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Abstract 

The multifunctional capabilities needed for advanced shape memory alloys (SMA) actuators has 

been shown to be achievable by locally tuning the properties through laser processing. Before the 

wide-spread use of these SMAs is realized, a detailed understanding on the long-term stability 

and functional life span of these material must be achieved. The current study systematically 

investigates the effects of thermomechanical treatment on laser modified NiTi wires, while 

comparing them to the original base material. Surface analysis was done using a scanning 

electron microscope (SEM), while microstructure analysis was performed using transmission 

electron microscopy (TEM). Mechanical properties were assessed using standard tensile tests 

and a custom built thermomechanical fatigue. Results showed that the coarse-grains, large 

precipitates and surface defects associated with as laser modified NiTi resulted in reduced 

mechanical performance. However, subsequent thermomechanical treatment restored the refined 

microstructure and mechanical performance similar to the base material while providing the 

added functionality. 
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1.0 Introduction 

Development of advanced materials such as shape memory alloys drives the next industrial 

revolution [1, 2]. These materials are used heavily in the medical and aerospace fields, and are 

seeing greater use as actuators across all industries [1, 3-5]. Their shape memory properties are 

key to creating new devices that were not previously possible. When these materials were 

initially developed they generally required only a few cycles of transformation where fatigue was 

not a problem, for applications such as orthodontic archwire [4], or a press-fit seal on a jet engine 

[5]. Relatively recent advancements in manufacturing of SMAs coupled with a greater 

understanding of the evolution of the material characteristics has led to the breakthrough of SMA 

actuators that can undergo millions of thermomechanical cycles before failure [6, 7]. 

There are a limited number of investigations into the thermomechanical fatigue of NiTi; due in 

part to the materials previous inability to reach high fatigue cycles. The benefits offered by SMA 

actuators over standard actuation devices have led to a rapid growth in the demand for SMA 

actuators by many sectors of industry [1-3]. This in turn has led to a recent increase in the 

investigation of the thermomechanical fatigue of SMAs [8-20], which was previously dominated 

by industry led research [6, 7]. 

The next generation of SMA manufacturing will produce components with multiple phase 

transformations [21-25]. Laser processing of SMAs is a key advancement in this area, which 

enables the local modification of properties by alteration of the chemistry [21, 22]. This has been 

used to create multiple memory actuators [21, 22], self-biasing actuators [26], and many other 

novel devices including the SmartArch
TM

 a revolutionary orthodontic device. The only prior 

work on the effects of a pulsed laser on the thermomechanical fatigue of SMA wires was Panton 

et al.’s [27] study on laser welded NiTi. The current work presents the initial investigation of the 



  

thermomechanical fatigue of laser modified SMA wires, as well as the ability of a cold-work and 

heat treatment regimen to improve thermomechanical fatigue lifespans and make them 

comparable to commercially available material. 

2.0 Experimental procedures 

2.1 Materials and Processing 

The materials used in this investigation were a NiTi wire from Dynalloy Inc. with a diameter of 

0.38 mm that was martensitic at room temperature. The 0.38 mm wire did not undergo any 

further processing before testing was performed, and is referred to as D38 for the remainder of 

the article. This wire is used for a comparison of the performance of the laser processed wires 

described below. 

Additionally, a NiTi wire from Furukawa Electric Co. LTD. with a diameter of 0.70 mm that was 

pseudoelastic at room temperature was also used. This wire was modified to remove Ni and 

make the material martensitic at room temperature. Prior to processing no oxide removal was 

required, as it had previously been removed by the supplier [28]. The wire was cleaned with a 

regimen of acetone, ethanol, and water. Laser processing was performed using a Miyachi Unitek 

LW50A pulsed Nd:YAG laser, with a wavelength of 1.064 µm in an university test lab. During 

laser processing care was given to avoid excessive oxidation using argon gas shielding (flow rate 

of 25 CFH); however, slight surface oxidation was observed afterwards. The wires will be 

referred to as laser processed (LP) for the remainder of this study. 

A set of the laser modified wires were subjected to a thermomechanical treatment process to 

reduce the grain size and reorient the texture [29, 30]. The wires were solutionized at 1000 °C for 

3600 s followed by a water quench. Then they were cold worked through a series of reductions, 



  

with an interannealing temperature of 600 °C for 600 s, a total area reduction of 45 % after 

interannealing and a final heat treatment at 400 °C for 3600 s. These wires had a final diameter 

of 0.46 mm and are referred to as the treated laser processed (T-LP) wires. 

2.2 Phase and Fracture Analysis 

An Olympus BX51M was used for optical microscopy. A JEOL 2010F TEM/STEM field 

emission microscope operating at 200 kV and a Phillips CM12 analytical TEM operating at 120 

kV were used for TEM analysis. Fracture analysis was performed using a JEOL JSM-6460 SEM 

operated at 20 kV. 

Differential Scanning Calorimetry (DSC) analysis was performed with a TA Discovery DSC 

equipped with a refrigerated cooling system. The DSC data was recorded from -75 °C to 120 °C 

using a controlled heating/cooling rate of 5 °C/min. Analysis of the data was done using the TA 

Instruments Trios software v3.2 per the ASTM F2004-05(2010) standard. 

2.3 Mechanical and Thermomechanical Testing 

Tensile testing was performed using an Instron model 5548 micro-tensile tester that had a 

measurement accuracy of ±0.5 µm. An ASTM F216-07 test standard with extension rate of 1.0 

mm/min and a gauge length of 25.1mm were used to test specimens. 

Thermomechanical fatigue was performed using a custom setup as shown in Figure 1. Lead 

weights were used to subject a constant load (shown in Table 1) that was equivalent to a 600 

MPa stress based on the nominal wire diameter. A gauge length of 25.1 mm was used for testing. 

The grips were faced with sacrificial pieces of ceramic to ensure there was no heatsink effect on 

the wire. The heating was performed at constant currents controlled by a Sorensen XG 33-25 

power supply. These currents were set according to the recommended currents by Dynalloy Inc. 



  

for wires of these diameters, as shown in Table 1. The current for the 0.70 mm diameter laser 

processed wire was determined by extrapolating the data provided by Dynalloy Inc. The current 

was delivered by speaker posts, shown in Figure 1. Heating was controlled to specific strain and 

thermally cycled until failure. Cooling was performed using a vortex tube that was turned on 

when the current was turned off. The setup measured the load using an Omega LCMFD 500 N 

load sensor and the displacement using a MT 2571 Heidenhain displacement sensor with a 

measurement sensitivity of ±0.2 µm. A NI PXI-1031 DAQ from National Instruments was used 

to monitor the sensors and control the power supply.  

 
Figure 1: Thermomechanical fatigue tester.  

Table 1: Wire diameter, loads and currents used in the thermomechanical fatigue tests. 

Wire LP T-LP D38 

Nominal Diameter (µm) 700 460 381 

Constant Load (N) 241 100 68 

Current (A) 7.43 3.27 2.25 



  

3.0 Results and Discussion 

3.1 Microstructure 

The laser processing technique implemented in this study fully re-melted the work material. The 

centreline of the laser processed fusion zone was the weak point where failure occurred during 

initial wire drawing attempts. To avoid this, the fusion zone centrelines were partially removed 

by overlapping the laser processed spots by 60 %. The entire centreline could not be removed by 

increasing the overlap percentage, because this would result in an increase in Ni vaporization 

that would lead to Ti saturation and the formation of large amounts of Ti2NiOx phases. The laser 

processed microstructure is shown in Figure 2. Both the fusion boundary and the remaining 

centreline can be observed with the fusion zone being predominantly large columnar dendrites 

(see Figure 2), which is typical of welded NiTi wires [28, 31]. There is also a thin region of 

planar growth at the fusion boundary. Due to the relatively small cross sectional area of the 

wires, heat conduction away from the melt pool is restricted, which impedes the cooling rate in 

the fusion zone. The result is the planar growth at the fusion boundaries and the columnar 

dendrites in the fusion zone [28, 32, 33]. Epitaxial growth is also observed, as indicated by the 

dendritic grain that cross the fusion boundary (see Figure 2). 

 
Figure 2: Optical micrograph of a) laser processed NiTi cross section and b) close-up of 

centerline partially overlapped by fusion zone. 



  

The microstructure of the LP material is very coarse, with the grains and dendrites in the micron 

scale. TEM analysis of the LP sample is shown in Figure 3. The diffraction pattern shown in 

Figure 3a indicates that the material was in the B19’ phase at room temperature. Figure 3b shows 

a large amount of Ti2NiOx present, due to the saturation of Ti in the matrix. Compositional 

analysis was used to confirm the identity of these inclusions. The Ti2NiOx phase was formed by 

microsegregation along the boundaries of the dendrites [34, 35]. It should be noted that these 

inclusions may be the result of oxide entrapment, the source of which could either be from the 

atmosphere (i.e. insufficient shielding) or pre-existing oxide on the sample surface.  

 
Figure 3: TEM a) of the LP twinned matrix and b) Ti2NiOx phase with in the matrix. 

In comparison, the microstructure of the T-LP samples was a refined nanograined material, as 

shown in Figure 4. The average grain size measured via dark-field imaging was 29 nm. This 

grain size geometrically constricts the matrix such that the compound (001) twinning of nano-

scaled microstructures formed (see Figure 4a), instead of the larger scale type I and type II twins 

(see Figure 3a) of the coarser microstructure that was observed in the LP sample [36]. During 

wire drawing, the Ti2NiOx inclusions were fractured and created particle-void-assemblies, as 

shown in Figure 4b. 



  
 

Figure 4: TEM of a) of the T-LP matrix and b) Ti2NiOx particle void assembly. 

TEM analysis of the microstructure of the D38 sample is shown in Figure 5. The average grain 

size as measured by dark-field TEM was 72 nm. This is typical of industrial NiTi designed for 

stability of actuation and long life. This Ti-rich material had no observed Ni4Ti3 precipitates, as 

these do not form in Ti-rich NiTi. Furthermore, no Ti2NiOx and TiC inclusions were found in the 

TEM sample. 

 
Figure 5: TEM of the nanocrystalline microstructure of the D38 sample. 



  

3.2 Surface Properties 

The surface properties of NiTi can affect the fatigue life of components [29]. This effect can 

become significant at smaller cross sectional sizes where defects become proportionally larger, 

and where the surface region becomes a large fraction of the cross-sectional area [29]. Figure 6 

shows the SEM images of the surface of the LP, T-LP and D38 wires. Large cracks in the 

solidification surface are seen in the laser processed specimens, while the dominant feature in the 

wire drawn specimens is the striations. Qualitatively the T-LP wires are very similar to the D38 

wires from the industry supplier. It follows that the effects of this surface would be similar to 

those seen in the industrial material. 

 
Figure 6: Surface of a) LP, b) T-LP and c) D38. 

3.3 Thermal and Physical Properties 

The DSC results are shown in Figure 7. The LP sample has a single-phase transformation typical 

of coarse-grained, low dislocation density and precipitate free NiTi [37]. The T-LP and D38 

samples had similar phase transformation properties, a multi-stage phase transformation of a 

nanograined microstructure which geometrically constrained the martensite, reducing the 

maximum transformation strain, leading to the lower strain transformation of the R-phase [39]. 

The peaks of both these materials are in similar positions, indicating that they have similar 

compositions, and microstructures, which is confirmed by the TEM analysis discussed in the 



  

previous section. The sharp peaks of the T-LP phase transformations indicate that the grains 

were dislocation lean [38]. The broad peaks of the D38 phase transformations indicate that the 

material had undergone training by the manufacturer to stabilize the microstructure by 

introducing dislocations to create networks [40, 41]. 

 
Figure 7: DSC analysis of a) LP, b) T-LP and c) D38. 

The results of the tensile test pull-to-failure are displayed in Figure 8. The coarse-grained 

microstructure of the LP sample resulted in a lower UTS and ductility compared to the 

nanocrystalline T-LP sample. The T-LP and D38 had the same UTS, while the T-LP had a 34 % 

greater ductility than the D38, due to the smaller grain size [42]. 



  

 

Figure 8: Tensile test pull-to-failure of the LP, T-LP and D38 at room temperature. 

Additionally, the materials were tensile cycled to a load of 600 MPa and then thermally cycled at 

zero stress to recover shape memory strain, as shown in Figure 9. The coarse-grained LP sample 

had a significant plastic strain, and the ensuing plastic deformation resulted in a shape memory 

strain that was only 18 % the amount of the D38 material after 10 cycles. The T-LP sample had 

an increase in plastic strain compared to the LP sample, but achieved a shape memory strain 

equal to that of the D38 material. The smaller grains enabled a larger amount of deformation to 

occur than the coarser LP sample, but a significant part of this deformation was not recoverable 

due to the constriction of the matrix [43, 44]. The D38 wire had only 22 % of the plastic strain 

build-up that the T-LP sample experienced, but a similar shape memory strain. The training that 

the D38 material had undergone was used to build a dislocation network that ensured it would 

have a more stable initial deformation than the virgin, untrained T-LP sample, which was 

dislocation lean as indicated by the DSC curves in Figure 7. 



   
Figure 9: Tensile cycling to 600 MPa at room temperature, and zero-load shape memory 

recovery of a) the LP sample, b) the T-LP sample and c) the D38 sample. 

3.4 Thermal and Physical Properties 

Comparison of the fatigue lives of the LP, T-LP, and D38 are shown in Figure 10. The wires 

were loaded to 600 MPa and thermally cycled to controlled strains until failure. The coarse-

grained LP sample was previously shown to have high plastic build-up and low shape memory 

strain which resulted in extremely low fatigue lives compared to the T-LP and D38 samples. The 

thermomechanical fatigue life of NiTi is related to the maximum achievable strain [12, 29]. The 

lower the percentage of the maximum strain used, the greater the fatigue life achievable. The 

maximum strains for 1 cycle at a load of 600 MPa are indicated on the strain axis (i.e. Y-axis) of 

Figure 10. The microstructure of the D38 material facilitated the maximum recoverable strain, 

followed by the more restricted, smaller grained T-LP sample, and finally the coarse-grained LP 

sample. At lower percentages of the maximum strain the T-LP and D38 had fatigue lives in the 

same order of magnitude. 

The T-LP exhibited a substantial increase in both achievable strains and fatigue life at these 

higher strains compared to the LP sample. D38 showed a further increase in both achievable 

strain and fatigue life due to the more preferential grain size [12], and the training that it 



  

underwent by the manufacturer [40, 41]. A training regime of 20 cycles at 4 % strain was applied 

to the T-LP material and resulted in an increase in the fatigue life from 21,474 cycles to 33,043 

cycles at 2 % strain, which brings it close to parity with the D38 material that had an average 

cycle life of 36,022 cycles at 2 % strain, as shown in Figure 10. The stability of the 

microstructure ensured that progression of dislocations, and crack growth was slowed in the 

trained T-LP material, leading to the longer fatigue life than the LP material [12, 29]. 

 

Figure 10: Cycles to failure of LP, T-LP, trained T-LP and D38 loaded to a constant 600 

MPa and cycled to the indicated strains. 

SEM images of the fatigue fractures are shown in Figure 11. The LP sample experienced a 

ductile rupture type failure that can be observed across the entire fracture surface, as shown in 

Figure 11a. The coarse-grained, precipitated and dislocation lean material underwent significant 

transformation induced plasticity in a small number of cycle, leading to this ruptured surface [8-

12]. The T-LP and D38 samples have a small, distinct region where the crack initiated and 

propagated (see Figure 11b and c), with most of the surface having ductile rupture properties. 

The nanocrystalline material impeded the dislocation activity of transformation induced 



  

plasticity, delaying crack initiation in these materials [45-47]. The majority of high cycle fatigue 

life in NiTi is in the crack initiation stage, with propagation occurring rapidly once the critical 

crack size is reached [48], which accounts for the uniformity of the fracture surfaces in Figure 

11b and c. Brittle inclusions located at the surface serve as the crack initiation points [49]. 

 

Figure 11: SEM images of fracture surfaces for a) LP (at 0.5 % strain), b) T-LP (at 2 % 

strain) and c) D38 (at 2 % strain) after cyclic fatigue testing. 

4.0 Conclusions  

Although the laser modified material exhibited reduced mechanical performance, subsequent 

thermomechanical treatment aided in restoring the properties while maintaining the added 

functionality. The T-LP material had the same UTS as the D38, but 34 % greater ductility due to 

the smaller grain size. Also, the T-LP had the same shape memory recovery strain as D38 when 

cycled to 600 MPa and thermally recovered at zero-load, however, the T-LP showed a 347 % 

greater plastic strain when compared to D38. The training of the D38 material by the 

manufacturer, and the less constrictive microstructure (slightly larger grains) of the D38 material 

ensured lower permanent deformation compared to the T-LP. 

When loaded to 600 MPa, the coarse-grained and embrittled LP material had 1/3 of the 

recoverable strain of D38 and fatigue lives that were orders of magnitudes smaller. The T-LP had 

2/3 of the maximum achievable strain of the D38, and fatigue lives in the same order of 



  

magnitude as D38 at the lower strain values. The smaller grain size of the T-LP material limited 

the achievable strain. Training of the treated laser processed NiTi increased the fatigue life to 

parity with the D38 at 2 % strain. The current work demonstrates the feasibility of laser 

processed material matching the mechanical properties of commercially available alloys. Future 

work is underway to optimize the processing and training of laser modified NiTi to achieve 

superior fatigue properties. 
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Highlights 
• Laser processing was used to locally tune the material composition 

• Microstructural analysis detailed the changes after laser processing and thermomechanical 

treatments 

• Mechanical performance was evaluated and compared to microstructure 

• Fatigue performance of laser tuned NiTi wires was comparable to commercially available wires 

after thermomechanical treatments 

 

 

 

 


