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Abstract. This paper is devoted to the asymptotic behaviors of the solution to a
reaction–diffusion–advection system in a homogeneous environment with fixed bound-
ary or free boundary. For the fixed boundary problem, the global asymptotic stability
of nonconstant semi-trivial states is obtained. It is also shown that there exists a stable
nonconstant co-existence state under some appropriate conditions. Numerical simu-
lations are given not only to illustrate the theoretical results, but also to exhibit the
advection-induced difference between the left and right boundaries as time proceeds.
For the free boundary problem, the spreading–vanishing dichotomy is proved, i.e., the
solution either spreads or vanishes finally. Besides, the criteria for spreading and van-
ishing are further established.
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1 Introduction

Consider 
ut = d1uxx − β1ux + u(r1 − a1u− b1v), (x, t) ∈ (0, L)× (0, ∞),

vt = d2vxx − β2vx + v(r2 − a2v− b2u), (x, t) ∈ (0, L)× (0, ∞),

u(x, 0) = u0(x) > 0, x ∈ (0, L),

v(x, 0) = v0(x) > 0, x ∈ (0, L).

(1.1)

Here, di, βi, ri, ai, bi are given constants, which implies in a homogeneous environment. For
convenience, i = 1, 2 in the whole text whenever it is mentioned.

Particularly, for di = 0 and βi = 0, (1.1) is a classical ordinary differential system, and mas-
sive outstanding researches have been proposed, see [1–4,14,20–22] and references therein; for
di ∈ R+ and βi ∈ R, (1.1) is a reaction–diffusion–advection (RDA) system. Such RDA prob-
lems were extensively used to understand the spatial behavior of populations, the dynamics
of information diffusion, and so on. Up to now, many remarkable results have been achieved,
see [5–10, 12, 13, 15–17, 24–27, 29], etc.
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For a population growth model, u(x, t), v(x, t) in (1.1) respectively represent the densities
of two species at location x and time t. di > 0 denotes the random dispersal rate of the
species; advection rate βi ∈ R is the moving speed of individuals towards their more favorable
habitats. As noted in [12], βi > 0 means advection points towards larger x, while βi < 0
implies advection points towards smaller x. ri > 0 accounts for intrinsic growth rate; ai > 0
is intra-specific interaction rate; bi ∈ R is interspecific interaction rate. What described above
means that system (1.1) is a competition model with bi > 0, see [16,17,29], and a predator-prey
problem for b1 > 0, b2 < 0, see [24, 26, 27, 30]. For a information diffusion model, the meaning
of u(x, t), v(x, t), di, βi, ri, ai, bi can refer to [22, 25].

The way to formulate boundary conditions for reaction-diffusion models is based on how
the flux of individuals crosses a boundary. As mentioned in [5], the flux

−→
J = −d∇u +

−→
β u across the boundary at any given point is proportional to the density with constant of

proportionality, that is (
−d∇u +

−→
β u
)
· −→n = αu, (1.2)

where d > 0 is the diffusion rate,
−→
β is the advection velocity, −→n is the outward pointing

normal vector, α is the proportionality coefficient. If α→ ∞, then the boundary condition (1.2)
becomes u = 0, which is a Dirichlet condition; if

−→
β = 0 and α = 0, we have (−d∇u) · −→n = 0,

i.e., ∂u
∂−→n = 0, which is known as a Neumann condition; if

−→
β = 0 and α < 0, then (1.2) is in

the form of d ∂u
∂−→n − αu = 0, which is referred to a Robin condition; if α = 0, then (1.2) becomes

d ∂u
∂−→n −

−→
β · −→n u = 0, which is called a no-flux or reflecting boundary condition, since it means

that individuals encountering the boundary are always reflected back so they do not leave the
domain, that is, no individual crosses the boundary.

Here we focus on the no-flux boundary conditions{
d1ux(0, t)− β1u(0, t) = d1ux(L, t)− β1u(L, t) = 0, t ∈ (0, ∞),

d2vx(0, t)− β2v(0, t) = d2vx(L, t)− β2v(L, t) = 0, t ∈ (0, ∞).
(1.3)

In fact, Lou et al. in [16] first qualitatively analyzed (1.1) with no-flux boundary (1.3) under
d1 = d2 and

r1 = r2, a1 = a2 = b1 = b2 = 1. (1.4)

It is shown that the movement with either smaller advection or no advection is eventually
stable. Afterwards, based on the assumptions of (1.4), Zhou in [29] further investigated (1.1)
with the addition of (1.3) to understand the joint effects of diffusion and advection on the
outcome of competition. Overcoming the mathematical difficulties arising out of d1 6= d2,
Zhou in [29] obtained much richer observations: the movement with smaller diffusion, smaller
advection and smaller ratio of advection to diffusion, or with larger diffusion and smaller
advection, wins the competition.

However, for a more general model with di, ri, ai ∈ R+, βi, bi ∈ R and without assumption
(1.4), there have been no results so far. Due to this reason, in this paper, we study (1.1) with
fixed boundary (1.3) and present a thorough understanding: for bi > 0, problem (1.1) and (1.3)
may finally stabilize to a nonconstant semi-trivial steady state if βi > 0, but admit a stable co-
existence state if β1 · β2 < 0; for b1 > 0, b2 < 0, the two semi-trivial steady semi-trivial steady
states of (1.1) with the addition of (1.3) are both unstable. Furthermore, we give numerical
simulations to find out that advection can induce great difference between the left and right
boundaries as time goes on; and the problem with b1 > 0, b2 < 0 may have a co-existence
state.
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On the other hand, influenced by human activity, the habitat of some species often changes
with time, which can be described by a free boundary. In this case, we go one step further
and discuss the corresponding free boundary problem

ut = d1uxx − β1ux + u(r1 − a1u− b1v), 0 < x < h(t), t > 0,

vt = d2vxx − β2vx + v(r2 − a2v− b2u), 0 < x < h(t), t > 0,

u(0, t) = v(0, t) = u(h(t), t) = v(h(t), t) = 0, t > 0,

h′(t) = −µ[ux(h(t), t) + ρvx(h(t), t)], t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), h(0) = h0, 0 < x < h0.

(1.5)

Here µ, ρ and h0 are given positive constants. x = h(t) is the free boundary, and the initial
function u0(x), v0(x) ∈ Σ(h0) for some h0 > 0, where

Σ(h0) = {φ ∈ C2([0, h0]) : φ(0) = φ(h0) = 0, φ(x) > 0 in (0, h0)}. (1.6)

Wang et al. in [26] studied system (1.5) with βi = 0 and bi > 0 and obtained the long time
behavior of two competing species spreading via a free boundary. Based on the assumptions
of βi = 0, b1 > 0, and b2 < 0, Wang in [24] investigated system (1.5) to get a spreading-
vanishing dichotomy and set the criteria for spreading and vanishing, moreover, Wang in [24]
gave the estimation of asymptotic spreading speed when spreading successfully.

Motivated by the works in [24,26], we study system (1.5) with di > 0, βi ≥ 0, ai > 0, b1 > 0
and b2 ∈ R. We prove that the spreading-vanishing dichotomy still holds, i.e. the solution to
problem (1.5) is vanishing if h∞ < +∞, on the other hand, it is spreading if h∞ = +∞ under
some proper conditions. Furthermore, we determine the criteria for spreading and vanishing.

The rest of this paper is organized as follows. In Section 2, the fixed boundary prob-
lem is analyzed, including the global asymptotic stability of nonconstant semi-trivial steady
states, and the existence of a stable nonconstant co-existence state. Numerical simulations are
presented to illustrate the results. Section 3 is devoted to the free boundary problem. The
spreading-vanishing dichotomy is obtained and the criteria for spreading and vanishing are
determined.

2 The fixed boundary problem

2.1 Existence of semi-trivial steady states

First, we consider the problem
d1uxx − β1ux + u(r1 − a1u) = 0, x ∈ (0, L),

d1ux(0)− β1u(0) = 0,

d1ux(L)− β1u(L) = 0,

(2.1)

and the following statement is valid.

Lemma 2.1. For any β1 ∈ R, and d1, r1, a1 ∈ R+, problem (2.1) admits a unique positive solution ũ.

Proof. For β1 ≥ 0, we rewrite problem (2.1) as
d1uxx − β1ux + u(r1 − a1u) = 0, x ∈ (0, L),

d1ux(0)− β1u(0) = 0,

d1ux(L) + β1u(L) = 2β1u(L).

(2.2)
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Let
ū =

M1

a1
e

β1
d1

x, u =
M2

a1
e

β1
d1

x,

where M1 > r1e
|β1 |
d1

L, 0 < M2 < r1e
−|β1 |

d1
L. After some simple computations, we have

d1ūxx − β1ūx + ū(r1 − a1ū) < 0, x ∈ (0, L),

d1ūx(0)− β1ū(0) = 0,

d1ūx(L) + β1ū(L) = 2β1ū(L),

(2.3)

and 
d1uxx − β1ux + u(r1 − a1u) > 0, x ∈ (0, L),

d1ux(0)− β1u(0) = 0,

d1ux(L) + β1u(L) = 2β1u(L).

(2.4)

According to the definition of upper and lower solutions in [19], one can see that ū and u are
upper and lower solutions to problem (2.2).

Set
F(u) := u(r1 − a1u), x ∈ (0, L),

and

G(u) :=

{
0, x = 0,

2β1u, x = L.

For u ≤ u2 < u1 ≤ ū, one can see that there are constants K1 > 0, K2 > 0 such that

F(u1)− F(u2) ≥ −K1(u1 − u2), x ∈ (0, L),

and
G(u1)− G(u2) ≥ −K2(u1 − u2), x = 0, L.

Thanks to Theorem 4.4.1 and Corollary 4.4.1 in [19], problem (2.2) has a positive solution ũ ∈
C2([0, L]), satisfying

u ≤ ũ ≤ ū.

The proof of uniqueness is similar to [16, Lemma 2.1]. For the readers’ convenience, we
outline the main ideas. Suppose ũ1 and ũ2 are two different positive solutions to (2.2). We
may assume ũ1 > ũ2 > 0. ũ1 and ũ2 satisfy

d1ũ1xx − β1ũ1x + ũ1(r1 − a1ũ1) = 0, x ∈ (0, L),

d1ũ1x(0)− β1ũ1(0) = 0,

d1ũ1x(L)− β1ũ1(L) = 0,

(2.5)

and 
d1ũ2xx − β1ũ2x + ũ2(r1 − a1ũ2) = 0, x ∈ (0, L),

d1ũ2x(0)− β1ũ2(0) = 0,

d1ũ2x(L)− β1ũ2(L) = 0,

(2.6)

respectively. Multiplying the first equation of (2.5) by e−
β1
d1

xũ2 and the first equation of (2.6)

by e−
β1
d1

xũ1, subtract the resulting equations and integrate over [0, L], and then we get∫ L

0
a1ũ1ũ2e−

β1
d1

x
(ũ2 − ũ1) = 0,



On a RDA system: fixed boundary or free boundary 5

which contradicts ũ1 > ũ2 > 0. Therefore, we obtain the positive solution to (2.1) is unique.
For β1 < 0, we can make some minor modifications to get the existence and uniqueness of

the positive solution to problem (2.1), so we omit the details.

Similarly, the problem
d2vxx − β2vx + v(r2 − a2v) = 0, x ∈ (0, L),

d2vx(0)− β2v(0) = 0,

d2vx(L)− β2v(L) = 0,

(2.7)

also has a unique positive solution ṽ.
Thus, the following result follows from Lemma 2.1 directly.

Lemma 2.2. For any βi, bi ∈ R and di, ri, ai ∈ R+, i = 1, 2, system (1.1) with the addition of (1.3)
has two semi-trivial steady states, denoted by (ũ, 0) and (0, ṽ) respectively.

Furthermore, as for ũ and ṽ, we have the following result, which is vital to our later
analysis.

Lemma 2.3. Suppose 0 < d1 < d2, ai ∈ R+, then

(i) 0 < ũx
ũ < β1

d1
≤ β2−β1

d2−d1
, if 0 < β1 < β2 and β1

d1
≤ β2

d2
, x ∈ (0, L);

β1
d1

< ũx
ũ < 0, if β1 < 0, x ∈ (0, L);

(ii) 0 < ṽx
ṽ < β2

d2
≤ β2−β1

d2−d1
, if 0 < β1 < β2 and β1

d1
≤ β2

d2
, x ∈ (0, L);

β2
d2

< ṽx
ṽ < 0, if β2 < 0, x ∈ (0, L).

Proof. For part (i), note that (ũ, 0) satisfies
d1ũxx − β1ũx + ũ(r1 − a1ũ) = 0, x ∈ (0, L),

d1ũx(0)− β1ũ(0) = 0,

d1ũx(L)− β1ũ(L) = 0.

(2.8)

Set p := ũx
ũ . Then some straightforward computations yield{

−d1 pxx + (β1 − 2d1 p)px + a1ũp = 0, x ∈ (0, L),

p(0) = p(L) = β1
d1

.
(2.9)

By using maximum principle [18, Theorem 3.6], it is clear that{
0 < p < β1

d1
, if β1 > 0, x ∈ (0, L);

β1
d1

< p < 0, if β1 < 0, x ∈ (0, L).
(2.10)

According to [29, Lemma 2.4], the conditions of 0 < d1 < d2, 0 < β1 < β2 and β1
d1
≤ β2

d2
imply

that
β1

d1
≤ β2 − β1

d2 − d1
. (2.11)

Then part (i) of Lemma 2.3 follows from (2.10) and (2.11).
Similarly, we can prove part (ii).
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2.2 Local stability of semi-trivial steady states

In this subsection, assume di, ri, ai, ∈ R+ and βi, bi ∈ R, we focus on the local stability of the
semi-trivial steady states of problem (1.1) with the addition of (1.3). Beginning with (ũ, 0),
and its stability is governed by the equations

ut = d1uxx − β1ux + u(r1 − 2a1ũ)− vb1ũ, (x, t) ∈ (0, L)× (0, ∞),

vt = d2vxx − β2vx + v(r2 − b2ũ), (x, t) ∈ (0, L)× (0, ∞),

d1ux(0, t)− β1u(0, t) = d1ux(L, t)− β1u(L, t) = 0, t > 0,

d2vx(0, t)− β2v(0, t) = d2vx(L, t)− β2v(L, t) = 0, t > 0.

(2.12)

The corresponding eigenvalue problem is
d1Φxx − β1Φx + Φ(r1 − 2a1ũ)−ωb2ũ + λΦ = 0, x ∈ (0, L),

d2ωxx − β2ωx + ω(r2 − b2ũ) + λω = 0, x ∈ (0, L),

d1Φx(0)− β1Φ(0) = d1Φx(L)− β1Φ(L) = 0,

d2ωx(0)− β2ω(0) = d2ωx(L)− β2ω(L) = 0.

(2.13)

One can find that the second equation in (2.13) is decoupled from the first. As a result, we
only consider the eigenvalue problem

d2ωxx − β2ωx + ω(r2 − b2ũ) + λω = 0, x ∈ (0, L),

d2ωx(0)− β2ω(0) = 0,

d2ωx(L)− β2ω(L) = 0.

(2.14)

Similarly, in order to investigate the stability of (0, ṽ), we consider the eigenvalue problem
d1ϕxx − β1ϕx + ϕ(r1 − b1ṽ) + µϕ = 0, x ∈ (0, L),

d1ϕx(0)− β1ϕ(0) = 0,

d1ϕx(L)− β1ϕ(L) = 0.

(2.15)

For convenience, the general formula of eigenvalue problems (2.14) and (2.15) is given as
follows 

dδxx − γδx + δm(x) + σδ = 0, x ∈ (0, L),

dδx(0)− γδ(0) = 0,

dδx(L)− γδ(L) = 0.

(2.16)

Then we have the following statements.

Lemma 2.4. Suppose d ∈ R+, γ ∈ R, m(x) ∈ C1([0, L]), then the eigenvalue problem (2.16) has a
simple principle eigenvalue σ0, and the corresponding eigenfunction δ0(x) can be chosen as δ0(x)� 0.

Proof. Consider 
Lu = duxx − γux + um(x), x ∈ (0, L),

dux(0)− γu(0) = 0,

dux(L)− γu(L) = 0,

(2.17)
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where d ∈ R+, γ ∈ R, m(x) ∈ C1([0, L]). Let w = e−
γ
d xu, then (2.17) becomes{

Lu = e
γ
d x[dwxx + γwx + wm(x)], x ∈ (0, L),

wx(0) = wx(L) = 0.
(2.18)

Denote
L∗w = dwxx + γwx + wm(x), x ∈ (0, L), (2.19)

and then ∫ L

0
wLudx =

∫ L

0
uL∗wdx. (2.20)

So L∗ can be seen the adjoint operator of L.
By [23, Theorem 7.6.1], problem{

L∗δ + σδ = 0, x ∈ (0, L),

δx(0) = δx(L) = 0,
(2.21)

has a simple principle eigenvalue σ0, and the corresponding eigenfunction δ0(x) can be chosen
as δ0(x)� 0.

Thanks to [5, Corollary 2.13], we get that σ0 is also the principle eigenvalue of
Lδ + σδ = 0, x ∈ (0, L),

dδx(0)− γδ(0) = 0,

dδx(L)− γδ(L) = 0.

(2.22)

Accordingly, Lemma 2.4 is established.

Let λ0 (resp. µ0) be the principal eigenvalues of (2.14) (resp. (2.15)), and ω0(x) (resp.
ϕ0(x)) be the corresponding eigenfunction satisfying ω0(x)(resp. ϕ0(x)) � 0. By Lemma
2.4, (λ0, ω0(x)) and (µ0, ϕ0(x)) must exist, moreover, λ0 and µ0 are simple.

For simplicity, in the following, we denote ω0(x), ϕ0(x), δ0(x), ∂ω0(x)
∂x , ∂ϕ0(x)

∂x and ∂δ0(x)
∂x by

ω0, ϕ0, δ0, ω0x, ϕ0x and δ0x respectively.

Lemma 2.5. Suppose d ∈ (R+), γ ∈ R, m(x) ∈ C1([0, L]), then we have

(i) δ0x
δ0

< γ
d in (0, L), if mx ≤, 6≡ 0 in [0, L];

(ii) δ0x
δ0

> γ
d in (0, L), if mx ≥, 6≡ 0 in [0, L].

Proof. Let h := δ0x
δ0

, then h(0) = h(L) = γ
d . Taking derivative of h, we derive

hx =
δ0xx

δ0
− h2. (2.23)

Note that (σ0, δ0) satisfies (2.16), thanks to (2.23), then some direct computations yield

− dhx − dh2 + γh−m(x) = σ0. (2.24)

Taking derivative of (2.24) in view of x, we obtain{
−dhxx + (γ− 2dh)hx = mx, x ∈ (0, L),

h(0) = h(L) = γ
d .

(2.25)

It follows from the maximum principle that h < γ/d if mx ≤, 6≡ 0; h > γ/d if mx ≥, 6≡ 0 in
[0, L].
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As for the stability of semi-trivial steady states of system (1.1) with the addition of (1.3),
the following result in [23] is of great concern in our subsequent analysis.

Lemma 2.6. Suppose di, ri, ai ∈R+, and βi, bi ∈ R, then the semi-trivial steady state (ũ, 0) is linearly
stable (resp. unstable) if λ0 is positive (resp. negative); the semi-trivial steady state (0, ṽ) is linearly
stable (resp. unstable) if µ0 is positive (resp. negative).

For clarity, we first state two propositions, which are vital to judge the stability of (ũ, 0)
and (0, ṽ).

Proposition 2.7. λ0 > 0 (resp. λ0 < 0) if and only if

λ∗(d1, d2, β1, β2, r1, r2, a1, b2) > 0 (resp. λ∗(d1, d2, β1, β2, r1, r2, a1, b2) < 0),

where

λ∗(d1, d2, β1, β2, r1, r2, a1, b2) =
∫ L

0
e−

β2
d2

xũω0[(r1 − r2) + (b2 − a1)ũ]dx

+
∫ L

0
e−

β2
d2

x
(

ω0x −
β2

d2
ω0

)
[(d2 − d1)ũx + (β1 − β2)ũ]dx.

(2.26)

Proof. Rewrite (2.8) as
d2ũxx − β2ũx + ũ(r1 − a1ũ) = (d2 − d1)ũxx + (β1 − β2)ũx, x ∈ (0, L),

d2ũx(0)− β2ũ(0) = (d2 − d1)ũx(0) + (β1 − β2)ũ(0),

d2ũx(L)− β2ũ(L) = (d2 − d1)ũx(L) + (β1 − β2)ũ(L).

(2.27)

Note that (λ0, w0) satisfies
d2ω0xx − β2ω0x + ω0(r2 − b2ũ) = −λ0ω0, x ∈ (0, L),

d2ω0x(0)− β2ω0(0) = 0,

d2ω0x(L)− β2ω0(L) = 0.

(2.28)

Multiplying the first equation of (2.27) by e−
β2
d2

x
ω0, and integrating the resulting equation over

[0, L], we get

(d2ũx − β2ũ)e−
β2
d2

x
ω0

∣∣∣L
0
−
∫ L

0
(d2ũx − β2ũ)e−

β2
d2

x
(

ω0x −
β2

d2
ω0

)
dx

+
∫ L

0
e−

β2
d2

x
ω0ũ(r1 − a1ũ)dx

= [(d2 − d1)ũx + (β1 − β2)ũ]e
− β2

d2
x
ω0

∣∣∣L
0

−
∫ L

0
[(d2 − d1)ũx + (β1 − β2)ũ]e

− β2
d2

x
(

ω0x −
β2

d2
ω0

)
dx.

(2.29)

By the boundary conditions of (2.27), (2.29) can be simplified to∫ L

0
e−

β2
d2

x
ω0ũ(r1 − a1ũ)dx +

∫ L

0
[(d2 − d1)ũx + (β1 − β2)ũ]e

− β2
d2

x
(

ω0x −
β2

d2
ω0

)
dx

=
∫ L

0
(d2ũx − β2ũ)e−

β2
d2

x
(

ω0x −
β2

d2
ω0

)
dx.

(2.30)
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Multiplying the first equation of (2.28) by e−
β2
d2

xũ, and integrating the resulting equation over
[0, L], according to boundary conditions, we have

λ0

∫ L

0
ũω0e−

β2
d2

xdx

=
∫ L

0
(d2ω0x − β2ω0)e

− β2
d2

x
(

ũx −
β2

d2
ũ
)

dx−
∫ L

0
(r2 − b2ũ)ω0e−

β2
d2

xũdx.
(2.31)

Combining (2.30) and (2.31), one can find

λ0

∫ L

0
ũω0e−

β2
d2

xdx =
∫ L

0
e−

β2
d2

xũω0[(r1 − r2) + (b2 − a1)ũ]dx

+
∫ L

0
e−

β2
d2

x
(

ω0x −
β2

d2
ω0

)
[(d2 − d1)ũx + (β1 − β2)ũ]dx.

(2.32)

By the definition of λ∗(d1, d2, β1, β2, r1, r2, a1, b2), (2.32) can be rewritten as

λ0

∫ L

0
ũω0e−

β2
d2

xdx = λ∗(d1, d2, β1, β2, r1, r2, a1, b2). (2.33)

Clearly, the sign of λ0 is the same as that of λ∗, which completes the proof of Proposition 2.7.

Similarly, we have the following proposition concerning µ0.

Proposition 2.8. µ0 > 0 (resp. µ0 < 0) if and only if

µ∗(d1, d2, β1, β2, r1, r2, b1, a2) > 0 (resp. µ∗(d1, d2, β1, β2, r1, r2, b1, a2) < 0),

where

µ∗(d1, d2, β1, β2, r1, r2, b1, a2)

=
∫ L

0
e−

β1
d1

xṽϕ0[(r2 − r1) + (b1 − a2)ṽ]dx

+
∫ L

0
e−

β1
d1

x
(

ϕ0x −
β1

d1
ϕ0

)
[(d1 − d2)ṽx + (β2 − β1)ṽ]dx.

(2.34)

Proof. By a similar method noted in the proof of Proposition 2.7, we can find

µ0

∫ L

0
ṽϕ0e−

β1
d1

xdx =
∫ L

0
e−

β1
d1

xṽϕ0[(r2 − r1) + (b1 − a2)ṽ]dx

+
∫ L

0
e−

β1
d1

x
(

ϕ0x −
β1

d1
ϕ0

)
[(d1 − d2)ṽx + (β2 − β1)ṽ]dx.

(2.35)

According to the definition of µ∗(d1, d2, β1, β2, r1, r2, b1, a2), (2.35) can be simplified as

µ0

∫ L

0
ṽϕ0e−

β1
d1

xdx = µ∗(d1, d2, β1, β2, r1, r2, b1, a2), (2.36)

which indicates that µ0 and µ∗ have the same sign.

Now, we can establish the local stability of (ũ, 0) and (0, ṽ) respectively.
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Lemma 2.9. Assume di, ri, a1 ∈ R+, βi, b2 ∈ R, then

(i) if d1 < d2, 0 < β1 < β2, β1
d1
≤ β2

d2
, r2 ≤ r1 and 0 < a1 ≤ b2, (ũ, 0) is stable locally;

(ii) if d1 < d2, 0 < β2 < β1, r1 ≤ r2 and 0 ≤ b2 ≤ a1, (ũ, 0) is unstable;

(iii) if d1 ≤ d2, β1 · β2 < 0, r1 ≤ r2 and 0 ≤ b2 ≤ a1, (ũ, 0) is unstable;

(iv) if d1 < d2, 0 < β1 < β2, β1
d1
≤ β2

d2
, r1 ≤ r2 and b2 < 0, (ũ, 0) is unstable.

Proof. For part (i), according to part (i) of Lemma 2.3,

0 <
ũx

ũ
<

β1

d1
≤ β2 − β1

d2 − d1
. (2.37)

Here, 0 < ũx
ũ < β1

d1
implies ũx > 0, which indicates that

mx = [r2 − b2ũ]x = −b2ũx < 0,

and then
ω0x

ω0
<

β2

d2
, (2.38)

from Lemma 2.5.
Moreover, it directly follows that from 0 < r2 ≤ r1 and 0 < a1 ≤ b2

(r1 − r2) + (b2 − a1)ũ ≥ 0. (2.39)

Therefore, thanks to (2.37), (2.38) and (2.39), we get λ∗(d1, d2, β1, β2, r1, r2, a1, b2) > 0 if 0 <

d1 < d2, 0 < β1 < β2, β1
d1
≤ β2

d2
, 0 < r2 ≤ r1, 0 < a1 ≤ b2. By Lemma 2.6 and Proposition 2.7,

the proof of part (i) is finished.
Actually, λ∗(d1, d2, β1, β2, r1, r2, a1, b2) < 0 directly follows from the conditions of 0 < d1 <

d2, 0 < β2 < β1, 0 < r1 ≤ r2 and 0 < b2 ≤ a1. Thus, we can get (ũ, 0) is unstable.
For part (iii), the case of d1 = d2 > 0 is easy to check, so we only verify the case of

0 < d1 < d2.
β1 · β2 < 0 implies β1 > 0 > β2 or β2 > 0 > β1. We first consider β1 > 0 > β2. By the

similar argument to part (i), it is easy to find{
(d2 − d1)ũx + (β1 − β2)ũ > 0,

ω0x − β2
d2

ω0 < 0.
(2.40)

Combining (2.40) with the conditions of 0 < r1 < r2 and 0 < b2 < a1, we deduce

λ∗(d1, d2, β1, β2, r1, r2, a1, b2) < 0,

which shows that (ũ, 0) is unstable by Proposition 2.7 and Lemma 2.6.
For β2 > 0 > β1, combining this condition with part (i) of Lemma 2.3 and part (ii) of

Lemma 2.5, we have {
(d2 − d1)ũx + (β1 − β2)ũ < 0,

ω0x − β2
d2

ω0 > 0,
(2.41)

which yields

λ∗(d1, d2, β1, β2, r1, r2, a1, b2) < 0,
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if 0 < r1 ≤ r2 and 0 < b2 ≤ a1. Therefore, (ũ, 0) is unstable.
For part (iv), in the case of b2 < 0, again by part (i) of Lemma 2.3 and part (ii) of Lemma 2.5,

we get {
0 < ũx

ũ < β2−β1
d2−d1

, x ∈ (0, L),

0 < β2
d2

< w0x
w0

, x ∈ (0, L).
(2.42)

Since 0 < r1 ≤ r2 and b2 < 0 < a1, we derive λ∗(d1, d2, β1, β2, r1, r2, a1, b2) < 0. Then the proof
of part (iii) is completed by Proposition 2.7 and Lemma 2.6.

Lemma 2.10. Suppose that di, ri, a2, b1 ∈ R+, βi ∈ R, then

(i) if d1 < d2, 0 < β1 < β2, β1
d1
≤ β2

d2
, r2 ≤ r1 and b1 ≤ a2, (0, ṽ) is unstable;

(ii) if d1 < d2, 0 < β2 < β1, r1 ≤ r2 and a2 ≤ b1, (0, ṽ) is stable locally;

(iii) if d1 ≤ d2, β1 · β2 < 0, r2 ≤ r1 and b1 ≤ a2, (0, ṽ) is unstable.

Proof. By using the similar argument to the one applied in the proof of Lemma 2.9, one can
prove that µ∗(d1, d2, β1, β2, r1, r2, b1, a2) < 0 for d1 < d2, 0 < β1 < β2, β1

d1
≤ β2

d2
, r2 ≤ r1, b1 ≤ a2;

µ∗(d1, d2, β1, β2, r1, r2, b1, a2) > 0 for d1 < d2, 0 < β2 < β1, r1 ≤ r2 and a2 ≤ b1. Thus, part (i)
and part (ii) directly follows from Proposition 2.7 and Lemma 2.6.

Part (iii), we only consider d1 < d2, because the case of d1 = d2 > 0 can be verified in a
similar argument.

For β1 > 0 > β2, it follows from part (ii) of Lemma 2.3 that

0 < − ṽx

ṽ
< −β2

d2
<

β1 − β2

d2 − d1
,

that is,
(d1 − d2)ṽx + (β2 − β1)ṽ < 0. (2.43)

Moreover, due to part (i) of Lemma 2.5, we deduce

ϕ0x

ϕ0
>

β1

d1
, (2.44)

since mx = (r1 − b1ṽ)x = −b1ṽx > 0 if β2 < 0. So (0, ṽ) is unstable under the conditions of
r2 ≤ r1 and b1 ≤ a2.

For β2 > 0 > β1, we can use a similar argument to show (0, ṽ) is unstable.

2.3 The non-existence of coexistence steady state

In this subsection, we show the nonexistence of coexistence steady states under some proper
conditions.

Lemma 2.11. Suppose that 0 < d1 < d2, then

(i) if 0 < β1 < β2, β1
d1
≤ β2

d2
, 0 < r2 ≤ r1, 0 < a1 ≤ b2 and 0 < b1 ≤ a2, system (1.1) with the

addition of (1.3) has no coexistence steady state;

(ii) if 0 < β2 < β1, 0 < r1 ≤ r2, 0 < b2 ≤ a1 and 0 < a2 ≤ b1, system (1.1) with the addition of
(1.3) has no coexistence steady state.
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Proof. For part (i), arguing indirectly, we assume that system (1.1) with the addition of (1.3)
has a coexistence steady state (U, V), then

d1Uxx − β1Ux + U(r1 − a1U − b1V) = 0, x ∈ (0, L),

d2Vxx − β2Vx + V(r2 − a2V − b2U) = 0, x ∈ (0, L),

d1Ux(0)− β1U(0) = d1Ux(L)− β1U(L) = 0,

d2Vx(0)− β2V(0) = d2Vx(L)− β2V(L) = 0.

(2.45)

Define
f (x) := d1Ux − β1U, x ∈ [0, L]; (2.46)

and
g(x) := d2Vx − β2V, x ∈ [0, L]. (2.47)

By the boundary conditions of (2.45), we have

f (0) = f (L) = g(0) = g(L) = 0. (2.48)

In the following, we show 8 claims to finish the proof.
Claim 1.

(i) If f ′(x) ≥ 0 (resp. > 0), g′(x) ≥ 0 (resp. > 0);

(ii) If g′(x) ≤ 0 (resp. < 0), f ′(x) ≤ 0 (resp. < 0).

Combining (2.45) with the definition of f (x) and g(x), we find

f ′(x) = d1Uxx − β1Ux = U(a1U + b1V − r1),

and
g′(x) = d2Vxx − β2Vx = V(a2V + b2U − r2).

It follows that from f ′(x) ≥ 0 (resp. > 0)

a1U + b1V − r1 ≥ 0 (resp. > 0).

Therefore, 0 < r2 ≤ r1, 0 < a1 ≤ b2 and 0 < b1 ≤ a2 directly yield

a2V + b2U − r2 ≥ a1U + b1V − r1 ≥ 0 (resp. > 0).

Hence, g′(x) ≥ 0 (resp. > 0).
Part (ii) can be proved similarly.

Claim 2.

(i) There is small ε > 0 such that f (x) < 0 in (0, ε];

(ii) There is small δ > 0 such that g(x) < 0 in [L− δ, L).

Part (i), if not, there exists some small ε0 such that f (x) > 0 or f (x) ≡ 0 in (0, ε0]. Next,
we show contradictions respectively. Define

T :=
Ux

U
, x ∈ [0, L]; (2.49)
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and
S :=

Vx

V
, x ∈ [0, L]. (2.50)

Due to (2.45), some straightforward calculations yield
−d1Txx + (β1 − 2d1T)Tx + a1TU + b1SV = 0, x ∈ (0, L),

−d2Sxx + (β2 − 2d2S)Sx + a2SV + b2TU = 0, x ∈ (0, L),

T(0) = T(L) = β1
d1

> 0,

S(0) = S(L) = β2
d2

> 0.

(2.51)

When f (x) > 0 in (0, ε0], there must be ε1 ∈ (0, ε0] such that

f ′(x) > 0, x ∈ (0, ε1].

According to Claim 1, we have

g′(x) > 0, x ∈ (0, ε1].

Due to g(0) = 0, we get
g(x) > 0, x ∈ (0, ε1].

Denote the first zero point of f (x) in (0, L] by y1, and the first zero of g(x) by x1. For brevity,
we let y1 ≤ x1. Actually, the following expression is similar when y1 ≥ x1.

Thus, we have
f (0) = f (y1) = 0, f (x) > 0, x ∈ (0, y1); (2.52)

and
g(0) = 0, g(y1) ≥ 0, g(x) > 0, x ∈ (0, y1). (2.53)

Thanks to (2.46), (2.47), (2.49), (2.50), (2.52) and (2.53), we find

T(0) = T(y1) =
β1

d1
, T(x) >

β1

d1
> 0, x ∈ (0, y1); (2.54)

and
S(0) =

β1

d2
, S(y1) ≥

β2

d2
> 0, S(x) >

β2

d2
> 0, x ∈ (0, y1). (2.55)

From (2.54), T must attain a positive local maximum at some point denoted by z1, z1 ∈
(0, y1). By the first equation of (2.51), we get S(z1) < 0, which contradicts (2.55). Consequently,
the statement f (x) > 0 in (0, ε0] does not hold.

Actually, if f (x) ≡ 0 in (0, ε0], f ′(x) ≡ 0. By Claim 1, g′(x) ≥ 0, together with g(0) = 0,
there must exist ε2 ∈ (0, ε0] such that g(x) ≥ 0, x ∈ (0, ε2)], deducing that

S ≥ β2

d2
, x ∈ (0, ε2].

On the other hand, by (2.46) and (2.49), f (x) ≡ 0 in (0, ε0] guarantees T ≡ β1
d1

. According

to the first equation of (2.51), we derive S < 0 in (0, ε0), a contradiction to S ≥ β2
d2

in (0, ε2).
Consequently, part (i) of Claim 2 is set up. Part (ii) can be verified by the similar method,

so we omit the details.
Claim 2 implies that f and g can not be identically zero in [0, L]. Besides, f and g are real

analytic. Therefore, all zero points of f and g are isolated.



14 Y. Xu, D. Zhu and J. Ren

Claim 3. f and g must change sign in [0, L].
If g cannot change sign in [0, L], then g ≤, 6≡ 0 in [0, L] by using Claim 2. Thus

f (x) = d1Ux − β1U < 0, x ∈ (0, y1),

g(x) = d2Vx − β2V ≤, 6≡ 0, x ∈ (0, y1),

f (0) = f (y1) = 0,

g(0) = 0, g(y1) ≥ 0.

(2.56)

Combining (2.45) with (2.56), we have

d1Uxx − β1Ux + U(r1 − a1U − b1V) = 0, x ∈ (0, y1),

d1Vxx − β1Vx + V(r2 − a2V − b2U) = (d1 − d2)Vxx + (β2 − β1)Vx, x ∈ (0, y1),

d1Ux(0)− β1U(0) = d1Ux(y1)− β1U(y1) = 0,

d2Vx(0)− β2V(0) = 0,

d2Vx(y1)− β2V(y1) ≤ 0.

(2.57)

Multiplying the first equation of (2.57) by e−
β1
d1

xV and the second one by e−
β1
d1

xU, subtracting
the resulting equations and then integrating over [0, y1], we get

(d2Vx − β2V)e−
β1
d1

x|x=y1 =
∫ y1

0
e−

β1
d1

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Vx − (β2 − β1)V]e−
β1
d1

x
(

Ux −
β1

d1
U
)

dx.
(2.58)

Thanks to our assumptions, we have

e−
β1
d1

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V] ≥ 0. (2.59)

From (2.56), it follows that (
Ux −

β1

d1
U
)
< 0, x ∈ (0, y1), (2.60)

and
Vx

V
≤ β2

d2
, x ∈ (0, y1). (2.61)

By part (ii) of Lemma 2.3, we get

Vx

V
≤ β2 − β1

d2 − d1
, x ∈ (0, y1). (2.62)

Accordingly, it follows from (2.59), (2.60) and (2.62) that∫ y1

0
e−

β1
d1

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Vx − (β2 − β1)V]e−
β1
d1

x
(

Ux −
β1

d1
U
)

dx

≥ 0.

(2.63)
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On the other hand, due to the last equation of (2.57), one can find

(d2Vx − β2V)e−
β1
d1

x
∣∣∣

x=y1

≤ 0. (2.64)

(2.63) and (2.64) cause a contradiction to (2.58), which indicates that g must change sign in
[0, y1]. In addition, g changes sign before f .

Now, it’s turn to show f also changes sign in [0, L]. If not, we have f ≤, 6≡ 0 in [0, L] by
Claim 2. Denote the last zero point of g in (0, L) by xm−1. Here xm−1 must exist because g
changes sign in (0, L). Then

f (x) = d1Ux − β1U ≤ 0, x ∈ (xm−1, L),

g(x) = d2Vx − β2V < 0, x ∈ (xm−1, L),

f (xm−1) ≤ 0, f (L) = 0,

g(xm−1) = g(L) = 0.

(2.65)

By some direct calculation, it follows from (2.45) and (2.65) that

(d1Ux − β1U)e−
β2
d2

x
∣∣∣

x=xm−1

=
∫ L

xm−1

e−
β2
d2

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Ux − (β2 − β1)U]e−
β2
d2

x
(

Vx −
β2

d2
V
)

dx.
(2.66)

According to (2.65) and our assumptions, one can see that the left side of (2.66) is nonpositive
but the right is positive, which gives rise to a contradiction. Therefore, f also changes sign in
[0, L].

Based on Claim 2 and Claim 3, g has at least one zero point in (0, L) such that the sign of
g must change at each side of the point. Let x2 be the first one. Obviously, either g ≤ 0 or
g ≥ 0 in (0, x2), so we consider these two cases:

Case i: g ≤, 6≡ 0 in (0, x2); Case ii: g ≥, 6≡ 0 in (0, x2).
In the following analysis, we show that f ≤ 0 in [0, L] in both cases. First, we consider Case i:
g ≤, 6≡ 0 in (0, x2). By Claim 2 and Claim 3, there exists x3 (x2 < x3 < L) such that

g(x) ≤ 0, x ∈ (0, x2),

g(x) ≥ 0, x ∈ (x2, x3),

g(0) = g(x2) = g(x3) = 0.

(2.67)

Claim 4. f ≤ 0 in (0, x2] for Case i: g ≤, 6≡ 0 in (0, x2).
If not, f has at least one zero point in (0, L) such that the sign of f must change at each

side of the point. Let y2 be the first one. Thus,
f (x) = d1Ux − β1U ≤ 0, x ∈ (0, y2),

g(x) = d2Vx − β2V ≤ 0, x ∈ (0, y2),

f (0) = f (y2) = 0,

g(0) = 0, g(y2) ≤ 0.

(2.68)

Combining (2.45) with (2.68), some direct calculations yield

(d2Vx − β2V)e−
β1
d1

x
∣∣∣

x=y2

=
∫ y2

0
e−

β1
d1

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Vx − (β2 − β1)V]e−
β1
d1

x
(

Ux −
β1

d1
U
)

dx.
(2.69)
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By our assumptions and the last equation of (2.68), we have

(d2Vx − β2V)e−
β1
d1

x
∣∣∣

x=y2

≤ 0, (2.70)

and ∫ y2

0
e−

β1
d1

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Vx − (β2 − β1)V]e−
β1
d1

x
(

Ux −
β1

d1
U
)

dx

> 0.

(2.71)

The contradiction completes the proof of Claim 4.
Claim 5. f ≤ 0 in (x2, x3] with f (x3) < 0 for Case i: g ≤, 6≡ 0 in (0, x2).

First, we show f ≤ 0 in [x2, x3]. Otherwise, there is y3 and z2 with x2 ≤ y3 < z2 ≤ x3 such
that 

f (x) ≤ 0, x ∈ (x2, y3),

f (y3) = 0,

f (x) > 0, x ∈ (y3, z2).

(2.72)

(2.72) implies that there exists small ε1 > 0 such that f is increasing in (y3, y3 + ε1). On the
other hand, since g(x3) = 0 and g(x) ≥ 0 in (x2, x3), there exists small ε2 > 0 such that g is
diminishing in (x3 − ε2, x3). By Claim 1, f is also diminishing in (x3 − ε2, x3).

Consequently, f must has at least one positive local maximum value point in (y3, x3). Let
z3 be the closest to y3. Then we have{

f (x) = d1Ux − β1U > 0, x ∈ (y3, z3],

f ′(z3) = 0,
(2.73)

Note that
f ′(x) = d1Uxx − β1Ux, (2.74)

and

T′(x) =
[

Ux

U

]
x
=

Uxx

U
−
(

Ux

U

)2

. (2.75)

By (2.73) and (2.74), we find{
Ux
U > β1

d1
, x ∈ (y3, z3],

f ′(z3) = d1Uxx(z3)− β1Ux(z3) = 0.
(2.76)

Due to (2.75) and (2.76), we deduce

T′(z3) =
Uxx

U

∣∣∣∣
x=z3

−
(

Ux

U

)2 ∣∣∣∣
x=z3

=
β1Ux

d1U

∣∣∣∣
x=z3

−
(

Ux

U

)2 ∣∣∣∣
x=z3

< 0. (2.77)

Then, (2.49), (2.72), (2.73) and (2.77) directly yield
T(x) > β1

d1
, x ∈ (y3, z3),

T(y3) =
β1
d1

,

T′(z3) < 0.

(2.78)
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From (2.78), we can obtain that T has a positive local maximum value point saying z4 in
(y3, z3). By the first equation of (2.51), we get

S(z4) < 0. (2.79)

On the other hand, since g(x) > 0 in (x2, x3),

S(z4) >
β2

d2
. (2.80)

The contradiction caused by (2.79) and (2.80) shows that f (x) ≤ 0 in [x2, x3]. Considering f is
diminishing in a small neighborhood of x3, we derive f (x3) < 0.

After x3, we can find the next zero point of g. Denote it by x4 ∈ (x3, L]. It is obvious either
g ≤ 0 or g ≥ 0 in (x3, x4].
Claim 6. f ≤ 0 in (x3, x4] with f (x4) < 0 for g ≤, 6≡ 0 in (0, x2).

Actually, when g ≥ 0 in (x3, x4] happens, we can deduce f ≤ 0 in (x3, x4] with f (x4) < 0
in the similar way to Claim 5. Next, we show f ≤ 0 in (x3, x4] if g ≤ 0 in (x3, x4] happens. If
not, there exists y4 ∈ (x3, y4] such that

f (x) = d1Ux − β1U < 0, x ∈ (x3, y4),

g(x) = d2Vx − β2V ≤ 0, x ∈ (x3, y4),

g(x3) = 0, g(y4) ≤ 0,

f (x3) < 0, f (y4) = 0.

(2.81)

Some direct calculations yield

(d1Ux − β1U)e−
β2
d2

xV
∣∣∣

x=x3

+ (d2Vx − β2V)e−
β2
d2

xU
∣∣∣

x=y4

=
∫ y4

x3

e−
β2
d2

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Ux − (β2 − β1)U]e−
β2
d2

x
(

Vx −
β2

d2
V
)

dx,

(2.82)

By the similar method to Claim 4, we arrive at

(d1Ux − β1U)e−
β2
d2

xV
∣∣∣

x=x3

+ (d2Vx − β2V)e−
β2
d2

xU
∣∣∣

x=y4

< 0, (2.83)

and ∫ y4

x3

e−
β2
d2

xUV[(r1 − r2) + (b2 − a1)U + (a2 − b1)V]

+ [(d2 − d1)Ux − (β2 − β1)U]e−
β2
d2

x
(

Vx −
β2

d2
V
)

dx

≥ 0.

(2.84)

The contradiction ends the proof of Claim 6.
Claim 7. f ≤ 0 in [0, L] for g ≤, 6≡ 0 in (0, x2).

Due to Claim 2, Claim 3 and the isolated properties of the zero points for g, g has finitely
many zero points. Consequently, by repeating the above analysis, we can obtain that f ≤ 0 in
[0, L] for g ≤, 6≡ 0 in (0, x2).
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Claim 8. f ≤ 0 in [0, L]
Actually, for g ≥, 6≡ 0 in (0, x2), we can show that f ≤ 0 in [0, L] by the similar method to

the case of g ≤, 6≡ 0 in (0, x2), so Claim 8 can be verified directly.
f ≤ 0 in [0, L] contradicts Claim 3, which shows that the coexistence steady state (U, V) of

system (1.1) with the addition of (1.3) does not exist if 0 < r2 ≤ r1, 0 < a1 ≤ b2, 0 < b1 ≤ a2,
0 < d1 < d2, 0 < β1 < β2 and β1

d1
< β2

d2
.

For part (ii), we can apply the similar arguments to part (i) to show the non-existence
of co-existence steady states if 0 < r1 ≤ r2, 0 < b2 ≤ a1, 0 < a2 ≤ b1, 0 < d1 < d2 and
0 < β2 < β1, so we omit the details.

2.4 Global dynamics for problem (1.1) with the addition of (1.3)

In this subsection, we show the asymptotic behaviors of solution to problem (1.1) with the
addition of (1.3). For convenience, we list the following conditions:

C1. 0 < β1 < β2, 0 < r2 ≤ r1, 0 < a1 ≤ b2, 0 < b1 ≤ a2;

C2. 0 < β2 < β1, 0 < r1 ≤ r2, 0 < a2 ≤ b1, 0 < b2 ≤ a1;

C3. β1 · β2 < 0, r1 = r2, 0 < b2 ≤ a1, 0 < b1 ≤ a2.

Theorem 2.12. Suppose that 0 < d1 < d2,

(i) if β1
d1
≤ β2

d2
and C1 holds, the semi-trivial steady state (ũ, 0) is globally asymptotically stable;

(ii) if C2 holds, the semi-trivial steady state (0, ṽ) is globally asymptotically stable.

Proof. By using the theory of monotone dynamical system [23], part (i) of Theorem 2.12 di-
rectly follows from part (i) of lemma 2.9, part (i) of Lemma 2.10 and part (i) of Lemma 2.11;
part (ii) of Theorem 2.12 directly follows from part (ii) of lemma 2.9, part (ii) of Lemma 2.10
and part (ii) of Lemma 2.11.

Actually, interchanging the labels of d1 and d2, β1 and β2, r1 and r2, a1 and a2, b1 and b2,
we can get the parallel results.

Theorem 2.13. Suppose that 0 < d2 < d1,

(i) if β2
d2
≤ β1

d1
and C2 holds, the semi-trivial steady state (0, ṽ) is globally asymptotically stable;

(ii) if C1 holds, the semi-trivial steady state (ũ, 0) is globally asymptotically stable.

Remark 2.14. Actually, if r1 = r2 > 0, a1 = b2 > 0, a2 = b1 > 0, part (i) of Theorem 2.13
supports statement (1) of Theorem 1.1 in [29]; part (ii) of Theorem 2.13 is consistent with
[29, Theorem 1.2].

Actually, let

r1 = r2 = r > 0, a1 = b2 = a > 0, a2 = b1 = b > 0,

and
au = û, bv = v̂.
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According to system (1.1) with the addition of (1.3), (û, v̂) satisfies

ût = d1ûxx − β1ûx + û(r− û− v̂), (x, t) ∈ (0, L)× (0, ∞),

v̂t = d2v̂xx − β2v̂x + v̂(r− û− v̂), (x, t) ∈ (0, L)× (0, ∞),

d1ûx(0, t)− β1û(0, t) = d1ûx(L, t)− β1û(L, t) = 0, t ∈ (0, ∞),

d2v̂x(0, t)− β2v̂(0, t) = d2v̂x(L, t)− β2v̂(L, t) = 0, t ∈ (0, ∞),

û(x, 0) = û0(x), v̂(x, 0) = v̂0(x), x ∈ [0, L].

(2.85)

System (2.85) is just the model in [29]. As a result, Remark 2.14 is obvious.

Theorem 2.15. Suppose 0 < d1 ≤ d2 and C3 holds, problem (1.1) with the addition of (1.3) has
two coexistence steady states (U1, V1) and (U2, V2) with U1 ≤ U2 and V1 ≥ V2. Furthermore,
any positive solution U(x, t) = (u(x, t), v(x, t)) to problem (1.1) with the addition of (1.3) satisfies
limt→+∞ d(U(x, t), [U1, U2]× [V2, V1]) = 0 uniformly for x ∈ [0, L].

Proof. By the continuous-time version of [28, Theorem 2.4.1], Theorem 2.15 follows from part
(iii) of Lemma 2.9 and part (iii) of Lemma 2.10.

Again interchanging the labels of d1 and d2, β1 and β2, a1 and a2, b1 and b2, the parallel
results for Theorem 2.15 is as follows.

Theorem 2.16. Suppose 0 < d2 ≤ d1 and C3 holds, then we have the same results as in Theorem 2.15.

Combining Theorem 2.15 with Theorem 2.16, we get the following more general conclu-
sion.

Theorem 2.17. Assume d1, d2 ∈ R+ and C3 holds, then we have the same results as in Theorem 2.15.

Remark 2.18. Particularly, if a1 = b2 > 0, a2 = b1 > 0, Theorem 2.16 and Theorem 2.17 support
Theorem 1.3 and Theorem 1.3∗ in [29], respectively.

2.5 Numerical simulations

Next we present some numerical simulations to indicate our results obtained above. Further-
more, for b1 > 0, b2 < 0, we observe that problem (1.1) with the addition of (1.3) may have a
co-existence state.

Throughout this subsection, we fix

u0(x) = 0.1− 0.1 cos
(

2πx
L

)
,

v0(x) = 0.01− 0.01 cos
(

2πx
L

)
,

and

L = 3, d1 = 0.3, d2 = 1.1.
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(a) (b)

Figure 2.1: The asymptotic behaviors of u(x, t) in (a) and v(x, t) in (b) with
β1 = 0.2, β2 = 1, r1 = 1, r2 = 0.5, a1 = 1.1, a2 = 2.1, b1 = 1.2, b2 = 2.

(a) (b)

Figure 2.2: The asymptotic behaviors of u(x, t) in (a) and v(x, t) in (b) with
β1 = 1, β2 = 0.2, r1 = 0.5, r2 = 1, a1 = 2.1, a2 = 1.2, b1 = 2.1, b2 = 1.2.

(a) (b)

Figure 2.3: The asymptotic behaviors of u(x, t) in (a) and v(x, t) in (b) with
β1 = 0.5, β2 = −0.5, r1 = r2 = 1, a1 = 2.1, a2 = 2.3, b1 = 1.2, b2 = 1.1.
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Example 2.19. Figure 2.1 (resp. Figure 2.2) describes part (i) (resp. (ii)) of Theorem 2.12, and
Figure 2.3 displays Theorem 2.15. From Figure 2.1, one can observe that the u(x, t) in (a)
stabilizes to a positive nonconstant state but v(x, t) in (b) decays to zero quickly; from Figure
2.2, u(x, t) drops to zero fast but v(x, t) stabilizes to a positive nonconstant state. As shown in
Figure 2.3, u(x, t) and v(x, t) both stabilize to positive nonconstant states as time goes on.

Furthermore, from Figure 2.3, one can see that advection can induce great difference be-
tween the left and right boundaries as time proceeds. To illustrate the variation on u(x, t)
and v(x, t) with x from the left boundary to the right, the curves of u(x) and v(x) with
t = 3, 5, 10, 20, 30, 40 are presented in Figure 2.4. One can observe that u(x) in (a) and v(x) in
(b) goes up and down as x increases when t is fixed on 3, 5 or 10; whereas u(x) in (c) grows
and v(x) in (d) decreases with the increase of x when t is fixed on 20, 30 or 40. This is because
the positive advection towards the right boundary but the negative advection towards the left
boundary.

Example 2.20. Based on the the conditions in part (iv) of Lemma 2.9 and part (i) of Lemma 2.10,
the numerical results are illustrated in Figure 2.5. We get that u(x, t) in (a) and v(x, t) in (b)
both stabilize to positive nonconstant states as time goes on. This implies that (ũ, 0) and (0, ṽ)
are both unstable, which is consistent with part (iv) of Lemma 2.9 and part (i) of Lemma 2.10.
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Figure 2.4: The curves of u(x) and v(x) with respect to x when t is fixed. Here
β1, β2, r1, r2, a1, a2, b1, b2 take the same values as them in Figure 2.3.
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(a) (b)

Figure 2.5: The illustration of u(x, t) in (a) and v(x, t) in (b) with β1 = 0.2, β2 =

1, r1 = r2 = 1, a1 = 1.2, a2 = 2.1, b1 = 1.1, b2 = −2.

3 The free boundary problem

3.1 Existence and uniqueness

By a similar argument in [7, 8], we have the following result.

Lemma 3.1. For any given u0, v0 satisfying (1.6) and any α ∈ (0, 1), there is a T > 0 such that
problem (1.5) admits a unique solution

(u, v, h) ∈ [C1+α,(1+α)/2(DT)]
2 × C1+α/2([0, T]), (3.1)

where DT := {(x, t) : x ∈ [0, h(t)], t ∈ [0, T]}, T only depends on h0, α, ‖u0‖C([0,h0]) and ‖v0‖C([0,h0]).
Moreover, there exists a constant C such that

0 < u(x, t), v(x, t), h′(t) ≤ C for (x, t) ∈ (0, h(t))× [0, ∞).

Next, we discuss the steady states of the problem (1.5),
−d1uxx + β1ux = u(r1 − a1u− b1v), 0 < x < ∞,

−d2vxx + β2vx = v(r2 − a2v− b2u), 0 < x < ∞,

u(0) = v(0) = 0.

(3.2)

Lemma 3.2. Assume that di > 0, ri > 0, ai > 0, bi > 0, 0 ≤ βi < 2
√

diri for i = 1, 2 and
a2r1 > b1r2, a1r2 > b2r1, then problem (3.2) has a positive solution. Moreover, any positive solution
(u, v) of (3.2) satisfies

u(x) ≤ u(x) ≤ ū(x), v(x) ≤ v(x) ≤ v̄(x), for x ∈ [0, ∞),

where u(x), ū(x), v(x) and v̄(x) will be given in the following proof.

Proof. Let ū be the unique solution of{
−d1uxx + β1ux = u(r1 − a1u), 0 < x < ∞,

u(0) = 0,
(3.3)
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with 0 ≤ β1 < 2
√

d1r1. By [30, Theorem 2.4], limx→∞ ū(x) = r1/a1.
Similarly, the problem{

−d2vxx + β2vx = v(r2 − a2v), 0 < x < ∞,

v(0) = 0,
(3.4)

with 0 ≤ β2 < 2
√

d2r2, has a unique solution v̄, then limx→∞ v̄(x) = r2/a2. Since 0 ≤ β1 <

2
√

d1r1 and a2r1 > b1r2, the problem{
−d1uxx + β1ux = u(r1 − a1u− b1v̄), 0 < x < ∞,

u(0) = 0,
(3.5)

has a unique solution u, then limx→∞ u(x) = a2r1−b1r2
a1a2

.
Denote v is the unique solution of{

−d2vxx + β2vx = v(r2 − a2v− b2ū), 0 < x < ∞,

u(0) = 0,
(3.6)

with 0 ≤ β2 < 2
√

d2r2. Since a1r2 > b2r1, still by [30, Theorem 2.4], limx→∞ v(x) = a1r2−b2r1
a1a2

.
The above proof implies that u(x), v(x), ū(x) and v̄(x) are the coupled ordered lower and

upper solutions of (3.2). Clearly, for any l > 0, u(x), v(x), ū(x) and v̄(x) are also the coupled
ordered lower and upper solutions of

−d1uxx + β1ux = u(r1 − a1u− b1v), 0 < x < l,

−d2vxx + β2vx = v(r2 − a2v− b2u), 0 < x < l,

u(0) = u(0), v(0) = v(0),

u(l) = ū(l), v(l) = v̄(l).

By the standard upper and lower solutions method, we see that the problem has at least one
positive solution (ul , vl), satisfying

u(x) ≤ ul(x) ≤ ū(x), v(x) ≤ vl(x) ≤ ū(x), for x ∈ [0, l].

According to the local estimation and compactness argument, we can conclude that (ul , vl)→
(u, v) in [C2

loc([0, ∞))]2, and (u, v) satisfies (3.2).

Next, we can obtain the similar result in the case: b2 < 0.

Lemma 3.3. Assume that di > 0, ri > 0, ai > 0, b1 > 0, b2 < 0, 0 ≤ βi < 2
√

diri for i = 1, 2 and
a1a2r1 > a1b1r2 − b1b2r1. Then problem (3.2) has a positive solution. Besides, any positive solution
(u, v) of (3.2) satisfies

u(x) ≤ u(x) ≤ ū(x), v(x) ≤ v(x) ≤ v̄(x), for x ∈ [0, ∞),

where ū(x), v̄(x), u(x) and v(x) are the positive solutions of the following problems, respectively.

−d1ūxx + β1ūx = ū(r1 − a1ū), 0 < x < ∞, ū(0) = 0, (3.7)

−d2v̄xx + β2v̄x = v̄(r2 − a2v̄− b2ū), 0 < x < ∞, v̄(0) = 0, (3.8)

−d1uxx + β1ux = u(r1 − a1u− b1v̄), 0 < x < ∞, u(0) = 0, (3.9)

−d2vxx + β2vx = v(r2 − a2v− b2u), 0 < x < ∞, v(0) = 0. (3.10)
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3.2 Conditions for spreading and vanishing

It follows from Lemma 3.1 that x = h(t) is monotonically increasing. Then there exits h∞ ∈
(0,+∞] such that h∞ = limt→+∞ h(t).

Definition 3.4. The solution is vanishing if h∞ < +∞ and

lim
t→+∞

‖u(·, t)‖C([0,h(t)]) = lim
t→+∞

‖v(·, t)‖C([0,h(t)]) = 0,

while the solution is spreading if h∞ = +∞ and

lim inf
t→+∞

u(x, t) > 0, lim inf
t→+∞

v(x, t) > 0 uniformly in any compact subset of (0,+∞).

3.2.1 Vanishing case

Lemma 3.5. Let (u, v, h) be the solution of problem (1.5). If h∞ < +∞, then there exists a constant K
such that

‖u(·, t), v(·, t)‖C1([0,h(t)]) ≤ K, ∀t > 1,

lim
t→∞

h′(t) = 0.

Proof. The proof of this lemma is similar to [24, Theorem 3.1]. We give the details for the
readers’ convenience. Define a transformation

(x, t)→ (y, t), y =
x

h(t)
, 0 ≤ y < ∞.

Let u(x, t) := U(y, t), v(x, t) := V(y, t) and set

F(U, V) = U(r1 − a1U − b1V), G(U, V) = V(r2 − a2V − b2U),

then the problem (1.5) becomes
Ut − α1Uyy − γ1Uy = F(U, V), 0 < y < 1, t > 0,

Vt − α2Vyy − γ2Vy = G(U, V), 0 < y < 1, t > 0,

U(0, t) = V(0, t) = U(1, t) = V(1, t) = 0, t > 0,

U(y, 0) = u0(y), V(y, 0) = v0(y), 0 ≤ y ≤ 1,

where αi(t) := di
h2(t) and γi(y, t) := h′(t)y−βi

h(t) for i = 1, 2.
Denote that hn(t) = h(t + n), Un(y, t) = U(y, t + n), Vn(y, t) = V(y, t + n), (αi)n(t) = αi(t +

n), (γi)n(y, t) = γi(y, t + n) for i = 1, 2. Then Un satisfies
(Un)t − (α1)n(Un)yy − (γ1)n(Un)y = Fn(y, t), 0 < y < 1, t > 0,

(Un)(0, t) = Un(1, t) = 0, t > 0,

Un(y, 0) = u(h(n)y, n), 0 ≤ y ≤ 1,

where Fn = Un(r1 − a1Un − b1Vn).
Using the Lp estimate and embedding theorem, there exists a positive constant K such that

‖Un‖
C1+α, 1+α

2 ([0,1]×[1,3])
≤ K,
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for all n ≥ 0. This implies ‖U‖
C1+α, 1+α

2 (En)
≤ K for all n ≥ 0, where En = [0, 1]× [n + 1, n + 3].

Similarly, we get ‖V‖
C1+α, 1+α

2 (En)
≤ K for all n ≥ 0. Because these rectangles En overlap and K

is independent of n, then ‖U, V‖C1,0([0,1]×[1,∞)) ≤ K.
Since ux = h−1(t)Uy and vx = h−1(t)Vy, then

‖u(·, t), v(·, t)‖C1([0,h(t)]) ≤ K, ∀t > 1.

Due to the Stefan condition and 0 < h′(t) ≤ C2, we derive that ‖h′‖
C

α
2 ([1,∞))

≤ L. Since

h∞ < ∞, then limt→∞ h′(t) = 0.

In view of [27, Theorem 2.2] and Lemma 3.5, we get the following theorem.

Theorem 3.6. Let (u, v, h) be the solution of problem (1.5). If h∞ < +∞, then

lim
t→∞
‖u(·, t), v(·, t)‖C([0,h(t)]) = 0. (3.11)

3.2.2 Spreading case

Theorem 3.7. Suppose that di > 0, ri > 0, ai > 0, bi > 0, 0 ≤ βi < 2
√

diri for i = 1, 2 and
a2r1 > b1r2, a1r2 > b2r1. If h∞ = ∞, then the solution (u, v) of the problem (1.5) satisfies

lim inf
t→∞

u(x, t) ≥ u(x), lim sup
t→∞

u(x, t) ≤ ū(x), locally uniformly for x ∈ [0, ∞),

lim inf
t→∞

v(x, t) ≥ v(x), lim sup
t→∞

v(x, t) ≤ v̄(x), locally uniformly for x ∈ [0, ∞).

where ū, v̄, u and v are given in the proof of Lemma 3.2.

The proof of this theorem is similar to the proof of [24, Theorem 3.5].

Theorem 3.8. Suppose that di > 0, ri > 0, ai > 0, b1 > 0, b2 < 0, 0 ≤ βi < 2
√

diri for i = 1, 2 and
a1a2r1 > a1b1r2 − b1b2r1. If h∞ = ∞, then the solution (u, v) of the problem (1.5) satisfies

lim inf
t→∞

u(x, t) ≥ u(x), lim sup
t→∞

u(x, t) ≤ ū(x), locally uniformly for x ∈ [0, ∞),

lim inf
t→∞

v(x, t) ≥ v(x), lim sup
t→∞

v(x, t) ≤ v̄(x), locally uniformly for x ∈ [0, ∞),

where ū, v̄, u and v are given in the proof of Lemma 3.3.

3.3 The criteria for spreading and vanishing

Here we first give the comparison principle. The proof is similar to the proof of [7, Lemma 3.5].

Lemma 3.9. Let h̄ ∈ C1([0, ∞)), ū, v̄ ∈ C(D) × C2,1(D), with D := {(x, t) ∈ R2 : 0 < x <

h̄(t), t > 0}. Assume that di > 0, ri > 0, ai > 0, bi > 0 and (ū, v̄, h̄) satisfies
ūt − d1ūxx + β1ūx ≥ ū(r1 − a1ū), 0 < x < h̄(t),

v̄t − d2v̄xx + β2v̄x ≥ v̄(r2 − a2v̄), 0 < x < h̄(t),

ū(0, t) ≥ 0, v̄(0, t) ≥ 0, ū(h̄(t), t) = 0, v̄(h̄(t), t) = 0, t > 0,

h̄′(t) ≥ −µ[ūx(h̄(t), t) + ρv̄x(h̄(t), t)], t > 0.

(3.12)
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Assume that di > 0, ri > 0, ai > 0, b1 > 0, b2 < 0 and (ū, v̄, h̄) satisfies
ūt − d1ūxx + β1ūx ≥ ū(r1 − a1ū), 0 < x < h̄(t),

v̄t − d2v̄xx + β2v̄x ≥ v̄(r2 − a2v̄− b2ū), 0 < x < h̄(t),

ū(0, t) ≥ 0, v̄(0, t) ≥ 0, ū(h̄(t), t) = 0, v̄(h̄(t), t) = 0, t > 0,

h̄′(t) ≥ −µ[ūx(h̄(t), t) + ρv̄x(h̄(t), t)], t > 0.

(3.13)

If h̄(0) ≥ h0, ū(x, 0) ≥ u0(x) and v̄(x, 0) ≥ v0(x) on [0, h0], then the solution (u, v, h) of problem
(1.5) satisfies h̄(t) ≥ h(t) on [0, ∞) and ū ≥ u, v̄ ≥ v on [0, h(t)]× [0, ∞).

Let λ
(i)
1 (l) be the principle eigenvalue of the following problem for i = 1, 2{

−diφxx + βiφx = λ
(i)
1 (l)φ, 0 < x < l,

φ(0) = φ(l) = 0.
(3.14)

It is well known that λ
(i)
1 (l) =

( βi
2di

)2
+ di

(
π
l

)2 is a strictly decreasing and continuous function
in l and

lim
l→0

λ
(i)
1 (l) = ∞, lim

l→∞
λ
(i)
1 (l) =

(
βi

2di

)2

.

Theorem 3.10. Suppose that di > 0, ri > 0, ai > 0, b1 > 0, b2 ∈ R, 0 ≤ βi < 2
√

diri for i = 1, 2. If
h∞ < ∞, then h∞ ≤ h∗ = min{Lri , i = 1, 2}, where Lri satisfies λ

(i)
1 (Lri) = ri.

Proof. Due to Theorem 3.6, limt→∞ ‖u(·, t), v(·, t)‖C1([0,h(t)]) = 0 if h∞ < ∞. Assume h∞ > h∗

to get a contradiction. If h∞ > Lr1 , then there exists ε > 0 such that h∞ > Lr1−b1ε. For such ε,
there exists T0 � 1 such that h(T0) = l > Lr1−b1ε and v(x, t) ≤ ε for t ≥ T0, 0 ≤ x ≤ h(t).

Let z = z(x, t) be the unique solution of
zt − d1zxx + β1zx = z(r1 − a1z− b1ε), 0 < x < l, t ≥ T0,

z(0, t) = z(l, t) = 0, t ≥ T0,

z(x, T0) = u(x, T0), 0 ≤ x ≤ l.

Applying the comparison principle, z(x, t) ≤ u(x, t) for t ≥ T0, 0 ≤ x ≤ l. Since l > Lr1−b1ε,
then ‖z(·, t)− Z(·)‖C([0,l]) → 0 as t→ ∞, where Z(x) is the unique positive solution of{

−d1Zxx + β1Zx = Z(r1 − a1Z− b1ε), 0 < x < l,

Z(0) = Z(l) = 0.

lim inft→∞ u(x, t) ≥ limt→∞ z(x, t) = Z(x) > 0 in (0, l). This is a contradiction. If h∞ > Lr2 , we
can get a contradiction by using the similar argument.

Lemma 3.11. Suppose that ri > 0, ai > 0, bi > 0, 0 ≤ βi < 2
√

diri, di = 1 for i = 1, 2 and h0 < h∗,
then there exists µ > 0 depending on u0 and v0 such that h∞ < ∞ if µ ≤ µ.

Proof. Since h0 < h∗, then λ
(i)
1 (h0) =

( βi
2di

)2
+ di

( 2π
h0

)2
> ri (i = 1, 2). We can choose δ, γ small

such that
1

h0(1 + δ)

(
diπ

2

h0(1 + δ)
− δγh0

)
+

β2
i

4
− γ− ri > 0.
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Define

h̄(t) := h0

(
1 + δ− δ

2
e−γt

)
, t ≥ 0,

U(y) := sin(πy), 0 ≤ y ≤ 1,

ū(x, t) := Me
β1
2 x−γtU

(
x

h̄(t)

)
, 0 ≤ x ≤ h̄(t),

v̄(x, t) := Me
β2
2 x−γtU

(
x

h̄(t)

)
, 0 ≤ x ≤ h̄(t),

where M is a positive constant to be determined.
Direct computations yield

ūt − d1ūxx + β1ūx − ū(r1 − a1ū) ≥ ū
[

d1π2

h̄2
+

β2
1

4
− r1 − γ− h0δγe−γtπy

2h̄ sin πy
cos πy

]
.

Since cos πy ≤ 0 for 1/2 ≤ y ≤ 1, we have for h̄(t)/2 ≤ x ≤ h̄(t)

ūt − d1ūxx + β1ūx − ū(r1 − a1ū) ≥ ū
[

d1π2

h̄2
+

β2
1

4
− r1 − γ

]
≥ 0.

Note that 0 ≤ cos πy ≤ 1, y ≤ 2
π sin πy for 0 ≤ y ≤ 1/2, and e−γt ≤ 1 for t ≥ 0, then for t > 0

and 0 ≤ x ≤ h̄(t)/2,

ūt − d1ūxx + β1ūx − ū(r1 − a1ū) ≥ ū
(

d1π2

h̄2
+

β2
1

4
− r1 − γ− h0δγ

h̄

)
.

It follows that for t > 0 and 0 ≤ x ≤ h̄(t)/2,

ūt − d1ūxx + β1ūx − ū(r1 − a1ū) ≥ ū
[

1
h0(1 + δ)

(
d1π2

h0(1 + δ)
− δγh0

)
+

β2
1

4
− r1 − γ

]
≥ 0.

In conclusion, for t > 0 and 0 ≤ x ≤ h̄(t),

ūt − d1ūxx + β1ūx − ū(r1 − a1ū) ≥ 0.

Similarly, for t > 0 and 0 ≤ x ≤ h̄(t),

v̄t − d2v̄xx + β2v̄x − v̄(r2 − a2v̄) ≥ 0.

On the other hand, ū(0, t) = v̄(0, t) = ū(h̄(t), t) = v̄(h̄(t), t) = 0. If we choose M sufficiently
large such that

ū(x, 0) ≥ u0(x), v̄(x, 0) ≥ v0(x), for x ∈ [0, h̄(0)].

For

µ ≤ µ :=
δγ(2 + δ)h2

0
2πM(1 + ρ)

,

then
h̄′(t) + µ[ūx(h̄(t), t) + ρv̄x(h̄(t), t)] ≥ 0.

By Lemma 3.9, we have
h̄(t) ≥ h(t), ∀t ≥ 0.

So we obtain h∞ ≤ h0(1 + δ). Then we complete the proof.
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Lemma 3.12. Suppose that di > 0, ri > 0, ai > 0, bi ∈ R, 0 ≤ βi < 2
√

diri for i = 1, 2 and h0 < h∗,
there exists µ̄ > 0 such that h∞ = ∞ if µ ≥ µ̄.

Proof. Due to the boundedness of u and v, there exists δ∗ such that

u(r1 − a1u− b1v) ≥ −δ∗u, v(r2 − a2v− b2u) ≥ −δ∗v.

Consider the following problem

wt − d1wxx + β1wx = −δ∗w, 0 < x < r(t), t > 0,

zt − d2zxx + β2zx = −δ∗z, 0 < x < r(t), t > 0,

w(0, t) = z(0, t) = 0, t > 0,

w(r(t), t) = z(r(t), t) = 0, t > 0,

r′(t) = −µ[wx(r(t), t) + ρzx(r(t), t)], t > 0,

w(x, 0) = u0(x), z(x, 0) = v0(x), r(0) = h0, 0 < x < h0.

(3.15)

Similar to Lemma 3.1, such problem admits a unique global solution (w, z, r). Applying the
comparison principle, it follows that

u(x, t) ≥ w(x, t), v(x, t) ≥ z(x, t), h(t) ≥ r(t), for x ∈ [0, r(t)], t > 0. (3.16)

Next, we prove that for all large µ, r(1) ≥ h∗. Choose a smooth function r(t) such that

r(0) = h0/2, r(1) = h∗, r′(t) > 0, for t > 0.

Consider the following initial-boundary value problem

wt − d1wxx + β1wx = −δ∗w, 0 < x < r(t), t > 0,

zt − d2zxx + β2zx = −δ∗z, 0 < x < r(t), t > 0,

w(0, t) = z(0, t) = 0, t > 0,

w(r(t), t) = z(r(t), t) = 0, t > 0,

w(x, 0) = w0(x), z(x, 0) = z0(x), 0 < x < h0/2,

(3.17)

here (w0(x), z0(x)) satisfies

0 < w0(x) ≤ u0(x) on [0, h0/2], w0(0) = w0(h0/2) = 0, w′0(h0/2) < 0,

0 < z0(x) ≤ v0(x) on [0, h0/2], z0(0) = z0(h0/2) = 0, z′0(h0/2) < 0.

The standard theory for parabolic equations ensures that (3.17) has an unique positive
solution (w, z) and wx(r(t), t) < 0, zx(r(t), t) < 0 for all t ∈ [0, 1] due to the Hopf Lemma.
Then there exists a constant µ̄ > 0 such that for all µ ≥ µ̄,

r′(t) ≤ −µ[wx(r(t), t) + ρzx(r(t), t)] for t ∈ [0, 1]. (3.18)

Since the choice of initial values and (3.15)–(3.18), we have

r(t) ≥ r(t), w(x, t) ≥ w(x, t), z(x, t) ≥ z(x, t), for x ∈ [0, r(t)], t ∈ [0, 1],

which implies r(1) ≥ r(1) = h∗. In view of (3.16), h∞ > h(1) ≥ h∗. Together with Theo-
rem 3.10, derives the desired result.



On a RDA system: fixed boundary or free boundary 29

Theorem 3.13. Assume that ri > 0, ai > 0, bi > 0, 0 ≤ βi < 2
√

diri, di = 1 for i = 1, 2 and h0 < h∗,
there exists µ∗ ≥ µ∗ > 0 such that vanishing happens (h∞ < ∞) if 0 < µ ≤ µ∗ or µ = µ∗, and
spreading happens (h∞ = ∞) if µ > µ∗.

Proof. Define Γ := {µ > 0 : h∞ ≤ h∗}. Due to Lemma 3.11, Γ 6= ∅. In view of Lemma 3.12,
µ∗ := sup Γ ∈ [µ, µ̄]. By the definition of µ∗ and Theorem 3.10, we get that h∞ = ∞ if µ > µ∗.

Next, we prove that h∞ < ∞ if µ = µ∗. If not, h∞ = ∞ for µ = µ∗. So there exists T
such that h(T) > h∗. Since the solution (u, v, h) depends on µ, we write (uµ, vµ, hµ) instead of
(u, v, h). By the continuous dependence of (uµ, vµ, hµ) on µ, for small ε > 0, hµ(T) > h∗ for all
[µ∗ − ε, µ∗ + ε]. Then sup Γ ≤ µ∗ − ε, which contradicts to the definition of µ∗. Hence µ∗ ∈ Γ.

Denote Λ := {ν > 0 : ν ≥ µ such that h∞ ≤ h∗ for all 0 < µ ≤ ν} and µ∗ := sup Λ ≤ µ∗.
Using the similar way to the above, we obtain that µ∗ ∈ Λ. The proof is completed.
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