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Abstract—This work presents the implementation of an adapt-
able emergency braking system for low speed collision avoidance,
based on a frontal laser scanner for static obstacle detection,
using a D-GPS system for positioning. A fuzzy logic deci-
sion process performs a criticality assessment that triggers the
emergency braking system and modulates its behavior. This
criticality is evaluated through the use of a predictive model
based on a kinematic estimation, which modulates the decision
to brake. Additionally a critical study is conducted in order to
provide a benchmark for comparison, and evaluate the limits
of the predictive model. The braking decision is based on a
parameterizable braking model tuned for the target vehicle,
that takes into account factors such as reaction time, distance
to obstacles, vehicle velocity and maximum deceleration. Once
activated, braking force is adapted to reduce vehicle occupants
discomfort while ensuring safety throughout the process. The
system was implemented on a real vehicle and proper operation
is validated through extensive testing carried out at Tecnalia
facilities.

Index Terms—ADAS, automated driving, emergency braking,
fuzzy logic

I. INTRODUCTION

Automated Driving is an extensive and deep research field, it
combines mature functionalities that are already implemented
in the industry with experimental lines that are still fully open.

Autonomous Emergency Braking (AEB) is an Advanced
Driving-Assistance System (ADAS) in a mature technological
stage, that has been available in production vehicles for more
than a decade. The typical implementation of an AEB detects
situations of imminent collision, and actuates over the braking
system to stop the car before reaching the obstacle. In those
cases where collision is unavoidable, AEB systems mitigate
the impact severity because they have proved to be more
effective, reducing vehicle speed when compared to unassisted
driving. A meta-analysis of the real-world effectiveness of
AEB systems [1] shows that this technology led to a 38%
reduction of rear-end crashes.

According to Euro NCAP 1 , the word ”Emergency” means
that the system will intervene only in a critical situation. The
principal motivation for keeping such a low profile is to avoid
taking responsibility away from the driver. A hard and sudden

1Autonomous Emergency Braking -https://www.euroncap.com/en/
vehicle-safety/the-rewards-explained/autonomous-emergency-braking/

braking maneuver implies a risk to vehicle occupants but also
to any other element in the road. Legal and practical reasons
favor systems with slightly reduced effectiveness in normal
functioning, but that will never cause an accident because it
has misinterpreted a risk situation (false positive).

As vehicles include more sensors and computing power,
they also grow in functionalities and intelligence. Multiple
independent ADAS eventually need to be coordinated, so that
they cooperate rather than interfere, starting a gradual shift
from ADAS to Automated Driving systems. In this context,
basic ADAS functionalities can evolve from strict use in
critical situations to risk mitigation tools that have a higher
effectiveness, at the cost of being more intrusive.

A thorough discussion on active safety and collision avoid-
ance methods can be found in [2]. Risk assessment prior
to collision has been the object of several studies. As an
example, [3] presents a review of the main indicators used
in collision avoidance such as time to collision (TTC) and
the generalization time-to-x (TTX), along with the most used
motion models in automated vehicles. A minimum distance
prediction (PMD) to an obstacle is introduced in [4] as an
indicator for threat, calculated using dynamic variables from
the vehicle. In the work presented in [5] a fuzzy system was
implemented to assess risk in order to alert the driver, and
for a steering controller to avoid collision. The paper [6]
describes a full automatic braking system that uses TTC as
a criticality measure. In [7] a brake model is approximated
by fitting splines, along with a prediction based on a dynamic
model of the system.

In this work, an adaptive AEB system based on a fuzzy
controller is presented. The system is based on a tunable
predictive model that can be modified to integrate factors
such as driver attention (reaction time) or braking efficiency
(maximum deceleration, as a combination of road and vehicle
factors). The output of this model is fed to a fuzzy controller
that adapts braking force dynamically during the AEB ma-
neuver. In scenarios of unavoidable collision and edge cases,
this system will behave like a regular AEB system. When
risk is high but not critical (there is some operative margin)
the system provides a softer output that is equally effective
avoiding the crash, improving other factors as the risk of



indirectly causing an accident or passenger discomfort.
Section II presents the proposal in detail, explaining the

predictive brake model and fuzzy controller. The proposed
approach has been implemented and tested in a real vehicle,
which is presented as the Case Study in section III. Experi-
mental results are shown and discussed in section IV, leading
to section V which contains the conclusions of this work.

II. PROPOSAL

In order to implement an adaptive emergency braking
system, braking behavior was initially recognized using ex-
perimental data from the vehicle. This allows us to model and
create a prediction to use in our emergency braking as a safety
indicator. A diagram of the proposed designed reasoning is
shown in fig. 1.

Two systems were implemented: a critical emergency brak-
ing that exerts full braking force is meant to evaluate the
validity of our prediction, and an adaptive braking system able
to modulate the output signal to the brakes and distributes the
force along a longer time. Both systems were designed to work
in low speed scenarios on a straight collision path, towards a
static obstacle.

A. Brake model

A first order system is used to represent the deceleration
exerted by the brakes (Eq. 1), identifying its parameters in the
acceleration data from the vehicle. After reaching maximum
deceleration in our model, the acceleration remains constant
until the vehicle stops.

G(s) = Ke−std
1

τs+ 1
(1)

The step response in time domain for such a system is
presented in Eq. 2. The constant K represents the scaling
for the maximum deceleration of the vehicle, while td, is the
delay between emergency braking activation and a measurable
deceleration from the vehicle. Finally, τ is the time constant
for our system. In order to measure this response, several tests
with the real vehicle were performed, and fitted to the eq. 2,
which yield a K ≈ 6.1m/s2, τ ≈ 160ms and time delay
td ≈ 250ms.

f(t) = K(1− e−(t−td)/τ ) (2)

The starting point of the braking maneuver can be dynam-
ically set to any value of acceleration and speed, in our case,
we assumed the latest value provided by a D-GPS receiver
with RTK capability as our initial acceleration, speed and
position. These initial values allow us to estimate the vehicle’s
behavior during the td seconds delay, prior to the activation
of the deceleration.

Given the focus in low speed and straight trajectories, the
problem can be reduced to a one-dimensional space. Eq. 2
can be rewritten taking into account initial values, yielding
eq. 3 where aref represents the braking amplitude which
can be set from zero to amax. Following integration, initial
speed (v0) and position (x0) can be also included, assuming

a simple constant acceleration model as shown in Eq. 4 and
5. Kinematic models have as advantages its simplicity and
low computational costs, and can deliver good results in non-
control related scenarios, such as trajectory estimation [3].

a(t) =
{
t < td : a0 ,

t ≥ td : (aref−a0)(1−e
−(t−td)
τ )+a0

} (3)

v(t) =
{
t < td : a0t+ v0 ,

t ≥ td :aref(t−td)+τ(aref−a0)e
−(t−td)
τ

+ a0td + v0 − τ(aref−a0)
} (4)

x(t) =
{
t < td :

a0t
2

2
+ v0t+ x0 ,

t ≥ td :
aref (t−td)2

2
−τ2(aref−a0)e

−(t−td)
τ

+ (a0td + v0 − τ(aref−a0))(t−td)

+
a0t

2
d

2
+ v0td + x0 + τ2(aref−a0)

}
(5)

B. Critical Emergency Braking

Once brake behavior is modeled, the outcome of an emer-
gency braking action can be estimated. A critical emergency
braking design allows the evaluation of the prediction imple-
mented, functioning as a benchmark for our adaptable system.
The result of our prediction, is evaluated by finding the correct
stop distance to signal the braking starting point. In the critical
emergency braking the system actuates at the limit to avoid
a collision, meaning aref = amax. In order to find this stop
distance, the time to stop can be numerically derived whenever
v(t) = 0. At any moment, this estimation of the stop distance
is performed given the state variables in the model.

The model was fitted to underestimate the behavior in
braking, this pessimistic approach allows our approximation
of the system to remain safely within our critical distance
to the obstacle. This safety distance is set to 2 meters from
the obstacle as shown in fig. 4. Whenever the stop distance
prediction is lower than this safety mark, critical emergency
braking its activated, meaning the brakes are fully applied to
their maximum.

C. Fuzzy Emergency Braking

The behavior exhibit by an emergency braking system
is rather hard, which increases the penalty if the system
would ever incurred in a false positive activation. This heavily
depends on a very accurate obstacle detection and proper
classification, nonetheless, another option is to intervene with
a greater time-gap in the braking, even though the obstacle
might not be perfectly tracked. This behavior would apply
a progressive braking force, given the obstacle remains in a
collision path or backtrack and return to its normal speed,
given the obstacle detection turns to be false.



Fig. 1. Emergency Braking logic architecture .

This approach, being more conservative than the previously
described critical emergency braking, will performed a grad-
ually increasing brake force, making deceleration smoother.
However, this behavior makes it more prone to incur in false
positive activation. In order to tuned this trade-off, a fuzzy
controller was included, to properly set a series of transitions
from soft-braking to hard-braking.

Fuzzy systems have been used in several automotive appli-
cations [5], [8] due to its simple tunning and design, based
on a set of rules extrapolated from expert driver knowledge.
The design of our Fuzzy Emergency brake system makes use
of two input variables to modulate the effect on the brake
actuator: the stop-distance prediction and the speed of the
vehicle, with a single output which is a normalized brake
signal, as seen in fig. 2. This signal modulates the amplitude
of the step to input the system, which in turn allows us to
change the deceleration produced (aref ). In the limit, given an
obstacle is detected at a critical time, the system will behave
at 90% of the performance in the critical emergency system.

1) Ego-vehicle Speed: The vehicle speed has been taken
into account due to its direct relation with crash criticality. In
our fuzzy system designed only low speeds (below 40Km/h
mark) were included. Intuitively, greater speeds means the
vehicle has a higher kinetic force to dissipate. Additionally,
higher deltas in speed have been related with crash incidents
[9]. A higher speed offsets the required braking force for a
full stop, increasing the distance needed to brake.

2) Stop Distance: Predicted distance to the obstacle at
which the vehicle will stop completely, given the brakes are
applied to 100% immediately. A Stop distance has been used
as a criticality indicator in [4]. An accurate estimation of this
variable depends upon the obstacle distance perception, and
current kinematic variables.

The input function consisted of three classes for low, mid
and high distance prediction, where a low distance directly
translates into a saturated output. This saturated behavior
occurs slightly below the 2 meters range, which guarantees
the system will behave similarly to the critical emergency
braking design, although with a 90% performance. This allows
the system to be easily tuned for comfort while maintaining
withing the safety constraints design already embedded in our
critical emergency system.

Fig. 2. Output surface for the fuzzy inference system.

III. CASE STUDY

This section offers a description of the architecture and
experimental platform used in this work. First, a general
automated driving framework is presented, detailing the main
blocks which compose it. In addition, the experimental plat-
form where braking algorithms were implemented is de-
scribed.

1) Automated Driving General Framework: Provides an
abstraction through the use of a modular architecture
which allows the main components in the automated
driving task to be distributed in a series of blocks.
This framework has been used in the past for several
automated driving applications such as: validation of
longitudinal controllers [10], comparison of lateral con-
trollers [11], overtaking maneuvers [12] and different
speed planner approaches [13]. A detailed block descrip-
tion is presented below.

a) Acquisition: This stage manages the communica-
tion with the on-board sensors: D-GPS, Inertial
Measurement Unit (IMU), LIDAR, camera, vehi-
cle odometry, actuator encoders and others, which
provides raw information of the environment and



vehicle state. The LIDAR used has a range of
12 meters, additionally the D-GPS used has a
precision in the 10 cm range for position, and
0.1Km/h for speed.

b) Perception: This block is in charge of processing
all the raw data coming from the acquisition layer
and generates useful information for the vehicle
road planning: free route recognition, ego-vehicle
estimation, obstacle detection and classification.
In the work presented, the LIDAR information is
processed and obstacles inside a predefined route
are extracted.

c) Decision: This module decides the dynamic be-
havior of the vehicle, consisting of the following
three consecutive steps: global, local and behav-
ioral planner. The global planner is responsible to
make a first approximation of the road map. Local
planner optimizes the created path through differ-
ent parameters like minimization of curvature, ac-
celeration and jerk. Finally, the behavioral planner
adjust the trajectory to overcome dynamic events.
An emergency braking represents a contribution to
this block, particularly to its behavioral stage.

d) Control: receives the path to be followed by the
vehicle from the decision block, and is responsible
for tracking the route at a specific speed. It also
delivers the control signal to the vehicle actua-
tors. In this work a fuzzy controller is utilized to
maintain a reference speed, and additionally in our
implementation of emergency braking to modulate
the braking behavior.

e) Actuators: the control outputs are transformed to
real action signals and move the vehicle actuators
through the use of scaling and shifting (throttle,
brake, and steering wheel).

Fig. 3. Instrumentation and automation of a Renault Twizy

2) Real Test Platform: Experimental testing has been car-
ried out on a Renault Twizy 80, a 4-wheel electric
vehicle that reaches a maximum speed of 80Km/h.

As shown in fig. 3, the three main relevant systems are
steering, throttle and brake, which are instrumented to
allow automated control of the vehicle. These actuators
are controlled through a CAN bus network by a Pro-
grammable Logic Controller (PLC). The Engine Control
Unit (ECU) is operated by the PLC or the throttle pedal
selectively. Apart from that, the break pedal is controlled
by a rotation motor that pulls or releases the mechanism
through a steel wire. Additionally, the steering wheel is
controlled by a 250 W brushless motor attached to an
encoder to obtain position feedback. Finally, an onboard
computer is in charge of running the algorithms for our
automation approach.

IV. EXPERIMENTAL RESULTS

The fuzzy emergency braking was tested along a critical
alternative to control and compare the system with similar
commercially available systems, and to evaluate our predic-
tion. The braking performance was evaluated empirically for
our real test vehicle, and fitted with the model presented in
chapter II, which prove sufficient for a low speed estimation
of future vehicle behavior, as can be seen in fig. 5.

Fig. 4. Diagram of test performed in straight road. The Red-box signals an
obstacle, with a 2 meters safety distance.

Fig. 5. The modeled response is shown against several empirical tests for
Emergency Braking.

The braking controller focuses in low speed performance,
testing was conducted at 15 Km/h and 20Km/h in a straight
80m test track. A static obstacle was introduced in the path of
the vehicle as shown in the fig. 4 and the vehicle remained in
automated mode for the entire duration of the tests.

The prediction estimates stop distance as seen in fig. 6,
this estimation surpasses the 2 meters limit initially, due to a



discrepancy on the acceleration model, which is caused by the
time delay in the activation and makes the system believe it has
missed the mark, even though emergency braking has already
started. Nonetheless after deceleration is effectively applied,
the prediction becomes optimistic and eventually converges to
the distance-to-obstacle when the vehicle is fully stopped.

Fig. 6. Stopping distance against direct measurements from LIDAR sensor.

A critical emergency braking was considered whenever the
prediction implemented crossed a certain safety value while
in the fuzzy approach, the stop-distance value to start braking
is close to the 6 meters as seen in fig. 2. It can be seen in fig.
7, that this difference triggered the braking signal at a more
conservative time in the fuzzy approach for both speeds tested.

Fig. 7. Deceleration for emergency and fuzzy braking at different speeds.

Additionally a delta between the starting time for different
speeds is to be expected, and it can be clearly noted for the
emergency braking scenario in fig. 7. However, in the case of
fuzzy braking, this difference is almost negligible due to the
maximum distance seen by the sensors; at 12 meters of view,
the stop distance was below the mark of activation for our
fuzzy system.

In fig. 8, the adaptive behavior of the system in relation with
the distance can be appreciated. An evolution of the braking
signal for the fuzzy braking can be seen along a reduction in
speed. As expected, the fuzzy system increased braking force
gradually, until the vehicle stopped, based on our stop-distance

prediction. In the same figure, it can also be seen how the
vehicle to obstacle distance remain in the neighborhood of 2
meters.

Fig. 8. Vehicle speed is displayed against distance to obstacle, along activation
signals.

A. Comparison/Discussion

In the tests performed, the adaptive system implemented
with a fuzzy controller was tested along a critical emergency
approach with a fix safety boundary. In both cases, collision
was prevented and the vehicle stopped close to the 2 meters
mark. In the case of critical system, braking distance to
obstacle remained closer to this safety constraint, given the
modeled response was a more appropriate approximation of
the prediction implemented.

In the case of fuzzy emergency braking, the system engage
at 90% of the braking force at a distance around the 1.6 meters
mark. Performance is similar to the emergency braking when
evaluating distances to obstacle, the main difference being the
deltas in acceleration are greatly reduced, at the expense of an
earlier activation.

This early activation supposes a maximum deceleration
decrease, along a smaller delta throughout the maneuver. The
critical system exerts full deceleration force which for our
vehicle is equivalent to 6.1m/s2, as soon as the brake actuator
engages, while the fuzzy system modulates and distributes this
force. In our fuzzy approach the initial deceleration is at the
2m/s2 mark, and by the time it reaches maximum, increases
to around 4m/s2.

Additionally, it should be noted that even though the tests
were performed on an automated vehicle, if manual braking
were ever to occurred, the stop distance calculation will re-
estimate and intervention will be delayed, provided the vehicle
is not in a collision path anymore.

V. CONCLUSION AND FUTURE WORKS

This work presents and analyzes a fuzzy emergency brak-
ing system designed for low speed scenarios. Additionally



a critical emergency braking was also implemented to test
the feasibility of the prediction and a comparison of both
systems was conducted. A one dimensional constant accel-
eration model is used along with a brake model to estimate
the deceleration behavior, which approximates the real system
response in order to estimate future distance to stop available.
Both systems, the fuzzy and critical emergency braking make
use of this simplified prediction.

The performance of both critical and fuzzy braking systems
in low speed scenarios is similar regarding the distance to
obstacle when stopped, while the fuzzy system activation
occurs at a much earlier point (around a second before).
The maneuver was completed with a much lower maximum
deceleration in the case of the fuzzy system, while the critical
emergency braking acted in the limit and was faster at stopping
the vehicle. Considering the case of a false positive behavior,
the deceleration observed in the fuzzy system at an early
stage is close to 33% of the one presented in the critical
system, making it easier to return and correct the maneuver.
At its maximum, the fuzzy has a peak acceleration of 66%
respect to the one showed by the critical study, making it
more comfortable for passengers and less detrimental to the
overall control of the vehicle, while maintaining safety.

This implementation provides a first approach towards
predictive behavior in obstacle avoidance. In future works,
increasing the predictive behavior complexity is a must and
could include models adaptable to a variety of scenarios,
such as driver behavior considerations, different maneuvers,
changes in the environment, and less constrained scenarios
with higher speeds in multiple road configurations. The de-
velopment of this abstraction of layer of prediction allows
the incorporation of information from different systems and
sensors, with ease into the decision process. The current im-
plementation while using a constraint scenario and a simplified
model for prediction, proves satisfactory for an emergency
braking at low speed, allowing the simple verification of
critical braking to test the limits of the system which allowed
the design of a tunable controller to improve over it.
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