Supplementary Information

Array-based Protein Sensing Using an
 Aggregation-induced Emission (AIE) Light-up

 Probe

 Probe}

Huyeon Choi, Sangpil Kim, Seungho Lee, Chaekyu Kim*, Ja-Hyoung Ryu*.

Department of Chemistry, Ulsan National Institute of Science and Technology, UNIST-gil
50, Ulsan 44919, South Korea
*To whom correspondence should be addressed. E-mail: chaekyu@unist.ac.kr and jhryu@unist.ac.kr

Table of Contents

S1. Synthesis and characterization

- S1.1 Materials and characterization
- S1.2 Synthesis of AIEgens (AIE 1-4)

S2. Spectrometer experiment

- S2.1 Characterization of AIEgens (AIE 1-4)
- S2.2 Method for AIE fluorescence in presence of five proteins

S3. Determination of the binding stoichiometry and binding constant
S4. Classification proteins in the protein mixtures
S5. Reference

S1. Synthesis and characterization

S1.1 Materials and characterization

2,4-dihydroxy benzaldehyde, 1,3-dibromopropane, dimethylamine solution 40% in water and tert-butyl bromoacetate were purchased from Alfa Aesar (USA). Hydrazine monohydrate $\left(\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right.$), trimethylamine 45% aqueous solution in water and all proteins (Bovine serum albumin, Esterase, Fibrinogen, transferrin and β-galactosidase) were purchased from Sigma Aldrich (USA). Trifluoroacetic acid (TFA) was purchased from TCI (Japan). Ethyl acetate (EtOAc) and hexane were obtained from SK Chemical (Korea). Potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, potassium bicarbonate $\left(\mathrm{KHCO}_{3}\right)$, sodium hydroxide (NaOH), sodium chloride (NaCl), and sodium sulfite anhydrous $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ was obtained from Samchun pure chemical Co.,Ltd (Korea). HPLC grade of tetrahydrofuran (THF) and acetonitrile (ACN) were purchased from Burdick \& Jackson Honeywell (USA). Dichloromethane (DCM) HPLC was purchased from Daejung Co.,Ltd (Korea). PBS 1X, pH 7.4 was obtained from Gibco, ThermoFisher SCIENTIFIC (USA)

AIEgens (AIE 1-4) were characterized using 400MHz FT-NMR (Agilent Technologies) and MALDI-TOF/TOF (Bruker Ultraflex III) with MALDI matrix made of 50:50 water/acetonitrile with 0.1% TFA and 2,5-dihydroxybenzoic acid (2,5-DHB). UV -vis spectroscopy (Jasco V-670 spectrophotometer), Fluorometer (Hitachi F-7000), Microplate reader (Molecular devices SpectraMax i3x)

S1.2 Synthesis of AIEgens (AIE1-4)

1) Synthesis of compound 2

Compound 2 was synthesized by adding hydrazine monohydrate ($90 \mu \mathrm{~L}, 1.81 \mathrm{mmol}$) into compound 1, 2,4-dih ydroxy benzaldehyde ($0.5 \mathrm{~g}, 3.65 \mathrm{mmol}$) in 10 mL of methanol. The mixture was refluxed for 4 h at $75^{\circ} \mathrm{C}$. The solution was cooled to room
temperature then yellow solid was formed which was isolated by filtration and dried over under vacuum. Yield $(72 \%, 0.357 \mathrm{~g}) \delta_{H}(400 \mathrm{MHz}, \mathrm{DMSO}) 6.29(2 \mathrm{H}, \mathrm{s}), 6.37$ $(2 \mathrm{H}, \mathrm{s}), 7.39(2 \mathrm{H}, \mathrm{s}) 8.73(2 \mathrm{H}, \mathrm{s}), 10.13(2 \mathrm{H}, \mathrm{s})$ and $11.38(2 \mathrm{H}, \mathrm{s}) . \delta_{C}(400 \mathrm{MHz}$, DMSO) 102.91, 108.65, 110.71, 133.39, 161.11, 162.20 and 162.51 Calculated [M], $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$, molecular weight: m/z calcd 272.26 ; measured 272.60
2) Synthesis of AIE-1

a. Synthesis of t-butyl-protected AIE molecule

To synthesize AIE-1, compound $2(500 \mathrm{mg}, 1.836 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(507.6 \mathrm{mg}$, 3.673 mmol) were dissolved in 10 mL of acetonitrile. After $30 \mathrm{~min}, t$-butyl bromoacetate ($542 \mu \mathrm{~L}, 3.673 \mathrm{mmol}$) was added dropwise into mixture. The reaction was refluxed at $60{ }^{\circ} \mathrm{C}$ for overnight. After finishing the reaction, the reaction was then cooled to room temperature. The reaction mixture was treated with water and extracted with ethyl acetate (EA). Organic layer was washed with brine solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification was done by silica flash column chromatography with hexane: EA $=4: 1$. Yield $(21 \%, 187$ $\mathrm{mg}) \delta_{H}(400 \mathrm{MHz}, \mathrm{DMSO}) 1.46(18 \mathrm{H}, \mathrm{s}), 4.68(4 \mathrm{H}, \mathrm{s}), 6.43(2 \mathrm{H}, \mathrm{s}), 6.55(2 \mathrm{H}, \mathrm{s})$, $7.39(2 \mathrm{H}, \mathrm{s}) 7.52(2 \mathrm{H}, \mathrm{s}), 8.91(2 \mathrm{H}, \mathrm{s}) . \delta_{C}(400 \mathrm{MHz}, \mathrm{DMSO}) 27.82,65.59,82.79$, 102.17, 107.28, 111.44, 133.58, 158.84, 161.76, 163.03, 167.42
b. Deprotection of t-butyl group

To synthesize AIE-1, boc-protected AIE molecules ($244 \mathrm{mg}, 0.487 \mathrm{mmol}$) was dissolved in 5 mL of DCM. TFA (0.2 mL , excess amount) was added into bocprotected AIE in DCM. The reaction was stirred at room temperature for 12 hours. After reaction, DCM and TFA were removed using rotary evaporator and dried using high vacuum pump. To make negatively charged AIE-1, 2 equivalent of NaOH was
added into water. Yield ($180 \mathrm{mg}, 95 \%$) $\delta_{H}(400 \mathrm{MHz}, \mathrm{DMSO}) 4.72(4 \mathrm{H}, \mathrm{s}), 6.48$ $(2 \mathrm{H}, \mathrm{s}), 6.65(2 \mathrm{H}, \mathrm{s}), 7.54(2 \mathrm{H}, \mathrm{s}), 8.93(2 \mathrm{H}, \mathrm{s}) . \delta_{C}(400 \mathrm{MHz}, \mathrm{DMSO}) 64.88$, $102.18,107.52,112.22,132.80,159.09,160.52,162$, and 170.08 Calculated $[\mathrm{M}]^{-}$, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{2-}$, molecular weight: m/z calcd 386.32 ; measured 386.03
3) Synthesis of compound 3

Compound 3 was synthesized through reference [1]. Compound 1, 2,4-dihydroxy benzaldehyde ($2 \mathrm{~g}, 14.48 \mathrm{mmol}$) and potassium bicarbonate $\left(\mathrm{KHCO}_{3}, 1.448 \mathrm{~g}, 14.48\right.$ mmol) were dissolved in dry acetone and then 1,3 -dibromopropane $(1.47 \mathrm{~mL}, 14.48$ mmol) was added dropwise into mixture. The reaction was refluxed at $60^{\circ} \mathrm{C}$ for 60 h . After the reaction, solvent was evaporated under pressure. 20 mL of water was added and extracted with 30 mL of chloroform for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification was done by silica flash column chromatography with hexane: $\mathrm{EA}=1: 1$. Yield $(17 \%, 1.2 \mathrm{~g}) \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.36(4 \mathrm{H}, \mathrm{m}), 3.57(4 \mathrm{H}, \mathrm{t}), 4.12(4 \mathrm{H}, \mathrm{t}), 6.48(2 \mathrm{H}, \mathrm{s}), 6.59(2 \mathrm{H}, \mathrm{s}), 7.48(2 \mathrm{H}, \mathrm{s}), 9.85$ $(2 \mathrm{H}, \mathrm{s})$, and $11.50(2 \mathrm{H}, \mathrm{s}) . \delta_{C}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 29.47,31.90,65.79,101.27$, $108.50,115.30,135.30,164.41,165.81$, 194.37. Calculated [M], $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{3}$, molecular weight: m / z calcd 259.10 ; measured 258.36
4) Synthesis of compound 4

Compound $\mathbf{4}$ was synthesized by adding hydrazine monohydrate ($7.5 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) into compound $\mathbf{3}$ ($92.6 \mathrm{mg}, 0.18 \mathrm{mmol}$) in 3 mL of acetonitrile. The mixture was
refluxed for 12 h at $60{ }^{\circ} \mathrm{C}$. After the reaction, solvent was dried over under vacuum. Yield $(91 \%, 168 \mathrm{mg}) \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.34(4 \mathrm{H}, \mathrm{m}), 3.60(4 \mathrm{H}, \mathrm{t}), 4.15(4 \mathrm{H}, \mathrm{t})$, $6.53(4 \mathrm{H}, \mathrm{s}), 8.61(2 \mathrm{H}, \mathrm{s})$, and $11.73(2 \mathrm{H}, \mathrm{s}) . \delta_{C}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 29.65,32.11$, $50.86,65.52,101.82,107.72,111.28,133.52,161.71,162.80,16.89$ Calculated [M], $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$, molecular weight: m/z calcd 514.21; measured 515.12
5) Synthesis of AIE-2

Compound $4(20 \mathrm{mg}, 0.039 \mathrm{mmol})$ and dimethylamine 40% solution in water ($17 \mu \mathrm{~L}$, 0.155 mmol) in THF and water co-solvent was stirred and heated up to $60^{\circ} \mathrm{C}$ for overnight. After the reaction, the solvent (THF and water) was unreacted trimethylamine removed by evaporation. The 16 mg (98%) of product AIE-3 was obtained. $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.98(4 \mathrm{H}, \mathrm{m}), 2.68(4 \mathrm{H}, \mathrm{t}), 4.13(4 \mathrm{H}, \mathrm{t}), 6.38(4 \mathrm{H}, \mathrm{s})$, $6.62(4 \mathrm{H}, \mathrm{s}), 7.16(2 \mathrm{H}, \mathrm{s})$, and $7.85(2 \mathrm{H}, \mathrm{s}), 11.70(2 \mathrm{H}, \mathrm{s}) . \delta_{C}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 22.44$, 52.84, 63.74, 64.60, 101.62, 107.58, 111.80, 133.88, 159.85, 161.87, 162.89 Calculated $[\mathrm{M}]^{+}, \mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{2+}$, molecular weight: m/z calcd 472.63; measured 471.39
6) Synthesis of AIE-3

Compound $4(20 \mathrm{mg}, 0.039 \mathrm{mmol})$ and dimethylamine 40% solution in water ($17 \mu \mathrm{~L}$,
0.155 mmol) in 1 mL of THF and water co-solvent was stirred and heated up to $60^{\circ} \mathrm{C}$ for overnight. After the reaction, the solvent (THF and water) and unreacted dimethylamine was removed by evaporation. The $16 \mathrm{mg}(98 \%)$ of product AIE-3 was obtained. $\delta_{H}(400 \mathrm{MHz}, \mathrm{DMSO}) 1.98(4 \mathrm{H}, \mathrm{m}), 2.68(4 \mathrm{H}, \mathrm{t}), 4.13(4 \mathrm{H}, \mathrm{t}), 6.53(4 \mathrm{H}$, s), $7.51(2 \mathrm{H}, \mathrm{s})$, and $8.80(2 \mathrm{H}, \mathrm{s}) . \delta_{C}(400 \mathrm{MHz}, \mathrm{DMSO}) 34.41,42.99,54.68,65.55$, 101.82, 107.84, 112.01, 133.06, 160.84, 162.32, 162.73 Calculated [M], $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}$, molecular weight: m/z calcd 442.56; measured 443.32
7) Synthesis of AIE-4

Compound $4(10 \mathrm{mg}, 0.019 \mathrm{mmol})$ and sodium sulfite $\left(\mathrm{NaSO}_{3} .6 \mathrm{mg}, 0.042 \mathrm{mmol}\right)$ in 2 mL of THF and water co-solvent was stirred and heated up to $100^{\circ} \mathrm{C}$ under nitrogen atmosphere for overnight. After the reaction, the mixture kept at room temperature. Acetone (diethyl ether) was added to get white crystals. The 4 mg (80%) of product AIE-4 was obtained. $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 1.98(4 \mathrm{H}, \mathrm{m}), 2.68(4 \mathrm{H}, \mathrm{t}), 4.13(4 \mathrm{H}, \mathrm{t})$, $6.53(4 \mathrm{H}, \mathrm{s}), 7.51(2 \mathrm{H}, \mathrm{s})$, and $8.80(2 \mathrm{H}, \mathrm{s}) . \delta_{C}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) 24.10,47.67,66.48$, $101.39,107.51,111.99,133.25,159.80,162.05,162.50$ Calculated $[\mathrm{M}]^{-}$, $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{2--}$, molecular weight: m / z calcd 514.52; measured; 514.42

S2. Spectrometer experiment

S2.1 Characterization of AIEgens (AIE 1-4)

Figure S1. UV-Vis absorption spectra of (a) AIE-2, (b) AIE-3 and (c) AIE-4 in water (black line) and in a mixture of $\mathbf{H}_{\mathbf{2}} \mathbf{O} / \mathrm{THF}(\mathrm{v} / \mathrm{v}, 5: 95)$ (red line).[AIEgens] $=40 \mu \mathrm{M}$

Figure S2 Fluorescence spectra of (a) AIE-1, (b) AIE-2, (c) AIE-3, and (d) AIE-4 in gradual addition $(0 \%, 30 \%, 60 \%, 90 \%$ and $95 \%)$ of THF to water. $\quad \lambda_{e x}=365 \mathrm{~nm}$ [AIEgens] $=40 \mu \mathrm{M}$

S2.2 Method for AIE fluorescence in presence of five proteins

Figure S3. Schematic illustration of fluorescence experiments with four AIEgens and five proteins

All four AIEgens solution in water were prepared 42.1 uM stock solution using $3^{\text {rd }}$ distilled water. Also, five proteins were prepared 10 uM in 1 X PBS pH 7.4 . In individual 96 wells, 95 $u L$ of 42.1 uM AIE stock solution was added followed by addition 5 uL of 10 uM protein solutions. We measured fluorescence using microplate reader right after adding proteins.

	BSA	Esterase	transferrin	fibrinogen	β-galactosidase
AIE-1	1.239416	1.056613	1.059014	0.818529	1.096484
	1.216347	1.04249	1.092795	0.864261	1.073643
	1.262054	1.037588	1.098455	0.873736	1.105933
	1.233958	1.047265	1.082385	0.910473	1.218116
	1.179534	1.018032	1.097318	0.929701	1.108485
AIE-2	0.95884	1.934575	1.039262	1.031855	1.290872
	0.962982	1.896937	1.060973	1.024958	1.28009
	0.936983	1.981135	1.10684	1.022423	1.271752

	0.951488	1.933937	1.076116	1.006586	1.263268
	0.962325	1.887742	1.051304	0.99564	1.297167
	0.926256	1.823174	1.069183	0.956779	1.239423
AIE-3	1.100433	2.893602	1.246832	1.407829	1.900978
	1.013874	2.760429	1.244907	1.300993	1.946048
	1.192766	2.843424	1.340327	1.327254	1.987403
	1.147104	2.941761	1.353363	1.287405	1.953862
	1.116288	2.985459	1.274084	1.254207	2.022221
	1.211556	2.812856	1.125703	1.235092	2.00545
AIE-4	1.911631	1.699986	1.336614	1.206542	1.382391
	1.952883	1.641435	1.299267	1.167729	1.344156
	1.89577	1.62924	1.268687	1.190794	1.348033
	1.96701	1.595404	1.276893	1.127111	1.343663
	1.802932	1.585535	1.279092	1.082842	1.339222
	1.945707	1.595178	1.243127	1.059213	1.278711

Table S1 Raw data of normalized fluorescence intensity ($\mathrm{F} / \mathrm{F}_{0}$) of AIE-1 to AIE-4 (40 $\mu \mathrm{M}$) with $5 \mu \mathrm{M}$ of five proteins.

S3. Determination of the binding stoichiometry and binding constant

Stoichiometry of the AIEgen-protein was determined by saturation point of fluorescence intensity with increasing AIEgens' concentrations at fixed concentration of proteins. The fluorescence intensity was measured when protein concentration was fixed at $5 \mu \mathrm{M}$ by increasing AIE-1 and AIE-2 from 0 to $64 \mu \mathrm{M}$. Normalized fluorescence intensity was calculated by deducting fluorescence intensity of only AIE-1 and AIE-2 solution from 0 to 64
$\mu \mathrm{M}$ from proteins with AIE-1 and AIE-2.

Furthermore, binding constant was calculated from the emission intensity-titration plot of $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ as a function of $1 /[$ protein $]$ in micromoles. F and F_{0} are the fluorescence intensities of AIEgens with or without proteins. Four AIEgens solutions with $100 \mu \mathrm{M}$ solution in water and proteins solution (50 and $200 \mu \mathrm{M}$) in PBS were prepared for fluorescence titration studies. The concentration of five proteins was varied from 0 to $20 \mu \mathrm{M}$. The binding constant for the AIEgens and proteins was evaluated using a Benesi-Hildebrand plot.

Figure S4. Normalized fluorescence intensity of (a) AIE-1 and BSA (b) AIE-2 and esterase [proteins] $=5 \mu \mathrm{M}$ [AIE-1] and [AIE-4] $=0$ to $64 \mu \mathrm{M}$.

	BSA	Esterase	Transferrin	Fibrinogen	β-galactosidase
AIE-1	$2.524 \times 10^{5} \mathrm{M}^{-1}$	$5.003 \times 10^{4} \mathrm{M}^{-1}$	$3.009 \times 10^{3} \mathrm{M}^{-1}$	$6.627 \times 10^{4} \mathrm{M}^{-1}$	$9.454 \times 10^{4} \mathrm{M}^{-1}$
AIE-2	$3.615 \times 10^{6} \mathrm{M}^{-1}$	$7.292 \times 10^{5} \mathrm{M}^{-1}$	-	-	$9.690 \times 10^{5} \mathrm{M}^{-1}$
AIE-3	$1.129 \times 10^{6} \mathrm{M}^{-1}$	$9.738 \times 10^{5} \mathrm{M}^{-1}$	-	-	-
AIE-4	$3.125 \times 10^{5} \mathrm{M}^{-1}$	$2.001 \times 10^{6} \mathrm{M}^{-1}$	$2.539 \times 10^{6} \mathrm{M}^{-1}$	$2.771 \times 10^{6} \mathrm{M}^{-1}$	$2.079 \times 10^{6} \mathrm{M}^{-1}$

Table S2. Binding constant between four AIEgens and five proteins at $25{ }^{\circ} \mathrm{C}$

Figure S5. Benesi-Hildebrand plot (emission at 520 nm) of (a) AIE-1, (b) AIE-2, (c) AIE-3, and (d) AIE-4 by plotting $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ as a function of $1 /[\mathrm{BSA}$] [AIEgens] $=40 \mu \mathrm{M}$.

Figure S6. Benesi-Hildebrand plot (emission at 520 nm) of (a) AIE-1, (b) AIE-2, (c) AIE-3 , and (d) AIE-4 by plotting 1/(F-F F_{0}) as a function of 1/[Esterase] [AIEgens] $=40 \mu \mathrm{M}$

Figure S7. Benesi-Hildebrand plot (emission at 520 nm) of (a) AIE-1 and (b) AIE-4 by plotting $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ as a function of $1 /[$ transferrin] [AIE-1 and AIE-4] $=40 \mu \mathrm{M}$.

Figure S8. Benesi-Hildebrand plot (emission at 520 nm) of (a) AIE-1 and (b) AIE-4 by plotting $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ as a function of $1 /[$ Fibrinogen] [AIE-1 and AIE-4] $=40 \mu \mathrm{M}$.

Figure S9. Benesi-Hildebrand plot (emission at 520 nm) of (a) AIE-1, (b) AIE-2, (c) AIE-4 by plotting $1 /\left(\mathrm{F}-\mathrm{F}_{0}\right)$ as a function of $1 /[\beta$-galactosidase] [AIE-1, AIE-2, and AIE-4] $=40 \mu \mathrm{M}$.

S4. Classification proteins in the protein mixtures

Figure S10 Array-based sensing of proteins ($1 \mu \mathrm{M}$) in 4% FBS solution using three AIEgens $(40 \mu \mathrm{M})$ at room temperature. (a) Fluorescence pattern of the synthesized AIEgens (AIE-1-4) in the presence of the proteins (BSA, esterase, and $\boldsymbol{\beta}$-galactosidase) for subsequent fluorescence experiments. Each value is an average of four parallel measurements. (b) LDA analysis using 2D with 95% ellipse confidence

S5. Reference

(1) Ali, A., Kamra, M., Roy, S., Muniyappa, K., Bhattacharya, S. Novel Oligopyrrole Carboxamide based Nickel(II) and Palladium(II) Salens, Their Targeting of Human G-quadruplex DNA, and Selective Cancer Cell Toxicity. Chem. Asian. J. 2016, 11, 2542-2254.

