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Abnormal Stop Band Behavior 
Induced by Rotational Resonance in 
Flexural Metamaterial
Sung Won Lee & Joo Hwan Oh

This paper investigates abnormal stop band behavior of resonance-based flexural elastic metamaterials 
under the rotational resonance motion. Due to the unique physics of flexural waves, we found that the 
stop band generated by the rotational resonance motion exhibits peculiar behavior which are quite 
different from general belief – it is shown that the negativity due to the rotational resonance does not 
provide any stop bands and the stop band generation due to the rotational resonance is governed by 
totally different band gap condition. To explain the peculiar behavior, a discrete Timoshenko beam 
model with both effective mass and rotational inertia as independent variables is introduced, and the 
wave behaviors of resonance-based flexural elastic metamaterial are precisely and fully described. The 
unique band gap condition, including the peculiar behavior, is derived with numerical validations. We 
expect our new model can provide a strong background for various flexural elastic metamaterials which 
can be effectively applied in various vibration devices.

Flexural metamaterials, sub-wavelength periodic structures considering flexural elastic waves, have received 
much attentions since they are governed by different physics compared to other type of metamaterials. From the 
frontier researches of Smith1, Pendry2,3 (in electromagnetics) and Liu et al.4 (in elastics), various advances have 
been made for elastic metamaterials exhibiting negative parameters, such as negative density, shear and Young’s 
modulus5–18. As the recent advances in metamaterials have extended our knowledge to various wave phenomena 
such as negative refraction17–22 or super resolution23–25, revealing unique physics of flexural metamaterial may 
open a new way in various vibration problems. Nevertheless, the physics of flexural metamaterials are not fully 
explained yet due to its unique physics dominated by two different types of deformation – vertical and rotational 
motions26.

To more clearly explain this point, Fig. 1 is prepared with typical dispersion curves of the mass-spring system 
mimicking elastic metamaterials with internal resonators. If the system is under the longitudinal motion, it has 
been already known that internal resonance motion provides negative density, which forms a stop band around 
the internal resonance frequency as in Fig. 1(a). On the other hand, the system’s behavior is totally different if it 
is under the flexural motion; since the flexural wave is governed by both the vertical and the rotational motion, 
two kinds of resonance, vertical and rotational one, affect the flexural wave, forming two distinct stop bands. 
Especially, one can easily find in Fig. 1(b) that the stop band around the rotational resonance frequency exhibits 
peculiar characteristics that may go beyond the general belief on the resonance-based metamaterials; the stop 
band is formed outside the actual resonance frequency, and its bandwidth is too narrow. These peculiar charac-
teristics cannot be explained with previous theories on negative density or stiffness, and there has been a need for 
a new theory of resonance-based flexural metamaterial.

However, previous researches have mainly focused on the vertical resonance motion exhibiting well-known 
band gap behaviors, not the rotational motion exhibiting peculiar behaviors. Zhu et al.27 proposed elastic met-
amaterial shielding flexural waves with negative density. Yu et al.28 analyzed and confirmed the local resonance 
band gap in Timoshenko beams by both numerical simulations and experiments. Gusev et al.29 proposed not 
only the negative density but also the negative flexural modulus in metaplate with lumped-element approach. Pai 
et al.30 proposed the elastic metamaterial which shows both negative density and stiffness by multi-frequencies 
absorber for flexural waves. Oh et al.31 proposed the flexural metamaterial which has extremely low stop band, 
near zero frequency, by realizing zero rotational stiffness. While previous researches provided strong analytic 
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models consisting of Kirchhoff plate with attached mass-springs that can clearly explain the related physics of the 
vertical resonance phenomena, the physics related to the rotational resonance phenomena has not been clearly 
explained yet. Although the abnormal stop band behavior due to the rotational resonance can be found in various 
literatures, the related physics has been still unknown.

In this research, the physics related to the rotational resonance in resonance-based flexural metamaterials are 
studied. Especially, we found that the stop band generated by the rotational resonance is governed by the totally 
different condition compared to the generally known theories; although the rotational resonance provides nega-
tive parameter as usual, the stop band is not achieved by the negative parameter but by the positive parameter at a 
certain range. To explain the related physics, we developed a discrete Timoshenko beam model in which an idea 
of ‘effective rotational inertia’ is introduced in addition to the generally known ‘effective mass’. From the model, 
effective density and rotational inertia are defined as a function of the vertical and rotational resonance frequen-
cies. Detailed band gap condition for the rotational resonance motion is derived with numerical supports. Finally, 
as a possible application of the current findings, a new type of frequency filter is shown by combining both the 
rotational and vertical resonance phenomena.

Result
Discrete Timoshenko beam model for the flexural metamaterial. Background physics: mass-spring 
system for flexural wave. As explained previously, since flexural wave is governed by both the vertical and 
rotational displacements, general mass-spring system used for acoustics or other elastic metamaterials cannot 
be used. Figure 2(a) shows the mass-spring system for the flexural wave, which is developed from the classical 
Timoshenko theory26,31. Here, two kinds of springs, α and β, are used to describe the effects of the vertical and 
rotational displacements, un and θn, respectively. Following the detailed analysis shown in the supplementary 
material (See Supplementary material for the detailed analytic procedures), the vertical and rotational dynamic 
equation of the nth unit cell in Fig. 2(a) is derived as31:

Figure 1. Typical mass-spring systems with internal resonator and dispersion curve for (a) longitudinal and (b) 
flexural elastic waves.
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To avoid any trivial solution, the determinant of the matrix in Eq. (2) should be zero. This condition yields the 
wave dispersion equation of the flexural elastic wave as
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Since Eq. (3) is too complicated to be fully solved, we will focus on the frequencies at k = 0 and k = π/a, which 
corresponds to the starting and terminating frequencies of each dispersion branch in the irreducible Brillouin 
zone32. Substituting k = 0 and k = π/a to Eq. (3) yields

ω ω α= = == =k a Iat 0: 0 and / , (4a)k k
1

0
2

0 2

π ω β ω α= = = .π π= =k a I mat / : 4 / and 4 / (4b)k a k a
1

/
2

/

Considering that there is no mode coupling (between flexural and other wave modes) and the system is 
1-Dimensional system, the corresponding wave dispersion branches should monotonically increase or decrease 

Figure 2. (a)Equivalent mass-spring system for general flexural wave, two typical wave dispersion curves of 
flexural wave if (b) αa2 > 4β and (c) αa2 ≤ 4β.
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without any branch-overlapping. Thus, as shown in Fig. 2(b,c), it can be expected that the first flexural wave’s dis-
persion branch lies from ω == 0k

1
0  to ω β=π= I4 /k a

1
/ , while that for the second branch is from ω α== a I/k

2
0 2  

to ω α=π= m4 /k a
2

/ . Therefore, if αa2 > 4β, there should be a band gap from αa I/2  to β I4 /  as shown in 
Fig. 2(b). (As can be seen in the supplementary material, αa2 is generally much larger than 4β). Based on these 
results, detailed physics of the resonance-based flexural metamaterial will be studied.

Discrete Timoshenko beam model for resonance-based flexural metamaterial. Now, let us focus on the flexural 
metamaterial with inner resonator, whose mass-spring system is shown in Fig. 3(a). To avoid any complexity such 
as the band crossing, we will consider the frequencies below the homogenization limit, i.e., only the first wave 
dispersion curve below the frequency ω β=π= I4 /k a

1
/  is studied. Based on the mass-spring system shown in 

Fig. 3(a), the vertical and rotational dynamic equations of the nth outer mass can be calculated as (the detailed 
process can be found in the supplementary material.
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Comparing Eqs (1a,b) and (5a,b), one can find that Eq. (5a,b) (defined for mass-spring system with internal 
resonator shown in Fig. 3(a)) can be converted to Eqs (1a,b) (defined for mass-spring system in Fig. 2(a)) if the 
effective mass and inertia, meff and Ieff, are defined as
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Here, let’s define two resonance frequencies as ω α= m2 /m
2

2 2 and ω β α= + a I(2 /2)/I
2

2 2 2
2

2, which correspond 
to the vertical and rotational resonance frequency, respectively. With ωm and ωI, Eq. (6) can be re-written as

Figure 3. (a) Equivalent mass-spring system for flexural elastic metamaterial with internal resonator, (b) plots 
of the dispersion curve and effective parameters of the mass-spring system shown in (a).
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It should be noted that the effective inertia Ieff in Eq. (7b) is defined for the flexural motion, which should be 
distinguished from the rotational inertia defined for the torsional motion. Although both parameters are affected 
by the rotational resonance motion, the axis of rotation for the flexural wave is perpendicular to the wave prop-
agating direction (in Fig. 3(a), the axis of rotation is z-axis) while the axis of rotation for the torsional wave is 
parallel to the wave propagating direction. As experimentally shown from previous research33, the physics related 
to the effective rotational inertia for torsional motion are almost same as the generally known physics for the 
effective mass. However, the physics related to the effective rotational inertia for flexural motion is different from 
the well-known physics as explained in Fig. 1(b).

Figure 3(b) shows the typical wave dispersion curve of the mass-spring system in Fig. 3(a), with the plots of 
meff and Ieff. From Fig. 3(b) and Eq. (7), the following three major findings can be observed;

 1. Each internal resonance frequency only affects on the corresponding effective parameter, respectively. The 
vertical resonance frequency ωm only affects the effective mass meff, while the rotational resonance frequen-
cy ωI only affects the effective inertia Ieff (However, ωm and ωI are not totally independent since both are 
function of vertical spring coefficient α2).

 2. Similar to the well-known findings on the negative density6,15, meff and Ieff can be an infinite or negative 
value around the internal resonance frequency ωm and ωI, respectively.

 3. Unlike the band gap generated by ωm, the band gap generated by ωI is not identical to the frequency range 
where Ieff is negative, i.e., negative Ieff does not produce band gap. Furthermore, the rotational resonance 
frequency ωI is located outside the band gap, while the vertical resonance frequency ωm is inside the band 
gap.

The third finding indicates that the band gap condition for the rotational inertia is different from the condition 
for the mass where negative mass provides band gap. Since this point is closely related to the peculiar behavior of 
the flexural metamaterial, it will be intensively studied in the next section.

Band gap condition for in flexural elastic metamaterial. To investigate the unique band-gap condition in flexural 
metamaterial, Eq. (5) is re-arranged into simple 2 × 2 matrix form as:
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Again, the determinant of the matrix in Eq. (8) should be zero for non-trivial condition. Therefore, the wave 
dispersion equation can be derived as

ω α ω β
α

α


 + − 






 + − − +







− = .

m ka I ka a ka

a ka

2 (cos( ) 1 2 {cos( ) 1}
2

{cos( ) 1}

[ sin( )] 0 (9)

eff eff
2

1 1
2

1 1
1 1

2

1

1 1 1
2

Considering that both meff and Ieff are functions of frequency ω, solving Eq. (9) is too complicated and may not 
provide any good insight for the band gap condition. Thus, as done previously, the frequencies corresponding to 
k = 0 and k = π/a1 will be focused. Substituting k = 0 and k = π/a1 into Eq. (9) yields
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Based on Eq. (10), the band gap condition around the vertical and rotational resonance frequencies, ωm and 
ωI, will be studied. Since ωm and ωI independently affect meff and Ieff (by the first finding), each resonance will be 
considered separately.

Band gap condition for the vertical resonance: First, assume that the internal resonator exhibits the vertical 
resonance motion only, i.e., only ωm exists. In this case, meff significantly alters from negative infinite to positive 
infinite value (by the second finding), while Ieff = Io = I1 + I2 is constant. Thus, the frequencies corresponding to 
k = 0 and k = π/a1 can be solved from Eq. (10) as
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Comparing Eq. (11) with Eq. (4), one can easily find that ω =
m
k

2
0 and ω π=

m
k a

1
/ 1 are newly considered since meff is 

not a constant value anymore. Figure 4(a) shows the corresponding wave dispersion curve and effective parame-
ters. Note that ω =

m
k

3
0 and ω π=

m
k a

3
/ 1 are not plotted since we are focusing on the frequencies below the homogeniza-

tion limit, i.e., below ω β= I4 /1 0. From Fig. 4(a), it can be clearly observed that the vertical resonance creates a 
new band gap from ω π=

m
k a

1
/ 1 to ω =

m
k

2
0. This indicates that the band gap is generated if

α ω ω< < ∞ − ∞ < < .m m4 (Bragg gap) or 0 (Negative density) (12)eff eff1
2 2

One can find that the condition shown in Eq. (12) is same as those of the negative density phenomena studied 
previously7. In fact, the physics related to the vertical resonance is same as the well-known physics of negative 
density. Obviously, this frequency range includes the negative meff region and the vertical resonance frequency 
ωm, as in Fig. 4(a).

Band gap condition for the rotational resonance at ωI: Now, let us focus on the band gap generated by the rota-
tional resonance, which exhibits the peculiar behaviors. As done previously, assume that the internal resonator 
exhibits only the rotational resonance motion so that only ωI exists. Accordingly, meff = mo = m1 + m2 while Ieff 
varies from negative infinite to positive infinite value. With these conditions, the frequencies at k = 0 and k = π/
a1 are evaluated as

Figure 4. Plots of wave dispersion curve, effective mass and effective rotational inertia if the internal resonator 
exhibits (a) vertical resonance only and (b) rotational resonance only.
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Figure 4(b) shows the wave dispersion curve and effective parameters when the rotational resonance takes 
place. Again, ω =

I
k

3
0 and ω π=

I
k a

3
/ 1 are not considered due to the homogenization limit. Due to the rotational reso-

nance, Ieff can have various values from negative infinite to positive infinite. Therefore, ω =
I
k

2
0 and ω π=

I
k a

1
/ 1 are 

newly considered, and a new band gap from ω π=
I
k a

1
/ 1 to ω =

I
k

2
0 is formed.

From Fig. 4(b), one can clearly see that the frequency range of the band gap does not cover the frequency 
range of the negative Ieff. In fact, Eq. (13) suggests that the band gap is generated if the value of the effective inertia 
term Ieff ω2 lies between 4β1 and α a1 1

2 as seen in Fig. 4(b). This indicates that negativity in the rotational inertia 
does not provide band gap, unlike density or mass where negativity directly provides the band gap. This obviously 
explains why the band gap generated by the rotational resonance does not include the rotational resonance fre-
quency as in Fig. 4(b); the stop band is generated where Ieff ω2 lies between 4β1 and α a1 1

2 while the rotational res-
onance frequency belongs to the infinite value of Ieff. Also, the band gap condition also explains why the 
rotation-induced band gap is very narrow. The frequency range at which Ieff ω2 is between 4β1 and α a1 1

2 should be 
very narrow since Ieff rapidly varies around the rotational resonance frequency ωI.

Here, we considered the case of α β>a 41 1
2

1, which is the usual case as explained previously. If α β≤a 41 1
2

1, 
however, the rotational resonance would not provide any band gap since ω π=

I
k a

1
/ 1 is higher than ω =

I
k

2
0. At this 

condition, there are two modes of flexural elastic wave at the frequencies between ω =
I
k

2
0 and ω π=

I
k a

1
/ 1, where the 

former is the rotation-dominant wave and the latter is the vertical motion-dominant wave26,31. As a result, it can 
be summarized that band gap is achieved if

β ω α α β< < >I a a4 (if 4 ), (14a)eff1
2

1 1
2

1 1
2

1

α β≤ .aNo band gap (if 4 ) (14b)1 1
2

1

which are totally different conditions from the well-known band gap condition.

Numerical Validations. Validation with dispersion curves. To validate the analytic investigations on reso-
nance based flexural metamaterial, numerical simulations are carried out. First, the wave dispersion curve is cal-
culated to validate the analytical investigation. For the validation, the metamaterial unit cell shown in Fig. 5(a) is 
considered. The detailed geometric and material parameters of the unit cell are given in our supplementary material.  
Simulation with the inner beam and mass only showed that the vertical and rotational resonance frequencies 
are ωm = 71.18 Hz and ωI = 250.76 Hz, respectively. Also, it was shown that the unit cell’s resonance, which can 
highly affect the wave transmission characteristics as shown in ref.34, does not exist at the frequency below 300 Hz. 
With the unit cell shown in Fig. 5(a), the wave dispersion curve is numerically and analytically calculated. For 
the analytic calculation, the equivalent coefficients, such as m1, I1, α1, and β1, are calculated by using the classical 
vibration theory35; the detailed values can be found in the supplementary material.

Figure 5(b) compares analytically and numerically calculated dispersion curves. Very good agreements can 
be observed between two results, validating our theoretical investigations. Obviously, the band gaps are not due 
to the negative stiffness effect since only the positive stiffness values were considered in the analytic calculation. 
Two distinct band gaps can be observed around the vertical resonance frequency (68.57 ~ 126.38 Hz) and the 
rotational resonance frequency (246.90 ~ 247.95 Hz). As predicted from the analytical investigation, the band 
gap near the rotational resonance frequency is much narrower than the band gap around the vertical resonance 
frequency. Also, the vertical resonance frequency (71.18 Hz) is inside the band gap (68.57 ~ 126.38 Hz) while the 
rotational resonance frequency (250.76 Hz) is outside the band gap (246.90 ~ 247.95 Hz), which agrees with our 
analytic theory.

Figure 5(c) plots the mode shapes at the lower and upper edge frequencies of two band gaps. From Fig. 5(c), 
one can clearly figure out that the first band gap formed at 68.57 ~ 126.38 Hz is originated from the vertical reso-
nance of the internal resonator, while the second band gap formed at 246.90 ~ 247.95 Hz, is originated from the 
rotational resonance. It is interesting that the mode shapes at the first band gap’s lower and upper edge frequen-
cies, M1 and M2, are out-of-phase while those at the second band gap’s lower and upper edge frequencies, M3 
and M4, are in-phase. (Here, M3 and M4 are not on a same branch – M4 corresponds to the cutoff frequency 
where the high-order flexural wave branch starts). This can be explained from the classical vibration theory that 
the mode shapes at the frequencies lower and higher than the internal resonance frequency show 180° phase 
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difference35. Since the first band gap includes the vertical resonance frequency inside, the mode shape at M1 and 
M2 show out-of-phase motion. On the other hand, the in-phase motion at M3 and M4 suggests that the corre-
sponding resonance frequency, the rotational resonance frequency, is at the outside of the second band gap. This 
also supports our findings that the band gap generated by the rotational resonance does not include the rotational 
resonance frequency.

Validation with wave transmission simulations. In addition to the wave dispersion curve, the wave transmis-
sion simulations are carried out to study the detailed wave phenomena for finite metamaterial layers. Figure 6(a) 
shows the simulation setting for the flexural wave propagation with a finite metamaterial layer consisting of 2, 
4, and 6 unit cells. Here, the same unit cell shown in Fig. 5(a) is used. The simulation process is described in the 
Method section. After all, the transmission T for various frequency, 50 to 270 Hz, is calculated by the described 
procedure. Note that the transmission T may exceed 1 due to its definition, as explained in the Method section.

Figure 6(b) shows the transmission T measured by the above method for metamaterial layers consisting of 2, 4, 
and 6 unit cells. Extremely low transmission is measured at the frequencies from 69 ~ 125 Hz and 247.3 ~ 247.5 Hz, 
which corresponds to the first and second band gap in the dispersion curve shown in Fig. 5(b). Considering that 
the resonance frequencies are 71.18 Hz and 250.76 Hz, the analytic finding can be validated here; the vertical 
resonance frequency belongs to the stop band, while the rotational resonance frequency belongs to the pass band. 
It should be noted that the low transmission at these frequency bands can be observed regardless of the number 
of unit cells, which indicates that the low transmission is not because of the Fabry-Perot anti-resonance. Also, 
although the second band gap at 247.3 ~ 247.5 Hz (originated from the rotational resonance) is extremely narrow, 
it can be observed that very low transmission is well-formed with two unit cells.

Figure 5. (a) Unit cell of the metamaterial considered for the numerical investigations. (b) Plots of numerically 
and analytically calculated wave dispersion curve, (c) mode shapes of the unit cell at the points M1, M2, M3, 
and M4 in (b). Note that only flexural mode branches are plotted.
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Figure 6(c) shows the deformed configuration of the metamaterial layer consisting of 4 unit cells at various 
frequencies. The flexural elastic wave propagates inside the metamaterial layer, which implies that the frequency 
belongs to the pass band. On the other hand, at 100 Hz which belongs to the first band gap, it can be seen that the 
wave cannot propagate through due to the vertical resonance motion of the first unit cell. In the same manner, 
the flexural wave at 247.4 Hz (which belongs to the second band gap) cannot propagate through because the first 
unit cell exhibits rotational resonance motion. These two results clearly show that the first and second band gap 
is originated from the vertical and rotational resonance, respectively, which is identical to the previous analytic 
finding that each resonance motion generates independent stop band.

In addition, it was shown that the rotational resonance frequency ωI (250.7 Hz) belongs to the pass band in 
the previous analytic investigation. To check this point, the wave simulation result at the rotational resonance 
frequency is shown in Fig. 6(c). Although the internal resonators exhibit large rotational motion, it can be seen 
that not only the first unit cell but also all the other unit cells exhibit rotational motion. This clearly indicates that 
ωI belongs to the pass band.

The band gap overlapping for frequency filtering application. From the results shown above, one 
may argue that the band gap generated by the rotational inertia is almost meaningless since the band gap is too 
narrow to be applied in actual applications such as vibration shielding. However, by extending the current theory, 
it is possible to form very narrow pass band inside a broad band gap which is highly preferred in the frequency 
filtering applications. As a possible application that can be inferred from the current research, a frequency filter-
ing device will be introduced here.

Consider a flexural metamaterial whose internal resonator exhibits vertical resonance motion at ωm. Due to 
the vertical resonance motion, a band gap is generated from ω π=

m
k a

1
/ 1 to ω =

m
k

2
0 (the definition of ω π=

m
k a

1
/ 1 and ω =

m
k

2
0 

can be found in Eq. (11)). Now, assume that the internal resonator also exhibits rotational resonance motion at ωI 
while ωI is inside the band gap from ω π=

m
k a

1
/ 1 to ω =

m
k

2
0. As can be seen in Fig. 7(b), there should be an additional 

dispersion branch between ω π=
I
k a

1
/ 1 and ω =

I
k

2
0 (the definition of ω π=

I
k a

1
/ 1 and ω =

I
k

2
0 are given in Eq. (13)). Because 

the frequency range from ω π=
I
k a

1
/ 1 to ω =

I
k

2
0 is very narrow, the new dispersion branch will provide very narrow 

rotation-induced pass band inside the broad band gap originated from the vertical resonance. As a result, very 

Figure 6. (a) A finite element modeling to measure the flexural wave transmission, (b) transmission at various 
frequencies, (c) wave simulation results at various frequencies.
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effective frequency filter can be achieved if the rotational resonance is designed to be inside the band gap from the 
vertical resonance motion.

To check the feasibility of the frequency filtering, the metamaterial with the unit cell shown in Fig. 7(a) 
is numerically investigated. The unit cell in Fig. 7(a) is almost same as the previously considered unit cell in 
Fig. 5(a). However, the only difference is that the height of the inner mass is changed to 4 mm, which yields 
m2 = 0.002 kg and I2 = 2.709e − 09 kg⋅m2. The other geometric conditions, properties, and analytic coefficients are 
the same with the previous unit cell in Fig. 5(a) whose specifications can be found in the supplementary material. 
Figure 7(b) plots the numerically and analytically calculated wave dispersion curve. As can be inferred from the 
mode shapes plotted in Fig. 7(c), a narrow pass band near 89.3 Hz is originated from the rotational resonance, 
while the band gap from 48.73 to 117.65 Hz, originated from the vertical resonance. Thus, the metamaterial can be 
used to filter out the flexural waves from 48.73 to 117.65 Hz, except very narrow frequency range around 89.3 Hz.

Figure 8(a) shows the wave simulation setting to check the performance of the frequency filtering with the unit 
cell shown in Fig. 7(a). Here, the same wave simulation procedure as in the previous section shown in Fig. 6(a) 
is used. Figure 8(b) shows numerically calculated wave transmission for various frequencies. As can be seen 
in Fig. 8(b), waves cannot propagate through the metamaterial layer at the frequency range from 50 to 100 Hz, 
except at 89.3 Hz. Figure 8(c) shows the deformed configuration of the metamaterial layer at the frequency of 
60, 89.3, 90 Hz, respectively. In 60 and 90 Hz, the flexural waves cannot propagate through due to the vertical 
resonance motion of the first unit cell. However, at 89.3 Hz, the internal resonators exhibit rotational motion, and 
the flexural waves can propagate through by the help of the rotational motion. These results explain how the rota-
tional resonance motion allows the wave propagation at very narrow frequency band. Thus, the metamaterial can 
filter out the waves at frequencies from 48.73 to 117.65 Hz, except the wave at frequency around 89.3 Hz, forming 
effective frequency filter.

Figure 7. (a) Unit cell of the metamaterial for the frequency filtering, (b) plots of numerically and analytically 
calculated wave dispersion curve, (c) mode shapes of the unit cell at the points N1, N2, N3 and N4 in (b). Note 
that only flexural mode branches are plotted.
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Discussion
In this paper, the abnormal band-gap phenomena in resonance-based flexural elastic metamaterials were 
reported and intensively studied. A new model dedicated on the resonance-based flexural elastic metamaterial 
was developed by extending Timoshenko theory. From the unique mass-spring system, the band gap condition 
and effective parameters were analytically investigated. The major findings from the analytic investigations can 
be summarized as follows; first, the vertical and rotational resonance independently affects the effective mass and 
effective rotation inertia, respectively. Second, the negative effective mass provides band gap, while the negative 
rotational inertia has nothing to do with the band gap. Third, the band gap originated by the vertical resonance 
is usually broad and includes the vertical resonance frequency, while the band gap generated by the rotational 
resonance is very narrow and formed outside the rotational resonance frequency. These findings were supported 
and validated with numerical simulations. It was shown that the findings can be generally applied for other cases 
where low frequency and pure mode assumptions can be used.

As the possible extension of the current findings, a frequency filtering device was introduced. From the ana-
lytic investigation, it was shown that a very narrow pass band can be formed inside a broad band gap if the reso-
nator is well designed so that the rotational resonance frequency is inside the band gap of the vertical resonance 
motion. Simulations were carried out to show that only the flexural wave around a certain frequency can pass 
through the well-designed metamaterial layer. We expect our research can provide strong theoretical basis in 
the field of flexural elastic metamaterials that can open a new way in various vibration devices. Extending our 
research to high frequency ranges may also provide a new physics.

Method
Numerical dispersion curve simulation settings. The commercial finite element analysis program, 
COMSOL Multiphysics 5.3, is used. After modeling the unit cell, the wave dispersion curve is calculated by evaluat-
ing eigenfrequencies with the Floquet-Bloch condition imposed on the boundaries b1 and b2 in Figs 4(a) and 6(a)36.  
Note that since we are considering the one-dimensional mass-spring system, the unit cell has periodicity along 
x-direction only. Along y-direction, traction-free boundary conditions are considered.

Figure 8. (a) Finite element modeling to measure the flexural wave transmission for the frequency filter, (b) 
transmission at various frequencies, (c) wave simulation results at various frequencies.



www.nature.com/scientificreports/

1 2ScIENTIfIc REPORTS |  (2018) 8:14243  | DOI:10.1038/s41598-018-32597-7

Transmission simulation settings. The simulation is carried out as follows. First, at the left edge B1 and 
B2, the y-directional harmonic force at various frequencies is applied. After that, the y-directional displacement 
w1 is measured at P1 and P2. For the comparison, the same analysis is repeated without the metamaterial layer 
and the y-directional displacement w2 is measured for each actuation frequencies. Finally, the transmission T is 
measured by the amplitude ratio of the measured y-directional displacement as T = |w1/w2|. In fact, the trans-
mission T is not the exact definition of the transmission coefficient so that it may exceed 1. However, it can be 
effectively used to check the band gap formation. The same procedure was estimated for both unit cells array that 
this paper studied.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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