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A pixel define layer (PDL) in an organic light emitting diode (OLED) is patterned using a photolithographic process before
the deposition of organic layers on top of ITO anode. If the patterning of PDL on OLED panels can be achieved using a
black photoresist, the patterning of black matrix (BM) on top of PDL patterns can be omitted by reducing the reflection of
ambient light from OLED panels. In this study, we synthesized a series of side-chain-type polyimides as binder polymers of
black photoresists and investigated the potential of using the black photoresist for the fine patterning of black PDL on

OLED panels.

1. Introduction

Organic light emitting diodes (OLEDs) have become one
of the major trends in the fabrication of flat panel displays
because of their advantages, such as light weight, slim
panels, fast response time, wide viewing angle, high resolu-
tion, and low power consumption [1-4]. The light emitting
area of an OLED device is disposed at the luminous region
of the pixel array on the OLED panel connected to a thin film
transistor unit. Before the deposition of OLED organic layers,
a pixel define layer (PDL) is patterned via a photolitho-
graphic process, as shown in Figure 1 [5-8].

Currently, positive-tone photosensitive polyimide [9, 10]
is used to fabricate PDL microstructures. The corresponding
PDL is yellowish brown similar to that of polyimide films.
Since the yellowish-brown polyimide layer of PDL reflects
the incident light, the visibility of the OLED display is
reduced, particularly when used outdoors. Therefore, in the
current positive-tone photolithographic process, a black

matrix (BM) layer is patterned on top of the PDL pattern to
improve the visibility of the OLED device (Figure 1).

If the patterning of PDL on OLED panels can be achieved
using a negative-tone black photoresist [11] containing black
pigment instead of the positive-tone photoresist based on
photosensitive polyimide, the photolithographic process
of patterning BM on top of the PDL pattern would be
omitted. The required components for a typical negative-
tone black photoresist include the photoinitiator, photosensi-
tizer, multifunctional monomer, black pigment millbase,
and binder polymer developable with aqueous alkaline
solution. The binder polymer is crucial in the patterning
of black PDL on OLED panels. It is not only one of the
major components in terms of weight but also affects the
shape of PDL patterns during its development in the
photolithographic process. The process temperature of
OLED panel fabrication reaches close to 300°C, including
the postcure step after photolithographic patterning of
PDL; therefore, the thermal stability of the binder polymer
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Fi1GURk 1: Typical cross-sectional view of an OLED panel.

should also be considered. Herein, new binder polymers with
thermally stable imide linkages were synthesized and applied
to the black photoresist formulation to pattern black PDL on
OLED panels.

2. Experimental Methods

2.1. Materials and Characterization. Chemicals and solvents
were reagent grades and used without further purification:
poly(styrene-co-maleic anhydride), cumene terminated,
M, ~1600 (PSMA); 5-aminoisophthalic acid (AIPA); 3,5-
bis(trifluoromethyl) aniline (6FAL); 4-aminostyrene (AS);
2-hydroxylethylacrylate (2-HEA); glycidyl methacrylate
(GMA); dimethyl acetamide (DMAc); 3,5-di-tert-4-butylhy-
droxytoluene (BHT); tetrabutylphosphonium bromide (TBPB);
propylene glycol monomethyl ether acetate (PGMEA); and
pentaerythritol triacrylate (PETA).

Thermogravimetric analysis (TGA) was performed on a
TA Instruments Q500 thermogravimetric analyzer with a
programmed temperature at 10°C/min. Fourier-transform
infrared spectroscopy (FT-IR) was performed on a Varian
670/620 spectrometer using the KBr pellet method. 'H
NMR spectroscopy was taken on a Bruker AVANCE III
HD 400 MHz spectrometer.

2.2. Synthesis of Styrene-Type Side-Chain Polyimides. PSMA
(20mmol based on maleic anhydride units) was dissolved
in 20mL of DMAc. Varying molarities of AS, AIPA, and
6FAL were added sequentially once every hour and stirred
at room temperature. After the formation of amic acid
linkages between maleic anhydride units of PSMA and
three aromatic amines (AS, AIPA, and 6FAL), a free radical
polymerization inhibitor (BHT) and a chemical imidization
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agent (acetic anhydride; 10 mL) were added and the reaction
mixture was reacted for 4.5h at 100°C to afford side-chain
polyimides (PSI-x) [12] (Figure 2). After cooling down, the
reaction mixture was poured into excess water (>10x vol-
ume) and the precipitates were collected by centrifugation.
EtOAc was added to the precipitates, and the insoluble was
removed via filtration. The organic solution was washed
twice using brine, dried with anhydrous Na,SO,, and evapo-
rated to dryness. The solid product was washed using diethyl
ether multiple times to afford PSI series side-chain polyimide
as brown powder.

2.3. Synthesis of Acrylate-Type Side-Chain Polyimides. PSMA
(20 mmol based on maleic anhydride units) was dissolved
in 20mL of DMAc solvent. First, 2-HEA (10 mmol) and
pyridine (1 mmol) were added to the PSMA solution and
the reaction mixture was stirred at room temperature for
16 h. Second, 6FAL (10 mmol) was added and stirred at room
temperature for 1h. Acetic anhydride (10 mL) was added,
and the mixture was stirred at 100°C for 4.5h for the
imidization reaction to occur (Figure 3). After the reaction,
the mixture was poured into excess amount of water. The
subsequent procedure was the same as that of PSI series in
Section 2.2 to afford PSEI series.

2.4. Synthesis of Methacrylate-Type Side-Chain Polyimides.
PSMA (20 mmol based on maleic anhydride unit) was also
dissolved in 20mL of DMAc. AIPA (6 mmol) and 6FAL
(14 mmol) were added sequentially once an hour and stirred
at room temperature. The reaction mixture was heated to
130°C and stirred for 16 h [13]. After cooling down, GMA
(4 mmol), TBPB (0.4 mmol), and BHT (0.04 mmol) were
added and stirred at 90°C for another 3h (Figure 4). The
reaction mixture was poured into excess water. The subse-
quent procedure was the same as PSI series to afford PSEA-1.

For the PSEA-2 synthesis, PSMA was dissolved in
PGMEA (net. 30 wt%) instead of DMAc, and the reaction
was proceeded as above with GMA.

3. Results and Discussions

3.1. Synthesis of Polyimide-Based Binder Polymers. The use of
negative-tone black photoresist, instead of positive-tone
photoresist based on photosensitive polyimide could
remove both the BM patterning and the 1/4A polarizing
film by reducing the reflection of ambient light from the
OLED panel. Positive-tone photoresist based on photosen-
sitive polyimide is used herein because the resulting PDL
made of polyimide thin film has a high thermal stability and
can withstand temperatures up to 300 °C during the OLED
panel fabrication process. However, the positive-tone photo-
resist based on photosensitive polyimide cannot be used to
develop a black photoresist due to limited penetration depth
of the UV light in the photolithographic patterning of black
PDL on the OLED panel. The negative-tone black
photoresist has deeper penetration depth than positive-tone
photoresist since the photolithographic patterning is per-
formed via a crosslinking reaction mechanism involving free



International Journal of Polymer Science

NH, NH,
0%y 0| HOOCD\COOH F3C/©\CF
PSMA AIPA 6FAL

DMAC
AcZO

HOOC” t “COOH F,¢§ i “CF,

F1GURE 2: Synthetic scheme of styrene-type side-chain polyimides.

0]
N + HO/\)J\/ —_—
FS F3

PSMA 6FAL HEA

CF,

PSEI-x

FIGURE 3: Synthetic scheme of acrylate-type side-chain polyimides.

NH,

NH2
—_—
+ /@\
HOOC COOH F;C CF;  imidization b
6FAL /( j\ /( j\
HOOC COOH F,C CF

APIA

PSMA

DMAc
Thermal (@) N

3

FIGURE 4: Synthetic scheme of methacrylate-type side-chain polyimides.

radical chain polymerization among multifunctional mono-
mers and the binder polymer.

The binder polymer should have carboxylic groups to be
developed easily with aqueous alkaline developer. Moreover,
the binder polymer should also be crosslinked tightly with
the multifuncional monomers upon UV light irradiation in
order not to be soluble in the aqueous alkaline developer.
Further, a high thermal stability of the binder polymer that
corresponds to the photosensitive polyimide in the positive-
tone photoresist is required. According to this guideline,

three different binder polymers with thermally stable imide
linkages have been synthesized.

3.1.1. PSI and PSEI Series. In the synthesis of PSI series binder
polymers, three aromatic amines reacted with the maleic
anhydride units of PSMA. The three amines (AIPA, 6FAL,
and AS) were used to afford carboxyl groups required in
the development step of photolithography. The solubility of
the binder polymer in the PGMEA, a common solvent in
the photoresist, was also examined. Besides, double bonds



TaBLE 1: Synthesis of side-chain polyimides for binder polymers of
black photoresists.

Binder polymer Sample Molarities Yield GPC
samples codes (mmol) (%) M,,
AS  AIPA 6FAL
PSI series PSI-1 4 6 10 52 4716
PSI-2 4 8 8 44 4863
PSEI series 2-HEA SFAL
PSEI-1 10 10 53 4637
AIPA 6FAL GMA
PSEA series PSEA-1 6 14 4 56 4735
PSEA-2 6 14 6 — 4819

responsible for the photocrosslinking reaction were also
included through the AS monomer. In the synthesis of PSI
series, the chemical imidization was carried out utilizing
acetic anhydride under mild condition of 100°C to avoid
self-polymerization of AS via a thermal initiation mecha-
nism. The PSI product was recovered by precipitation in
excess water to remove the excess acetic anhydride followed
by filtration, drying, and then tested in the black photoresist.

In PSEI series, 2-HEA was reacted with maleic anhydride
units of PSMA to generate both carboxyl groups and double
bonds. Then, aromatic amine (6FAL) was imidized using
chemical imidization method under mild conditions.
Because acetic anhydride was used for imidization, PSEI
has to be worked-up in the same way as PSI series.

3.1.2. PSEA Series. PSEA series were synthesized using two
different processes. First, APIA and 6FAL amines were
reacted via thermal imidization with maleic anhydride
groups of PSMA in DMAc solvent at 130°C. Then side-
chain polyimide intermediate was reacted with GMA to
afford a PSEA-1 binder polymer, in which carboxyl groups
were partially converted to epoxymethacrylates. The PSEA-
1 sample was recovered in the same manner as PSI series.
In the second process, PSEA-2 was synthesized using
PGMEA solvent instead of DMAc. However, PSEA-2 was
obtained using a one-pot solution method without work-up
and was tested directly as the binder polymer in the photo-
lithographic patterning of black PDL in the OLED panel.

Table 1 shows that the yields of polyimides were not high
(44%-56%) because the polyimide products had relatively
high carboxyl groups and underwent weight loss during pre-
cipitation in excess water. GPC, FT-IR, and 'H NMR analy-
ses of the PSEA-2 sample are shown in Figures 5, 6, and 7,
respectively. The molecular weight of PSEA-2 (M, =4819 g/
mol) was higher than that of PSMA (M, =1600 g/mol) due
to the expansion of hydrodynamic volume after an imidiza-
tion step that introduced bulky substituents in side chains
of a relatively flexible PSMA polymer. According to FT-IR
spectra, anhydrides were converted to imides and methacry-
late esters. Moreover, '"H NMR spectrum indicated that
electron-poor aromatic amines (§ 8.18-8.45), epoxy (8§
4.16), and methacrylate groups (6 1.87-1.96, 5.66, and 6.07)
were introduced to PSMA chains.

International Journal of Polymer Science

160
120
&
g
o 80
50
]
°
2
= 40
c
o0
w
01— T
5 10 15 20 25 30\[@5 40
_40 Retention time (min)

F1GURE 5: GPC chromatogram of PSEA-2 polyimide.

3.2. Photolithography and Thermal Stability of Black PDL
Patterns. The black photoresist for the patterning of the black
PDL of OLED panel is composed of the photoinitiator, pho-
tosensitizer, multifunctional monomer, polyimide as a ther-
mal stabilizer, black millbase, and binder polymer. The
binder polymer and multifunctional monomer are the main
components of the photoresist, which affect the exact pat-
terning of PDL via the photocrosslinking reaction in the
UV-irradiated area and development of UV-unirradiated
area by aqueous alkaline solution.

In this study, a commercial binder polymer SR-6300
(SMS Co., Korea) known as cresol novolac epoxyacrylate,
dissolved in PGMEA solvent at 30wt%, was used as a
reference binder polymer as shown in Table 2. A commercial
sample PETA was used as multifunctional monomer, which
has the functionality of 3. The thermal stability of the refer-
ence black photoresist (PT-0), determined by TGA, was not
high enough (up to 300°C) to endure the photolithographic
patterning of PDL even after the subsequent postcure treat-
ment at 250 °C for 30 minutes.

Figure 8 shows the photolithographic patterns of the
black PDL using the side-chain polyimide binder polymers.
The black photoresists PT-0 and PT-3 exhibited fine patterns
of black PDL. However, PT-1 and PT-2 showed irregular or
wavy PDL patterns. In case of PT-1 photoresist PSI type
binder polymer had styrenic groups as source of double
bonds for the photocrosslinking reaction, so that the adhe-
sion to the silicon wafer was not as good as the reference
binder polymer (SR-6300), which has epoxy acrylate as a
source of double bonds. In the case of the PT-2 black photo-
resist, the wavy PDL pattern was related to the high acid
value of the binder polymer PSEI-1 in which acrylate groups
were introduced via the reaction of 2-HEA with maleic anhy-
dride units of PSMA. High amount of 2-HEA monomer had
to be used for the complete solubility of the resulting PSEI-1
in PGMEA. The PT-3 black photoresist showed fine PDL
patterns due to the balance of good adhesion to the silicon
wafer and the optimum acid value from benzoic acid-type
carboxyl groups.

The effect of side-chain polyimide binder polymers on
the thermal stability of the resulting PDL patterns was evalu-
ated via TGA analysis. The black PDL patterns formed on the
silicon wafer were scratched off after photolithographic
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FiGURE 7: "H NMR diagrams of PSEA-2 and its starting material PSMA in d,-DMSO.

patterning using a sharp razor blade, and the fine black pow-
der was subjected to TGA analysis. As shown in Table 2 and
Figure 9, the PT-3 photoresist having thermally stable side-
chain polyimide PSEA-2 as a binder polymer exhibited
higher 1wt% loss temperature than the PT-0 reference pho-
toresist which had commercial SR-6300 as binder polymer.

4. Conclusion

In this study, a series of new binder polymers having
thermally stable side-chain imide linkages were synthesized
and used in the black photoresist formulation to pattern

black PDL on the OLED panel. For the synthesis of binder
polymers, poly(styrene-co-maleic anhydride) was used as
the starting material and three different types of side-chain
polyimides were obtained. The epoxy methacrylate-type
side-chain polyimide afforded a fine black PDL pattern
with high thermal stability, comparable to that of the cur-
rently used positive-tone photosensitive polyimide.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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TaBLE 2: Formulation of black photoresists and thermal stability of a black PDL pattern [14].

Components/photoresist samples

PT-0 PT-1 PT-2 PT-3
L Irgacure 754 1 1 1
Photoinitiators
Irgacure TPO 6 6 6
Photosensitizer Darocure ITX 2 2
SR-6300 35
‘ . PSI-2 35
Binder polymer (30 wt% in PGMEA)
PSEI-1 35
PSEA-2 35
Multifunctional monomer PETA 8 8 8 8
Polyimide thermal stabilizer (30 wt% in PGMEA) MY-10 10 10 10 10
Black millbase (23 wt% in PGMEA) LT-1 (SKC htm Co., Korea) 35 35 35 35
Solvent PGMEA 5 5 5 5
Total wt% 100 100 100 100
Thermal stability 1 wt% loss temp. (°C, TGA) 282 — — 303

25 pm

(0

(d)

F1GURE 8: The optical microscopic images of black PDL patterns obtained with (a) PT-0, (b) PT-1, (c) PT-2, and (d) PT-3 black photoresists.
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