice e = λ), instead of the assumption ( f1) we require the following one:

( f4) There exists µ0 > 0 such that the set of all global minima of the function

t 7→ Φµ0(t) :=
1
2

t2 − µ0F(t)

has at least m ≥ 2 connected components.

In this case we can state the following result.

Theorem 1.3. Let (M, g) be a 3-dimensional compact Riemannian manifold without boundary. Let
f : [0, ∞) → R be a continuous function which satisfies ( f2) and ( f4), β ∈ C∞(M) is a positive
function. Assume that Ψ(λ, x) = λα(x) + µ0β(x), where α ∈ C∞(M) is a positive function. Then
for every τ > ‖β‖L1(M) inf

t
Φµ0(t) there exists λτ > 0 such that for every λ ∈ (0, λτ) the problem

(SMλ
Ψ(λ,·)) has at least m + 1 weak solutions, m of which satisfy the inequality

1
2

∫
M

(
|∇gu|2 + β(x)u2)dvg − µ0

∫
M

β(x)F(u)dvg < τ.

Remark 1.4. Taking into account the result of Cordaro [10] and Anello [2] one can prove the
following: consider the following system:{

−∆gu + α(x)u + λφu = α(x) f (u) + λg(x, u), in M

−∆gφ + φ = qu2, in M

where α ∈ L∞(M) with ess inf α > 0, f : R → R is a continuous function and g : M ×
R → R, besides being a Carathéodory function, is such that, for some p > 3 (= dim M),
sup|s|≤t g(·, s) ∈ Lp(M) and g(·, t) ∈ L∞(M) for all t ∈ R. If the set

G f =

{
t ∈ R :

1
2

t2 −
∫ t

0
f (s)ds = inf

ξ∈R

(
1
2

ξ2 −
∫ ξ

0
f (s)ds

)}
has m ≥ 2 bounded connected components, then the system has at least m +

[m
2

]
weak solu-

tions. For the proof, one can use a truncation argument combining with the abstract critical
point theory result of Anello [1, Theorem 2.1]. Note that the similar truncation method which
was presented in [10] fails, due to the extra term

∫
M φuu2. To overcome this difficulty, one can

use the same method as in [16, Proposition 3.1 (i) & (ii)] (see also [21]).



Schrödinger–Maxwell systems on compact Riemannian manifolds 5

Note also that similar multiplicity results was obtained by Kristály and Rădulescu in [22],
for Emden–Fowler type equations.

Our abstract tool for proving the Theorem 1.3 is the following abstract theorem that we
recall here (see [25]).

Theorem A. Let H be a separable and reflexive real Banach space, and let N ,G : H → R

be two sequentially weakly lower semi-continuous and continuously Gateaux differentiable
functionals, with N coercive. Assume that the functional N + λG satisfies the Palais–Smale
condition for every λ > 0 small enough and that the set of all global minima of N has at least
m connected components in the weak topology, with m ≥ 2. Then, for every η > infHN , there
exists λ > 0 such that for every λ ∈ (0, λ) the functional N + λG has at least m + 1 critical
points, m of which are in N−1((−∞, η)).

Finally, as a counterpart of the Theorem 1.1 we consider the case when the continuous
function f : [0,+∞)→ R satisfies the following assumptions:

( f̃1) | f (s)| ≤ C(1 + |s|p−1), for all s ∈ R, where p ∈ (2, 6);

( f̃2) there exists η > 4 and τ0 > 0 such that

0 < ηF(s) ≤ s f (s), ∀|s| ≥ τ0.

Theorem 1.5. Let (M, g) be a 3-dimensional compact Riemannian manifold without boundary, and let
β ≡ 1. Assume that Ψ(λ, x) = λ. Let f : R→ R be a continuous function, which satisfies hypotheses
( f̃1), ( f̃2). Then there exists λ0 such that for every 0 < λ < λ0 the problem (SMe

λ) has at least two
weak solutions.

Our abstract tool for proving the previous theorem is the following abstract theorem that
we recall here (see [24]).

Theorem B. Let E be a reflexive real Banach space, and let Φ, Ψ : E→ R be two continuously
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-continuous
and coercive. Further, assume that Ψ is sequentially weakly continuous. In addition, assume
that for each µ > 0, the functional Jµ := µΦ − Ψ satisfies the classical compactness Palais–
Smale condition. Then for each ρ > infE Φ and each

µ > inf
u∈Φ−1((−∞,ρ))

supv∈Φ−1((−∞,ρ)) Ψ(v)−Ψ(u)

ρ−Φ(u)
,

the following alternative holds: either the functional Jµ has a strict global minimum which
lies in Φ−1((−∞, ρ)), or Jµ has at least two critical points one of which lies in Φ−1((−∞, ρ)).

2 Proof of the main results

Let β ∈ C∞(M) be a positive function. For every u ∈ C∞(M) let us denote by

‖u‖2
β =

∫
M
|∇gu|2 + β(x)u2dvg.
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The Sobolev space H1
β is defined as the completion of C∞(M) with respect to the norm ‖ · ‖β.

Clearly, H1
β is a Hilbert space. Note that, since β is positive, the norm ‖ · ‖β is equivalent to

the standard norm, i.e. we have that

min
{

1, min
M

√
β(x)

}
‖u‖H1

g(M) ≤ ‖u‖β ≤ max
{

1,
√
‖β‖L∞(M)

}
‖u‖H1

g(M). (2.1)

Note that H1
β(M) is compactly embedded in Lp(M), p ∈ [1, 6); the Sobolev embedding con-

stant will be denoted by κp.
We define the energy functional Jλ : H1

g(M) × H1
g(M) → R associated with system

(SMe
λ), namely,

Jλ(u, φ) =
1
2
‖u‖2

β +
e
2

∫
M

φu2dvg −
e

4q

∫
M
|∇gφ|2dvg −

e
4q

∫
M

φ2dvg −
∫

M
Ψ(x, λ)F(u)dvg.

It is easy to see that the functional Jλ is well-defined and of class C1 on H1
g(M)× H1

g(M).
Moreover, due to relations (1.3) and (1.4) the pair (u, φ) ∈ H1

g(M)× H1
g(M) is a weak solution

of (SMe
λ) if and only if (u, φ) is a critical point of Jλ.

Using the Lax–Milgram theorem one can see that the equation

−∆gφ + φ = qu2, in M

has a unique solution for any fixed u. By exploring an idea of Benci and Fortunato [7], we
introduce the map φu : H1

g(M) → H1
g(M) by associating to every u ∈ H1

g(M) the unique
solution φ = φu of the Maxwell equation. Thus, one can define the “one-variable” energy
functional Eλ : H1

g(M)→ R associated with system (SMe
λ):

Eλ(u) =
1
2
‖u‖2

β +
e
4

∫
M

φuu2dvg −F (u), (2.2)

where F : H1
g(M)→ R is the functional defined by

F (u) =
∫

M
Ψ(x, λ)F(u)dvg.

By using standard variational arguments, one has that the pair (u, φ) ∈ H1
g(M)× H1

g(M) is a
critical point of Jλ if and only if u is a critical point of Eλ and φ = φu, see for instance [16].
Moreover, we have that

E ′λ(u)(v) =
∫

M
(〈∇gu,∇gv〉+ β(x)uv + eφuuv)dvg −

∫
M

Ψ(x, λ) f (u)vdvg. (2.3)

2.1 Schrödinger–Maxwell systems involving sublinear nonlinearity

In this section, we set Ψ(x, λ) = λα(x) + µ0β(x). Recall that

Eλ(u) =
1
2
‖u‖2

β +
e
4

∫
M

φuu2dvg −
∫

M
Ψ(x, λ)F(u)dvg.

In order to apply variational methods, we prove some elementary properties of the func-
tional Eλ.
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Lemma 2.1. The energy functional Eλ is coercive, for every λ ≥ 0.

Proof. Indeed, due to ( f2), we have that for every ε > 0 there exists δ > 0 such that |F(s)| ≤
ε|s|2, for every |s| > δ. Thus, since Ψ(x, λ) ∈ L∞(M) we have that

F (u) =
∫
{u>δ}

Ψ(x, λ)F(u)dvg +
∫
{u≤δ}

Ψ(x, λ)F(u)dvg

≤ ε ‖Ψ(·, λ)‖L∞(M) κ2
2‖u‖2

β + ‖Ψ(·, λ)‖L∞(M)Volg M max
|s|≤δ
|F(s)|.

Therefore,

Eλ(u) ≥
(

1
2
− εκ2

2 ‖Ψ(·, λ)‖L∞(M)

)
‖u‖2

β −VolgM · ‖Ψ(·, λ)‖L∞(M) max
|s|≤δ
|F(s)|.

In particular, if 0 < ε < (2κ2
2‖Ψ(·, λ)‖L∞(M))

−1, then Eλ(u)→ ∞ as ‖u‖β → ∞.

Lemma 2.2. The energy functional Eλ satisfies the Palais–Smale condition for every λ ≥ 0.

Proof. Let {uj}j ⊂ H1
g(M) be a Palais–Smale sequence, i.e. {Eλ(uj)}j is bounded and

‖(Eλ)
′(uj)‖H1

g(M)∗ → 0

as j → ∞. Since Eλ is coercive (see Lemma 2.1), the sequence {uj}j is bounded in H1
g(M).

Therefore, up to a subsequence, then {uj}j converges weakly in H1
g(M) and strongly in Lp(M),

p ∈ (2, 2∗), to an element u ∈ H1
g(M).

First we claim that for all u, v ∈ H1
g(M) we have that∫

M
(uφu − vφv) (u− v)dvg ≥ 0. (2.4)

This inequality is equivalent with the following one:∫
M

φuu2dvg +
∫

M
φvv2dvg ≥

∫
M
(φuuv + φvuv)dvg.

On the other hand, using the Cauchy–Schwarz inequality, we have, that

∫
M
(φuuv + φvuv)dvg ≤

(∫
M

φuu2dvg

)1/2 (∫
M

φuv2dvg

)1/2

+

(∫
M

φvu2dvg

)1/2 (∫
M

φvv2dvg

)1/2

=
1
q

(∫
M
(∇gφu∇gφv + φuφv)dvg

)1/2

(‖φu‖H1
g(M) + ‖φv‖H1

g(M))

≤ 1
q
‖φu‖1/2

H1
g(M)
‖φv‖1/2

H1
g(M)

(
‖φu‖H1

g(M) + ‖φv‖H1
g(M)

)
.

Taking into account the following algebraic inequality (xy)1/2(x + y) ≤ (x2 + y2), (∀)x, y ≥ 0,
we have that

‖φu‖1/2
H1

g(M)
‖φv‖1/2

H1
g(M)

(
‖φu‖H1

g(M) + ‖φv‖H1
g(M)

)
≤ ‖φu‖2

H1
g(M) + ‖φv‖2

H1
g(M).
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Therefore,∫
M
(φuuv + φvuv)dvg ≤

1
q

(
‖φu‖2

H1
g(M) + ‖φv‖2

H1
g(M)

)
=
∫

M
φuu2dvg +

∫
M

φvv2dvg,

which proves the claim.
Now, using inequality (2.4) one has

∫
M
|∇guj −∇gu|2dvg +

∫
M

β(x)
(
uj − u

)2 dvg

≤ (Eλ)
′(uj)(uj − u) + (Eλ)

′(u)(u− uj) +
∫

M
Ψ(x, λ)[ f (uj(x))− f (u(x))](uj − u)dvg.

Since ‖(Eλ)
′(uj)‖H1

g(M)∗ → 0, and uj ⇀ u in H1
g(M), the first two terms at the right hand side

tend to 0. Let p ∈ (2, 2∗).
By the assumptions on f , for every ε > 0 there exists a constant Cε > 0 such that

| f (s)| ≤ ε|s|+ Cε|s|p−1,

for every s ∈ R. The latter relation, Hölder inequality and the fact that uj → u in Lp(M) imply
that ∣∣∣∣∫M

Ψ(x, λ)[ f (uj)− f (u)](uj − u)dvg

∣∣∣∣→ 0,

as j→ ∞. Therefore, ‖uj − u‖2
H1

g(M)
→ 0 as j→ ∞, which proves our claim.

Before we prove Theorem 1.1, we prove the following lemma.

Lemma 2.3. Let f : [0,+∞) → R be a continuous function satisfying the assumptions ( f1)–( f3) .
Then

c f := max
s>0

f (s)
s

> cF := max
s>0

4F(s)
2s2 + eqs4 .

Proof. Let s0 > 0 be a maximum point for the function s 7→ 4F(s)
2s2 + eqs4 , therefore

cF =
4F(s0)

2s2
0 + eqs4

0
=

f (s0)

s0 + eqs3
0
≤ f (s0)

s0
≤ c f .

Now we assume that c f = cF := θ. Let

s̃0 := inf
{

s > 0 : θ =
4F(s)

2s2 + eqs4

}
.

Note that s̃0 > 0. Fix t0 ∈ (0, s̃0), in particular 4F(t0) < θ(2t3
0 + eqt4

0). On the other hand, from
the definition of c f , one has f (t) ≤ θ(s + eqs3). Therefore

0 = 4F(s̃0)− θ(2s̃0 + eqs̃4
0) =

(
4F(t0)− θ(2t2

0 + eqt4
0)
)
+ 4

∫ s̃0

t0

(
f (t)− θ(s + eqs3)

)
ds < 0,

which is a contradiction, thus c f > cF.

Now we are in the position to prove Theorem 1.1.
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Proof of Theorem 1.1. First recall that, in this case, β(x) ≡ 1 and Ψ(λ, x) = λα(x), and α ∈
C∞(M) is a positive function.
(a) Let λ ≥ 0. If we choose v = u in (1.3) we obtain that∫

M

(
|∇gu|2 + u2 + eφuu2)dvg = λ

∫
M

α(x) f (u)udvg.

As we already mentioned, due to the assumptions ( f1)–( f3), the number c f = maxs>0
f (s)

s is
well-defined and positive. Thus, since ‖φu‖2

H1
g(M)

= q
∫

M φuu2dvg ≥ 0, we have that

‖u‖2
H1

g(M) ≤ ‖u‖
2
H1

g(M) + e
∫

M
φuu2dvg ≤ λc f ‖α‖L∞(M)

∫
M

u2dvg ≤ λc f ‖α‖L∞(M)‖u‖2
H1

g(M).

Therefore, if λ < c−1
f ‖α‖

−1
L∞(M), then the last inequality gives u = 0. By the Maxwell’s

equation we also have that φ = 0, which concludes the proof of (a).
(b) By using assumptions ( f1) and ( f2), one has

lim
H (u)→0

F (u)
H (u)

= lim
H (u)→∞

F (u)
H (u)

= 0,

where H (u) = 1
2‖u‖2

β +
e
4

∫
M φuu2dvg. Since α ∈ C∞(M)+ \ {0}, on account of ( f3), one

can guarantee the existence of a suitable truncation function uT ∈ H1
g(M) \ {0} such that

F (uT) > 0. Therefore, we may define

λ0 = inf
u∈H1

g(M)\{0}
F (u)>0

H (u)
F (u) .

The above limits imply that 0 < λ0 < ∞. Since H1
g(M) contains the positive constant functions

on M, we have

λ0 = inf
u∈H1

g(M)\{0}
F (u)>0

H (u)
F (u) ≤ max

s>0

2s2 + eqs4

4F(s)‖α‖L1(M)
= c−1

F ‖α‖
−1
L1(M)

.

For every λ > λ0, the functional Eλ is bounded from below, coercive and satisfies the
Palais–Smale condition (see Lemma 2.1, Lemma 2.2). If we fix λ > λ0 one can choose a
function w ∈ H1

g(M) such that F (w) > 0 and

λ >
H (w)

F (w)
≥ λ0.

In particular,
c1 := inf

H1
g(M)
Eλ ≤ Eλ(w) = H (w)− λF (w) < 0.

The latter inequality proves that the global minimum u1
λ ∈ H1

g(M) of Eλ on H1
g(M) has nega-

tive energy level.
In particular, (u1

λ, φu1
λ
) ∈ H1

g(M)× H1
g(M) is a nontrivial weak solution to (SMe

λ).
Let ν ∈ (2, 6) be fixed. By assumptions, for any ε > 0 there exists a constant Cε > 0 such

that
0 ≤ | f (s)| ≤ ε

‖α‖L∞(M)
|s|+ Cε|s|ν−1 for all s ∈ R.
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Thus

0 ≤ |F (u)| ≤
∫

M
α(x)|F(u(x))|dvg

≤
∫

M
α(x)

(
ε

2‖α‖L∞(M)
u2(x) +

Cε

ν
|u(x)|ν

)
dvg

≤ ε

2
‖u‖2

H1
g(M) +

Cε

ν
‖α‖L∞(M)κ̃

ν
ν‖u‖ν

H1
g(M),

where κ̃ν is the embedding constant in the compact embedding H1
g(M) ↪→ Lν(M), ν ∈ [1, 6).

Therefore,

Eλ(u) ≥
1
2
(1− λε)‖u‖2

H1
g(M) −

λCε

ν
‖α‖L∞(M)κ̃

ν
ν‖u‖ν

H1
g(M).

Bearing in mind that ν > 2, for enough small ρ > 0 and ε < λ−1 we have that

inf
‖u‖H1

g(M)
=ρ
Eλ(u) ≥

1
2
(1− ελ) ρ− λCε

ν
‖α‖L∞(M)κ̃

ν
νρ

ν
2 > 0.

A standard mountain pass argument (see, for instance, Willem [32]) implies the existence of a
critical point u2

λ ∈ H1
g(M) for Eλ with positive energy level. Thus (u2

λ, φu2
λ
) ∈ H1

g(M)× H1
g(M)

is also a nontrivial weak solution to (SMe
λ). Clearly, u1

λ 6= u2
λ.

It is also clear that the function q 7→ maxs>0
4F(s)

2s2+eqs4 is non-increasing. Let a > 1 be a real
number. Now, consider the following function

f (s) =


0, 0 ≤ s < 1,

s + g(s), 1 ≤ s < a,

a + g(a), s ≥ a,

where g : [1,+∞)→ R is a continuous function with the following properties

(g1) g(1) = −1;

(g2) the function s 7→ g(s)
s is non-decreasing on [1,+∞);

(g3) lim
s→∞

g(s) < ∞.

In this case the

F(s) =


0, 0 ≤ s < 1,
s2

2
+ G(s)− 1

2
, 1 ≤ s < a,

(a + g(a))s− a2

2
+ G(a)− ag(a)− 1

2
, s ≥ a,

where G(s) =
∫ s

1 g(t)dt. It is also clear that f satisfies the assumptions ( f1)–( f3).
Thus, a simple calculation shows that

c f =
a + g(a)

a
.
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We also claim that

ĉF = lim
q→0

cF =
(a + g(a))2

a2 + 2ag(a)− 2G(a) + 1
.

Indeed,

ĉF = max
s>0

2F(s)
s2 .

It is clear that it is enough to show that the maximum of the function 2F(s)
s2 is achieved on the

interval s ≥ a, i.e.,
sg(s)− 2G(s) > −1, s > 1.

Now, using a result of [9, page 42, equation (4.3)] (see also [15, Theorem 1.3]), we have that
the function G(s)

s2−1
2

is increasing, thus

sg(s)− 2G(s) ≥ g(s)
s
≥ −1, s ≥ −1,

which proves our claim.
One can see from the assumptions on g, that the values c f and ĉF may be arbitrary close

to each other. Indeed, when
lim
a→∞

c f = lim
a→∞

ĉF = 1.

Therefore, if α ≡ 1 then the threshold values are c−1
f and c−1

F (which are constructed indepen-

dently), i.e., if λ ∈ (0, c−1
f ) we have just the trivial solution, while if λ ∈ (c−1

F ,+∞) we have

at least two solutions. λ lying in the gap-interval [c−1
f , c−1

F ] we have no information on the
number of solutions for (SMe

λ).
Taking into account the above example we see that if the “impact” of the Maxwell equation

is small (q→ 0), then the values c f and cF may be arbitrary close to each other.

Remark 2.4. Typical examples for function g can be:

(a) g(s) = −1. In this case c f =
a−1

a and ĉF = a−1
a+1 .

(b) g(s) = 1
s − 2. In this case c f =

(a−1)2

a2 and ĉF = (a−1)4

a2(a2−2 ln a−1) .

Proof of Theorem 1.3. We follow the idea presented in [22]. First, we claim that the set of all
global minima of the functional N : H1

g(M)→ R,

N (u) =
1
2
‖u‖2

β − µ0

∫
M

β(x)F(u)dvg

has at least m connected components in the weak topology on H1
g(M). Indeed, for every

u ∈ H1
β(M) one has

N (u) =
1
2
‖u‖2

β − µ0

∫
M

β(x)F(u)dvg

=
1
2

∫
M
|∇gu|2dvg +

∫
M

β(x)Φµ0(u)dvg

≥ ‖β‖L1(M) inf
t

Φµ0(t).
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Moreover, if we consider u = t̃ for a.e. x ∈ M, where t̃ ∈ R is the minimum point of the
function t 7→ Φµ0(t), then we have equality in the previous estimate. Thus,

inf
u∈H1

β(M)
N (u) = ‖β‖L1(M) inf

t
Φµ0(t).

On the other hand, if u ∈ H1
g(M) is not a constant function, then |∇gu|2 > 0 on a positive

measure set in M, i.e.
N (u) > ‖β‖L1(M) inf

t
Φµ0(t).

Consequently, there is a one-to-one correspondence between the sets

Min(N ) =

{
u ∈ H1

g(M) : N (u) = inf
u∈H1

g(M)
N (u)

}

and

Min
(
Φµ0

)
=

{
t ∈ R : Φµ0(t) = inf

t∈R
Φµ0(t)

}
.

Let ξ be the function that associates to every t ∈ R the equivalence class of those functions
which are a.e. equal to t on the whole M. Then ξ : Min(N ) → Min

(
Φµ0

)
is actually a

homeomorphism, where Min(N ) is considered with the relativization of the weak topology
on H1

g(M). On account of ( f4), the set Min
(
Φµ0

)
has at least m ≥ 2 connected components.

Therefore, the same is true for the set Min(N ), which proves the claim.
Now, we are in the position to apply Theorem A with H = H1

g(M), N and

G =
1
4

∫
M

φuu2dvg −
∫

M
α(x)F(u)dvg.

Now, we prove that the functional G is sequentially weakly lower semicontinuous. To see
this, it is enough to prove that the map

H1
β(M) 3 u 7→

∫
M

φuu2dvg

is convex. To prove this, let us fix u, v ∈ H1
β(M) and t, s ≥ 0 such that t + s = 1. Then we have

that

A (φtu+sv) := −∆gφtu+sv + φtu+sv = q(tu + sv)2

≤ q(tu2 + sv2)

= t(qu2) + s(qv2)

= t(−∆gφu + φu) + s(−∆gφv + φv)

= A (tφu + sφv).

Then, using a comparison principle it follows that

φtu+sv ≤ tφu + sφv.

Then, multiplying the equations −∆gφu + φu = qu2 by φv and −∆gφv + φv = qv2 by φu, after
integration, we obtain that∫

M
(∇gφu∇gφv + φuφv)dvg = q

∫
M

u2φvdvg = q
∫

M
v2φudvg. (2.5)
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Thus, combining the above outcomes we have∫
M

φtu+sv(tu + sv)2dvg ≤
∫

M
(tφu + sφv)

(
tu2 + sv2) dvg

= t2
∫

M
φuu2dvg + ts

∫
M

(
φuv2 + φvu2) dvg + s2

∫
M

φvv2dvg

(2.5)
=

t2

q

(∫
M
|∇gφu|2dvg +

∫
M

φ2
udvg

)
+

2ts
q

∫
M
(∇gφu∇gφv + φuφv)dvg

+
s2

q

(∫
M
|∇gφv|2dvg +

∫
M

φ2
vdvg

)
=

1
q

∫
M
(t∇gφu + s∇gφv)

2dvg +
1
q

∫
M
(tφu + sφv)

2dvg

≤ t
∫

M
φuu2dvg + s

∫
M

φvv2dvg,

which gives the required inequality, therefore it follows the required convexity. Almost the
same way as in Lemma 2.2 we can prove that N + λG satisfies the Palais–Smale condition for
every λ > 0 small enough. Therefore, the functionals N and G satisfies all the hypotheses of
Theorem A. Therefore for every τ > max

{
0, ‖β‖1 inft Φµ0(t)

}
there exists λτ > 0 such that

for every λ ∈ (0, λτ) the problem (SMλ
λ) has at least m + 1 solutions. We know in addition

that m elements among the solutions belong to the set N−1
ν0

((−∞, τ)), which proves that m
solutions satisfy the inequality

1
2

∫
M

(
|∇gu|2 + β(x)u2)dvg − µ0

∫
M

β(x)F(u)dvg < τ.

Remark 2.5.

(a) Note that ( f4) implies that the function t 7→ Φµ0(t) has at least m− 1 local maxima. Thus,
the function t 7→ µ0 f (t) has at least 2m− 1 fixed points. In particular, if for some λ > 0

Ψ(x, λ) = µ0β(x), for every x ∈ M,

then the problem (SMλ
λ) has at least 2m− 1 ≥ 3 constant solutions.

(b) Using the abstract Theorem A, one can guarantee that τ > max
{

0, ‖β‖L1(M) inft Φµ0(t)
}

It is clear that the assumption ( f2) holds if there exist ν ∈ (0, 1) and c > 0 such that

| f (t)| ≤ c|t|ν, for every t ∈ R.

In this case, m weak solutions of the problem satisfy the inequality

1
2

∫
M

(
|∇gu|2 + β(x)u2)dvg − µ0

∫
M

β(x)F(u)dvg < τ.

Now, it is clear that
|F(t)| ≤ c

ν + 1
|t|ν+1, for every t ∈ R.

Using a Hölder inequality∫
M

β(x)|u|ν+1dvg ≤ ‖β‖
1−ν

2
L1(M)

‖u‖ν+1
H1

β(M)
.
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One can observe, that since τ > 0 the equation

1
2

t2 −
µ0c‖β‖

1−ν
2

L1 M
ν + 1

tν+1 − τ = 0,

always has a positive solution.

Summing up, the number ‖u‖H1
β(M) is less than the greatest solution of the previous

algebraic equation. Combining this with (2.1), we have that

‖u‖H1
g(M) ≤

t∗
min{1, minM

√
β}

,

where t∗ the greatest solution of the previous algebraic equation. A similar study for
Emden–Fowler equation was done by Kristály and Rădulescu, see [22, Theorem 1.3].

2.2 Schrödinger–Maxwell systems involving superlinear nonlinearity

In the sequel, we prove Theorem 1.5. Recall that Ψ(λ, x) = λ and β ≡ 1. The energy functional
associated with the problem (SMe

λ) is defined by

Eλ(u) =
1
2
‖u‖2

H1
g(M) +

e
4

∫
M

φuu2dvg − λ
∫

M
F(u)dvg.

Lemma 2.6. Every (PS) sequence for the functional Eλ is bounded in H1
g(M).

Proof. We consider a Palais–Smale sequence (uj)j ⊂ H1
g(M) for Eλ, i.e. {Eλ(uj)} is bounded

and
‖(Eλ)

′(uj)‖H1
g(M)∗ → 0 as j→ ∞.

We claim that (uj)j is bounded in H1
g(M). We argue by contradiction, so suppose the contrary.

Passing to a subsequence if necessary, we may assume that

‖uj‖H1
g(M) → ∞, as j→ ∞.

It follows that there exists j0 ∈N such that for every j ≥ j0 we have that

Eλ(uj)−
〈
E ′λ(uj), uj

〉
η

=
1
2

(
η − 2

η

)
‖uj‖2

H1
g(M) +

e
4

(
η − 4

η

) ∫
M

φuj u
2
j dvg

+ λ
∫

M

(
f (uj)uj

η
− F(uj)

)
dvg.

Thus, bearing in mind that
∫

M φuu2dvg ≥ 0 and ( f̃2) one has that

1
2

(
η − 2

η

)
‖uj‖2

H1
g(M) ≤ Eλ(uj)−

〈
E ′λ(uj), uj

〉
η

+ χVolg(M),

where

χ = sup
{∣∣∣∣ t f (t)

η
− F(t)

∣∣∣∣ : t ≤ τ0

}
.

Therefore, for every j ≥ j0 we have that

1
2

(
η − 2

η

)
‖uj‖2

H1
g(M) ≤ Eλ(uj) +

1
η
‖(Eλ)

′(uj)‖H1
g∗‖uj‖H1

g(M) + χVolg(M).

Dividing by ‖uj‖H1
g(M) and letting j→ ∞ we get a contradiction, which implies the bounded-

ness of the sequence {uj}j in H1
g(M).
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Proof of the Theorem 1.5. Let us consider as before the following functionals:

H (u) =
1
2
‖u‖2

H1
g(M) +

e
4

∫
M

φuu2dvg and F (u) =
∫

M
F(u)dvg.

Form the positivity and the convexity of functional u 7→
∫

M φuu2 it follows that the functional
H is sequentially weakly semicontinuous and coercive functional. It is also clear that F is
sequentially weakly continuous. Then, for µ = 1

2λ , we define the functional Jµ(u) = µH (u)−
F (u). Integrating, we get from ( f̃2) that

F(ts) ≥ tη F(s), t ≥ 1 and |s| ≥ τ0.

Now, let us consider a fixed function u0 ∈ H1
g(M) such that

Volg ({x ∈ M : |u0(x)| ≥ τ0}) > 0,

and using the previous inequality and the fact that φtu = t2φu, we have that:

Jµ(tu0) = µH (tu0)−F (tu0)

= µ
t2

2
||u0||2H1

g(M) + µ
e
4

t4
∫

M
φu0 u2

0 −
∫

M
F(tu0)

≤ µt2||u0||2H1
g(M) + µ

e
2

t4
∫

M
φu0 u2

0 − tη
∫
{x∈M::|u0|≥τ0}

F(u0) + χ2Volg(M)
η>4→ −∞,

as t→ ∞, where
χ2 = sup {|F(t)| : |t| ≤ τ0} .

Thus, the functional Jµ is unbounded from below. A similar argument as before shows that
(taking eventually a subsequence), the functional Jµ satisfies the (PS) condition.

Let us denote by Kτ =
{

x ∈ M : ‖u‖2
H1

g(M)
< τ

}
and by

h(τ) = inf
u∈Kτ

sup
v∈Kτ

F (v)−F (u)

τ −H (u)

Since 0 ∈ Kτ, we have that

h(τ) ≤
supv∈Kτ

F (v)
τ

.

On the other hand, bearing in mind the assumption ( f̃1), we have that

F (v) ≤ C‖v‖H1
g(M) +

C
p

κ
p
p‖v‖

p
H1

g(M)
.

Therefore

h(τ) ≤ C
2

τ
1
2 +

Cκ
p
p

p
τ

p−2
2 .

Thus, if

λ < λ0 :=
pτ

1
2

2pC + 2Cκ
p
pτ

p−1
2

one has µ = 1
2λ > h(τ). Therefore, we are in the position to apply Ricceri’s result, i.e.,

Theorem B, which concludes our proof.
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Remark 2.7. From the proof of Theorem 1.5, one can see, that

λ0 ≤
p

2C
max
τ>0

τ
1
2

p + κ
p
pτ

p−1
2

.

Since p > 2, one can see, that

max
τ>0

pτ
1
2

2pC + 2Cκ
p
pτ

p−1
2

< ∞.
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