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The ability to confine light into tiny spatial dimensions is important for ap-

plications such as microscopy, sensing and nanoscale lasers. While plasmons

offer an appealing avenue to confine light, Landau damping in metals im-

poses a trade-off between optical field confinement and losses. We show that

a graphene-insulator-metal heterostructure can overcome that trade-off, and

demonstrate plasmon confinement down to the ultimate limit of the lengthscale

of one atom. This is achieved by far-field excitation of plasmon modes squeezed

into an atomically thin hexagonal boron nitride dielectric h-BN spacer be-
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tween graphene and metal rods. A theoretical model which takes into account

the non-local optical response of both graphene and metal is used to describe

the results. These ultra-confined plasmonic modes, addressed with far-field

light excitation, enables a route to new regimes of ultra-strong light-matter

interactions.

Van der Waals heterostructrures are constructed by vertically stacking atomically thin ma-

terials, selected from a rich palette of thousands of materials such as graphene (semi-metal),

hexagonal boron nitride (h-BN, dielectric) and transition metal dichalcogenides (semi-conductors)

(1). These are key enablers for tailoring electronic, optical and opto-electronic properties (2).

The most common heterostructure for 2D electronics is graphene encapsulated by h-BN, and

recently this system has also emerged as a platform for polaritonics (3, 4), with the capability

to strongly confine plasmon polaritons with a relatively long plasmon lifetime exceeding 500

fs at room temperature (5). Heterostructures of graphene, h-BN, and metals have revealed so-

called propagating acoustic plasmons (6–8), in which metal screening confines the light in the

space between the metal and the graphene, and it slows down the plasmon to a velocity almost

as low as c/300 (with c the speed of light) (9). What is then the ultimate limit on the con-

finement of propagating or resonant plasmons? For bulk metal-based plasmonic systems, such

as tapers (10), grooves (11), metal-insulator-semiconductor (12), metal-insulator-metal (13,14)

waveguides, the confinement of propagating surface plasmon polaritons is limited by Landau

damping (15). For example, the quality factor of plasmonic Fabry-Pérot modes dropped below

one for a confinement below 15 nm (14). Further enhancement of optical fields to the nanometer

scale is possible in hotspots (16–18), although these are broadband in character.

We present a graphene-insulator-metal platform that allows us to realize and probe the ul-

timate physical limits of (out-of-plane) confinement of propagating plasmons down to the ulti-

mate physical boundary of one atom-thick layer (here λ0/26000), and without sacrificing damp-
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ing. We take advantage of the fact that plasmons in two-dimensional materials are fundamen-

tally different from plasmons in bulk metals as the restoring force by the long-range Coulomb

interactions, essential for the plasmon confinement, can be controlled by tailoring the external

environment. For that reason the out-of-plane confinement and wavelength compression can be

increased strongly without suffering from Landau damping. We use far-field light to couple to

these strongly confined plasmons and find a vertical mode length down to 0.3 nm, while higher

order Fabry-Pérot resonances reveal that the propagating character of the plasmons is preserved.

The basic device geometry consists of graphene as the plasmonic material, encapsulated

by atomically thin dielectric materials (h-BN or Al2O3) and covered by a metallic rod array

(Fig. 1A) (see (21) for details on the fabrication processes). The advantages of the peri-

odic metal-insulator-graphene system is twofold. First, the presence of the metal results in

efficient screening of the graphene plasmons, squeezing the so-called screened graphene plas-

mons (SGPs) into the graphene-metal gap without reducing their lifetime. Although screening

and coupling of radiation to plasmons in classical 2D electron gases (2DEG) was previously

achieved using grating-gate field-effect-transistors in the THz range (7), a relatively thick bar-

rier layer (∼ 100 nm) prevented the confinement of plasmons to the sub-nanometer limit, as

we report here. Second, metal rods facilitate efficient coupling between far-field light and the

strongly confined plasmons, where the width of the rods define the resonant conditions for the

plasmon modes. This approach does not require patterning of the graphene into nanoribbons or

nanodiscs as for previous infrared graphene plasmonic studies with far-field light (19, 20).

The effect of the coupling of far-field light into our devices is represented by the field profiles

obtained by Finite-Difference-Time-Domain (FDTD) simulations (Figs. 1B, C). The plasmons

are launched at the metal edges and most of the electric field is confined between metal and

graphene, with virtually no leakage into the metal. This confinement arises because the metal

acts as a nearly perfect conductor that prevents (most of the) field penetration. As image charges
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are induced in the metal, the plasmon mode is analogous to the anti-symmetric plasmon mode

of two nearby graphene sheets with twice the spacer thickness (8), known as acoustic plasmons,

carrying larger momentum than for conventional plasmon resonances in graphene ribbons (see

(21), section 5.7). Within the dielectric gap, the plasmons maintain their propagating character

and reflect at the edges of the rod, forming what appears to be a standing wave pattern similar

to two coupled Fabry-Pérot resonators (22).

Bringing the metal closer will increase the plasmon screening, which slows down the plas-

mons as previously observed with s-SNOM by a proximity to a metal layer (8, 9), and also

enhances the vertical confinement, as shown for two different materials and graphene conduc-

tivity models (local and non-local) (Fig. 1D). The most extreme case is that of a monolayer

h-BN spacer, where in theory the vertical plasmon confinement is below 1 nm. Interestingly,

the calculated width of the resonance (shown in (21), section 6) does not increase when reduc-

ing the spacer thickness s. Therefore, this platform allows us to access the ultimate confinement

limits of propagating plasmons in two spatial directions: out-of-plane confinement defined by s

and in-plane confinement governed by λ0/λp.

The far-field approach presented above allows probing of this plasmon confinement using

Fourier Transform Infrared (FTIR) transmission measurements. Gate dependent, spectral ex-

tinction (1−T/TCNP) curves are measured (Fig. 2A) for a device with continuous graphene (un-

patterned), covered with 2 nm Al2O3 spacer (s = 2 nm) and metallic rods of 256 nm (w = 256

nm). These curves are obtained from the transmission curves T normalized by the transmis-

sion of undoped graphene TCNP (at the charge neutrality point, CNP) for several gate voltages

(hence, Fermi energies EF, see (21) section 2.2) at the same position, with light polarized per-

pendicular to the rods long axis. The spectra in Fig. 2a exhibit multiple resonances, which

become more pronounced and continuously blue shift with increasing Fermi energies, thus con-

firming their plasmonic nature. The appearance of multiple peaks demonstrates that the incom-
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ing light can resonantly couple to higher orders of plasmonic modes than reported previously

using nanoribbons (20). We find up to five visible resonances that can be controlled by the

spacer thickness and the metallic array geometry.

We corroborate the phenomenon by examining the simulated electric field intensity pro-

files at the graphene surface for the same geometry as the measured device (Fig. 2B) and the

corresponding simulated extinction spectra (Fig. 2C). The simulations, obtained by FTDT sim-

ulations (see (21) section 4), show a good agreement with the experiment (for s=2nm) in terms

of shape and peak position using the local optical response of graphene as well as a local metal

permittivity models. The resonances can be related to Fabry-Pérot behavior of the propagating

SGPs below the metal and the resonance orders m can be approximated by the half number of

nodes in the field profile (Fig. 2B). This observation confirms that resonances up to the 7th order

are contributing to optical extinction, while for patterned graphene (20,23) only very weak sec-

ond order resonances have been experimentally reported. We attribute the efficient launching

of these higher-order resonances to the strong dipole modes at the metal edges ( (21) section 9),

which provide the required momentum to scatter light into graphene plasmons.

To probe the physical limits of SGP confinement we studied devices with a metal-graphene

spacer with only one monolayer of CVD-grown h-BN of thickness 0.7nm (24, 25). The extinc-

tion spectra were obtained for variousEF of a device with w = 33 nm and g = 37 nm (Fig. 3A).

Strikingly, even in this case, the SGP resonances are still visible with high extinction values. A

single plasmon peak is clearly visible and blue shifts for increasing EF, while hybridizing and

anti-crossing with SiO2 and h−BN phonons. This shift with Fermi energy confirms that the

extinction resonance is due to graphene plasmons.

The propagating character of the SGP modes can be assessed by further increasing w, which

allows us to probe higher order Fabry-Pérot resonances. We will show that this measurement

is equivalent to changing the plasmonic cavity width w which defines the resonant conditions.
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Extinction of several devices with increasingw and similar gap around g = 40 nm and doping of

EF = 0.54 eV were studied (Fig. 3B). Additional doping dependences of these devices can be

found in Fig.S5. The first order resonance (indicated by the red dashed lines in Fig 3B) displays

hybridization with the optical phonons of its dielectric environment (as observed for plasmons

in graphene nanoribbons (26)). We observe that when increasing w, the first order resonance

shifts to lower energies and hybridizes not only with the h-BN phonons, but also with the SiO2

phonons. More resonances appear with increasing w. For example, for w = 64 nm, a second

order resonance appears at 1900 cm−1 (green dashed line), which also shifts for larger w and

starts hybridizing when increasing w. For the largest w, the 3rd (pink dashed line) and even 4th

order resonances appear for our measurement range.

The same trends are seen in the calculated spectra (Fig. 3C), obtained from a semi-analytical

approach, which consists of a Fourier decomposition of the fields (for TM-modes) in each di-

electric region of the system (see (21) section 5). In addition, for these very tightly confined op-

tical fields one must also take into account that the non-local optical response of both the metal

and graphene can have appreciable effects. First of all, the in-plane momentum of the graphene

plasmon is strongly enhanced by the presence of the metal and approaches ω/vF,graphene, where

the momentum dependence of the graphene optical conductivity (i.e. non-local corrections to

the conductivity) increases (9). These graphene non-local corrections are modelled within the

framework of the random-phase-approximation (RPA, see (21) section 5.6). Second, due to ad-

ditional strong vertical field confinement of the order of 1 nm, the components of out-of-plane

wavevectors approach ω/vF,metal, which is the Fermi momentum of the charge carriers in the

metal (16). This trend can lead to additional non-local effects in the metal resulting in field

penetration into the metal. It is therefore relevant to quantify these effects in order to determine

fundamental limits of the vertical field confinement of the propagating plasmon.

Before we discuss a more rigorous treatment of the metal non-local effects, we provide
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a qualitative picture (27), where the non-local metal permittivity (NMP) was modelled as a

dielectric shell surrounding a local metal permittivity (LMP) bulk material. Applying this model

to our system we used a perfect conductor model (i.e. with zero damping) for the the bulk metal

and the thickness s of a uniform dielectric spacer is used as a fitting parameter. Simulations for

this case, with an effective dielectric thickness of 3 nm (Fig 3C), show good agreement with

the experiment (Fig 3B). Even though this result conflicts with the estimated spacer thickness

(0.7 nm), the non-local effect can be understood by the fact that the electromagnetic field does

penetrate more into the metal for smaller s (see Figs. 4 and S13) increasing the effective s.

The excited plasmon modes associated with the extinction peaks in Figs 2 and 3 can be seen

as a combination of SGPs under the metal and unscreened graphene plasmons in the gap region

with their relative contribution depending on the geometry. Nevertheless, the calculated field

profiles in Fig. 1b,c and the scaling of the plasmon resonance peak energy with w clearly show

that the electric field (associated with the plasmon modes) is mostly confined between the metal

and the graphene. This confinement is also consistent with the observation that the plasmon

resonances shift most significantly when varying w compared to a change of the gap g (see (21)

section 3) and the fact that the system can be seen as a plasmonic crystal (analogous to photonic

crystals) (22).

To further explore that a thicker dielectric in the LMP model results in non-local effects in

the metal, the dispersion relation of the SGP modes is shown Fig 3D. The dispersion relation

for a fully NMP model is offset to higher energies compared to a LMP model accounting for the

proper h-BN thickness (0.7 nm, green dotted line). Accounting for a thicker dielectric spacer

used to fit our data (s = 1.5 nm), the dispersion curves shift down and overlaps with the NMP

model. Qualitatively, this is in agreement with our findings. An additional shift is expected

for a periodic structure instead of a continuous one as calculated in Fig 3D, because of a small

coupling between the modes below the rods.
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We can now evaluate the ultimate limit on the plasmonic vertical field and mode volume

confinement. We have calculated the electric field intensity and energy density distribution for

different spacer thicknesses (Fig. 4) and considered both LMP and NMP models. We used

the definitions in section 5 of (21), taking into account dispersion effects. Inspecting first the

electric field magnitude obtained from the LMP model and normalized by the maximum of the

graphene plasmon (Fig. 4A,B), we find that most of it is confined between the graphene and

the metal and the penetration of the field inside the the metal is negligible. On the other hand,

considering metal non-local effects (NMP model) offers a more complete picture of the physics

of the electrons that accumulate at the metal surface in order to screen the electromagnetic

field (18). When the out of plane wavector is increased for thinner spacers, the electrons start

suffering from Pauli and electrostatic repulsion. This effect results into a saturation of the

electron density and leads to field penetration into the metal, as the metal screening capability

is reduced (28). The penetration of the field into the metal becomes significant for s below 3

nm, although the field remains maximum in the spacer region.

This non-local field penetration limits the vertical mode length, which is defined by the ratio

of the energy density integrated over the out-of-plane coordinate z to the maximum of the field

intensity in the region of the spacer (29, 30):

L =

∫
uE(z)dz

maxuE(z)
. (1)

The energy density distribution (Fig. 4D) peaks at the metal surface for a NMP model as a

consequence of charge accumulation and the combination of high field and permittivity values,

which is in contrast to the LMP (Fig. 4C). Below a certain spacer thickness, the energy den-

sity at the metal surface becomes larger than the energy density in the dielectric region near

graphene. At this point the transition of the maximum energy density from graphene to the

metal dominates the vertical mode length (Fig. 4E). The out-of-plane confinement is calculated
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from Eq. (1) and the energy density distribution that is shown in Fig. 4E. While for LMP, the

vertical mode length can be made arbitrarily small, the non-local metal behaviour limits the ver-

tical mode length to about 0.3 nm. This corresponds to a plasmonic mode confinement down to

the atomic scale, as confirmed by our experiments.

These results raise the question why the plasmonic mode for s = 0.7 nm, which penetrates

the metal (due to non-local response), does not lead to strong (over)damping by Landau damp-

ing? For metals, the strongest confinement normal to the surface is limited by direct excitation

of electron-hole pairs (Landau damping), accounted for by the non-local response function (15).

A quantitive analysis of the metallic non-local corrections to the dynamic response and damp-

ing (?, 18) trough the Feibelman parameters revealed that these effects are much stronger for

ω approaching ωp. Interestingly, for ω � ωp, the imaginary part of the Feibelman parameters

approaches zero, as the phase space for electon-hole excitations decreases with ω. The real part

of the Feibleman parameters do not approach zero for ω � ωp. Thus, for our experimental

conditions, the metal non-local effects are relevant as the electrons in the metal cannot perfectly

screen the field, but the additional damping from electronic excitations in the metal is weak.

In terms of ultimate mode volume limit, we remark that a reduction of vertical confine-

ment reduces also the lateral propagating plasmon wavelength (Fig. 1D). While our experiment

discloses the fundamental limits of the vertical mode length of λ0/26000, it also allows us to

estimate the complete mode volume confinement Vp with respect to the volume associated with

the extent of the free photons V0 = λ30. If instead of an array (as in this work) a single reso-

nant structure (e.g. a metal disc on graphene, with a monolayer h-BN spacer) was built using

our approach, a vertical mode length down to 0.3 nm and plasmon wavelenth λp = λ0/170

(see Fig. 1D) would be attainable. Using these values (for λ0 = 8 µm) that include the full

non-local response for both graphene and metal, this would correspond to a mode volume of

Vp = 664 nm3 and mode volume ratio V0/Vp ≈ 10−9, which is at least two orders of magnitude
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smaller than reported so far with graphene nanoribbons (19), and sufficiently high to explore

new regimes of light-matter interactions such as the ultra-strong coupling regime.

Our results show that 2D-material heterostructures can be considered as a powerful tool-

box for nano-photonics with vertical sub-nanometer precision. We use this to combine efficient

coupling between radiation and plasmons with extreme confinement, and found that propagat-

ing graphene plasmons can be confined down to 0.3 nm and drive a low-loss non-local metal

response. The metallic structure can also be used as a nearby efficient gate (7) which provides

a route to low-voltage applications to study molecular sensing with even higher resolution, to

enhance non-linear effects, or to design photodetectors with plasmon enhanced sensitivity and

tunability.
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Figure 1: Device design for probing ultimate plasmon confinement limits. (A) Graphene
is encapsulated in a dielectric (few nm thick Al2O3 or monolayer h−BN), and covered by an
array of gold rods. A gate voltage VBG is applied between Si and graphene in order to control
the Fermi energy of the graphene EF. Bottom left inset: Schematic cross-section of the device.
(B,C) Simulated plasmonic field magnitude profiles for metal-graphene separation s of 10 and
1 nm. (D) Simulated plasmon wavelength λp as a function of metal-graphene spacer s for the
two materials used in the experiments (λ0 = 8 µm and EF = 0.54 eV ). The vertical dashed
line refers to the fundamental limit: a monolayer h-BN spacer. Colored circles correspond
to the two sets of devices discussed in the main text. The dotted lines represent the model
where the metal was considered as a perfect conductor in combination with the local graphene
conductivity model. The dash-dotted lines represent the non-local graphene conductivity model
(obtained from the random-phase-approximation), but still metal as a perfect conductor. The
solid lines represent the model where non-local optical response for both metal and graphene
are considered.
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Figure 2: Resonant excitation of 2 nm confined Fabry-Pérot SGP modes. (A) Gate de-
pendent FTIR extinction spectra referenced to the charge neutrality point (CNP) for metal rod
width w = 256 nm, gap g = 44 nm and 2 nm Al2O3 spacer between graphene and the metal.
For increasing EF, the resonances increase in intensity, blue-shift and high order modes be-
come visible. (B) Simulation of the electric field intensity at the graphene and along x, which
is along the short-axis of the rods, for the same device geometry as in panel A, with EF=0.5 eV.
The model considers the local response of the gold and the local response of graphene. The
colorscale is linear. (C) Simulated extinction for the device geometry as in panel A, and same
model as for panel B.
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Figure 3: Single mode and Fabry-Pérot SGP modes confined to a monolayer h−BN. (A)
Extinction spectra for EF ranging from 70 to 540 meV, and fixed w ≈ 33 nm, gap g ≈ 37 nm.
(B) Extinction spectra for w ranging from 33 nm to 212 nm, and fixed g = 38± 4 nm, EF=540
meV. Dashed lines are guides to the eye showing the evolution of each resonance with w. Inset:
monolayer device schematic for data in panels A and B. (C) Simulated extinction spectra where
the non-local metal effects are accounted for by modelling a perfectly conducting metal but an
effective thicker 3 nm h−BN spacer. Inset: Model schematic. (D) Plasmon dispersion relation
for a (continuous) SiO2/Graphene/h−BN/Metal/Air heterostructure. Dotted curves correspond
to local metal response (with non-zero loss, see (21) section 3) and are plotted for h−BN thick-
ness of 0.7 nm (green), 1.5 nm (orange) and 3 nm (blue). The solid yellow curve corresponds
to h−BN thickness of 3 nm (yellow) and modelling the metal as perfectly conducting. The blue
color gradient represents the loss function of the heterostructure for 0.7 nm thick h−BN with
non-local metal (titanium) and non-local graphene response. This illustrates that accounting
for non-locality comes down to adding an extra spacer thickness of ∼ 2 nm to a model that
considers only the local metal response.
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Figure 4: Energy density and field confinement. (A) Electric field magnitude distribution
of the plasmons associated to a continuous heterostructure of air/ Ti/h−BN/graphene/SiO2 as
function of h-BN thickness for LMP model (A) and NMP model (C). The top and bottom metal
limits are depicted by cyan dashed lines and graphene is located at z = 0. Normalization
by the maximum electric field strictly above graphene shows the confinement and screening
effects. (B) same as (C) for the energy density. (E) Vertical field confinement for both types
of dielectrics as a function of the spacer thickness for local (dotted) and non-local (solid) metal
permittivity.
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