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Highlights 

 A fully compartmentalized metabolic model was developed for algal metabolism. 

 Flux balance analysis was used to optimize growth and lipid of Chlorella vulgaris. 

 Growth behavior was predicted at conditions without and with nitrogen feeding. 

 Physiological pathways of microalgae for lipid biosynthesis were identified. 

 CO2 was the most important limiting factor for lipid under nitrogen starvation. 
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Abstract  

Microalgae, the world’s largest group of photosynthetic organisms, convert atmospheric CO2 to polar and neutral 

lipids using sunlight, which after esterification can be utilized for biodiesel production. In the present study, a fully 

compartmentalized metabolic network was developed to describe the metabolism of Chlorella vulgaris based on 

known enzymatic reactions and typical metabolic pathways of green algae. Flux balance analysis was employed to 

optimize the specific growth rate and the lipid production rate using measured exchange fluxes of the metabolites. 

The experimental data for batch and fed batch algal fermentation systems acquired from the literature were used to 

validate the accuracy of the pseudo- steady state model. The physiological pathways of the microalgae for lipid 

biosynthesis were identified. The simulation revealed that the microalgae would be able to produce higher levels of 

lipid content (43.6%) during N-starvation cultivation under 100 mol.m-2.s-1 light intensity, 0.25 vvm aeration with 

2% (v/v) CO2, 2 mg.L-1 PO4-P, and 5 mg.L-1 NO3-N. Sensitivity analysis showed that CO2, light energy, O2, and 

nitrate were the most important factors affecting the lipid production at N-deficient conditions. The findings 

consequential for manipulation of the metabolism of the microalgae with optimal activity.  

 

Keywords: Biodiesel, Flux balance analysis, Carbon utilization, Lipid optimization, Chlorella vulgaris, Sensitivity 

analysis. 

 

Nomenclature 

CUR carbon dioxide uptake rate (mmol.h-1) 

L logarithmic sensitivity (dimensionless) 

LB lower bound (mmol.gDW
-1.h-1) 

LC lipid content (%) 

LPR lipid production rate (mmol.h-1) 

LUR light uptake rate (mmol.h-1) 

NUR nitrate uptake rate (mmol.h-1) 

OPR oxygen production rate (mmol.h-1) 

S stoichiometric matrix (dimensionless) 
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Sk
E stoichiometric matrix of known exchange fluxes (dimensionless) 

Su
E stoichiometric matrix of unknown exchange fluxes (dimensionless) 

Su
I   stoichiometric matrix of unknown internal fluxes (dimensionless) 

UB upper bound (mmol.gDW
-1.h-1) 

V vector of metabolic fluxes (mmol.gDW
-1.h-1) 

Vk
E  vector of known exchange fluxes (mmol.gDW

-1.h-1) 

Vu
E    vector of unknown exchange fluxes (mmol.gDW

-1.h-1) 

Vu
I   vector of unknown internal fluxes (mmol.gDW

-1.h-1) 

Z objective function (mmol.gDW
-1.h-1) 

λi  shadow price (dimensionless) 

 specific growth rate (h-1) 

𝜔j  weighting element (dimensionless) 

 

1. Introduction 

Due to the fossil fuels crisis in the mid 1970s and the emission of atmospheric carbon dioxide on their combustion, 

using biofuels to replace diminishing oil reserves has become an important topic worldwide. Among different types 

of biofuels, biodiesel production has recently attracted much attention [1, 2]. 

Biodiesel is made from oils of biomass and oleaginous plants such as palm, sunflower, and soybean [1]. During 

recent years, a lot of research reports have described the advantages of using microalgae over other available 

resources for biodiesel production, such as rapid growth rate, high photosynthetic efficiency and biomass 

productivity [3-6], relatively high oil content [7], and fatty acid profile similar to typical vegetable oils [1]. Since the 

low biomass production rate and lipid content of some algae species are the main obstacles for commercial 

production of biodiesel, maximizing algal biomass and lipid biosynthesis are necessary for bulk production of algal 

oil. In this regard, several approaches comprising screening of microalgae [8], bioprocess optimization [9], medium 

optimization [10], genetic manipulation [11], and mathematical modeling [12] have already been used to increase 

algal biomass and lipid yield. 

Metabolic flux analysis (MFA) is a suitable methodology for mathematical modeling of metabolic pathways. 

Among different flux analysis techniques, flux balance analysis (FBA) has been developed and applied to determine 
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pseudo steady state metabolic flux distribution in complex biochemical and biological systems in the past three 

decades. FBA is an optimization-based approach that requires stoichiometric information about the metabolic 

pathway and relies on relatively strong measurements of extracellular metabolites [13]. FBA has been utilized in a 

diverse range of applications including metabolic engineering [14], development and analysis of metabolic networks 

at genome-scale [15], analysis of gene deletion effects [16], identification of drug target [17], as well as in 

refinement of biochemical/metabolic networks [18].  

Due to the increasing interest in microalgae as multi-use feedstocks, some metabolic models have been proposed for 

better understanding of algal metabolic networks. In simple models, each algal cell was considered as a black box, in 

which merely production and consumption rates were considered [19, 20]. A relatively simple metabolic model has 

been developed to describe the primary metabolism of Chlorella pyrenoidosa when cultivated under autotrophic, 

heterotrophic, and mixotrophic conditions. In this model, the effect of light on carbon and energy metabolism was 

investigated using MFA. The model comprised chloroplast and cytosol compartments, in which all the processes 

except Calvin cycle were placed in cytosol. Furthermore, the metabolic pathways in biosynthesis of different cellular 

macromolecules such as carbohydrates, proteins, nucleic acids, chlorophylls and lipids were not investigated [21]. In 

other proposed models, the construction of two extensive metabolic models elucidating the metabolism of 

Chlamydomonas reinhardtii has been described. These models had a high level of compartmentalization but the 

localization was not known for a number of reactions and there was limited information regarding the metabolites 

exchange between the compartments. The quantitative validation of the model was very limited, and only the way 

algae controls the hydrogen biosynthetic pathways was investigated [22, 23]. A more condensed metabolic model 

has been developed for the description of the growth and metabolism of C. reinhardtii. In the proposed model, only 

photosynthetic light reactions and Calvin cycle were compartmentalized and transport steps were not accurately 

considered. The energy parameters for biomass formation and maintenance were determined using the results of 

chemostat experiments at different growth rates [24]. Another metabolic model was also constructed to explain the 

phenotypes of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic conditions. Flux distributions were 

predicted during a transition from nutrient repletion to nutrient starvation phases of the growth using FBA. The 

model employed the maximization of biomass and neutral lipid as the objective functions during only nutrient 

deficient-phase [25]. Recently, a genome-scale metabolic model has been proposed to elucidate the metabolism of 

Chlorella vulgaris UTEX 395 (iCZ843) under photoautotrophic, heterotrophic, and mixotrophic growth conditions. 
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In this model, the aim was to maximize the specific growth rate and the influence of medium compositions (e.g. 

glucose, acetate, glycerol, and nitrate) on central carbon metabolism and biosynthetic pathways of amino acid, 

pigment, and nucleotide were studied at different trophic conditions. Although, the model comprised 843 genes, 

2,294 reactions, and 1,770 metabolites that were distributed among six compartments (thylakoid, chloroplast, 

mitochondrion, glyoxysome, cytoplasm, and extracellular space), but its high complexity did not allow direct 

comparison of the simulation results with the experimental data [26]. Still, more fundamental studies in algal 

metabolism would be required to understand and predict the ways that algae regulate the lipid biosynthetic pathways 

in response to different environmental and nutritional perturbations.  

In this study, FBA was used as an optimization tool for determination of the intracellular metabolic fluxes and the 

maximum theoretical specific growth and lipid production rates for oleaginous green microalgae C. vulgaris. The 

aim of this work was to develop a comprehensive metabolic model, simulate the behavior of the photosynthetic 

organism, predict the effect of cultivation factors on the lipid yield, and identify the metabolites that significantly 

enhance lipid production using sensitivity analysis concept. To elucidate the practical applicability of the given 

model, the simulation results of growth and algae metabolic functions were validated with the experimental results 

inferred from other works in the literature.  

 

2. Materials and methods  

Mathematical modeling usually represents a successful approach to analyze the complex biological and biochemical 

processes [27, 28]. In some biochemical systems, there is insufficient kinetic information about metabolic pathways 

in the organism under investigation. Therefore, metabolic engineering techniques such as FBA that involves less 

detailed kinetic information is required [29]. FBA can calculate the fluxes through metabolic pathways using a 

stoichiometric model and by applying mass balance equations for all metabolites in the network assuming pseudo 

steady state condition [30, 31]. Thus, FBA provides comprehensive information regarding metabolic networks and 

their capacity, by which phenotype behavior of the organisms may be predicted in response to variation in 

environmental and cultural conditions [32].  

 

2.1. Metabolic network construction  
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The construction of metabolic network that presents the way in which metabolites are interconnected is an important 

step for analysis of biochemical systems by FBA [27]. In this study, a fully compartmentalized stoichiometric model 

explaining the primary metabolism of C. vulgaris was developed according to different literature [25, 26, 33-37] and 

the KEGG database [38]. The model contained four cell compartments including chloroplast, mitochondrion, 

peroxisome, and cytosol. Translocators/shuttles transported the compounds between the different cell compartments. 

Some of the compound translocators were not known, so the assumptions had to be considered here (e.g. R15.23, 

R15.24, R15.27, R16.9, R16.14, and R16.19). In the case that the metabolic network information of C. vulgaris was 

either inadequate or completely lacking, the data from C. pyrenoidosa [21] and C. reinhardtii [22, 39] was included. 

It is worth to mention that using the metabolic pathways information of closely related microorganisms is very 

common in metabolic flux analysis approach [24-26]. The resulting network consisted of 347 enzymatic reactions, 

195 transport processes, and 258 metabolites. The list of the metabolites and reactions are presented in Appendices 

A and B, respectively. 

 

Fig. 1 illustrates a general scheme of the metabolic network. According to this figure, light energy absorbed by 

photosystems stimulates the photosynthetic electron transport, resulting in O2 release, NADP+ reduction, and ATP 

synthesis through the light reactions. The stoichiometry of the photosynthetic light reactions is dependent on 

environmental conditions. In this model, it was assumed that a constant stoichiometry of 8 mol photons yielded 

2 mol NADPH, 2.6 mol ATP and 1 mol O2 [40]. 

Thereafter, NADPH and ATP produced by the photosynthetic light reactions are consumed for reduction of CO2 to 

triosephosphate (TP) via a series of photosynthetic carbon reactions (Calvin cycle) in the stroma. Photosynthetic 

CO2 fixation is the first stage in Calvin cycle that is catalyzed by rubisco. This enzyme also exhibits an oxygenase 

activity, reacting with O2 instead of CO2 through a different pathway called photorespiration. Since both 

carboxylation and oxygenation occur at the same catalytic site of the enzyme, CO2 and O2 as alternative substrates 

for rubisco can compete to react with ribulose-1,5-bisphosphate. However, the photorespiration occurs at low 

concentrations of carbon dioxide or high concentrations of oxygen in the algal cells [41]. The photorespiratory cycle 

involves the cooperative interaction among three compartments of chloroplast, mitochondrion, and peroxisome.  
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TP that is withdrawn from Calvin cycle can be used for starch synthesis and transported to cytosol. The cytosolic TP 

is then directed to the glycolytic pathway and may be utilized for sucrose formation. Starch and sucrose as the major 

storage carbohydrates were considered in the chloroplast and cytosol of algal cells.  

The energy stored in carbon compounds is released and transiently stored in ATP for cellular use via the respiratory 

pathways including glycolysis (EMP), pentose phosphate (PP) pathway, and tricarboxylicacid (TCA) cycle coupled 

to mitochondrial oxidative phosphorylation pathway. In the metabolic network, PP pathway was considered to 

operate in both chloroplast and cytoplasm at the same time under different cultivation conditions. In mitochondrial 

oxidative phosphorylation pathway, the amount of ATP generated per oxygen atom reduced (i.e., the P/O ratio) was 

assumed a fixed value of 2.5 and 1.5 for NADH and FADH2 upon respiration, respectively [42].   

The biosynthesis of nucleic acids and proteins are closely linked to the central carbon metabolism. First, glutamine 

and glutamate are produced by the successive actions of glutamine synthase and glutamate synthase from 

ammonium generated by photorespiration or nitrate reduction. Thereafter, nitrogen can be transferred from 

glutamine and glutamate to many carbon backbones such as 3-phosphoglycerate, pyruvate, and oxaloacetate through 

the transamination reactions to synthesize other amino acids, nucleic acids and proteins. In the metabolic network, 

the proteins were constituted by summation of the molar fractions of the different amino acids isolated from C. 

vulgaris. 

A vast variety of lipids can be produced by higher plants and algae. The lipids play significant physiological roles in 

plants, such as intercellular signaling, structural support as membranes, and energy storage. Storage lipids mainly 

contain triacylglycerol (TAG) and can be converted to fatty acid methyl esters (FAME) as biodiesel via 

transesterification [6, 43]. 

Lipid biosynthesis from fatty acids is identical in algal and plant cells. Fig. 2 shows a general biosynthetic pathway 

of TAG in the plant cells based on Kennedy pathway [44]. At the first unique step of the pathway, acetyl-CoA is 

transduced into malonyl-CoA by adding carbon dioxide in a reaction catalyzed by Acetyl-CoA carboxylase 

(ACCase) [45]. Then, malonyl-CoA ACP transacylase (MAT) catalyzes the transfer of malonyl-CoA to a protein 

cofactor, acyl carrier protein (ACP), to generate malonyl-ACP. In the next step of fatty acid synthesis, precursor 

acyl-ACP chains are lengthened by two-carbon unit per cycle by the action of  beta-ketoacyl-ACP synthase (KAS), 

beta-ketoacyl-ACP reductase (KAR), beta-hydroxyacyl-ACP dehydrase (HAD), and enoyl-ACP reductase (EAR) 

through subsequent series of condensation, reduction, dehydration, and again reduction reactions, respectively. The 
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cycle continues until C16:0-ACP and C18:0-ACP are formed. Thereafter, a series of desaturase enzymes act 

sequentially to make further modification and additional double bonds in some fatty acids for production of C16:3 

and C18:3 [46]. Then, acyl-ACP thioesterase (FAT) catalyzes the removal of the acyl group from ACP and 

generation of palmitic (C16:0) and stearic (C18:0) acids as the final products of fatty acid synthesis. Part of the free 

fatty acids is transferred to cytosol and the rest is being utilized for TAG biosynthesis. The TAG biosynthesis occurs 

through successive transfer of fatty acids from Acyl-CoA to GLYC3P via the direct glycerol pathway [47, 48]. 

Transfer of fatty acid to position one of GLYC3P results in the production of lyso-phosphatidic acid (LPA) in a 

reaction catalyzed by glycerol-3-phosphate acyl transferase (GPAT). Transfer of the second acyl group to position 

two of LPA by the action of Lysophosphatidic acid acyltransferase (LPAAT) formed phosphatidicacid (PA). In the 

penultimate step of TAG biosynthesis, phosphatidic acid phosphatase (PAP) catalyzes PA dephosphorylation, which 

leads to the production of diacylglycerol (DAG). In the final step of TAG biosynthesis, transfer of the third acyl 

group to position 3 of DAG is catalyzed by diacylglycerol acyltransferase (DAGAT) for the formation of a neutral 

triacylglyceride [46, 48]. The composition of fatty acids in TAG extracted from C. vulgaris cells, especially for the 

a-linolenic acid (C18:3) content, may vary under different cultivation conditions [49]. In the proposed model, it was 

assumed that the synthesis reactions of lipids occurred in the chloroplast and the TAG molecules were directly used 

for formation of biomass (R14.1) and the remainder accumulated as energy storage (R18.41). The fatty acid 

composition of lipids was constant under different growth conditions. Accordingly, TAG was modeled in the form 

of a glycerol molecule linked with three acetyl-ACP tails. Therefore, the acetyl-ACP content of a TAG molecule 

was determined by triplicating the molar fraction of the various fatty acids present in C. vulgaris. Removing the acyl 

group from ACP and generating the free fatty acids and their transport to cytosol were also neglected [24]. 

Some nutrients, especially the macronutrient and micronutrient cations, can be assimilated due to production of 

complexes with organic compounds. In the metabolic network, assimilation of magnesium was considered for the 

formation of chlorophyll pigments. 

In general, the composition of biomass varies with growth rate and cultivation conditions. However, since the 

composition of biomass even among different microalgae varies slightly, a single reaction for the biomass formation 

has been used during the time course of the cultivation, in which a constant biomass composition was assumed [24].  

 

2.2. Metabolite balancing and linear programming  
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To be able to calculate the fluxes through different metabolic pathways, mass balances around each metabolite were 

written under pseudo steady state condition as following: 

S . V = 0  (1) 

in which S includes the stoichiometric coefficients of the metabolites involved in different reactions of the metabolic 

network. For the most biochemical systems, the rank of the matrix S is usually less than the number of unknown 

fluxes and the system is underdetermined. In order to restrict the solution space and decrease the degrees of freedom 

of the set of algebraic equations, many measurements are needed. If some fluxes in the vector of metabolic fluxes 

are measured, Eq. 1 can be written as: 

Su
I V

u

I
 + Su

EV
u

E
 = - Sk

EV
k

E
  (2) 

The unknown fluxes can be determined by applying constraints to some of the fluxes and optimizing an objective. In 

case of a linear objective function, a linear programming/optimization approach is employed as follows: 

Objective function:          Max/Min Z = 𝜔j .Vj   

Constraints:                      Su
I V

u

I
 + Su

EV
u

E
 = - Sk

EV
k

E
     (3) 

                                         LB ≤ Vj ≤ UB   

in which 𝜔j is the weighting element of the corresponding flux of Vj in the objective function of Z. The first set of 

constraints includes the steady state mass balance equations. If there are some information regarding the values of 

exchange fluxes, they will be represented by the second set of constraints. Each constraint in the set introduces the 

upper and lower bounds for the exchange flux of a metabolite, which either enters or exits the system. In order to be 

consistent with the characteristics of the Simplex algorithm at the linear programming problem, the solution vector, 

Vu
I  and Vu

E would be always non-negative. Hence, irreversible reactions were constrained to one direction and the 

reversible reactions were broken down to two individual forward and backward reactions. GAMS environment was 

utilized for linear programming computations.  

In the present study, the objective function was either maximization of specific growth rate (i.e., Max Z = VR14.1) 

(section 3.1.1), or lipid production rate (i.e., Max Z = VR9.33) (sections 3.1.2 and 3.1.3). For both cases, the first 

series of constrains (mass balance equations under pseudo steady state condition) and the second set of constrains 

(i.e., positivity of fluxes and experimental exchange fluxes) were implemented to limit the solution space based on 

the metabolic network and the experimental data. The solution provided the maximum value of the objective 
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function and the unknown metabolic fluxes. The metabolic fluxes were presented in units of mmol.gDW
-1.h-1 and the 

normalized biomass flux indicated . 

 

2.3. Sensitivity analysis  

Sensitivity analysis represents how a biochemical system responds to a permanent perturbation. The perturbation 

may be a change in an independent variable (e.g. carbon dioxide uptake rate and light supply rate) in the system. The 

sensitivity can be expressed using the shadow price and the logarithmic sensitivity of the linear programming. The 

shadow price is introduced as the sensitivity of the objective function Z, as a system property, regarding the change 

in the ith flux, as an independent variable, as following [50]:  

λi = ∂Z ∂Vi⁄      (4) 

The logarithmic sensitivity is defined as the ratio of the relative change in the objective function Z to the relative 

change in the Vi when the objective function is optimized [51, 52] and can be written as:  

L(Z,Vi) = 
∂Z Z⁄

∂Vi Vi⁄
 = 

∂ Ln Z

∂ Ln Vi
 = 

Vi

Z
λi   (5) 

According to Eq. 5, the logarithmic sensitivities are computed by determination of the fluxes, the optimal objective 

function, and the shadow prices. It is worth to mention that since the absolute value of the fluxes in a metabolic 

system are of different order of magnitude, the logarithmic sensitivities are preferred for comparison purposes. In 

the proposed model, the numerical value of each exchange flux of Vi was defined positive for a substrate and 

negative for a product and by-product. Therefore, the positive shadow price represents that increase in substrate 

uptake rate and decrease in product excretion rate can improve the optimal solution. Hereby, the analysis of 

sensitivity can be used to determine the most effective parameters of cultivation in the metabolism and the biomass 

and product yield.  

 

3. Results and discussions  

3.1. Validation of model predictions  

The practical applicability of the proposed metabolic model was investigated using experimental data found from 

other works in the literature.  

 

3.1.1. Maximization of specific growth rate   
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Mujtaba et al. [53] studied the autotrophic growth of C. vulgaris AG10032 in a bubble-column photobioreactor 

using BG-11 medium at room temperature (stage I). The photobioreactor had a working volume of 1 L (ID, 6.5 cm; 

height, 37 cm) [54]. The batch experiments were carried out under continuous fluorescence illumination (100 

mol.m-2.s). Aeration with filtered air was performed at a rate of 0.15 vvm with 4% CO2. The BG-11 medium was 

prepared by dissolving following chemicals in deionized water: Na2CO3 (20 mg.L-1), K2HPO4 (58 mg.L-1 or 10 

mg.L-1 PO4-P), NaNO3 (1500 mg.L-1 or 247 mg.L-1 NO3-N), and other components [55]. A typical result of the batch 

experiments is shown in Fig. 1(a) of their study, in which the concentration profiles of nitrate and biomass during 

photoautotrophic cultivations without extra nitrogen feeding and with intermittent nitrogen feeding are depicted 

(stage I). 

At this step, the objective function was maximization of the specific growth rate. It is obvious from the experimental 

observations (without additional N-feeding case) that nitrate was completely consumed and its concentration 

reached approximately zero (i.e. 2.223 mg.L-1) at the end of experiment. The supply rates of phosphate and 

bicarbonate were considered as the model inputs, because no experimental data were provided for their consumption 

rates. Since for each metabolite in the model both influx and efflux are considered, the surplus of the metabolite can 

exit the network. The maximum photochemical quantum yield was set to 0.8 based on a quantum requirement for 

oxygen release of 10 (rather than 8 based on the photosynthetic light reaction (R1.1)) [24]. 

To investigate the effect of nitrogen content on production of biomass, the results of modeling for cultivation 

without and with additional nitrate feeding were compared. In the experiment without N-feeding, the only source of 

nitrogen was initial nitrogen presented in the BG-11 medium. The cultivation with N-feeding was carried out at 

conditions similar to the previous case (stage I), while addition of nitrogen was performed repeatedly in order to 

maintain the nitrogen level of the culture above 130 mg.L-1 as NO3-N (Fig. 1(a) of [53]). Considering the metabolite 

profiles (Fig. 1(a) of [53]), the cultivation period split into three separate phases and the mean values of the 

experimental supply rates of light, carbon dioxide, oxygen, and nitrate during each phase were used as the model 

inputs. Thereafter, the specific growth rates and the lipid contents were computed based on the proposed model 

for each phase by the use of experimental data, and compared with the experimental results (Table 1). As seen from 

Table 1, the model predicted the reported specific growth rates of C. vulgaris AG10032 on BG-11 during the time 

course of the experiment with high degrees of accuracy. The predictions for lipid contents were, however, higher 

than the experimental data. This may be due to the fact that the catabolic reactions (e.g. lipid oxidation reactions) 
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and the biosynthetic reactions except biomass formation reaction were not considered in our model. Despite the 

discrepancy in numerical values, the trends of changes in lipid content were similar when the simulation results 

compared with the experimental data during the different growth phases in both cases of without and with N-

feeding. 

Furthermore, the unknown metabolic fluxes such as the production rate of various products and the uptake rate of 

substrates were determined. The uptake rates were calculated from the difference between the influx and efflux 

values. LUR, CUR, OPR, and NUR during the time course of the experiment are summarized in Table 1. Figures 

3(a), 3(b), 3(c) and 3(d) also show the production rate of macromolecular components of biomass including 

chlorophyll, protein, carbohydrate, and lipid throughout the course of the photoautotrophic cultivation without and 

with N-feeding (stage I). 

During cultivation without additional N-feeding, in phase I (0 < t < 1 Day), the NUR was at a maximum of 0.179 

mmol.h-1, while the CUR, OPR, and LUR were relatively low. The macromolecular components of biomass 

commenced to increase during this phase (Figs. 3(a) and 3(b)) and small amount of biomass dry weight was 

produced by the end of this period. Metabolic flux distribution resulted in a specific growth rate of 0.09308 h–1 that 

showed less than 12% relative error when compared to the corresponding measured value (Table 1). 

During phase II (1 < t < 8 Day), when the culture was in the exponential phase, more light was absorbed by algal 

cells, thus more carbon dioxide could be fixed and more oxygen produced. The cell density increased due to the high 

levels of CUR, OPR, and available light energy for growth and reached 1.392 g.L-1 at the end of this phase. 

Additionally, the cells produced higher amounts of chlorophyll, protein, carbohydrate, and lipid in comparison with 

the other phases and their production rates increased to the maximum values of 0.0008, 0.0446, 0.0684, and 0.0038 

mmol.h-1, respectively (Figs. 3(a) and 3(b)). The specific growth rate was predicted to be 0.00997 h–1 during this 

phase that was in good agreement with the measured value of 0.00931 h–1.  

In the last phase of the cultivation (8 < t < 10 Day), nitrate was completely consumed and the reduced amount of the 

absorbed light energy decreased the values of CUR and OPR. This led to the slow growth during this phase of the 

cultivation (1.411 g.L-1 biomass density). As nitrogen deficiency was developed, the production rates of chlorophyll 

and protein in the cells decreased significantly throughout this period, while the lipid and carbohydrate were 

produced at relatively high rates of 0.0036 and 0.0377 mmol.h-1, respectively. The predicted specific growth rate by 

the metabolic flux model was 0.00029 h–1 with the relative error of 7.41%.  
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The metabolic flux model estimated that the maximum relative error for specific growth rates was 13.67% during 

the autotrophic cultivation with repeated nitrogen feeding. The same trends were observed for the metabolites 

uptake rates and the products production rates during the autotrophic cultivation in both cases of without and with 

N-feeding. Due to the increase in available light energy for growth, CUR, and NUR at cultivation with nitrogen 

feeding, the production rate of chlorophyll increased compared with the case without N-feeding and the products of 

photosynthesis were switched from carbohydrate and lipid to protein (Table 1; Fig. 3). Moreover, nitrogen sufficient 

condition resulted in 45% increase in the final biomass concentration (data not shown). Hence, these results revealed 

that the presence of nitrate increased the growth rate, while the accumulation of lipid and carbohydrate were 

decreased, which were in agreement with the reports of the other authors [10, 56]. According to the results, it could 

be concluded that the growth behavior of the microalgae could be accurately predicted by the proposed model at 

different cultivation conditions.  

Metabolic flux distribution indicated that EMP pathway, PP pathway, TCA cycle, and mitochondrial oxidative 

phosphorylation remained active during illumination. Only PP pathway located in cytosol was active to provide 

pentose phosphate for synthesis of nucleic acid in the network of autotrophic metabolism. Since different phases of 

cultivation were performed at high levels of CO2/O2 ratio, the oxygenase reaction rate approached zero and the 

photorespiration pathway was minimal in the metabolic network. At TAG biosynthesis pathways, the cytosolic 

pyruvate was used as the main precursor for the plastid acetyl-CoA pool in microalgae under maximal specific 

growth rate. 

3.1.2. Maximization of lipid production   

Model accuracy and reliability of its predictions was also examined by comparing the measured lipid contents with 

the predicted values. Maximization of lipid production rate was employed as the objective function for a certain 

specific growth rate at the same cultivation conditions with the previous cases (stage I). 

Simulation results of cultivations without N-feeding and with repeated N-feeding are presented in Table 2 and 

compared with the experimental results evaluated from experimental data for each phase (Fig. 1 of [53]). In general, 

the results showed that the experimental lipid contents were much less than the model predictions, because the cells 

did not utilize their full biological capacity for lipid production. Nevertheless, the simulation results could still be 

useful if considered as the highest capacity of the cells for lipid production with a desired fatty acid profile for 

production of biodiesel. On the other side, the lipid contents presented in Tables 1 and 2 showed that the simulation 
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results when the objective was maximization of specific growth rate were closer to the experimental data compared 

with the simulation results from maximization of lipid production rate. 

As mentioned in section 3.1.1, in the first phase of the cultivation, the predicted lipid contents were low. Then, the 

cells produced the lipid at the maximum rate for accumulation and cellular growth within the exponential growth 

phase. Finally, accumulation of large amount of lipid during the last growth phase increased the lipid content by the 

end of this phase. Comparisons between the data presented in Table 2 indicated that depletion of nitrogen redirected 

the flow of fixed carbon to lipid synthesis from protein synthesis and the microalgal lipid content increased during 

the second (1-8 day) and the third (8-10 day) phases of the cultivation approximately 18% and 19%, respectively.  

Metabolic flux distribution also revealed that acetyl-CoA as a precursor for synthesis of fatty acids was produced by 

the cytosolic citrate during the autotrophic cultivation of C. vulgaris (stage I) under optimum lipid production 

condition. 

 

3.1.3. Effects of nutrient availability and environmental factors on lipid production  

The validity of the proposed model was also investigated by studying the physiological behavior of the microalgae 

in response to certain changes in cultivation conditions. The effects of aeration rate, light intensity, and carbon 

source were scrutinized on total lipid content under selected cultivation conditions. When a desirable cell density 

was obtained at the first stage, the cells were cultivated under certain conditions (stage II) in nitrogen-deficient BG-

11 medium at 25 ºC. At the beginning of stage II, the cell density and lipid content were 1.5 g.L-1 and 20% of dried 

cell weight (DCW), respectively. In the culture, no CO2 was supplied, except for the case in which the effect of 

carbon source in the BG-11 medium was to be examined [53].  

At this step, the objective function was maximization of the lipid production rate. Due to very low biomass 

production rate during the stage II, the specific growth rate was assumed to be zero. The simulation results of lipid 

contents under different cultivation conditions (stage II) are summarized in Table 3 and compared with the 

experimental results evaluated from experimental data (Figs. 2, 3, and 6 of [53]). 

The effect of aeration rate - Different aeration rates varying from 0.125 to 0.5 vvm were used for the possible 

improvement of lipid content under nitrogen deficient cultivation in a dark environment (stage II). Maximum lipid 

content was obtained after 12 h in all air flow rates (Fig. 2 of [53]). Therefore, the lipid contents were evaluated by 
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the model during the same period of time (12 h after incubation) at different aeration rates and compared with the 

experimental results (Table 3).  

Although the experimental lipid contents of the microalgae were quantitatively different from the predicted values, 

the same trends were observed. As shown in Table 3, the lipid content increased from 27.2% to 34.1% of DCW, 

when the culture aeration rate was increased from 0.125 to 0.25 vvm. Metabolic flux distribution indicated that 

higher air flow rates leaded to increase in oxygen transport from cytosol to chloroplast. Hence, chloroplast oxygen 

and acetyl-CoA produced by cytosolic citrate have been utilized for higher unsaturated fatty acids production at 

TAG biosynthesis pathways (Fig. 4(a)). According to simulation results, the lipid content decreased with increasing 

air flow rate to 0.5 vvm and reaching nearly 29.5% of DCW during this period. This was due to the variation in fatty 

acids biosynthesis pathways and the production of acetyl-CoA from chloroplast pyruvate via the action of 

chloroplastidial pyruvate dehydrogenase (PDH). On the other hand, part of the oxygen presented in cytosol was 

consumed by the cytosolic reactions and only a small fraction of oxygen was transported to chloroplast leading to 

the synthesis of unsaturated fatty acids and lipids (Fig. 4(b)). These results demonstrated that a moderate range of 

aeration benefits significantly lipid accumulation at N-deficient condition.  

The effect of light intensity - The variation of the lipid content profiles during nitrogen depleted cultivation (stage 

II) with 0.25 vvm aeration and 10 mg.L-1 initial PO4-P under different light intensities indicated the effect of light 

intensity on the lipid content (Fig. 3 of [53]). After 12 h of cultivation, the maximal lipid content was achieved in the 

cultures illuminated under different light intensities. The predicted and experimental results of cultivations at 

different light intensities at 12 h after incubation are presented in Table 3. 

The lipid content increased as the light intensity increased and 35.1% of lipid content was obtained in the culture 

irradiated with 100 mol.m-2.s-1 light intensity. Higher levels of absorbed light energy resulted in the increase of O2 

release and the synthesis of ATP and NADPH through the light reactions of photosynthesis in the chloroplast. Due 

to increase of these photosynthetic products, fatty acids synthesis was increased and higher amount of lipids were 

produced, ultimately (Fig. 5). Based on the experimental results, higher light supply rates than 100 mol.m-2.s-1 

showed a minor negative influence on the lipid content but there was no reaction to implement inhibitory effects of 

light in the model, so the predicted lipid content by the model did not agree with the measured lipid content in the 

culture irradiated with 200 mol.m-2.s-1 light intensity and showed 0.4% increase in the lipid content.  
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The effect of CO2 supply - Different CO2 concentrations in the range of 0–10% was supplied for the possible 

enhancement of lipid production at the incubation conditions with 0.25 vvm aeration, 100 mol.m-2.s-1 light 

intensity, 2 mg.L-1 PO4-P, and 5 mg.L-1 NO3-N (Fig. 6 of [53]). The experimental results showed that maximum 

values of lipid contents were obtained at 24 h. The lipid contents were estimated by the model at different CO2 

concentrations at 24 h after incubation and compared with the experimental results (Table 3).  

The effect of CO2 concentration on lipid content was qualitatively identical in experimental and simulated results. 

The simulation results predicted that the lipid content was increased by adding 2% CO2 into the cultures of C. 

vulgaris (43.6% DCW). Metabolic flux distribution revealed that the increase of CO2 supply led to transportation of 

CO2 from cytosol to mitochondrion and higher production of mitochondrial isocitrate as a precursor for acetyl-CoA 

synthesis (Fig. 6(a)). But increasing CO2 concentration to higher level of 10% had a negative impact on the lipid 

content. This observation was due to the increase in conversion of CO2 to bicarbonate in cytoplasm and decrease in 

concentration of mitochondrial CO2 in high-CO2 cells (Fig. 6(b)). Considering all these observations, it could be 

concluded that higher levels of the key metabolites would not necessarily increase the lipid production rate during 

the cultivation of C. vulgaris and would inhibit the microalgal lipid production.  

 

3.2. Sensitivity analysis  

The shadow price and the logarithmic sensitivity values for maximization of lipid production rate were determined 

at different phases of the cultivation for various metabolites. Since it was not possible to present all the shadow 

prices and the corresponding logarithmic sensitivities, only a summary of the most significant values for the 

extracellular metabolites during different phases of the autotrophic cultivation without N-feeding (stage I) are 

represented in Table 4.  

At phase I (0 < t < 1 Day), logarithmic sensitivities for all measured metabolites were very small (less than 0.001), 

except for phosphate, proline, and phenylalanine. For instance, the logarithmic sensitivity value for phosphate was 

0.004 during the early phase of the cultivation. Quantitatively, this value meant that 10% increment in the uptake 

rate of this metabolite would result in 0.04% increment in the lipid production rate during this phase. 

In phases II (1 < t < 8 Day) and III (8 < t < 10 Day), the highest logarithmic sensitivities of 39.711 and 57.731 were 

observed, respectively for carbon dioxide, indicating carbon dioxide uptake rate was the most important limiting 

factor for the lipid production during these phases. Moreover, moderate logarithmic sensitivities of 2.549 and 4.866 
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were observed for oxygen during the second and the third phases, respectively. Since the shadow prices of oxygen 

were negative, any increase in its production rate would improve the optimal lipid production rate. The absolute 

values of logarithmic sensitivities of CO2 and O2 were significantly higher at phase III compared to phase II. 

Consequently, higher uptake rate of CO2 and higher production rate of O2 would further enhance the objective 

function at stationary phase. Although, light energy had a moderate shadow price of 0.024 during the second phase 

of the cultivation, its relatively high uptake rate value resulted in a large logarithmic sensitivity of 26.844, which 

was high enough to significantly affect the objective function at this period.  

The sensitivity analysis also suggested that logarithmic sensitivities of phosphate were very small (approximately 

0.011 and 0.023) during these phases, so any change in its uptake flux would not dramatically influence the lipid 

production rate. Considering these results, one could conclude that the cells might consume phosphate for 

production of the other products during these periods.  

Based on the analysis results, despite high shadow prices of ammonium, this nitrogen source had trivial logarithmic 

sensitivities. In contrast, the logarithmic sensitivities of nitrate were 1.019 and 3.87 during phases II and III of the 

cultivation, respectively. Therefore, the lipid production rate was probably affected by the uptake rate of nitrate, 

especially when the cells were at the final phase of the growth. 

Although glycerol as an important factor for glycerol-3-phosphate production in the TAG biosynthetic pathway had 

the highest shadow prices among the measured metabolites at all phases but its logarithmic sensitivities were very 

small due to its low uptake rates. Accordingly, glycerol cannot be used to enhance the lipid production at low levels 

of uptake rate.  

Among the biomass components, chlorophyll and DNA had shadow prices of zero at different culture phases, so the 

lipid production rate was not sensitive to changes in the exchange flux of these metabolites. Besides, sucrose, RNA, 

and protein had nonzero shadow prices during the second phase and the logarithmic sensitivities of approximately 

zero (less than 0.001) at all phases of cultivation. In addition, the performed sensitivity analysis showed that all 

amino acids had the logarithmic sensitivities of zero during these periods of the cultivation. Thus, it can be 

concluded that the optimal solution was insensitive to any change in exchange fluxes of biomass components and 

amino acids. 

Ultimately the sensitivity analysis revealed that CO2, O2, light energy, and nitrate had significant effects on the algal 

lipid biosynthesis during the autotrophic cultivation under N-starvation. The experimental observations in the 
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previously published articles were in great agreement with the above mentioned simulation results that the uptake 

rate of CO2, O2, light energy, and nitrate could significantly affect the lipid production rate [57-60].  

Sensitivity analysis of all metabolites in the metabolic network of the microalgae could be utilized for enzyme 

manipulation, so that the metabolism favors the production of biomass and any desirable products such as lipid, 

carbohydrate, protein, and chlorophyll. A positive logarithmic sensitivity represents that any increase in an input 

flux and decrease in an output flux of the associated metabolite can improve the optimal solution. Conversely, a 

negative logarithmic sensitivity shows that any decrease in influx and increase in efflux of a metabolite can enhance 

the optimal objective function. For instance, for a positive logarithmic sensitivity any increase in the enzymatic 

activity of the input fluxes and any decrease in the enzymatic activity of the output fluxes will improve the objective 

function. Moreover, the quality of biodiesel (physical and chemical properties of biodiesel) produced by 

transesterification reaction highly depends on biodiesel FAMEs composition [61, 62]. Thus, an appropriate objective 

function that includes the desirable fatty acids composition may be considered and optimized. Then, it would be 

possible to modify the enzyme activities of the key metabolites with significant sensitivities to produce high quality 

biodiesel with required specifications. 

 

4. Conclusions  

A flux-based approach was used to analyze a fully compartmentalized metabolic network including 347 enzymatic 

reactions, 195 transport processes, and 258 intracellular metabolites that were distributed among four cell 

compartments (chloroplast, mitochondrion, peroxisome, and cytosol) for C. vulgaris AG10032. The developed 

model was able to predict the specific growth rates with maximum relative errors of 11.74% and 13.67%, 

respectively, during the autotrophic cultivations without additional N-feeding and with repeated N-feeding (stage I). 

This model demonstrated that the microalgal cells can produce maximal lipid yield for production of biodiesel under 

N- starvation conditions. Metabolic flux distribution indicated that acetyl-CoA, as the main precursor for synthesis 

of fatty acids at TAG biosynthesis pathways, was generated by the cytosolic pyruvate upon maximization of specific 

growth rate and by the cytosolic citrate under maximal lipid production rate. 

The model predictions also confirmed the experimental observations that a small amount of essential nutrients such 

as nitrate, as well as moderate levels of aeration, light intensity, and carbon dioxide can enhance the lipid content of 

microalgae. The highest lipid content of 43.6% was predicted by the model during N- starvation cultivation when 
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the following experimental conditions were applied as the model input: 100 mol.m-2.s-1 light intensity, 0.25 vvm 

aeration with 2% (v/v) CO2, 2 mg.L-1 PO4-P, and 5 mg.L-1 NO3-N (stage II).  

Ultimately the sensitivity analysis revealed that carbon dioxide, light energy, oxygen, and nitrate had significant 

effects on the algal lipid biosynthesis during the autotrophic cultivation under N-starvation. 

Therefore, the proposed model provided a practical framework, by which it would be possible to predict flux 

distribution throughout the metabolic network of the microalgal cells and investigate the effect of nutrients and 

environmental conditions on the cells behavior. 
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Figure captions  

 

Fig. 1. A simplified overview of key metabolic pathways in microalgae cells used for flux balance analysis. The 

abbreviations and corresponding reactions are given in the Appendix. The solid and dashed arrows represent 

enzymatic reactions and transport processes, respectively.  

 

Fig. 2. Metabolic pathways of the biosynthesis of triglycerides in microalgae. 

 

Fig. 3. Simulation results of metabolites production rate (in mmol.h-1), chlorophyll      , protein    , carbohydrate    , 

and lipid     at different phases of photoautotrophic cultivation (stage I). a, b) cultivation without N-feeding; c, d) 

cultivation with N-feeding. 

 

Fig. 4. Changes in key metabolic pathways and fluxes distribution in microalgae cells during incubation under 

nitrogen-depleted conditions (stage II) and darkness with different aeration rates of (a) 0.125 to 0.25 vvm; (b) 0.25 

to 0.5 vvm. Enzymatic reactions (solid arrows) and transport processes (dashed arrows). Increased fluxes (plus), 

decreased fluxes (minus), and key flux changes (numbers).  

 

Fig. 5. Changes in key metabolic pathways and fluxes distribution in microalgae cells during incubation under N-

deficient conditions (stage II) with 0.25 vvm aeration and 10 mg/L PO4-P at different light intensities of 0 to 100 

mol.m-2.s-1. Enzymatic reactions (solid arrows) and transport processes (dashed arrows). Increased fluxes (plus), 

decreased fluxes (minus), and key flux changes (numbers). 

 

Fig. 6. Changes in key metabolic pathways and fluxes distribution in microalgae cells during incubation with 0.25 

vvm, 100 mol.m-2.s-1 light intensity, 2 mg/L PO4-P, and 5 mg/L NO3-N under different CO2 concentrations of (a) 0 

to 2%; (b) 2 to 10%. Enzymatic reactions (solid arrows) and transport processes (dashed arrows). Increased fluxes 

(plus), decreased fluxes (minus), and key flux changes (numbers). 
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Table 1 Simulation results of specific growth rate (h-1), lipid content (mmol.g-1), LUR, CUR and OPR (mmol.h-1) at 

different phases of cultivation without additional N-feeding and with repeated N-feeding (stage I) for optimum 

specific growth rate. 

Cultivation 

condition 

Time 

(Day) 

Model 

input 

 

Simulation 

 

Experimenta 

 

|%Errorμ| 

NURa 

(mmol.h-1) 

 
LUR 

(mmol.h-1) 

CUR 

(mmol.h-

1) 

OPR 

(mmol.h-

1) 

LC 

(mmol.g-1) 

 

(h-1) 

 

LC 

(mmol.g-1) 

 

(h-1) 

 

Without N-

feeding 

0-1 0.179  4.347 0.186 0.538 0.043 

0.0930

8 

 

0.036 0.0833

0 

 11.74 

1-8 0.076  10.870 0.455 1.344 0.425 

0.0099

7 

 

0.165 0.0093

1 

 7.09 

8-10 0.005  6.522 0.220 0.815 0.553 

0.0002

9 

 

0.235 0.0002

7 

 7.41 

With N-feeding 

0-1 0.181  4.386 0.297 0.539 0.054 

0.0946

9 

 

0.036 0.0833

0 

 13.67 

1-8 0.106  10.870 0.576 1.339 0.203 

0.0105

0 

 

0.143 0.0098

3 

 6.82 

8-10 0.011  6.525 0.284 0.807 

0.247 0.0027

3 

 

0.157 0.0025

0 

 9.20 

a The experimental data represent the mean ± SD for n =3 (Fig. 1(a) of [53]). 
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Table 2 Simulation results of lipid content (mmol.g-1), LUR, CUR and OPR (mmol.h-1) at different phases of 

cultivation without N-feeding and with N-feeding (stage I) for optimum lipid production rate. 

Cultivation 

condition 

Time 

(Day) 

Model input  Simulation  

Experime

nta 

NURa 

(mmol.h-1) 

a 

(h-1) 

 
LUR 

(mmol.h-1) 

CUR 

(mmol.h-

1) 

OPR 

(mmol.h-1) 

LC 

(mmol.g-

1) 

 

LC 

(mmol.g-1) 

Without N-

feeding 

0-1 0.179 0.08330  4.347 0.295 0.526 1.523  0.036 

1-8 0.076 0.00931  10.870 0.735 1.304 
3.201 

 
0.165 

8-10 0.005 0.00027  6.522 0.442 0.797 
3.324 

 
0.235 

With N-feeding 

0-1 0.181 0.08330  4.386 0.297 0.519 1.485  0.036 

1-8 0.106 0.00983  10.870 0.736 1.305 
2.723 

 
0.143 

8-10 0.011 0.00250  6.525 0.441 0.793 2.794  0.157 

a The experimental data represent the mean ± SD for n =3 (Fig. 1(a) of [53]). 
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Table 3 Effects of cultivation factors on lipid contents of C. vulgaris under different conditions of the cultivation 

(stage II). 

 

Factors 

Cultivation condition 
 

Lipid content (%) 
|% ErrorLC| 

Aeration 

rate 

(vvm) 

Light 

intensity 

(mol.m-2.s-1) 

PO4-P 

(mg.L-1) 

NO3-N 

(mg.L-1) 

CO2 

(%) 
Experimenta Simulation 

Aeration rate 

0.125 0 - 0 0 26.8 27.2 1.49 

0.250 0 - 0 0 28.5 34.1 19.65 

0.500 0 - 0 0 23.4 29.5 26.07 

Light 

intensity 

0.250 0 10 0 0 28.0 34.1 21.79 

0.250 100 10 0 0 32.7 35.1 7.34 

0.250 200 10 0 0 30.6 35.5 16.01 

CO2 supply 

0.250 100 2 5 0 37.4 32.2 13.90 

0.250 100 2 5 2 43.0 43.6 1.40 

0.250 100 2 5 10 32.8 36.1 10.06 

a The experimental data represent the mean ± SD for n =3 (Fig. 2, 3, and 6 of [53]). 
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Table 4 Shadow prices and logarithmic sensitivities for various metabolites at different phases of autotrophic 

cultivation without N-feeding (stage I) for maximum lipid production.  

Metabolites 

λi (dimensionless)  |L(Z,Vi)|  (dimensionless) 

0-1 Day 1-8 Day 8-10 Day  0-1 Day 1-8 Day 8-10 Day 

CO2 0.000 0.525 0.450  0.000 39.711 57.731 

O2 0.000 -0.019 -0.021  0.000 2.549 4.866 

Photon 0.000 0.024 0.000  0.000 26.844 0.000 

Pi 0.015 0.026 0.025  0.004 0.011 0.023 

NO3 0.000 -0.130 -0.270  0.000 1.019 3.87 

NH4 0.000 -0.350 -0.485  0.000 0.000 0.000 

GLYC 0.025 0.545 0.648  0.000 0.000 0.000 

PRO 0.003 0.000 0.000  0.069 0.000 0.000 

PHE 0.001 0.001 0.000  0.001 0.000 0.000 

Sucrose 0.000 -0.014 0.000  0.000 0.000 0.000 

RNA 0.000 0.002 0.000  0.000 0.000 0.000 

DNA 0.000 0.000 0.000  0.000 0.000 0.000 

Protein 0.000 0.034 0.000  0.000 0.000 0.000 

Chlorophyll 0.000 0.000 0.000  0.000 0.000 0.000 
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