
© 2018. This manuscript version is made available under the CCBY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Evolving Spiking Neural Networks for online learning over drifting data

streams

Jesus L. Lobo, Ibai Laña, Javier Del Ser, Miren Nekane Bilbao, Nikola Kasabov

PII: S0893-6080(18)30213-2

DOI: https://doi.org/10.1016/j.neunet.2018.07.014

Reference: NN 3997

To appear in: Neural Networks

Received date : 5 April 2018

Revised date : 11 June 2018

Accepted date : 25 July 2018

Please cite this article as: Lobo, J.L., Laña, I., Del Ser, J., Bilbao, M.N., Kasabov, N., Evolving

Spiking Neural Networks for online learning over drifting data streams. Neural Networks (2018),

https://doi.org/10.1016/j.neunet.2018.07.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo

copyediting, typesetting, and review of the resulting proof before it is published in its final form.

Please note that during the production process errors may be discovered which could affect the

content, and all legal disclaimers that apply to the journal pertain.

Evolving Spiking Neural Networks for Online Learning

over Drifting Data Streams

Jesus L. Loboa,∗, Ibai Lañaa, Javier Del Sera,b,c,

Miren Nekane Bilbaob, Nikola Kasabov

aTECNALIA, 48160 Derio, Spain.
bUniversity of the Basque Country UPV/EHU, 48013 Bilbao, Spain

cBasque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
dKEDRI - Auckland University of Technology (AUT), 1010 Auckland, New Zealand

Abstract

Nowadays huges volumes of data are produced in the form of fast streams, which are

further affected by non-stationary phenomena. The resulting lack of stationarity in the

distribution of the produced data calls for efficient and scalable algorithms for online

analysis capable of adapting such changes (concept drift). The online learning field has

lately turned its focus on this challenging scenario, by designing incremental learning

algorithms that avoid becoming obsolete after a concept drift occurs. Despite the noted

activity in the literature, a need for new efficient and scalable algorithms that adapt to

the drift still prevails as a research topic deserving further effort. Surprisingly, Spiking

Neural Networks, one of the major exponents of the third generation of artificial neural

networks, have not been thoroughly studied as an online learning approach, even though

they are naturally suited to easily and quickly adapting to changing environments. This

work covers this research gap by adapting Spiking Neural Networks to meet the process-

ing requirements that online learning scenarios impose. In particular the work focuses

on limiting the size of the neuron repository and making the most of this limited size

by resorting to data reduction techniques. Experiments with synthetic and real data sets

are discussed, leading to the empirically validated assertion that, by virtue of a tailored

exploitation of the neuron repository, Spiking Neural Networks adapt better to drifts, ob-

taining higher accuracy scores than naive versions of Spiking Neural Networks for online

learning environments.

Keywords: Spiking neural networks, data reduction, online learning, concept drift

Corresponding author: jesus.lopez@tecnalia.com (Jesus L. Lobo). TECNALIA. P. Tecno-

logico Bizkaia, Ed. 700, 48160 Derio, Spain. Tl: +34 946 430 50. Fax: +34 901 760 009.

Preprint submitted to Neural Networks June 11, 2018

*Manuscript
Click here to view linked References

1. Introduction

With the increasing number of applications based on fast-arriving informa-

tion flows and applied to real scenarios (Zhou, Chawla, Jin & Williams, 2014;

Alippi, 2014), concept drift has become a paramount issue for online learning en-

vironments. The distribution modeling data captured by sensor networks, mobile

phones, intelligent user interfaces, industrial machinery and others alike is usually

assumed to be stationary along time. However, in many real cases such an assump-

tion does not hold, as the data source itself is subject to dynamic externalities that

affect the stationarity of its produced data stream(s), e.g. seasonality, periodicity

or sensor errors, among many others. As a result, possible patterns behind the pro-

duced data may change over time, either in the feature domain (new features are

captured, part of the existing predictors disappear, or their value range evolves),

or in the class domain (new classes emerge from the data streams, or some of the

existing ones fade along time). This paradigm is what the literature has coined as

concept drift concept, where the term refers to a stationary distribution relating a

group of features to a set of classes.

When the goal is to infer the aforementioned class patterns from data (online

classification), incremental models trained over drifting streams become obso-

lete when transitioning from one concept to another. Consequently, they do not

adapt appropriately to the new emerged data distribution, unless they are modi-

fied to handle efficiently this unwanted effect. In order to minimize the impact

of concept drift on the performance of predictive models, recent studies (Ditzler,Roveri, Alippi & Polikar

Webb, Hyde, Cao, Nguyen & Petitjean, 2016;

Khamassi, Sayed-Mouchaweh, Hammami & Ghédira, 2018) have been focused

on the development of efficient techniques for continuous adaptation in evolving

environments or, alternatively, in the incorporation of drift detectors and concept

forgetting mechanisms (Žliobaitė, Pechenizkiy & Gama, 2016).

Indeed, online learning in the presence of concept drift has been a very hot

topic during the last few years (Gama, Žliobaitė, Bifet, Pechenizkiy & Bouchachia,

2014; Ditzler, Roveri, Alippi & Polikar, 2015; Alippi, 2014; Lobo, Del Ser, Bil-

bao, Perfecto & Salcedo-Sanz, 2017), and still remains under active debate in the

community (Khamassi, Sayed-Mouchaweh, Hammami & Ghédira, 2018) due to

the fact that there are many relevant open challenges to tackle (Barddal, Gomes,Enembreck & Pfahringer,

Gomes, Barddal, Enembreck & Bifet, 2017a;

Krawczyk, Minku, Gama, Stefanowski & Woźniak, 2017; Wang, Minku & Yao,2018)

. Online learning environments impose a set of stringent computational

restrictions that every new technique in the field should embrace (Domingos &Hulten, 2003)

, enforcing this technique to use mechanisms to adapt to the new

concept when drift occurs with a fast recovery (plasticity) while, at the same time,

2

retaining the acquired knowledge of the old concept (stability). As dictated by the

so-called (Grossberg, 1988), a learning model shouldstability-plasticity dilemma

have the ability to retain acquired knowledge and also learn new concepts, but

in no way could a model could be designed to do both equally well. While the

ability to accumulate knowledge of the old concept is really treasured over stable

data distributions (there is no drift), plasticity periods (right after drift occurs) re-

quire forgetting part or all previous concepts in order to capture the new upcoming

concept as fast as possible.

The adaptation to the drift can be carried out proactively detecting first the

concept drift, and only the model gets updated when a drift is detected (active

approaches), or updating the model continuously every time new data samples are

received (passive approaches). Focusing on active adaptation, three main mecha-

nisms can be noted in the literature:

• Windowing: a sliding window over the last data instances is used as the ex-

clusive training set for the learning algorithm (Bifet & Gavalda, 2007; Alippi

& Roveri, 2008; Gama, Medas, Castillo & Rodrigues, 2004; Bifet & Gavalda,

2006).

• Weighting: all available samples are considered, but suitably weighted ac-

cording to their age or relevance in terms of classification accuracy (Cohen& Strauss, 2003;

Klinkenberg, 2004).

• Reservoir sampling: a subset of instances is selected for training, and randomly

drawn examples from within the reservoir are discarded upon receiving new

data (Vitter, 1985; Aggarwal, 2006; Ng & Dash, 2008).

Disregarding the particular active adaptation mechanism selected for concept

drift tackling, the goal from a computing perspective is to develop efficient and

scalable learners to meet online processing restrictions, namely(Domingos & Hul-ten, 2003)

:

• Each sample must be processed only once “on arrival”.

• The processing time of each data sample must be small and constant.

• The algorithm should only use a preallocated amount of main memory.

• A valid model must be available at every scan of the data stream.

• The algorithm must produce a model that is equivalent to the one that would be

produced by a batch processing algorithm.

Unfortunately, most off-the-shelf classification models need to be retrained if

they are used in a changing environment and fail to scale properly. One of the

most promising machine learning techniques in the field that can overcome this

noted drawback is the Spiking Neural Network (SNN) (Gerstner & Kistler, 2002).

3

The advent of SNNs was propelled by the need for a better understanding of the

information processing skills of the mammalian brain, for which the community

committed itself to the development of more complex biologically connection-

ist systems. SNNs have revealed themselves as one of the most successful ap-

proaches to model the behavior and learning potential of the brain, and exploit

them to undertake practical learning tasks. In essence SNNs leverage spike in-

formation representation so as to construct spike-time learning rules that capture

temporal associations between a large number of temporal variables in streaming

data. Among other applications (e.g. simulation of space-time systems), such

a learned knowledge can be exploited to predict future events. In fact, SNNs

must be regarded as a portfolio of models for different computational uses and

applications, all inspired by the the same design principles (information encoding

and neural processing based on time spikes). One of the successful SNNs is the

Evolving Spiking Neural Networks (eSNNs) (Soltic & Kasabov, 2010; Schliebs

& Kasabov, 2013), where the number of spiking neurons evolves incrementally

in time to infer temporal patterns from data. First proposed in (Kasabov, 2007;

Wysoski, Benuskova & Kasabov, 2006), eSNNs are based on the principles of

evolving connectionist systems (ECOS) and Thorpe’s neural model (Thorpe &Gautrais, 1998)

. In SNNs, changes in the input stream data are encoded immedi-

ately as binary events - spikes. As we will motivate in forthcoming sections, they

use one of the most suitable data encoding strategies for adapting to drifts.

Several works have focused on implementing SNNs for online learning envi-

ronments. The most early attempt in this regard is SpikeProp, which was proposed

for training SNNs and similar in concept to the backpropagation algorithm devel-

oped for traditional neural networks (Bohte, Kok & La Poutré, 2000). However, it

is too slow to be used in an online setting, and prone to getting stuck in local min-

ima as a result of its gradient-based learning algorithm. In (Belatreche, Maguire& McGinnity, 2007)

the authors proposed a derivative-free supervised learning

algorithm comprising an evolutionary strategy with a reportedly better perfor-

mance than SpikeProp, but the training process was extremely time-consuming

and hence, not suitable for online learning. ReSuMe (Ponulak, 2005, 2008; Ponu-lak &

Kasi ński, 2010) integrated the idea of learning-windows with remote su-

pervision; despite this method was claimed to be suitable for online learning, the

network structure used in this method is fixed and does not adapt to incoming

stimuli. In addition, the desired precise output spike timing is crucial to ReSuMe

learning (Wang, Belatreche, Maguire & McGinnity, 2017). Other studies have ad-

dressed the online learning in a more realistic approach. The method proposed in

(Wysoski, Benuskova & Kasabov, 2010) can perform learning in an online mode

through synaptic plasticity and adaptive network structure. More recently, the

4

SpikeTemp method proposed in (Wang, Belatreche, Maguire & McGinnity, 2017)

offers an enhanced rank-order-based learning method for SNNs with an adaptive

structure where the precise times of incoming spikes are used to determine the

required change in synaptic weights. With these few exceptions, there is a lack of

efficient and scalable SNN-based algorithms in online learning scenarios.

Interestingly for the scope of this work, none of the contributions reviewed

above takes into account the requirement of a limited size for the neuron reposi-

tory, which is of utmost importance to meet the processing requirements of online

learning. Should this crucial aspect not be taken into account, the number of neu-

rons in the repository would increase every time step. Therefore, further efforts

are still needed to devise new online learning mechanisms for SNNs and increase

their applicability to real-world problems. To this end not only the SNN model

should learn incrementally from the data stream, but the content of its neuron

repository should also be limited in size and adapted when concept drift occurs.

To the best of our knowledge, these two issues have not been addressed in the

community. The contribution of our work can be summarized as follows:

1. We develop a new eSNN model that incorporates a set of novel ingredients

for efficiently dealing with online learning applications, such as a limitation of

the size of the neuron repository and the use of a sliding window. The devel-

oped model is able to classify inputs after just one presentation of the training

samples, without requiring the entire training set to be available in advance.

Regarding the limited size of the neuron repository, our work will embrace

the adoption of Data Reduction Techniques (DRTs) (Triguero, Garcı́a & Her-

rera, 2010), which aim to obtain a representative training set with a lower size

when compared to the original one, and with similar or even higher general-

ization capability when fed to a predictive model. They can be divided into

prototype selection (PS) techniques (Li & Wang, 2015; Meena & Devi, 2015),

which consist of choosing a subset of the original training data; and proto-

type generation (PG) techniques (Triguero, Derrac, Garcia & Herrera, 2012;

Hu & Tan, 2016; Escalante, Graff & Morales-Reyes, 2016), which build new

artificial prototypes to better adjust the decision boundaries between classes.

2. We hybridize our proposed eSNNs approach with a drift detector, yielding a

solid learning model to be deployed in a realistic online scenario.

3. We analyze the impact of different data reduction techniques in the newly de-

vised eSNN model over a wide range of online learning datasets, with emphasis

on the predictive performance of the model after a drift occurs, the data reduc-

tion percentage achieved by every DRT, and the implications of the proposed

strategy in the future of the online learning field.

4. As a result of this research work, we provide an online learning technique

5

based on a single classifier, proven to perform competitively in comparison

with other techniques based on ensembles while using less storage capacity.

Single classifier approaches are widely regarded as an attractive solution for

massive data streams due to their reduced computational cost when compared

to their ensemble counterparts (Ditzler, Roveri, Alippi & Polikar, 2015).

The rest of the paper is organized as follows: first, Section 2 provides an

general introduction to the evolving spiking neural networks and their relevance in

online learning scenarios. Section 3 delves into the data reduction methods used in

the proposed approach. Section 4 provides a detailed description of the proposed

approach, while Section 5 presents the experimental setup designed to assess its

performance. Sections 6 and 7 present and discuss the obtained results from such

experiments and finally, Section 8 draws concluding remarks and outlines future

research lines related to this work.

2. Evolving Spiking Neural Network (eSNN)

An eSNN consists of an encoding part, which transforms a real-valued vec-

tor into spikes generated over time, a neuron model, and a learning mechanism

that calculates the connection weights between the input and the output neurons.

eSNNs are now a part of a comprehensive SNN architecture for spatio-temporal

data modeling, NeuCube (Kasabov, 2014), which is able to deal with a wide range

of applications (Kasabov, Scott, Tu, Marks, Sengupta, Capecci, Othman, Dobor-jeh, Murli, Hartono et al., 2016)

.

2.1. Architecture

As depicted in Figure 1, the architecture of the eSNN is composed by three

layers (Wysoski, Benuskova & Kasabov, 2010, 2006; Kasabov, 2007; Kasabov,

Dhoble, Nuntalid & Indiveri, 2013). The first layer corresponds to the input data.

The second layer is for encoding purposes, where the real values of the features of

every sample are encoded as trains of spikes, generating the pre-synaptic neurons

and each of them having a receptive field. Receptive fields of neighboring neurons

overlap with each other by adopting the shape of Gaussian or Logic functions, in

all cases covering the whole range of the values of each feature (as explained

below). The number of encoding neurons (or receptive fields) may vary de-N

pending on the nature of the data at hand, and must be tuned for achieving a good

predictive performance of the overall model. The third layer is the evolving output

layer, where a repository of spiking neurons representing samples (divided in one

subrepository per every class in the problem) evolves as new data arrive. Each

output neuron is linked to all input neurons through connections whose weights

are learned from the data instances fed to the model.

6

Input Sample Pre-synaptic/input

neurons

Receptive

fields

Evolving

neuron repository/

output neurons

0.37

2.28

Figure 1: Architecture of feed-forward eSNN (Kasabov, 2007).

2.2. Neural Encoding

In order to learn from real-valued data, each sample is encoded to a sequence

of spikes over time (spike trains) by using a neural encoding technique, e.g. rank

order population (Thorpe & Gautrais, 1997; Bohte, Kok & La Poutre, 2002) or any

other encoding approach alike. The rank order population scheme works on the

basis of the order of the spikes across all the synapses connected to the particular

neuron. It creates the priority in the input spikes depending on the order of spike

arrival to the neuron, which provides extra information to the network regarding

the order of the spike (Thorpe & Gautrais, 1998). In this work we adopt the

Gaussian Receptive Field (GRF) population encoding scheme, where the input

can be distributed over several neurons with overlapping and graded sensitivity

profiles by using Gaussian activation functions. Each encoding neuron is fired

only once during the time coding interval . As a result, each input sample isT
translated into a spatio-temporal spike pattern. Specifically, the center Cj and the

7

width Wj of each GRF of pre-synaptic neuron are computed asj

Cj = Inmin +
2 3j −

2



Inmax − I n
min

N − 2



(1)

and

Wj =
1

β



Inmax − Inmin

N − 2



, (2)

where is the number of receptive fields, whose value impacts on the amplitudeN

of the input neuron and must be optimized for the problem. The range of the -thn
input variable is assumed to be [Inmin , I

n
max] [1 2]. Parameter β ∈ , (also referred

to as overlap factor) establishes the width of receptive fields, thereby their amount

of overlapping and ultimately, in the firing time of the pre-synaptic neuron . Thej

output of neuron is defined asj

outputj = exp



−
(x C− j)

2

2W 2
j



, (3)

where is the input value. The firing time of each pre-synaptic neuron is definedx j
as

Tj = (1bT − outputj)c (4)

where is the simulation or spike interval. Figure 2 exemplifies the GRF encodingT

process for the feature of any given sample.

2.3. Neural Model

A simplified Leaky Integrate-and-Fire (LIF) model was formally proposed in

(Thorpe & Gautrais, 1998), but the idea can be tracked to publications as early as

1990. LIF states that the spike response of a neuron depends only on the arrival

time of pre-synaptic spikes, that is, the earlier the spike arrives to a neuron, the

stronger its weight will be when compared to a later spike. Each neuron in this

model can spike at most once, and a neuron fires when its Post-Synaptic Potential

(PSP) reaches its threshold value. The PSP of a neuron is defined asi

PSPi=



0, if fired,
P

j wji ·modorder j(), otherwise,
(5)

where wj,i represents the weight of the synaptic connection between pre-synaptic

neuron to output neuron ; is the modulation factor with a range ;j i mod [0 1],

and defines the rank of the pre-synaptic neurons spike. The first rank isorder j()
assigned as and subsequently, rank is increased by based on firing time of each0 1
pre-synaptic neuron.

8

0.2

0.4

0.6

0.8

1.0
0.96

0.76

0.32

0.13

0.0

1.0

1.0

0.87

0.68

0.24

0.04

Inpu aluet v

Neurons

Feature

.0 - 0-2 1. 0

0

1

2

3

4

5

1 0.0.7

0.7

0.35

2 0.

0.0

0.20.40.60.81.0
Firing time (1 - Excitation)

0.0

Figure 2: Example of population encoding based on GRFs. For an input value of (bold6 0 7.

straight line) the intersection points with each GRF are computed (),0 96 0 76 0 32 0 13 0 0 0 0. , . , . , . , . , .

which are in turn translated into firing times ().0 04 0 24 0 68 0 87 1 0 1 0. , . , . , . , . , .

2.4. Supervised Learning

When utilized in a supervised learning setting, the aim of the eSNN learning

method is to produce and update a repository of output neurons, each of them

labeled with a certain class label.

In this classification context, the eSNN training algorithm is algorithmically

described in Algorithm 1. First, the model creates a repository of output neurons

for the training patterns. For each pattern that belongs to a same given class, a new

output neuron is created and connected to all pre-synaptic neurons in the previous

layer through weights wji (see Figure 1). The value of wj,i is calculated based

on the spike order through a synapse asj wj,i = modorder j(), where is the pre-j

synaptic neuron of the output neuron (line 7). A numerical threshold i γi is set for

the newly created output neuron as the fraction of its maximum post-C ∈ (0 1) ,

synaptic potential PSPmax,i, i.e. γi = PSPmax,i ·C . The weight vector of a newly

created output neuron is then compared with the already trained output neurons in

the repository. If the Euclidean distance between the newly created output neuron

9

weight vector and that of anyone of the already trained output neurons is smaller

than a similarity parameter (), they are considered to be similar. As a result,SIM

their thresholds and weight vectors are merged according to

wj,i =
wnew + (wj,i ·M)

M + 1
, (6)

and

γi =
γnew + (γi ·M)

M + 1
, (7)

where is the number of previous merges of similar neurons through the learningM
history of the eSNN. After merging, the weight vector of the newly created output

neuron is discarded, and the new pattern is presented to the model. If none of the

already trained neurons in the repository is found to be similar (as per the SIM

parameter) to the newly produced output neuron, then it is added to the repository.

The testing phase is carried out by propagating the spikes that encode the test

sample to all trained output neurons. The class label for the test sample is assigned

according to the class label of the output neuron which has fired first after reaching

its threshold value γi.

2.5. eSNN in Online Learning

The neural model of eSNN models allows for a very fast real-time simulation

of large networks and a low computational cost. These properties make eSNNs a

very suitable candidate for online learning scenarios, where stringent restrictions

on computational cost and processing time prevail. Besides, the evolving nature of

the network makes it possible to accumulate knowledge as data become available,

without the requirement of storing and retraining the model with past samples.

We will later evince how this evolving nature is also useful for adapting the model

to eventual drifts along the stream.

Several approaches have been developed so far in order to adapt eSNNs to

online learning setups (Wysoski, Benuskova & Kasabov, 2006; Soltic, Wysoski

& Kasabov, 2008; Alnajjar, Zin & Murase, 2008; Ponulak & Kasiński, 2010).

However, most of them are unable to predict inputs after just one presentation

of the training samples, hence requiring the entire training set to be available in

advance. The online learning field has not certainly been as thoroughly addressed

in the eSNN literature as its offline (batch) counterpart. The reason for this lack

of research lies on the aforementioned computational restrictions, which require

adapting the original eSNN learning algorithm to meet these design constraints.

In online learning scenarios tailored predictive scores metric are often pro-

posed to shed light not only on the net accuracy of online learning models, but

10

Algorithm 1: eSNN algorithm

1 ialize neuron repository, Init NR = {}
2 eSNN parameter Set mod C SIM= [0 1], , = [0 1], , = [0 1],
3 eSNN encoding parameters Set β, ,T N

4 lculate Ca Imax, Imin for the training data set

5 r dofo every sample s belonging to class c

6 Calculate Cj and Wj for encoding into firing time of multiples

pre-synaptic neurons j
7 Create a new output neuron and the connection weights asi

wj,i = modorder j()

8 Calculate PSPmax i() = Σjwj,i ·modorder j()

9 Compute threshold value PSP γi = PSPmax i() ·C
10 if min distance(Newly output neuron weight vector,Neuron repository

weight vectors in in NR)) SIM≤ then

11 Update the weight vector and threshold of the most similar neuron

wj,i = wnew+(w j,i·M)

M+1
and γi = γnew+(γi ·M)

M+1

12 Set M M= + 1
13 e sel

14 Add the weight vector and threshold of the new output neuron to NR

15 end

16 end

17 Go to 1 and repeat for all target classes

also to quantitatively analyze its reaction capability against changes in the data

streams. Discussions in this paper will follow the common practice in this re-

search area by embracing the so-called prequential accuracy metric, proposed in

(Dawid, Vovk et al., 1999) and widely used by the community (Minku & Yao,2012)

. This metric quantifies the sample-by-sample progression of the average

accuracy obtained by a learning model in a test-then-train basis (i.e. null verifica-

tion latency), and is given by

preACC t()=







preACCex() =t , tif tref ,

preACCex(1) +t-
preACCex()t − preACCex(1)t-

t t− ref + 1
, otherwise,

where is the time between samples in the stream;t preACCex() = 0t if the predic-

tion of the test example at time before its learning is wrong; andt preACCex() =t
1 if it is correct. Here, tref serves as a reference time that fixes the first time step

11

used in the calculation. This reference time allows isolating the computation of

the prequential accuracy before and after a drift has started, so that insight on the

reaction of different drift handling strategies can be assessed.

3. Data Reduction Techniques

In eSNN, if the Euclidean distance between the newly created output neu-

ron weight vector and that of anyone of the already trained output neurons is

smaller than , they are considered to be close and they are merged. Close-SIM

ness is decided based on the similarity between the weight vectors {wj,i} of every

output neuron to the weight vector produced by the newly input sample. Thisi
distance-based prediction strategy can be regarded as that of the -Nearest Neigh-k

bors (kNN), one of the most utilized algorithms in machine learning due to its

simplicity and effectiveness. However, kNN models are known to suffer from

several drawbacks (Kononenko & Kukar, 2007):

• The need for a high storage capacity to retain the set of training samples so as

to perform the decision rule;

• the computational burden associated to the search for the closest example, due

to multiple similarity computations between the test sample and the training

examples; and

• the low tolerance of noisy samples within the training data.

The literature is rich in methods proposed to tackle the above drawbacks. In

this work we will embrace data reduction techniques (DRTs, also referred to as

instance selection approaches) to simultaneously face all such issues in an online

setting. Data reduction techniques (DRTs) aim to obtain a representative training

set with a lower size compared to the original one, yet with similar or even higher

classification accuracy for new incoming data. DRTs can be classified depending

on whether the method at hand is based on filtering and selecting samples from

the training set (prototype selection, PS) or, alternatively, on synthesizing repre-

sentative examples therefrom (prototype generation techniques, PG). For the sake

of completeness, we next overview both categories, and we show how DRTs can

be applied to reduce the number of output neurons in the repository providing an

useful mechanism to limit the size of the repository.

3.1. Prototype Selection Techniques

Prototype selection techniques select a subset of the original training data for

constructing the model, hence discarding the remaining data samples. The main

advantage of these techniques is their capacity to discriminate relevant examples

12

without synthesizing artificial data. A widely used categorization of PS tech-

niques include edition, condensation, and hybrid methods (Garcia, Derrac, Cano& Herrera, 2012)

. Edition methods remove noisy instances in order to increase

the classification performance. Condensation methods remove superfluous sam-

ples that do not affect the classification performance. Hybrid methods are based

on combining edition and condensation methods to yield a PS technique leverag-

ing specific computational and/or performance aspects of both approaches.

The exhaustive study of PS techniques presented in (Garcia, Derrac, Cano

& Herrera, 2012) shows the advantages and disadvantages of all DRT methods

falling in this category. Indeed this work empirically proved that the choice of

a certain method depends on diverse factors, in essence a multi-criteria decision

that becomes even more crucial when dealing with online learning in the presence

of concept drift. For example, an edition method usually outperforms a naive

kNN in the presence of noise, but only a few instances will be removed (Garcia,

Derrac, Cano & Herrera, 2012). However, although they allow for a high data

reduction rate while preserving the model accuracy, edition-based PS techniques

are usually the slowest ones due to their greedy search procedure. On the contrary,

condensation PS approaches are fast and achieve high data reduction rates, but

they usually render classification performance scores lower than those of naive

kNN schemes (Garcia, Derrac, Cano & Herrera, 2012).

Figures 3 and 4 show the behavior of the PS techniques on a synthetic dataset,

illustrating the nature of decision boundaries after applying the sample reduction

techniques.

Figure 3: A comparison of the mean accuracies () and data re-95 00% 82 50% 87 50% 77 50%. , . , . , .

duction percentages () of kNN, ENN, CNN, and RENN tech-0 00% 11 67% 78 33% 16 67%. , . , . , .

niques respectively on a synthetic data set. The figure shows training points in solid colors and

testing points semi-transparent.

13

Figure 4: A comparison of the mean accuracies () and data reduction92 50% 90 00% 85 00%. , . , .

percentages () of AllKNN, TCNN, and SSMA techniques respectively18 33% 10 00% 91 67%. , . , .

on a synthetic data set. The figure shows training points in solid colors and testing points semi-

transparent.

3.2. Prototype Generation Techniques

Prototype generation techniques build new artificial prototypes to better ad-

just the decision boundaries between classes in kNN classifiers. To this end, PG

methods produce and replace training data samples with new artificial data fill-

ing regions in the domain of the problem lacking representative samples in the

original dataset. The thorough categorization and empirical assessment of PG

techniques reported (Triguero, Derrac, Garcia & Herrera, 2012) drew similar con-

clusions to those obtained for PS schemes in (Garcia, Derrac, Cano & Herrera,

2012): a categorical claim cannot be made in regards to the comparative perfor-

mance of different PG techniques: the choice of one approach or another will

roughly depend on the problem under consideration.

Figure 5 shows the behavior of the PG techniques on a synthetic dataset, il-

lustrating the nature of decision boundaries after applying the sample reduction

techniques.

Figure 5: A comparison of the mean accuracies () and data re-95 00% 92 50% 85 00% 90 00%. , . , . , .

duction percentages () of kNN, SGP, SGP2 and ASGP techniques0 00% 65 00% 81 67% 75 00%. , . , . , .

respectively on a synthetic data set. The figure shows training points in solid colors and testing

points semi-transparent.

As it will be further explained, the reduction power of DRTs at the same time

that their accuracy remains competitive will be used in favor of our proposed

approaches.

14

4. Proposed Approach: Online Evolving Spiking Neural Network (OeSNN)

As in other online learning algorithms, our online version of eSNN (OeSNN)

stores a reduced number of samples taken over a -sized sliding window. In ourW
case, however, such samples are not used for statistical tests (Bifet & Gavalda,2007)

, but rather for performing the neural encoding procedure described in Sec-

tion 2.2. Every time a new sample arrives in the stream, the neural encoding

is performed for the samples falling in . This encoding is also used for theW
prediction of the test sample, following a scheme (Bifet, Holmes,Pfahringer & Gavalda, 2009)test-then-train

. The value of can be 1) set fixed, e.g. wheneverW
a new sample arrives it is stored in the memory and the oldest one is discarded;

or 2) adjusted over time depending on e.g. the information provided by a drift

detector analyzing the statistical characteristics of the stream. A fixed size is of-

ten adopted as a baseline scheme when evaluating new online learning algorithms

(Gama, Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014); our study will follow

this common practice from the related literature.

As explained in previous sections, the learning procedure of the eSNN relies

mostly on the neuron repository. Therefore, the size of this repository should be

upper bounded in order to meet the restrictive storage constraints imposed in an

online learning scenario. The neuron repository collects all the available knowl-

edge in the form of output neurons, so that the more knowledge (neurons) is stored

in this model stage, the more likely it will be to find an output neuron similar to

the one under test, and ultimately the better accuracy will be achieved. Conse-

quently, the proposed OeSNN approach utilizes a fixed size of the neuron repos-

itory : the new output neuron produced by the test sample through theNR size

eSNN structure is stored whenever there is room in the repository, i.e. its current

occupation is below the net capacity of the reservoir ; if thereCNR size NR size

is no free space (corr.), the oldest output neuron will beCNR size NR size=
replaced by the new output neuron. Intuitively, this repository updating strategy

addresses two different constraints in online learning under concept drift: the need

for a limited size reservoir of output neurons, and an inherent forgetting mecha-

nism to discard outdated concepts when data streams are non-stationary. To the

best of our knowledge there is no prior study elaborating on this dual byproduct

of the eSNN repository.

Other related studies usually divide the data set into training and testing phases,

applying the online learning to the test part after once a well-trained eSNN classi-

fier has been attained (Schliebs & Kasabov, 2013; Wang, Belatreche, Maguire &

McGinnity, 2017; Wang, Belatreche, Maguire & Mcginnity, 2014). However, in

fast streaming scenarios the algorithm must update itself one sample at a time from

the beginning of the data streaming process. This is accomplished by adopting in-

15

cremental methods for warm-start model training while predicting test samples in

parallel. This will be the scheme adopted in this work.

Algorithm 2 reflects the adaptations made to the original eSNN in Algorithm 1

in order to deploy it in online learning scenarios by fulfilling with the restrictions

described before. The aforementioned -sized sliding window yields a groupW
of recent samples from which the encoding parameters are computed (lines 4, 8,

and 9). The neuron repository is limited to a fixed size (line 5), which is checked

in order to decide whether the recent sample can be stored directly or instead,

replaces the oldest output neuron in the repository.

At this point it is important to underline that every time a merging process is

performed, only two neurons are involved at most. Therefore, it is likely that the

output neuron repository stores redundant information when processing a stream,

with emphasis during those periods where the data distribution remains stable, i.e.

before the drift occurs and long after the drift event. Here lies the rationale for

further optimizing the information stored within the OeSNN neuron repository by

applying data reduction techniques, which is exposed in the next subsection.

4.1. Data Reduction Techniques for OeSNN Models: OeSNN-PS and OeSNN-PG

Our proposed OeSNN approach sketched in Algorithm 2 is the basis for our

proposed approaches hybridized with DRTs schemes (OeSNN-PS and OeSNN-

PG), in which PS and PG techniques are applied respectively on the neuron repos-

itory. For this purpose we have selected a wide portfolio of DRTs:

• OeSNN-PS, all based on a majority voting between the most similar instancesk

to a given unseen observation (the value of has to be defined beforehand):k

– Edited Nearest Neighbor (ENN) (Chang, Pei & Zhang, 2011), which is a

modified editing version of the kNN rule, applies a NN algoritthm and ed-

its enoughthe dataset by removing samples which do not agree with their

neighborhood. For each sample in the class to be undersampled, the set of

nearest neighbors are computed; if the selection criterion is not fulfilled, the

sample is removed.

– Repeated Edited Nearest Neighbor (RENN) (Wilson, 1972) extends ENN by

repeating the algorithm multiple times so that more data samples are deleted.

– Condensed Nearest Neighbor (CNN) (Hart, 1968) was suggested as a rule

which retains the basic approach of the NN rule, but without imposing its

stringent storage requirements. CNN picks out points near the boundary be-

tween the classes, achieving an important reduction of the sample size while

16

maintaining the underlying distribution. It uses a 1-NN rule to iteratively de-

cide if a sample should be removed or not. Note that it is sensitive to noise

and will add noisy samples.

– AllKNN (Tomek, 1976a) differs from RENN in the fact that the number of

neighbors of the internal kNN algorithm is increased at each iteration so as

to yield a smoother decision region.

– Tomek Condensed Nearest Neighbor (TCNN) (Tomek, 1976b) removes ev-

ery pair of instances andx x of different class that form a Tomek link,

i.e. whenever there is no other sample such thatz d , < d ,(x z) (x x) or

d(x , < d ,z) (x x) (), where d · ·, is the distance measure of the problem at

hand.

– Steady-State Memetic Algorithm (SSMA) (Derrac, Garcı́a & Herrera, 2010),

which is an evolutionary prototype selection algorithm that uses a memetic

algorithm in order to perform a local search. In this case, an additional pa-

rameter sets the maximum number of iterations performed by themax it

search algorithm.

• OeSNN-PG, all controlled by parameters and , whichmin size cluster error tol

determine the minimum size of the cluster and the error tolerance before split-

ting a group, respectively:

– Self-Generating Prototypes (SGP) (Fayed, Hashem & Atiya, 2007; Oliveira,Magalhaes, Cavalcanti

, which is a centroid-based prototype

generation algorithm that uses a space splitting mechanism to generate pro-

totypes in the center of every cluster in which data can be grouped;

– Self-Generating Prototypes 2 (SGP2) (Fayed, Hashem & Atiya, 2007; Oliveira,

Magalhaes, Cavalcanti & Ren, 2012) is the second version of the SGP algo-

rithm. It has a higher generalization power, including merge and pruning

procedures; and

– Adaptive Self-Generating Prototypes (ASGP) (Fayed, Hashem & Atiya, 2007;

Oliveira, Magalhaes, Cavalcanti & Ren, 2012), which has been specially de-

signed to cope with imbalanced data sets.

We propose two different strategies for the resulting hybrid approaches, here-

after labeled as OeSNN- , whereDRT

DRT , , , , , , , .∈ {ENN RENN CNN AllKNN SSMA SGP SGP2 ASGP}

In the first strategy data reduction is carried out every time the neuron repository is

full (Algorithm 3), whereas in the second approach a drift detector notifies when

the data reduction process needs to be triggered (Algorithm 4). As will be further

explained, the first one (passive strategy) will be used for those experiments with

17

synthetic data where the drift moment is known beforehand, whereas the second

one (active strategy) will be adopted for the experiments with real data, where the

drift moment is unknown.

One of the differences between the proposed OeSNN approach (Algorithm 2)

and the approaches hybridized with DRTs schemes (Algorithms 3 and 4) is that

the neuron repository size is limited and the merging process is hence unneces-

sary. The main goal of the DRTs is to summarize the underlying characteristics of

the neuron repository over long periods of time, such that every newly included

neuron has relevant information from two perspectives: 1) timeliness, as it re-

places old neurons when the knowledge base in the neuron repository has no free

space; and 2) predictive representativeness, because the new neuron will be fused

with other neurons in the repository if it provides no further information on the

prevailing concepts along the stream. This process can be regarded as a merging

strategy of the whole neuron repository rather than a fusion between any two out-

put neurons. Furthermore, the knowledge stored in the repository becomes more

optimally assigned and hence, leads to a more suitable model design for online

learning environments.

Algorithms 3 (passive strategy) and 4 (active strategy) evince that the opera-

tion of the OeSNN-PS and OeSNN-PG variants is similar to that of the OeSNN

baseline in Algorithm 2. In essence, when the neuron repository is full DRTs are

used to summarize the content of the neuron repository (line 18 in Algorithms 3

and 4). In the case of an active strategy, a drift detector is used (lines 16 and 17)

to infer the moment at which DRTs should be applied: while no drift is detected

and the neuron repository is not full, produced output neurons are always stored in

the repository. When the repository saturates, the oldest output neuron is removed

and the new one is stored instead. When a drift is detected, a DRT is applied to the

neuron repository so as to make more room to store samples of the newly arriving

concept.

Our proposed OeSNN approach and those hybridized with DRTs schemes

(OeSNN-PS and OeSNN-PG in both passive and active operation modes schemat-

ically depicted in Figure 6) have been specially devised for online learning pur-

poses: on the one hand, windowing strategies are usually preferred for sudden

drifts, while on the other hand, instance selection strategies are instead adopted to

handle gradual drifts and reoccurring contexts (Žliobaitė, 2010). Both character-

istics have been included in the proposed approaches by using a sliding window

and neuron repository composed of prototypes.

18

START

Encode s
into time pulses

Create output neuron
i and weights wj,i

Active? Drift?

Repository
full?

DRT

No Yes

Yes

Yes

Repository
full?

No

END

Add new neuron
i to repository

No

Yes

Compute
threshold γi

Remove oldest
neuron from
repository

No

Figure 6: Schematic diagram of the proposed OeSNN-DRT schemes in both passive and active

strategies.

19

Algorithm 3: OeSNN algorithm with DRTs: passive approach

1 ialize neuron repository, Init NR = {}
2 eSNN parameter Set mod C SIM= [0 1], , = [0 1], , = [0 1],
3 t eSNN encoding parameters Se β, ,T N

4 t sliding window size Se W
5 t Se Neuron repository of size NR size
6 t current neuron repository size Se CNR size = 0
7 r dofo every sample s belonging to the class c

8 Update sliding window with sample s

9 Calculate Imax, Imin for the samples in the sliding windowW
10 Calculate Cj and Wj over the sliding window for their encoding into

firing time of multiple pre-synaptic neurons j
11 Create a new output neuron and the connection weights asi

wji = modorder j()

12 lculate Ca PSPmax i() = Σjwji ·mod
order j()

13 et threshold value G PSP γi = PSPmax i() ·C
14 i thenf CNR size NR size <
15 Add the weight vector and threshold of the new output neuron to NR

16 CNR size CNR size = + 1
17 e sel

18 Apply a DRT over the neuron repository (PS or PG)

19 Add the weight vector and threshold of the new output neuron to NR

20 Update CNR size

21 end

22 end

23 Repeat above for all target classes

20

Algorithm 2: Proposed OeSNN algorithm

1 ialize neuron repository, Init NR = {}
2 eSNN parameter Set mod C SIM= [0 1], , = [0 1], , = [0 1],
3 t eSNN encoding parameters Se β, ,T N

4 t sliding window size Se W
5 t neuron repository of size Se NR size
6 t current neuron repository size Se CNR size = 0
7 r dofo every sample s belonging to the class c

8 Update sliding window with sample s

9 Calculate Imax, Imin for the samples in the sliding windowW
10 Calculate Cj and Wj over the sliding window for encoding into firings

time of multiple pre-synaptic neurons j
11 Create a new output neuron and the connection weights asi

wji = modorder j()

12 Calculate PSPmax i() = Σjwji ·mod
order j()

13 Get threshold value PSP γi = PSPmax i() ·C
14 if min distance(Newly output neuron weight vector,Neuron repository

weight vectors in in NR)) SIM≤ then

15 Update the weight vector and threshold of the most similar neuron

wj,i =
wnew+(w j,i·M)

M+1
and γi = γnew+(γi ·M)

M+1

16 Set M M= + 1
17 e sel

18 i thenf CNR size NR size <
19 Add the weight vector and threshold of the new output neuron

to NR

20 CNR size CNR size = + 1
21 e sel

22 Remove the oldest weight vector and its threshold, and put the

new ones into NR
23 end

24 end

25 end

26 Repeat above for all target classes

21

Algorithm 4: OeSNN algorithm with DRTs: active approach

1 ialize Init DriftDetector()

2 ialize neuron repository, Init NR = {}
3 eSNN parameter Set mod C SIM= [0 1], , = [0 1], , = [0 1],
4 t eSNN encoding parameters Se β, ,T N

5 t sliding window size Se W
6 t Se Neuron repository of size NR size
7 t current neuron repository size Se CNR size = 0
8 t Se drift detection = False
9 r dofo every sample s belonging to the class c

10 Update sliding window with sample s

11 Calculate Imax, Imin for the samples in the sliding windowW
12 Calculate Cj and Wj over the sliding window for their encoding into

firing time of multiple pre-synaptic neurons j
13 Create a new output neuron and the connection weights asi

w ij = modorder j()

14 culate Cal PSPmax i() = Σjwji ·mod
order j()

15 t threshold value Ge PSP γi = PSPmax i() ·C
16 ift detection DriftDetector()dr =
17 i thenf drift detection = True
18 Apply a DRT over the neuron repository (PS or PG)

19 Add the weight vector and threshold of the new output neuron to NR

20 Update CNR size

21 Set drift detection = False
22 e sel

23 i thenf CNR size NR size <
24 Add the weight vector and threshold of the new output neuron

to NR

25 CNR size CNR size = + 1
26 e sel

27 Remove the oldest weight vector and its threshold, and insert

the new one into NR
28 end

29 end

30 end

31 Repeat above for all target classes

22

5. Computer Experiments

An extensive experimental benchmark has been designed to shed light on the

performance of the proposed schemes over synthetic and real streaming datasets.

Such experiments are divided into two main blocks:

• In the first set of experiments, the naive OeSNN approach (Algorithm 2) will

be compared to OeSNN-PS and OeSNN-PG techniques (Algorithm 3)passive

when they are applied over synthetic data sets, assuming that the drift moment

is known beforehand.

• In the second set of experiments, the naive OeSNN will be compared to active

OeSNN-PS and OeSNN-PG approaches over real data streams, where drifts are

unknown and therefore motivates the use of a drift detector.

As a result of this experimental design, we will first analyze the performance

of OeSNN-PS and OeSNN-PG approaches with synthetic data sets, and assess

their benefits during the plasticity period (i.e. shortly after the drift). The main

advantage of OeSNN-PS and OeSNN-PG is that while the neuron repository is

not full, it can accept more neurons (the latest ones) inside. But when it is full,

all the information is condensed in a reduced number of neurons (prototypes),

letting more free space to accept more neurons inside until the neuron repository

is full again. Therefore, we should expect OeSNN-PS and OeSNN-PG to react

better (faster) to sudden drifts. Next, a set of experiments with real data sets

and a drift detector are planned to confirm this benefit in a realistic setting. To

numerically quantify the predictive performance of the proposed schemes during

the stability and plasticity periods, the prequential accuracy will be measured at

three different points in time: right before the drift occurs (BD), during the drifting

period (D), and after the drift occurs (AD). The exact time ticks at which this score

is computed will be set explicitly for every dataset in the benchmark, which are

described in the following subsection.

5.1. Datasets

When working with real datasets, it is not possible to know exactly when a

drift occurs, which type of drift arises when a drift is detected, or even if there

is any drift. Consequently, it is not possible to perform a detailed analysis of the

behavior of different algorithms in the presence of concept drift by using only

real-world datasets. In order to analyze the effect of DRTs for facing concept

drift and to complement the analysis of our proposed approaches, we first use the

renowned set of synthetic datasets described in (Minku, White & Yao, 2010).

Results for 4 different problems (Minku, White & Yao, 2010) (labeled as

CIRCLE LINE SINEH SINEV, , and) will be considered, each containing one

23

drift simulated by varying among low and high severity, and low and high speed,

resulting 4 different types of drift for each data set. Severity represents the amount

of changes caused by a new concept, that is the percentage of the input space

which has its label changed after the drift is complete. Speed is the inverse of the

time taken for a new concept to completely replace the previous one. Each dataset

consists of samples (), normalized () continuous2000 t , . . . ,∈ {1 2000} 2 [0 1],
features {X1,X2} ∈ { }, and a binary target class l 1 2, . Drift appears at t = 1000
in all datasets, and the drifting period finishes at , being ,t = 1099 BD = 999
D AD= 1099, and = 1999 1 2. The number of samples that belong to class and

is always the same.

As for real drifting scenarios we resort to three different datasets. The first

two datasets are well-known in the online learning community, since they have

been used in several relevant studies of online approaches (Minku & Yao, 2012;

Bifet & Gavalda, 2007; Elwell & Polikar, 2011). The third one was published

in Kaggle1, a platform for predictive modeling and analytics competitions and

challenges. It is a brand new dataset, recently used for the first time in a work

on evolving data stream classification (Gomes, Bifet, Read, Barddal, Enembreck,Pfharinger, Holmes

. More details on these three datasets

are next provided:

• The Australian New South Wales Electricity Market (Harries & Wales, 1999;Gama

, Medas, Castillo & Rodrigues, 2004) (labeled as) containsELEC2 45 312,
instances dated from May 1996 to December 1998. Each example of the dataset

refers to a period of minutes, and has 5 fields (day of week, time stamp, NSW30
electricity demand, Vic electricity demand, and scheduled electricity transfer

between states). The class label identifies the change of the price related to a

moving average of the last 24 hours.

• The National Oceanic and Atmospheric Administration of the United States De-

partment of Commerce2 (USDC) has built a database (labeled as) withNOAA

18 154 50, daily weather measurements (years) from over weather sta-7 000,
tions all around the world. Data samples include features, such as temper-8
ature, dew point, sea level pressure, visibility, average wind speed, and other

weather related predictors alike. These variables are used to infer whether each

day was rainy or not.

• The Give Me Some Credit3 data set (labeled as) is a credit scoring datasetGMSC

1 https://www.kaggle.com
2 Available at: ftp.ncdc.noaa.gov/pub/data/gsod. Last access in March 20th, 2018.
3 Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in March 20th,

2018.

24

aimed at deciding whether a loan should be granted. This is a core decision for

banks due to the risk of unexpected expenses and future lawsuits. The dataset

comprises supervised historical data of borrowers described by fea-150 000, 10

tures.

5.2. Drift Detection

When dealing with real-world streaming data sets, the drift moment is un-

known, and a drift detector is required for those active approaches that need to

know this information as soon as possible in order to trigger their adaptation mech-

anisms. This is the case of our proposed approaches: to this aim, they have been

hybridized with the so-called Early Drift Detection Method (EDDM) (Baena-

Garcı́a, del Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-Bueno, 2006). Its

simplicity and capacity to detect repeatedly occurring concept drifts even with

very noisy data (Baena-Garcı́a, del Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-

Bueno, 2006) has motivated the selection of EDDM for the experimental bench-

mark discussed in what follows. But there is the possibility of hybridizing with

other drift detection methods in the literature.

5.3. Parameter Configuration

Parameter configuration for synthetic data sets , , andCIRCLE LINE SINEH

SINEV data sets are presented in Table 1. Empirical experiments have been car-

ried out to find the values.

W T N MOD C kβ SIM max loop min size cluster error tol
OeSNN - - - -100 20 1 5 10 0 85 0 75 0 15. . . .

OeSNN-TCNN - - - -100 20 1 5 10 0 85 0 75. . . 3

OeSNN-SSMA - - -100 20 1 5 10 0 85 0 75. . . 3 50

OeSNN-ENN - - - -100 20 1 5 10 0 85 0 75. . . 3

OeSNN-RENN - - - -100 20 1 5 10 0 85 0 75. . . 3

OeSNN-AllKNN - - - -100 20 1 5 10 0 85 0 75. . . 5

OeSNN-CNN - - - -100 20 1 5 10 0 85 0 75. . . 1

OeSNN-SGP - - -100 20 1 5 10 0 85 0 75. . . 0 2 0 3. .
OeSNN-SGP2 - - -100 20 1 5 10 0 85 0 75. . . 0 2 0 3. .
OeSNN-ASGP - - -100 20 1 5 10 0 85 0 75. . . 0 2 0 3. .

Table 1: Parameter values set for the proposed OeSNN approaches when applied over the

CIRCLE LINE SINEH SINEV, , and datasets.

In a real scenario, there is no a priori knowledge about the streaming data that

the algorithm will predict, thus we cannot assume any parameter configuration.

Given this issue, an effective yet unrealistic workaround is to isolate a representa-

tive portion of the dataset to make offline assumptions about the distribution of the

data and to assign a suitable parametric configuration through a heuristic wrapper.

25

We embrace this strategy to initialize the algorithm with a realistic configuration.

Remarkably, the recent literature has widely acknowledged that the parametric

optimization of predictive models for data streams while in operation still remains

an open research problem (Krawczyk, Minku, Gama, Stefanowski & Woźniak,

2017).

Regarding the dataset, we have used the first months (38%) of theELEC2 12

data set to tune the parameters of the algorithms, whereas the remaining months

have been used for prediction and performance assessment. A period of time48

steps that corresponds to one day was assumed to study the behavior of our ap-

proaches during the drift (D). The sliding window size was set to samples.W 96

As for the dataset we proceeded similarly: the first years () of dataNOAA 5 10%

were used for parameter tuning, whereas the following years were used for testing

purposes. A period of time steps that corresponds to two days was assumed to2

study the behavior of our approaches during the drift (D). The value of was setW
to samples. Finally, in the data set the first samples () of the25 GMSC 20000 16%

dataset were used for model configuration, and the rest for performance assess-

ment. The behavior of our approaches during the drift (D) was studied over 50

time steps. In this case, was established to samples.W 25

T N MOD C kβ SIM max loop min size cluster error tol
OeSNN - - - -20 1 5 10 0 85 0 75 0 15. . . .

OeSNN-TCNN - - - -20 1 5 10 0 85 0 75. . . 3

OeSNN-SSMA - - -20 1 5 10 0 85 0 75. . . 1 50

OeSNN-ENN - - - -20 1 5 10 0 85 0 75. . . 3

OeSNN-RENN - - - -20 1 5 10 0 85 0 75. . . 3

OeSNN-AllKNN - - - -20 1 5 10 0 85 0 75. . . 3

OeSNN-CNN - - - -20 1 5 10 0 85 0 75. . . 2

OeSNN-SGP - - -20 1 5 10 0 85 0 75. . . 0 2 0 3. .
OeSNN-SGP2 - - -20 1 5 10 0 85 0 75. . . 0 2 0 3. .
OeSNN-ASGP - - -20 1 5 10 0 85 0 75. . . 0 2 0 3. .

Table 2: Parameter values utilized for the real datasets , and .ELEC2 NOAA GMSC

Table 2 summarizes the parameter values for experiments with the real datasets.

The warning level and the drift level threshold of the EDDM detector were setα β
to and , respectively. In order to inspect the impact of the DRTs on the0 95. 0 90.
neuron repository, three storage capacities have beenNR size , ,∈ {50 100 150}
simulated for all datasets (either synthetic or real).

6. Results

This section analyzes the behavior of the proposed OeSNN when hybridized

with DRTs schemes (OeSNN-PS and OeSNN-PG), in which PS and PG data re-

26

duction techniques are applied respectively to the neuron repository. The analysis

focuses not only on the accuracy of the approaches during the stability (BD and

AD) and plasticity periods (D), but also on the data reduction percentage they

achieve.

6.1. Impact of the Neuron Repository with Synthetic Data

To begin with, Table 3 shows the prequential accuracies of the naive OeSNN

(i.e. the OeSNN without DRTs that has been detailed in Algorithm 2) when the

neuron repository has a storage capacity of , , and , measured at points50 100 150

BD, D, and AD for all synthetic datasets. The table is complemented by Figure 7,

which exemplifies the occupancy level of the neuron repository along the stream.

Little variations of the occupancy correspond to those time instants at which the

incoming sample is found to be similar to another one in the neuron repository,

thus triggering the merging process. As evinced in this plot, this procedure oc-

curs frequently depending on the parameter. However, the main drawbackSIM

is that this process only involves two neurons at every time, so there is no real

contribution of this merging process to the optimized management of the neuron

repository that stream processing clearly demands.

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0 884 0 889 0 888 0 790 0 750 0 760 0 851 0 880 0 873 0 884 0 889 0 888 0 940 0 960 0 950 0 876 0 909 0 904. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
LINE 0 926 0 935 0 948 0 900 0 910 0 880 0 932 0 950 0 948 0 926 0 935 0 948 0 890 0 940 0 960 0 912 0 922 0 930. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
SINE 0 907 0 928 0 942 0 880 0 900 0 880 0 921 0 950 0 944 0 907 0 928 0 942 0 940 0 990 0 970 0 929 0 937 0 936. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
SINEH 0 792 0 811 0 827 0 760 0 770 0 670 0 753 0 795 0 794 0 792 0 811 0 827 0 840 0 840 0 830 0 736 0 781 0 797. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0 884 0 889 0 888 0 810 0 730 0 740 0 831 0 845 0 834 0 884 0 889 0 888 0 880 0 890 0 910 0 791 0 834 0 823. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
LINE 0 930 0 940 0 949 0 850 0 690 0 650 0 912 0 901 0 893 0 930 0 940 0 949 0 890 0 940 0 950 0 879 0 882 0 866. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
SINE 0 927 0 947 0 956 0 820 0 680 0 610 0 917 0 918 0 880 0 927 0 947 0 956 0 890 0 910 0 920 0 878 0 884 0 865. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .
SINEH 0 792 0 811 0 827 0 670 0 460 0 460 0 773 0 766 0 744 0 792 0 811 0 827 0 830 0 840 0 840 0 699 0 738 0 757. / . / . . / . / . . / . / . . / . / . . / . / . . / . / .

Table 3: Prequential accuracies of the proposed naive OeSNN model with neuron repository sizes

50 100 150, , and for , , and datasets.CIRCLE LINE SINEH SINEV

27

Figure 7: Evolution of the occupancy of the neuron repository for the proposed OeSNN in the

CIRCLE dataset under low severity and high speed conditions. The averaged occupancy is 98 08%.

(neurons), (neurons), and (neurons).50 96 56%. 100 94 57%. 150

We now turn the focus on the OeSNN incorporating DTRs in a passive strat-

egy. Tables 4 and 5 summarize the results obtained for the proposed model hy-

bridized with selective data reduction techniques (OeSNN-PS): OeSNN-TCNN,

OeSNN-SSMA and OeSNN-ENN (Table 4), and OeSNN-RENN, OeSNN-AllKNN

and OeSNN-CNN (Table 5) when the neuron repository has a storage capacity

of , , and neurons, measured in the points BD, D, and AD over syn-50 100 150

thetic datasets. Figure 8 depicts the evolution of the repository occupancy over

the stream for all the aforementioned OeSNN schemes. Finally, the same set of

results are shown in Table 6 and Figure 9 for OeSNNs based on generative data

reduction techniques (OeSNN-PG).

28

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.848 0.848 0.870 0.940 0.845/ . / . . / / . / . /0 882 0 895 0 780 0.770 0.894 0 857 0 885 0.915 / . / .0 882 0 895 / / .0 940 / . /0 916 0.922

LINE 0.911 0.910 0.927 0.925 0.911 0.910 0.888 0.910 0.913/ . / . / /0 932 0 946 0.920 0.930 0.900 / / / . / . /0 932 0 946 0.920 / .0 960 / /
SINE 0.892 0.888 0.915 0.901 0.892 0.940 0.893 0.910 0.921/ . / . / . / .0 933 0 938 0.900 0 900 0 870 / / / . / . . /0 933 0 938 0 940 / .0 960 / /
SINEH 0.764 0.720 0.740 0.764 0.780/ . / .0 802 0 836 / / . / . / .0.710 0 751 0 801 0 797 / . / .0 802 0 836 / / . . / /0.850 0 850 0 746 0.811 0.810

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.848 0.777 0.780 0.769 0.848 0.764 0.772 0.752/ . / . / / .0 882 0 895 0.840 0.750 0 730 / / / . / . . / / .0 882 0 895 0 890 0.920 0 900 / /
LINE 0 932 0 937 0 951 0 932 0 937 0 951 0 950. / . / . 0.650 0.620 0.610 0.755 0.709 0.697/ / / / . / . / . 0.910/ /0.910 . 0.780 0.759 0.748/ /
SINE 0 922 0 943 0 922 0 943 0 920 0 920. / . / / / / /0.942 0.680 0.630 0.630 0.710 0.707 0.701 . / . / /0.942 0.910 . / . 0.779 0.763 0.748/ /
SINEH 0.764 0.560 0.440 0.664 0.658 0.656 0.764 0.760 0.661 0.653 0.617/ . / .0 802 0 836 / . /0 460 / / / . / .0 802 0 836 / . / .0 840 0 840 / /

(a) OeSNN-TCNN

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.832 0.861 0.770 0.803 0.836 0.812 0.864 0.890 0.890 0.824 0.879/ /0.888 / /0.780 0.850 / /0.888 / /0.882 / /0.960 / /0.895

LINE 0.902 0.922 0.889 0.932 0.932 0.898 0.918 0.932 0.860 0.870 0.910 0.866 0.900 0.912/ / / /0.944 0.890 0.900 0.890 / / / / / / / /
SINE 0.886 0.904 0.917 0.840 0.860 0.892 0.922 0.924 0.870 0.904 0.916 0.880 0.950 0.940 0.871 0.909/ / / /0.870 / / / / / / / /0.928

SINEH 0.768 0.778 0.795 0.727 0.753 0.770 0.789 0.760 0.810 0.747 0.759/ / 0.770 0.800 0.710/ / / /0.785 0.785 / / / / /0.840 0.727 /
High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.817 0.870 0.750 0.785 0.819 0.828 0.866 0.872 0.890 0.740 0.772/ /0.898 / /0.770 0.740 / /0.833 / / 0.870 0.880/ / / /0.813

LINE 0.890 0.919 0.927 0.874 0.886 0.912 0.929 0.840 0.880 0.910 0.828/ / 0.840 0.800 0.870/ / /0.915/0.916 / / / / / /0.876 0.880

SINE 0.875 0.914 0.930 0.872 0.873 0.918 0.931 0.870 0.890 0.900 0.858 0.861/ / 0.830 0.780 0.810/ / / /0.910 0.912 / / / / / /0.891

SINEH 0.731 0.766 0.784 0.724 0.743 0.766 0.784 0.700 0.670 0.709 0.716/ / 0.750 0.710 0.660/ / / /0.776 0.773 / / / /0.840 0.830 / /

(b) OeSNN-SSMA

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.727 0.839 0.848 0.700 0.710 0.850 0.727 0.839 0.848 0.700 0.850 0.910 0.716 0.870 0.889/ / / /0.780 0.780 / / .0 871 / / / / / /
LINE 0.890 0.903 0.891 0.904 0.890 0.900 0.891 0.901 0.901/ / . . / . /0.943 0 938 0 900 0 900 0.910 / / / / . / . /0.943 0 938 0.910 0 940 / /
SINE 0.859 0.908 0.840 0.880 0.837 0.881 0.907 0.859 0.908 0.900 0.900 0.950 0.850 0.882 0.914/ / .0 932 / /0.910 / / / / .0 932 / / / /
SINEH 0.724 0.784 0.807 0.650 0.740 0.691 0.749 0.735 0.724 0.784 0.807 0.750 0.790 0.810 0.723 0.751/ / / /0.720 / / / / / / / . /0 775

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.727 0.839 0.848 0.630 0.677 0.717 0.713 0.727 0.839 0.848 0.740 0.830 0.880 0.672 0.711 0.717/ / / . / .0 730 0 730 / / / / / / / /
LINE 0.884 0.660 0.640 0.630 0.656 0.652 0.659 0.884 0.850 0.840 0.920 0.698 0.696 0.718/ . / .0 930 0 941 / / / / / . / .0 930 0 941 / / / /
SINE 0.885 0.907 0.922 0.630 0.640 0.672 0.666 0.658 0.885 0.907 0.922 0.890 0.900 0.736 0.739 0.736/ / / /0.640 / / / / 0 880. / / / /
SINEH 0.724 0.784 0.807 0.400 0.350 0.350 0.400 0.410 0.380 0.724 0.784 0.807 0.760 0.770 0.790 0.475 0.493 0.474/ / / / / / / / / / / /

(c) OeSNN-ENN

Table 4: Prequential accuracies obtained by (a) OeSNN-TCNN, (b) OeSNN-SSMA and (c)

OeSNN-ENN working with repository sizes of , , and neurons over the , ,50 100 150 CIRCLE LINE

SINEH SINEVand datasets. Prequential accuracies in bold denote an improvement greater than

0 01. in comparison with the traditional OeSNN for the same scenario setup. On the contrary,

prequential accuracies in italics are declared to be worse than the traditional OeSNN if they are at

least below the prequential accuracies scored by the latter. Prequential accuracies in regular0 01.

text stand for performance gaps less than 0.01 in absolute value.

29

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.723 0.825 0.833 0.690 0.718 0.842 0.723 0.825 0.833 0.720 0.840 0.880 0.727 0.851 0.881/ / / /0.770 0.810 / / .0 876 / / / / / /
LINE 0.869 0.780 0.835 0.891 0.916 0.869 0.910 0.847 0.901/ . / .0 943 0 941 / . /0 900 0.910 / / / . / . / . /0 943 0 941 0.910 0 940 / / .0 926

SINE 0.859 0.908 0.924 0.840 0.880 0.837 0.881 0.894 0.859 0.908 0.924 0.900 0.900 0.930 0.850 0.882 0.907/ / / / .0 890 / / / / / / / /
SINEH 0.724 0.783 0.806 0.650 0.740 0.691 0.749 0.736 0.724 0.783 0.806 0.750 0.790 0.810 0.723 0.752/ / / /0.720 / / / / / / / . /0 772

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.723 0.825 0.833 0.640 0.681 0.734 0.736 0.723 0.825 0.833 0.740 0.830 0.860 0.669 0.724 0.730/ / / / .0.750 0 750 / / / / / / / /
LINE 0.884 0.660 0.640 0.630 0.656 0.652 0.659 0.884 0.850 0.840 0.920 0.698 0.696 0.718/ . / .0 930 0 940 / / / / / . / .0 930 0 940 / / / /
SINE 0.885 0.907 0.919 0.630 0.640 0.672 0.666 0.659 0.885 0.907 0.919 0.890 0.900 0.736 0.739 0.735/ / / /0.640 / / / / 0 880. / / / /
SINEH 0.724 0.783 0.806 0.400 0.350 0.350 0.400 0.407 0.380 0.724 0.783 0.806 0.760 0.770 0.790 0.475 0.491 0.474/ / / / / / / / / / / /

(a) OeSNN-RENN

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.794 0.828 0.852 0.770 0.747 0.856 0.794 0.828 0.852 0.770 0.830 0.880 0.803 0.850 0.886/ / / /0.800 0.820 / / .0 876 / / / / / /
LINE 0.870 0.894 0.929 0.880 0.860 0.860 0.882 0.891 0.911 0.870 0.894 0.929 0.890 0.900 0.855 0.874 0.892/ / / / / / / / 0 880. / / / /
SINE 0.879 0.906 0.918 0.780 0.840 0.839 0.873 0.904 0.879 0.906 0.918 0.900 0.950 0.847 0.890 0.915/ / / / .0 880 / / / / 0 930. / / / /
SINEH 0.719 0.793 0.790 0.660 0.638 0.728 0.719 0.793 0.790 0.730 0.800 0.810 0.657 0.757/ / / . / .0 780 0 680 / . /0 785 / / / / / /0.801

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.794 0.828 0.852 0.730 0.649 0.781 0.787 0.794 0.828 0.852 0.800 0.820 0.860 0.655 0.743 0.763/ / / /0.800 0.780 / / / / / / / /
LINE 0 922 0 930 0 940 0 650 0 922 0 930 0 940. / . / . 0.700 0.640/ / . 0.809 0.782 0.779/ / . / . / . 0.870 0.900 0.910 0.845 0.811 0.805/ / / /
SINE 0.849 0.906 0.918 0.710 0.660 0.783 0.800 0.782 0.849 0.906 0.918 0.810 0.880 0.890 0.825 0.808 0.816/ / / /0.660 / / / / / / / /
SINEH 0.719 0.793 0.790 0.460 0.440 0.488 0.600 0.613 0.719 0.793 0.790 0.720 0.820 0.810 0.565 0.617 0.615/ / / /0.500 / / / / / / / /

(b) OeSNN-AllKNN

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.795 0.841 0.840 0.740 0.807 0.823 0.810 0.837 0.846 0.862 0.890 0.870 0.825 0.840 0.826/ / / /0.770 0.750 / / / / 0.930/ / / /
LINE 0.903 0.924 0.860 0.860 0.913 0.909 0.860 0.880 0.910 0.851 0.871 0.879/ /0.938 / /0.910 / / / /0.937 0.916 0.929 0.945 / / / /
SINE 0.889 0.916 0.928 0.840 0.860 0.860 0.902 0.918 0.908 0.870 0.902 0.927 0.900 0.960 0.887 0.916 0.907/ / / / / / / / / /0.960 / /
SINEH 0.734 0.772 0.804 0.680 0.750 0.762 0.709 0.756 0.782 0.780 0.730 0.712 0.727 0.740/ / 0.770/ / /0.720 0.744 / / / / /0.830 / /

High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.847 0.841 0.848 0.730 0.670 0.680 0.776 0.758 0.760 0.861 0.846 0.849 0.850 0.790 0.780 0.759 0.745 0.731/ / / / / / / / / / / /
LINE 0.891 0.911 0.927 0.750 0.863 0.829 0.818 0.899 0.922 0.925 0.920 0.850 0.795 0.801 0.804/ / / /0.730 0.700 / / / / 0.910/ / / /
SINE 0.856 0.913 0.931 0.750 0.841 0.853 0.852 0.884 0.908 0.923 0.840 0.799 0.762/0.793/ / / /0.740 0.700 / / / / / /0.900 0.920 /
SINEH 0.726 0.773 0.809 0.550 0.676 0.693 0.688 0.733 0.787 0.793 0.690 0.780 0.820 0.651 0.662 0.631/ / / /0.540 0.560 / / / / / / / /

(c) OeSNN-CNN

Table 5: Prequential accuracies obtained by (a) OeSNN-RENN, (b) OeSNN-AllKNN and (c)

OeSNN-CNN working with repository sizes of , , and neurons over the , ,50 100 150 CIRCLE LINE

SINEH SINEVand datasets. The same notational criteria hold in terms of statistical significance

between these schemes and the naive OeSNN scheme.

30

(a) OeSNN-AllKNN: (b) OeSNN-CNN: 98 47% 97 19% 95 96%. , . , . 69 93% 67 60% 64 71%. , . , .

(c) OeSNN-ENN: (d) OeSNN-RENN: 98 60% 97 32% 96 08%. , . , . 98 57% 97 26% 95 99%. , . , .

(e) OeSNN-SSMA: (f) OeSNN-TCNN: 55 83% 54 97% 53 40%. , . , . 98 64% 97 39% 96 16%. , . , .

Figure 8: Evolution of the occupancy of the neuron repository for the OeSNN-PS approaches in the

CIRCLE dataset under high severity and high speed conditions. Three percentages are displayed

for every technique, corresponding to the occupancy (in %) for repository sizes equal to ,50 100

and neurons.150

31

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.860 0.876 0.859 0.750 0.823 0.855 0.859 0.860 0.876 0.860 0.920 0.843 0.878 0.888/ / / /0.810 0.760 / / / /0.882 / /0.950 / /
LINE 0.918 0.928 0.910 0.940 0.920 0.927 0.943 0.951 0.918 0.928 0.880 0.916 0.923/ /0.932 / / / / / /0.932 / / /0.900 0.910 0.899 /
SINE 0.911 0.922 0.910 0.890 0.923 0.934 0.911 0.922 0.950 0.933/ /0.918 / /0.850 / /0.930 / /0.918 / / / /0.960 0.950 0.917 0.923

SINEH 0.766 0.780 0.785 0.766 0.766 0.780 0.785 0.800 0.757 0.762/ / 0.760 0.770 0.760 0.754/ / / /0.787 / / 0.830/ / /0.830 0.742 /
High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.860 0.876 0.770 0.800 0.812 0.820 0.860 0.876 0.850 0.870 0.860 0.754 0.797 0.799/ /0.882 / /0.750 0.740 / / / /0.882 / / / /
LINE 0.925 0.850 0.770 0.912 0.904 0.925 0.870/ / /0.924 0.929 0.820 / 0.897/ / / / / / / /0.924 0.929 0.870 0.880 0.870 0.858 0.859

SINE 0.900 0.916 0.928 0.900 0.916 0.928 0.890/ / 0.880 0.810 0.760 0.912 0.911 0.912/ / / / / / 0.890 0.900/ / 0.873 0.878 0.883/ /
SINEH 0.766 0.780 0.785 0.741 0.766 0.780 0.785 0.770 0.712 0.734/ / 0.690 0.710 0.690/ / / /0.960 0.767 / / 0.850/ / /0.830 0.707 /

(a) OeSNN-SGP, OeSNN-SGP2

Low drift severity, high drift speed Low drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.860 0.876 0.750 0.822 0.855 0.859 0.860 0.876 0.870 0.920 0.834 0.878 0.888/ /0.882 / /0.810 0.760 / / / /0.882 / /0.950 / /
LINE 0.918 0.928 0.910 0.940 0.920 0.927 0.943 0.951 0.918 0.928 0.880 0.916 0.923/ /0.932 / / / / / /0.932 / / /0.900 0.910 0.889 /
SINE 0.911 0.922 0.910 0.890 0.923 0.934 0.911 0.922 0.950 0.933/ /0.918 / /0.850 / /0.930 / /0.918 / / / /0.960 0.950 0.917 0.923

SINEH 0.766 0.780 0.785 0.766 0.766 0.780 0.785 0.800 0.757 0.762/ / 0.760 0.770 0.760 0.754/ / / /0.787 / / 0.830/ / /0.830 0.742 /
High drift severity, high drift speed High drift severity, low drift speed

BD D AD BD D AD

CIRCLE 0.860 0.876 0.770 0.807 0.821 0.823 0.860 0.876 0.860 0.870 0.860 0.752 0.780 0.798/ /0.882 / /0.750 0.740 / / / /0.882 / / / /
LINE 0.925 0.850 0.770 0.912 0.904 0.925 0.870/ / /0.924 0.929 0.820 / 0.897/ / / / / / / /0.924 0.929 0.870 0.880 0.870 0.858 0.859

SINE 0.900 0.916 0.928 0.900 0.916 0.928 0.890/ / 0.880 0.810 0.760 0.912 0.911 0.912/ / / / / / 0.890 0.900/ / 0.873 0.878 0.883/ /
SINEH 0.766 0.780 0.785 0.741 0.766 0.780 0.785 0.770 0.712 0.734/ / 0.690 0.710 0.690/ / / /0.760 0.767 / / 0.850/ / /0.830 0.707 /

(b) OeSNN-ASGP

Table 6: Prequential accuracies of the (a) OeSNN-SGP/OeSNN-SGP2 and (b) OeSNN-ASGP

approach working with the neuron repository sizes of , , and respectively for ,50 100 150 CIRCLE

LINE SINEH SINEV, and data sets. Where prequential accuracies are in bold, there is a notable

improvement in comparison with the traditional OeSNN, whereas prequential accuracies in italics

are worse than the traditional OeSNN. When prequential accuracies are in regular text means that

there is no significant difference.

32

Figure 9: Averaged neuron repository occupancies (, ,) of the all OeSNN-52 64%. 50 85%. 50 01%.

PG approaches for the sizes , , and respectively with the CircleG data set under high50 100 150

severity and high speed conditions.

6.2. Impact of the Neuron Repository with Real Data

Once OeSNN-PS and OeSNN-PG approaches have been simulated with syn-

thetic datasets, a second set of experiments has been performed with real datasets.

The OeSNN-DRT hybridized with a drift detector (Algorithm 4) has been used in

these simulations to be compared with the naive version of the proposed OeSNN

because no a priori information about the drift moments is known. The drift de-

tector serves as an active strategy to notify when it is necessary to trigger the DRT

at hand. In this second experimental benchmark, averaged prequential accuracy

scores for all cases (OeSNN, active OeSNN-PS and active OeSNN-PG) are jointly

summarized in Table 7 for all real datasets, repository sizes (, , and neu-50 100 150

rons), and measured at points BD, D, and AD. Statistics during the same periods

for the drift detector are also provided. The averaged prequential accuracies have

been calculated over all BD, D, and AD periods that occur in all drift detections.

33

BD D AD # drifts

OeSNN approach

OeSNN

ELEC2 0 817 0 808 0 806 0 802 0 793 0 784 0 810 0 802 0 796. / . / . . / . / . . / . / . n.a.

NOAA 0 700 0 675 0 685 0 692 0 640 0 674 0 702 0 630 0 673. / . / . . / . / . . / . / . n.a.

GMSC 0 907 0 919 0 908 0 901 0 916 0 898 0 912 0 923 0 905. / . / . . / . / . . / . / . n.a.

Active OeSNN-PS approaches

OeSNN-TCNN

ELEC2 0 827 0 806 0 801 0 792 0 802 13 117 23. / . / . 0.822/ . / /0.763 0.834 . /0.776 / /
NOAA 0 697 0 692 50 61 12. / /0.689 . 0.604 0.623 0.669 0.646/ /0.689 / /0.686 / /
GMSC 0.907 0.911 0.907 0.908 0.906 0.906/ / 0.888/ / 0.896 0.912/ / 44 33 50/ /

OeSNN-SSMA

ELEC2 0.819 0.807 0.807 0.792 0.804 0.800 0.802 0.810 0.805/ / / / / / 5 106 66/ /
NOAA 0.684 0.647 0.567 0.652 0.540/ /0.706 0.675 / /0.715 / / / /0.705 85 4 22

GMSC 0.902 0.917 0.908 0.891 0.932 0.896 0.921 0.907/ / / / 0.889/ / 45 7 19/ /

OeSNN-ENN

ELEC2 0 817 0 804 0 800 0 800 0 784 0 774 0 805 0 801 0 792 106 111 99. / . / . . / . / . . / . / . / /
NOAA 0 697 0 695 0 705 56 17 57. / /0.699 . 0.679 0.646/ /0.710 . / /0.726 0.687 / /
GMSC 0.908 0.913 0.915 0.907 0.919 0.918 0.913 0.923 0.923/ / / / / / 51 49 47/ /

OeSNN-RENN

ELEC2 0 811 0 804 0 804 0 784 0 788 0 801 0 800 5 111 100. / . / . 0.740/ . / . 0.768/ . / . / /
NOAA 0 693 0 684 0 681 56 71 15. / . / . 0.659 0.583 0.639 0.621/ /0.664 / /0.675 / /
GMSC 0.908 0.913 0.915 0.907 0.923 0.912 0.913 0.924 0.921/ / / / / / 51 49 46/ /

OeSNN-AllKNN

ELEC2 0 815 0 811 0 802 0 792 0 784 0 785 0 808 0 801 0 803 106 100 126. / . / . . / . / . . / . / . / /
NOAA 0.719 0.696 0.728 0.783 0.674 0.669 0.742 0.704 0.716/ / / / / / 12 19 8/ /
GMSC 0.908 0.912 0.914 0.911 0.921 0.925 0.912 0.919 0.925/ / / / / / 51 46 45/ /

OeSNN-CNN

ELEC2 0.816 0.806/0.800 0.798 0.791 0.787 0.806 0.814 0.802/ / / / / 60 26 114/ /
NOAA 0.684 0.571 0.650 0.642/ / / /0.763 0.716 0.702 0.919 / /0.951 55 1 3/ /
GMSC 0.915 0.911 0.915/ / /0.865 0.846 / / / / /0.841 0.845 0.886 0.820 5 6 21

Active OeSNN-PG approaches

OeSNN-SGP

ELEC2 0.817 0.813 0.813 0.815 0.807 0.809 0.814 0.810 0.811/ / / / / / 112 113 104/ /
NOAA 0.695 0.674 0.683 0.739 0.720 0.698 0.623 0.698/ / 0.657/ / / / 51 21 28/ /
GMSC 0.911 0.920 0.908 0.914 0.931 0.911 0.913 0.935 0.912/ / / / / / 45 6 30/ /

OeSNN-SGP2

ELEC2 0.819 0.811 0.810 0.815 0.805 0.802 0.819 0.810 0.812/ / / / / / 113 112 98/ /
NOAA 0.695 0.682 0.688 0.662 0.754 0.698 0.680 0.741/ / 0.657/ / / / 51 59 39/ /
GMSC 0.911 0.920 0.908 0.914 0.931 0.911 0.916 0.935 0.912/ / / / / / 45 6 30/ /

OeSNN-ASGP

ELEC2 0.816 0.812 0.805 0.811 0.806 0.797 0.815 0.809 0.802/ / / / / / 117 117 52/ /
NOAA 0.697 0.678 0.687 0.713 0.638 0.693 0.696 0.658 0.686/ / / / / / 48 38 69/ /
GMSC 0.912/ / / / / / / /0.904 0.896 0.875 0.893 0.873 0.882 0.880 0.880 18 13 7

Table 7: Averaged prequential accuracies and number of detected drifts of the OeSNN-DRT ap-

proaches working with the neuron repository sizes , , and for the real data sets. Where50 100 150

prequential accuracies are in bold, there is a notable improvement in comparison with the tradi-

tional OeSNN, whereas prequential accuracies in italics are worse than the traditional OeSNN.

When prequential accuracies are in regular text means that there is no significant difference.

6.3. Comparison to Other Methods

In Table 8 a comparison with some of the most recent and well-known online

learning methods in the presence of concept drift is presented, namely, Hoeffd-

ing Trees or also known as Very Fast Decision Trees (HTs, (Domingos & Hul-ten, 2000)

), Random Forests (RFs, (Breiman, 2001)), and Hoeffding Naive Bayes

Tree ensembles (HNBTs, (Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger,

Holmes & Abdessalem, 2017b)). Active implementations of some of the above

detectors are also included in the paper, encompassing drift detectors such as

DDM (Gama, Medas, Castillo & Rodrigues, 2004), EDDM (Baena-Garcı́a, del

34

Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-Bueno, 2006), ADWIN (Bifet& Gavalda, 2007)

or EDIST2 (Khamassi, Sayed-Mouchaweh, Hammami & Gh édira,

2015). For the sake of fairness and comparability the table only reports experi-

mental results of schemes published in the literature by other authors. Unfortu-

nately, to the best of our knowledge no prior work for dataset has beenNOAA

carried out under similar conditions and evaluation criteria, hence this dataset has

not been considered in this last experimental phase.

TECHNIQUES TYPE ELEC2 GMSC

OeSNN-DRT approaches

OeSNN-TCNN Single 0 822 0 792 0 763 0 888 0 908 0 906. / . / . . / . / .
OeSNN-SSMA Single 0 792 0 804 0 800 0 891 0 932 0 896. / . / . . / . / .
OeSNN-ENN Single 0 800 0 784 0 774 0 907 0 919 0 918. / . / . . / . / .
OeSNN-RENN Single 0 740 0 784 0 788 0 907 0 923 0 912. / . / . . / . / .
OeSNN-AllKNN Single 0 792 0 784 0 785 0 911 0 921 0 925. / . / . . / . / .
OeSNN-CNN Single 0 798 0 791 0 787 0 846 0 915 0 841. / . / . . / . / .
OeSNN-SGP Single 0 815 0 807 0 809 0 914 0 931 0 911. / . / . . / . / .
OeSNN-SGP2 Single 0 815 0 805 0 802 0 914 0 931 0 911. / . / . . / . / .
OeSNN-ASGP Single 0 811 0 806 0 797 0 875 0 893 0 873. / . / . . / . / .

(Khamassi & Sayed-Mouchaweh, 2017)

HTs ensemble + EDIST2 Ensemble () -10 0 848.
(Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger, Holmes & Abdessalem, 2017b)

Adaptive RFs Ensemble ()100 0 885 0 935. .
Online Bagging (HNBTs) Ensemble ()100 0 825 0 935. .
Online Accuracy Updated Ensemble (HNBTs) Ensemble ()100 0 863 0 935. .
Online Boosting (HNBTs) Ensemble ()100 0 901 0 926. .
Online Smooth-boost (HNBTs) Ensemble ()100 0 875 0 925. .
Leveraging Bagging (HNBTs) Ensemble ()100 0 885 0 935. .

Table 8: Comparison during the drifting phase of the average prequential accuracies of OeSNN-

DRTs and some of the most relevant ensemble based techniques in the literature. The same eval-

uation criteria was used in all works: a online scheme and average of prequentialtest-then-train

accuracies during the drifting phase as the performance metric.

A first look at the results in this table reveals that the performance of several

OeSNN-DRT approaches occurs to be very competitive with respect to the state

of the art, above all after considering that our OeSNN-DRT approaches are based

on a single model and the rest are based on ensemble models composed of 10

(Khamassi & Sayed-Mouchaweh, 2017) or (Gomes, Bifet, Read, Barddal,100

Enembreck, Pfharinger, Holmes & Abdessalem, 2017b) base learners. Neverthe-

less, next Section will elaborate on this comparison in depth.

7. Discussion

A first look in Figures 8 and 9 reveals that DRTs are able to retain the knowl-

edge with a reduced number of output neurons, but not all DRTs achieve a good

classification performance and a relevant data reduction percentage at the same

35

time. This is a key point in online learning scenarios where the storage capacity

is limited.

We start the discussion by analyzing the results of the synthetic data, which

are presented in Tables 3 to 6. The obtained scores for OeSNN-PS show that

in general, OeSNN-TCNN, OeSNN-ENN, OeSNN-RENN and OeSNN-AllKNN

render a degraded performance when compared to the naive OeSNN approach.

Some exceptions deserve further attention at this point: the OeSNN-TCNN ap-

proach has a general better classification performance in the plasticity period D,

mostly in those datasets with low severity and high speed. Similarly, OeSNN-

ENN and OeSNN-RENN yield a better performance in the plasticity period D in

datasets with low severity and high speed when the size of the repository is large

(neurons). The OeSNN-AllKNN approach performs best in the plasticity pe-150

riod D over datasets with high severity and high speed, again for large repository

sizes. This interesting result advocates for one of our postulated hypothesis: the

larger the neuron repository is, the more important an optimized management of

its contents is in an online learning setup; this fact becomes even more noticeable

when the drift imprints deep changes on the stream data (high severity, high speed

drifts), as the repository needs to be refreshed quickly so as to grasp and learn the

newly evolving concept.

On the contrary, OeSNN-SSMA and OeSNN-CNN (those with higher data

reduction percentages) offer further performance improvements in other periods

over the simulated streams. OeSNN-SSMA has in general better classification

performance in 1) the plasticity period D in datasets characterized by fast drifts,

and 2) in the stable period AD for datasets with high severity and high speed.

Besides, for stable periods BD and AD in many other cases, OeSNN-SSMA out-

performs the proposed OeSNN, remarkably when the size of the repository is the

largest one (). On the other hand, the OeSNN-CNN approach produces in gen-150

eral better accuracy scores in the plasticity period D over datasets with high speed,

and occasionally outperforms the naive OeSNN in other specific conditions. But

it is the OeSNN-SMMA technique which provides better prequential accuracies

and a more efficient use of the neuron repository capacity (more data reduction

percentage) at the same time. Unfortunately, this comes along with a computation

penalty, since the SMMA encompasses a heuristic search demanding for memory

and processing resources that could eventually clash with stringent computational

constraints of the online problem in question.

Regarding OeSNN-PG approaches whose results are compiled in Table 6,

OeSNN-SGP and OeSNN-SGP2 approaches rendered the same results and show

a general better classification performance than the OeSNN approach in the plas-

ticity period D for high speed datasets. They were found to be also competitive

36

in low speed datasets, even in stable periods. The OeSNN-ASGP approach has

similar results than OeSNN-SGP and OeSNN-SGP2, but it performs better in the

CIRCLE data set for low severity and high speed drifts in the stable period BD

when the size of the neuron repository is . It also shows a general better classi-150

fication performance than the OeSNN approach in the plasticity period D for high

speed data sets, and it is also a competitive technique in the low speed data sets,

even in stable periods.

Once analyzed the impact of applying DRTs to OeSNN, we proceed by analyz-

ing the set of experiments with real datasets leveraging the use of a drift detector

to trigger the application of the data reduction technique. Regarding OeSNN-

PS approaches, in Table 7 one can observe that OeSNN-TCNN, OeSNN-ENN,

and OeSNN-RENN perform competitively in the stability and plasticity periods

for several datasets. However, OeSNN-SSMA, OeSNN-AllKNN and OeSNN-

CNN are the approaches rendering the best overall accuracy scores, with OeSNN-

AllKNN dominating all OeSNN-PS techniques specially in the andNOAA GMSC

datasets. As for OeSNN-PG approaches, Table 7 elucidates that the three ap-

proaches under this category perform better than the naive OeSNN in a wider

spectrum of datasets and regions than their OeSNN-PS counterparts. Nonethe-

less, OeSNN-SGP and OeSNN-SGP2 are the techniques producing better results

in all real datasets.

All in all, from the above experiments insightful conclusions can be drawn:

OeSNN-SMMA, OeSNN-CNN, and all OeSNN-PG approaches (OeSNN-SGP,

OeSNN-SGP2, and OeSNN-ASGP) achieve very high data reduction ratios and a

competitive classification performance in comparison with the naive OeSNN ap-

proach in plasticity periods (D). They allow for more space for newly produced

output neurons to enter the repository, thus favoring a quicker adaptation to the

drift. Besides, these approaches decrease the processing time when the newly out-

put neuron is compared to the rest of the neurons in the repository in the training

phase: the less neurons in the repository, the less the number of pairwise com-

parisons will be needed to find the most similar neuron (parameter for theSIM

merging process), and ultimately the less processing time and less storing space

will be required. Interestingly, OeSNN-PG approaches have revealed themselves

as the most suitable models to be applied right after a drift occurs.

Finally, the results in Section 6.3 certify that OeSNN-DRT schemes perform

very competitively in comparison with other methods from the state of the art,

getting comparable accuracy scores to avant-garde schemes over the andELEC2

GMSC datasets. At this point the reader should not overlook the fact that most

online learning methods are based on ensemble classifiers rather than single mod-

els. Ensemble classifier models are widely acknowledged to be more accurate

37

due to their robustness to error variance. Furthermore, they are more flexible to

assimilate new available data into their learning algorithm, and they provide more

straightforward mechanisms to forget irrelevant knowledge once a drift has been

detected (e.g. by simply discarding the oldest classifier from the ensemble). In

contrast, single model approaches generally trade lower accuracy results for a re-

duced computational cost, reason for which they are often regarded as an attractive

solution for massive data streams (Ditzler, Roveri, Alippi & Polikar, 2015). Bear-

ing the previous observations and considering key performance factors such as the

size of the window or the number of base learners utilized in the compared ensem-

bles (in the case of HTs ensemble + EDIST2 (Khamassi & Sayed-Mouchaweh,2017)10

or in the case of ARFs and HNBTs approaches in (Gomes, Bifet, Read,100

Barddal, Enembreck, Pfharinger, Holmes & Abdessalem, 2017b)), we conclude

that OeSNN-DRTs are along with the state of the art related to online learning

and concept drift in terms of accuracy and computational efficiency (since, as al-

ready argued in the introduction, single classifiers are considered more suitable for

online scenarios with stringent timing constraints that jeopardize the adoption of

ensemble-based approaches). This statement stimulates further research around

different extensions of the proposed family of online classifiers, as will be next

outlined.

8. Conclusions and Future Research Lines

This work has presented a portfolio of new adaptations of evolving Spik-

ing Neural Networks (eSNNs) for online learning scenarios under concept drift.

Firstly, we have adapted the traditional eSNN technique to be used on online data

streams by limiting the size of the neuron repository, yielding the so-called Online

eSNN (OeSNN). Secondly, we have embraced the use of selective and generative

data reduction techniques (DRTs) to optimize the contents of the neuron reposi-

tory so as to achieve a better adaptability of the model to changing concepts over

the processed data stream. Both passive and active strategies have been defined to

incorporate DRTs into the OeSNN learning procedure: the active comprises a drift

detector that detects changes along the data stream and triggers the application

of the DRT at hand to the neuron repository. Two different families of OeSNN

models have been proposed: OeSNN-PS (using prototype-selection DRTs) and

OeSNN (corr. using prototype-generation DRTs), both capable of operating in

passive and active modes when processing data streams.

An extensive set of computer experiments over synthetic and real streaming

datasets has been designed and discussed to find performance differences be-

tween the above approaches. Part of the OeSNN-PS variants (OeSNN-SMMA

38

and OeSNN-CNN) and all OeSNN-PG approaches (i.e. OeSNN-SGP, OeSNN-

SGP2, and OeSNN-ASGP) have been proven to attain better predictive scores

during plasticity periods than the naive version of the OeSNN (i.e. the proposed

OeSNN with no DRT included in its learning algorithm). The application of DRTs

to the proposed OeSNN model also allows reducing the required space to store

output neurons, thus decreasing the processing time needed to train with newly

samples: the less neurons in the repository, the less similarity computations dur-

ing the learning phase. This alleviation of the computational resources demanded

by the model is of utmost importance in online learning, where processing times

and storage should be kept as low as possible to process high stream data rates.

Those approaches that use DRTs achieving the lowest occupancy of the neu-

ron repository retain the old concept by generating or selecting prototypes, and at

the same time they adapt better to the new concept by storing more information

(output neurons) of the new concept during the plasticity period after a drift oc-

curs. This is possible due to the fact that high data reduction ratios lead to more

available space in the neuron repository where to store neurons with more recent

information. Thus, the adaptation to the new concept is better (a higher accu-

racy is achieved) and faster (less similarity computations in the training phase as

argued previously). Although the selection of a data reduction technique is not

straightforward (it depends on the characteristics of the dataset), we have found

out empirical evidences which indicate that OeSNN-PG approaches feature a bet-

ter adaptability right after the drift occurs, while performing very competitively in

stability periods.

In summary, this work brings to light the natural capability of the proposed

family of OeSNN-DRTs to:

1. simultaneously learn the new incoming concept while retaining the older one

without incorporating specific forgetting mechanisms (is used just to com-

pute encoding parameters, there is no windowed adaptation whatsoever as Sec-

tion 2.2 clearly shows);

2. update the model without requiring a retraining mechanism;

3. use less capacity storage by reducing the amount of required neurons for the

overall model to achieve a better balance between stability (performance over

stationary data distributions) and plasticity (reaction against drift events in the

processed data stream);

4. be faster than the traditional OeSNN approach by carrying out less similarity

computations (less output neurons) in the training phase;

5. be competitive in terms of their balance between predictive performance and

complexity in comparison with ensembles of classifiers, which makes OeSNN-

DRTs a better match for scenarios under severe computational restrictions; and

39

6. to provide a realistic solution to be hybridize with a drift detector.

Future efforts can be invested in several research lines. On the one hand,

it is necessary to address the need for incorporating a priori information of the

expected dynamics of the drift (severity and velocity), which can be estimated

in practice when drifts occur in a recurrent fashion, namely, changes that have

multiple underlying modes and reappear periodically over the stream (as in e.g.

financial prediction or dynamic control, among others (Gonçalves Jr & De Barros,

2013)). In this case the most suitable data reduction technique for the plasticity

period could be chosen based on the predicted type of drift. Finally, it will be

also interesting to explore the possibility of building ensembles of OeSNNs and

study their behavior in comparison with other ensemble approaches, as well as

their online parametric configuration.

9. Acknowledgements

This work was supported by the EU project Pacific Atlantic Network for Tech-

nical Higher Education and Research - PANTHER (grant number 2013-5659/004-

001 EMA2); and by the Basque Government through the EMAITEK program.

Bibliography

Aggarwal, C. C. (2006). On biased reservoir sampling in the presence of stream

evolution. In Proceedings of the 32nd international conference on Very large

data bases (pp. 607–618). VLDB Endowment.

Alippi, C. (2014). . Springer.Intelligence for embedded systems

Alippi, C., & Roveri, M. (2008). Just-in-time adaptive classifierspart ii: Designing

the classifier. IEEE Transactions on Neural Networks 19, , 2053–2064.

Alnajjar, F., Zin, I. B. M., & Murase, K. (2008). A spiking neural network with

dynamic memory for a real autonomous mobile robot in dynamic environment.

In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computa-

tional Intelligence). IEEE International Joint Conference on (pp. 2207–2213).

IEEE.

Baena-Garcı́a, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., &

Morales-Bueno, R. (2006). Early drift detection method. In Proc. of the 4th

ECML PKDD International Workshop on Knowledge Discovery From Data

Streams (IWKDDS06) (pp. 77–86).

40

Barddal, J. P., Gomes, H. M., Enembreck, F., & Pfahringer, B. (2017). A sur-

vey on feature drift adaptation: Definition, benchmark, challenges and future

directions. Journal of Systems and Software 127, , 278–294.

Belatreche, A., Maguire, L. P., & McGinnity, M. (2007). Advances in design and

application of spiking neural networks. , , 239–248.Soft Computing 11

Bifet, A., & Gavalda, R. (2006). Kalman filters and adaptive windows for learning

in data streams. In International Conference on Discovery Science (pp. 29–40).

Springer.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive

windowing. In Proceedings of the 2007 SIAM international conference on data

mining (pp. 443–448). SIAM.

Bifet, A., Holmes, G., Pfahringer, B., & Gavalda, R. (2009). Improving adaptive

bagging methods for evolving data streams. In Asian conference on machine

learning (pp. 23–37). Springer.

Bohte, S. M., Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48, , 17–37.

Bohte, S. M., Kok, J. N., & La Poutré, J. A. (2000). Spikeprop: backpropagation

for networks of spiking neurons. In (pp. 419–424).ESANN

Breiman, L. (2001). Random forests. Machine learning 45, , 5–32.

Chang, R., Pei, Z., & Zhang, C. (2011). A modified editing k-nearest neighbor

rule. , , 1493–1500.JCP 6

Cohen, E., & Strauss, M. (2003). Maintaining time-decaying stream aggregates.

In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART sympo-

sium on Principles of database systems (pp. 223–233). ACM.

Dawid, A. P., Vovk, V. G. et al. (1999). Prequential probability: Principles and

properties. , , 125–162.Bernoulli 5

Derrac, J., Garćıa, S., & Herrera, F. (2010). Stratified prototype selection based on

a steady-state memetic algorithm: a study of scalability. ,Memetic Computing

2, 183–199.

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary

environments: A survey. , , 12–IEEE Computational Intelligence Magazine 10

25.

41

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Pro-

ceedings of the sixth ACM SIGKDD international conference on Knowledge

discovery and data mining (pp. 71–80). ACM.

Domingos, P., & Hulten, G. (2003). A general framework for mining massive data

streams. Journal of Computational and Graphical Statistics 12, , 945–949.

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonsta-

tionary environments. IEEE Transactions on Neural Networks 22, , 1517–1531.

Escalante, H. J., Graff, M., & Morales-Reyes, A. (2016). Pggp: prototype gener-

ation via genetic programming. , , 569–580.Applied Soft Computing 40

Fayed, H. A., Hashem, S. R., & Atiya, A. F. (2007). Self-generating prototypes

for pattern classification. Pattern Recognition 40, , 1498–1509.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift

detection. In (pp. 286–295).Brazilian symposium on artificial intelligence

Springer.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A

survey on concept drift adaptation. ACM computing surveys (CSUR) 46, , 44.

Garcia, S., Derrac, J., Cano, J., & Herrera, F. (2012). Prototype selection for near-

est neighbor classification: Taxonomy and empirical study. IEEE transactions

on pattern analysis and machine intelligence 34, , 417–435.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,

populations, plasticity. Cambridge university press.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017a). A survey

on ensemble learning for data stream classification. ACM Computing Surveys

(CSUR) 50, , 23.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B.,

Holmes, G., & Abdessalem, T. (2017b). Adaptive random forests for evolving

data stream classification. , , 1469–1495.Machine Learning 106

Gonçalves Jr, P. M., & De Barros, R. S. M. (2013). Rcd: A recurring concept drift

framework. Pattern Recognition Letters 34, , 1018–1025.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and

architectures. , , 17–61.Neural networks 1

42

Harries, M., & Wales, N. S. (1999). Splice-2 comparative evaluation: Electricity

pricing. Technical Report, The University of South Wales, .

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE transac-

tions on information theory 14, , 515–516.

Hu, W., & Tan, Y. (2016). Prototype generation using multiobjective particle

swarm optimization for nearest neighbor classification. IEEE transactions on

cybernetics 46, , 2719–2731.

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic evolving

spiking neural networks for on-line spatio-and spectro-temporal pattern recog-

nition. , , 188–201.Neural Networks 41

Kasabov, N., Scott, N., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M.,

Doborjeh, M., Murli, N., Hartono, R. et al. (2016). Design methodology and

selected applications of evolving spatio-temporal data machines in the neucube

neuromorphic framework. , , 1–14.Neural Networks 78

Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge engineer-

ing approach. Springer Science & Business Media.

Kasabov, N. K. (2014). Neucube: A spiking neural network architecture for map-

ping, learning and understanding of spatio-temporal brain data. Neural Net-

works 52, , 62–76.

Khamassi, I., & Sayed-Mouchaweh, M. (2017). Self-adaptive ensemble classifier

for handling complex concept drift. In CEUR Workshop Proceedings. volume

1958.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2015). Self-

adaptive windowing approach for handling complex concept drift. Cognitive

Computation 7, , 772–790.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Dis-

cussion and review on evolving data streams and concept drift adapting. Evolv-

ing Systems 9, , 1–23.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. exam-

ple weighting. , , 281–300.Intelligent data analysis 8

Kononenko, I., & Kukar, M. (2007). Machine learning and data mining: intro-

duction to principles and algorithms. Horwood Publishing.

43

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).

Ensemble learning for data stream analysis: A survey. , ,Information Fusion 37

132–156.

Li, J., & Wang, Y. (2015). Prototype selection based on multi–objective opti-

misation and partition strategy. International Journal of Sensor Networks 17, ,

163–176.

Lobo, J. L., Del Ser, J., Bilbao, M. N., Perfecto, C., & Salcedo-Sanz, S. (2017).

Dred: An evolutionary diversity generation method for concept drift adaptation

in online learning environments. , .Applied Soft Computing

Meena, L., & Devi, V. S. (2015). Prototype selection on large and streaming data.

In International Conference on Neural Information Processing (pp. 671–679).

Springer.

Minku, L. L., White, A. P., & Yao, X. (2010). The impact of diversity on on-

line ensemble learning in the presence of concept drift. IEEE Transactions on

knowledge and Data Engineering 22, , 730–742.

Minku, L. L., & Yao, X. (2012). Ddd: A new ensemble approach for dealing

with concept drift. , ,IEEE transactions on knowledge and data engineering 24

619–633.

Ng, W., & Dash, M. (2008). A test paradigm for detecting changes in transactional

data streams. In International Conference on Database Systems for Advanced

Applications (pp. 204–219). Springer.

Oliveira, D. V., Magalhaes, G. R., Cavalcanti, G. D., & Ren, T. I. (2012). Im-

proved self-generating prototypes algorithm for imbalanced datasets. In Tools

with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference

on (pp. 904–909). IEEE volume 1.

Ponulak, F. (2005). Resume-new supervised learning method for spiking neural

networks. Institute of Control and Information Engineering, Poznan University

of Technology 42, .

Ponulak, F. (2008). Analysis of the resume learning process for spiking neural net-

works. International Journal of Applied Mathematics and Computer Science,

18, 117–127.

44

Ponulak, F., & Kasiński, A. (2010). Supervised learning in spiking neural net-

works with resume: sequence learning, classification, and spike shifting. Neu-

ral computation 22, , 467–510.

Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural networka survey.

Evolving Systems 4, , 87–98.

Soltic, S., & Kasabov, N. (2010). Knowledge extraction from evolving spiking

neural networks with rank order population coding. International Journal of

Neural Systems 20, , 437–445.

Soltic, S., Wysoski, S. G., & Kasabov, N. K. (2008). Evolving spiking neural

networks for taste recognition. In Neural Networks, 2008. IJCNN 2008.(IEEE

World Congress on Computational Intelligence). IEEE International Joint Con-

ference on (pp. 2091–2097). IEEE.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. In Computational neuro-

science (pp. 113–118). Springer.

Thorpe, S. J., & Gautrais, J. (1997). Rapid visual processing using spike asyn-

chrony. In Advances in neural information processing systems (pp. 901–907).

Tomek, I. (1976a). An experiment with the edited nearest-neighbor rule. IEEE

Transactions on systems, Man, and Cybernetics, (pp. 448–452).

Tomek, I. (1976b). Two modifications of cnn. IEEE Trans. Systems, Man and

Cybernetics 6, , 769–772.

Triguero, I., Derrac, J., Garcia, S., & Herrera, F. (2012). A taxonomy and experi-

mental study on prototype generation for nearest neighbor classification. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-

views) 42, , 86–100.

Triguero, I., Garcı́a, S., & Herrera, F. (2010). Ipade: Iterative prototype adjust-

ment for nearest neighbor classification. IEEE Transactions on Neural Net-

works 21, , 1984–1990.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on

Mathematical Software (TOMS) 11, , 37–57.

Wang, J., Belatreche, A., Maguire, L., & Mcginnity, T. M. (2014). An online

supervised learning method for spiking neural networks with adaptive structure.

Neurocomputing 144, , 526–536.

45

Wang, J., Belatreche, A., Maguire, L. P., & McGinnity, T. M. (2017). Spiketemp:

an enhanced rank-order-based learning approach for spiking neural networks

with adaptive structure. IEEE transactions on neural networks and learning

systems 28, , 30–43.

Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class

imbalance learning with concept drift. IEEE Transactions on Neural Networks

and Learning Systems, .

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Character-

izing concept drift. Data Mining and Knowledge Discovery 30, , 964–994.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited

data. IEEE Transactions on Systems, Man, and Cybernetics, (pp. 408–421).

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2006). Adaptive learning pro-

cedure for a network of spiking neurons and visual pattern recognition. In

International Conference on Advanced Concepts for Intelligent Vision Systems

(pp. 1133–1142). Springer.

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural

networks for audiovisual information processing. , , 819–Neural Networks 23

835.

Zhou, Z.-H., Chawla, N. V., Jin, Y., & Williams, G. J. (2014). Big data opportu-

nities and challenges: Discussions from data analytics perspectives [discussion

forum]. IEEE Computational Intelligence Magazine 9, , 62–74.

Žliobaitė, I. (2010). Learning under concept drift: an overview. arXiv preprint

arXiv:1010.4784, .

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift

applications. In (pp.Big Data Analysis: New Algorithms for a New Society

91–114). Springer.

46

