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Abstract: In this paper, we present a new algorithm for color-based object recognition that detects objects and estimates
their pose (position and orientation) in cluttered scenes observed under uncontrolled illumination conditions.
As with so many other color-based object-recognition algorithms, color histograms are also fundamental to
our approach; however, we use histograms obtained from overlapping subwindows, rather than the entire
image. Furthermore, each local histogram is normalized using greyworld normalization in order to be as less
sensitive to illumination as possible. An object from a database of prototype objects is identified and located
in an input image by matching the subwindow contents. The prototype is detected in the input whenever many
good histogram matches are found between the subwindows of the input image and those of the prototype.
In essence, normalized color histograms of subwindows are the local features being matched. Once an object
has been recognized, its 2D pose is found by approximating the geometrical transformation most consistently
mapping the locations of prototype’s subwindows to their matched subwindow locations in the input image.

1 INTRODUCTION

Starting with Swain and Ballard’s color index-
ing (Swain and Ballard, 1991), color has proved to
be a very important clue for object recognition. Fol-
lowing in this tradition, we present a new algorithm
for color-based object recognition that detects objects
and estimates their pose (position and orientation) in
cluttered scenes under uncontrolled illumination con-
ditions. As with so many other color-based object-
recognition algorithms (Funt and Finlayson, 1995;
Bressan et al., 2003), color histograms are also funda-
mental to our approach; however, we use histograms
obtained from overlapping subwindows, rather than
the entire image. Furthermore, each local histogram
is normalized using greyworld normalization (Buchs-
baum, 1980).An object from a database of prototype
objects is identified and located in an input image by
matching the subwindow contents. The prototype is
detected in the input whenever many good histogram
matches are found between the subwindows of the
input image and those of the prototype. In essence,
normalized color histograms of subwindows are the

local features being matched. Once an object has
been recognized, its 2D pose is found by approximat-
ing the geometrical transformation most consistently
mapping the locations of prototype’s subwindows to
their matching subwindow locations in the input im-
age (Lowe, 1999).

An entry in the database of prototypes is built from
an image of a single object placed on an uniform
background. The test images containing the objects
to be recognized may contain several objects, some of
which may be partially occluded. The prototype and
test images are acquired under different illumination
conditions and with the same zoom parameters (See
Fig.1).

Color histograms are very effective for object
recognition (Swain and Ballard, 1991) and image in-
dexing (Park et al., 1999) because they are simple and
fast to compute, are invariant to rotation and trans-
lation, and are insensitive to partial object occlusion.
However, color histograms of whole objects are use-
less for determining object pose, precisely because
they are rotation invariant. In terms of accurately de-
termining object position, Swain’s histogram back-
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Example prototype images.

Example input test images.

Figure 1: These images come from the Simon Fraser
University Database (Barnard et al., 2002) available at
http://www.cs.sfu.ca/∼colour/data.

projection (Swain and Ballard, 1991) is very sensi-
tive to noise and provide only a coarse estimate of
the object’s position. When the input images may
contain several objects and include the possibility
of partial occlusion, many other non-color-based ap-
proaches (Lowe, 1999; Ohba and Ikeuchi, 1997) rely
on local image features for matching. The approach
proposed here combines the ideas of color histogram
matching and local feature matching.

Many of the local-feature-based object recogni-
tion methods (Bressan et al., 2003; Lowe, 1999; Ohba
and Ikeuchi, 1997) extract interest points from the
images as an initial step and then evaluate local de-
scriptors around these points. A drawback of this ap-
proach is that the robustness and the repeatability of
the interest-point detector becomes crucial. To avoid
the reliability problems associated with interest-point
detectors, we propose to analyze all the local neigh-
borhoods in the image and to extract descriptors for
all of them. Indeed, rather than to extract features
from a limited number of areas in the image, we con-
sider all pixels to be interest points and consequently
extract the features around all of them. Thus we
divide the image into overlapping subwindows and
compute their color histograms. The computation in
this step can be organized so that each pixel needs to
be visited only once, so it is fast.

When the illumination is not controlled during
the acquisition of the images, the classical color his-
tograms lead to poor recognition results (Funt et al.,
1998). Thus, we propose to normalize the color his-

tograms in order to cope with this problem. One clas-
sical and computationally simple approach is grey-
world normalization. The main drawback of this nor-
malization is that it assumes that the illumination is
spatially constant over the whole image (Buchsbaum,
1980). In normalizing each subwindow separately, we
only assume that the illumination is constant within
each subwindow, not across the whole image.

The database of prototypes represents each object
in terms of the normalized local color (NLC) his-
tograms from its image’s subwindows. This repre-
sentation associates a point on the object with each
NLC histogram. To identify the objects in the input
test image, each test-image subwindow is matched to
the entire set of database subwindows and labeled ac-
cording to the one that matches the best. A subset
of subwindows with the same object label indicates
the presence of the corresponding object in the im-
age. The locations of the subwindow labels within
the image indicates the object’s pose.

The second section of this paper is about the il-
lumination changes and the greyworld normalization.
The third section presents details about how the space
and time requirements for NLC histogram storage and
matching can be reduced using incremental principal
components analysis (Hall et al., 1999). The specifics
of 2D-pose estimation are described in the fourth sec-
tion. Results of tests based on the Amsterdam image
database (Geusebroek et al., 2005) are given in the
fifth section.

2 ILLUMINATION CHANGES

In order to deal with variations in the spectral com-
position of the incident illumination, we adopt the di-
agonal model of illumination change. The diagonal
model assumes that the spectral sensitivity function
of each sensor of the camera is sufficiently narrow-
band that they can be viewed as Dirac delta functions
at three distinct wavelengths. In practice, although
this assumption does not hold perfectly it is generally
an adequate model, and it can be improved by spectral
sharpening (Finlayson et al., 1994).

Using the diagonal model of illumination change
along with the additional assumption that all pixels
in a subwindow are lit by the same illumination, we
can apply the greyworld normalization to each local
color histogram by dividing each color component by
its mean value within this subwindow. Each subwin-
dow within then is characterized by a normalized lo-
cal color (NLC) histogram.



3 EIGEN NORMALIZED LOCAL
COLOR HISTOGRAMS

Since each prototype image represents only one ob-
ject, each subwindow represents a specific area of the
object. Thus, considering that we haveP prototype
imagesIi

pro, i ∈ {1, ...,P}, the prototype imageIi
pro

which represents the objectOi, is divided intoWPi

subwindowswpi
j, j ∈ {1, ...,WPi}, each one repre-

senting thejth areaOpi
j of the objectOi.

Since the proposed object recognition method re-
quires the storage and matching of many subwindow
histograms, it is important to reduce the memory and
computation requirements as much as possible. One
strategy for decreasing the complexity of histogram
matching is to reduce the dimensionality of the his-
tograms (Bressan et al., 2003; Tran and Lenz, 2005).
Therefore, we apply principal component analysis to
the set of prototype local color histograms.

Following the method of Tran and Lenz (Tran and
Lenz, 2005), PCA is applied to histogram differences,
rather than the histograms themselves. The histogram
differences suffice since the aim when compressing
histograms for the object recognition is not to be able
to reconstruct the histograms, but only to estimate dis-
tances between histograms. Therefore, PCA applied
on the space of histogram differences should lead
to better results than PCA applied on the histogram
space. Since we care only about similar images, PCA
is not applied on all the differences between the proto-
type histograms, but only on the differences between
similar prototype histograms. Hence, for each proto-
type histogram, we use the histogram difference be-
tween it and its closest prototype histogram from the
same image. The closest histogram is the one at the
minimum Manhattan distance between the two his-
tograms. Swain showed that the Manhattan distance
is equivalent to use of the intersection between color
histograms when these histograms contain the same
number of pixels (Swain and Ballard, 1991).

When the number of images in the prototype
database is high, the number of NLC histograms be-
comes very high and the time required to apply prin-
cipal component analysis becomes prohibitive. To
overcome this limitation, we move to incremental
PCA (Hall et al., 1999). Thanks to incremental PCA,
the size of the prototype database is effectively unlim-
ited. The IPCA step is completed once off-line.

The NLC histograms projected onto the eigenba-
sis from IPCA are then called eigen NLC (ENLC)
histograms. All NLC histograms, from both the
database of prototypes and the input test image, are
projected onto the same eigenbasis. Finally, each
input ENLC histogram is compared against all the

prototype ENLC histograms, and the most similar
prototype ENLC histogram is kept. Histograms are
matched according to the Manhattan distance be-
tween them.

After the matching step, each sub-window
wqk, k ∈ {1, ...,WQ}, of the input image
is associated with one prototype subwin-
dow wpi

j, and so, with one object areaOpi
j

of the object Oi. The subwindow’s labels
[input subwindow, ob ject area] [wqk,Opi

j] are
used to determine the best geometrical transforma-
tion mapping the corresponding prototype image to
the input image.

4 2D POSE ESTIMATION

After the matching step, the subwindowswqk,
k ∈ {1, ...,WQ}, from the input image will have
an associated object areaOpi

j. Let Ci, i ∈

{1, ...,T}, T ≤ WPi, denote the subset of fea-
tures (areas) from the objectOi that have been as-
sociated with at least one input subwindowwqk:
Ci = {Opi

j|there exists k so that [wqk,Opi
j] exists}.

We next consider the non-empty subsetsCi one by one
and estimate the orientation and position of the corre-
sponding objectOi in the input image. This means
finding the geometric transformation from the spatial
coordinates of the objectOi in the prototype image
Ii

pro to its coordinates in the input image. The esti-
mation of this transformation is based on the spatial
coordinates of the matching subwindow pairs.

As described by Lowe (Lowe, 1999), the geomet-
ric transformation from a point[x,y]T associated with
a prototype subwindow to a point[u,v]T associated
with the corresponding input subwindow can be writ-
ten as:

[

x −y 1 0
y x 0 1

]







m1
m2
tx
yy






=

[

u
v

]

(1)

wheretx and ty represent the translation parameters
and themi represent the rotation around the center of
the object and scale parameters.
This equation is based on one pair of prototype and in-
put subwindows, but we can add some other pairs and
calculate the least-squares solution for the geometric
parameters.

Since this method is very sensitive to outliers, we
propose the following two step approach:

• The set Ci is randomly divided into subsets
of a fixed number of features, and then the



least-squares fit for the geometric transformation
for each of these subsets is determined indepen-
dently. A large residual error in the fit indicates
mismatched features that are then deleted from
the setCi. The number of features in a subset
and the threshold of the residual error are fixed
parameters determined experimentally.

• Using only those features leading to low resid-
ual error in the preceding step, the best geomet-
ric transformation is determined by least-squares
fitting.

5 EXPERIMENTAL RESULTS

We first test our algorithm on the real images from
Fig.1 and the recognition and pose estimation are per-
fect. Then, the Amsterdam Library of Object Images
(ALOI) database (Geusebroek et al., 2005) is used for
testing. The Amsterdam database contains 12 sets of
color images. Each set contains images of one ob-
ject on a uniform background under one of the 12 dif-
ferent illuminants having color temperatures between
2175◦K to 3075◦K. For the tests, we use 2 sets of
color temperature 2325◦K and 2750◦K. 250 images
of the first set are used as the prototype images. From
the second set, we extract 100 objects to create 20
input images, each one representing 5 objects. Each
object is subject to 2D rotation and translation before
being added to the set of input images.

For these tests, the size of the subwindows is fixed
at 45x45 pixels, and the offset between the centers of
two neighboring subwindows is 15 pixels. The aver-
age number of ENLC histograms for each prototype
image is 250. The number of bins in a raw histogram
is 83 = 512. After projection on the eigenbasis, this
number reduces to 64.

The algorithm correctly recognizes and makes a
perfect estimate of the pose for 96 of the 100 input
objects.

6 CONCLUSION

A method for object recognition and 2D pose es-
timation has been presented. The method is insensi-
tive to the color of the scene illumination. The ba-
sic strategy is to match local image features, in par-
ticular, to match the color histograms of subwindows
from the input image to histograms of subwindows of
prototypes in the database. The subwindow contents
are normalized via greyworld averaging to remove the

effects of variations in illumination. Pose is deter-
mined by finding the best correspondences between
the matching subwindows that are consistent with a
single geometrical transformation. Overall the accu-
racy of the proposed method is quite good consider-
ing that the database comprises images of objects with
quite similar color distributions imaged under lights
of different color temperature than the input images.
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