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Abstract
The structure and stability of molecular junctions, which connect two single-wall carbon
nanotubes (SWCNTs) of different diameters and chiral angles, (n1, m1)-(n2, m2), are
systematically investigated by density functional tight binding calculations. More than 100
junctions, which connect well-aligned SWCNTs, were constructed and calculated. For a highly
stable junction between two chiral (n1, m1) and (n2, m2) SWCNTs with opposite handedness, the
number of pentagon–heptagon (5/7) pairs required to build the junction can be denoted as
||n2−n1|−|m2−m1||+min{|n2−n1|, |m2−m1|} with (n2, m2) rotating π/3 angle or not.
While for a junction connected by two zigzag, armchair or two chiral SWCNTs with the same
handedness, the number of 5/7 pairs is equal to |n1−n2|+|m1−m2|. Similar to the formation
energies of grain boundaries in graphene, the curve of the formation energies vs. chiral angle
difference present an ‘M’ shape indicating the preference of ∼30 degree junctions. Moreover,
the formation energies of the zigzag-type and armchair-type junctions with zero misorientation
angles are largely sensitive to the diameter difference of two sub-SWCNTs.

Supplementary material for this article is available online

Keywords: carbon nanotube junctions, pentagon–heptagon pairs, stabilities, misorientation
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(Some figures may appear in colour only in the online journal)

1. Introduction

Single-wall carbon nanotubes (SWCNTs), cylindrical structures
that can be obtained by rolling a graphene sheet, have attracted a
great level of interest due to their novel properties and immense
potential applications [1–6]. For example, the electronic proper-
ties of a SWCNT are largely determined by its diameter and
chirality, indicated by a pair of chiral indexes (n, m) [7, 8]. An
SWCNT with the (n, m) satisfying n–m=3i (i is integer) are
metallic, while others are semiconducting [9]. Fusing two
SWCNTs of different structures will inevitably introduce a

junction in the interface and, depending on the types of the two
SWCNTs, the junction might be one of the three possible types,
S–S, M–M or S–M, where S and M represent semiconducting
and metallic SWCNTs, respectively, and the junctions of dif-
ferent types can be used as building blocks for various applica-
tions in future microelectronic devices [10–32].

Hitherto, great efforts have been made to explore the
geometric structures of different tube–tube junctions, such as
the bending tube–tube junctions, the junctions formed by
fusing two SWCNTs, and so on [10–20]. During SWCNT
growth, it was found that the chirality of a SWCNT might be
changed and therefore such junctions could be frequently
observed [21, 33]. Another method to produce SWCNTs with
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well-aligned junctions is to transform the carbon nanopeapods
into double walled CNTs (DWCNTs), during which the fur-
ther fusion of the short SWCNTs formed by the fusion of
fullerenes must lead to the formation of junctions in a long
and straight mode in the inner wall SWCNTs [34, 35]. In
addition, massive multiwall CNx/carbon nanotube intramo-
lecular junctions were also successfully fabricated by ordinary
CVD method [36, 37].

Because of the great interests in the junctions in
SWCNTs, many theoretical efforts have been made to explore
their structures, properties and stabilities [14–16, 29, 30,
37–39]. While, a systematic theoretical study has not been
available until now. Since the junctions connecting two
straight SWCNTs are of high importance for SWCNT growth
and electronic applications, in this study, we focus on the
straight SWCNT junctions to explore the formation of highly
stable junctions and their dependence on the structures of the
two SWCNTs on both sides.

2. Models of the tube–tube junctions and calculation
methods

In order to create the highly stable tube–tube junctions, we
first place two SWCNTs, noted as T1 and T2 hereafter,
together with their axes aligned with each other. Then all the
dangling bonds at the junction of the configurations are
eliminated by adding or removing carbon atoms to maintain a
sp2-hybridized carbon network (figures 1(a)–(c)). Finally, the
constructed junction was further annealed by rotating
the randomly selected C–C bonds around the junction while
the alignment of both tubes remains in order to locate the
structure with the minimum formation energy. The method of
tube–tube junction annealing was same as that shown in
previous study [40]. According to the chiral structures of the
two SWCNTs on both sides of the junction, three kinds of
junctions are considered: Z–Z junctions which connect two
zigzag (ZZ) SWCNTs (figure 1(f)), A–A junctions between
two armchair (AM) SWCNTs (figure 1(g)) and C–C junctions
connecting two SWCNTs with arbitrary chiral structures
(figures 1(h)–(j)).

All the constituted SWCNTs used here can be projected
on the map of figure 2. We divide the SWCNTs into two
types of zones: (1) zone-I, where the SWCNT is right-handed
(R) with the chiral angle in the range of (0°, 30°), and (2)
zone-II(1)/zone-II(2), where the SWCNT is left-handed (L)
with the chiral angle in the range of (30°, 60°)/(0°, −30°).
Based on the handedness of two connected SWCNTs
(figures 1(d), (e)), the C–C junctions are classified into
three groups:

(i) Symmetric junctions, J–S, between a right-handed
(figure 1(d), zone-I in figure 2) and a left-handed
(figure 1(e), zone-II(1), zone-II(2) in figure 2) SWCNT
of mirror symmetries. Two SWCNTs have exactly
same diameters (R1=R2) but opposite chiral angles
(θ1=−θ2) and their chiral indexes can be written as
(n, m) and (m, n), respectively (figure 1(h)).

(ii) Asymmetric junctions, J–RR or J–LL between two
right-handed (zone-I in figure 2) or two left-handed
(zone- II(1), zone-II(2) in figure 2) SWCNTs
(figure 1(i)).

(iii) Asymmetric junctions J–LR or J–RL between a right-
handed (zone-I in figure 2) and a left-handed SWCNT
(zone-II(1), zone-II(2) in figure 2), both have different
diameters and different chiral angles (figure 1(j)).

To certify the asymmetric C–C SWCNT junctions are as
straight as possible, we confine the diameters mismatch of
two joint SWCNTs at less than 4%. Since most of the con-
sidered SWCNT junctions are quite large (some contain
nearly 1000 atoms), density functional theory (DFT) calcu-
lations are too expensive for exploring more than 100 struc-
tures. We performed all the functional based tight binding
(DFTB) theory as implemented in DFTB+code [41–43],
which has been proved accurate enough for structure based
calculations and much faster of DFT calculations. During all
the structural optimizations, force convergence criterion was
set as 10−4 Hartree/bohr. To examine the structural stabilities
of the SWCNT junction, the formation energy (Ef) of a
junction is defined as:

= ´ -( ) ( )/E E E2 2, 1T DT1 1 1

= ´ -( ) ( )/E E E2 2, 2T DT2 2 2

= + - ( )E E E E , 3b T T junction1 2

= + -( ) ( )/E E E E L, 4f b1 2

where ET1, ET2, EDT1, EDT2 and Ejunction are the energies of T1,
T2, two longer tubes (DT1, DT2) with same configurations as
T1 and T2 but doublet lengths, and the structure with a
junction between T1 and T2, respectively. E1 and E2 are the
formation energies of the open ends of T1 and T2 and Eb is
the binding energy between the T1 and T2 after forming the
tube–tube junction. L=π (D1+D2)/2 is defined as the
circumference length of the tube–tube junction and D1 and D2

are diameters of T1 and T2, respectively.

3. Results and discussion

3.1. Structures and stabilities of Z–Z and A–A SWCNT
junctions

To explore the Z–Z and A–A SWCNT junctions, we constructed
heterostructures with six different chiral index combinations,
(n1, 0)−(n2, 0), |n1−n2|=1, 2, 3 and (m1, m1)−(m2, m2),
|m1−m2|=1, 2, 3. For each Z–Z SWCNT junctions, one or
more pentagon–heptagon pairs (or the 5/7 dislocations), parallel
to the tube axis (figures 3, 4(a)–(c), S1, S2 in the supporting
information, SI is available online at stacks.iop.org/NANO/29/
485702/mmedia), are formed at the interface of two ZZ
SWCNTs. While for the optimum A–A SWCNT junctions, each
5/7 dislocation is no longer strictly parallel to the tube axis,
instead, they are aligned with a small tilt angle to the tube axis
(figures 4(d)–(f), S3–S5 in SI). Different from the tail-to-head
orientated 5/7 pairs in graphene, the two parallel 5/7 pairs in
such Z–Z or A–A SWCNT junctions interact repulsively with

2

Nanotechnology 29 (2018) 485702 X Zhang et al

http://stacks.iop.org/NANO/29/485702/mmedia
http://stacks.iop.org/NANO/29/485702/mmedia


each other [44]. As shown in figures 3 and S5 in SI, with the two
5/7 pairs in (17,0)-(15,0) or (12-12)-(11-11) junction sitting
closer with each other, the energy of the structure is largely
increased. Therefore, all the Z–Z or A–A SWCNT junctions are
constructed with evenly distributed 5/7 dislocations around the
circles to certify the spacing between neighboring 5/7 disloca-
tions as far as possible. Moreover, for any SWCNT junction,
(n1, m1)–(n2, m2), connected by two ZZ or AM carbon nano-
tubes in zone-I (see figure 2), the number of 5/7 dislocations is
the lowest number of steps from (n1, m1) to (n2, m2) in the map,
which can be expressed by equation (5):

- + -∣ ∣ ∣ ∣ ( )n n m m 51 2 1 2

Therefore, for a Z–Z SWCNT junction, the number of 5/7
dislocations is the same as the index difference of |n1−n2|, that
is, one, two and three pairs of 5/7 dislocations are created in the
case of |n1−n2|=1, 2, 3, respectively. While for A–A
SWCNT junctions, the number of the 5/7 pairs is 2|m1−m2|,
that is, two, four and six 5/7 pairs are formed in the case of
|m1−m2|=1, 2, 3, respectively.

The formation energies of all the constructed Z–Z/A–A
SWCNT junctions are plotted in figures 4(g), (h). It is found
that the formation energies increase with the number of 5/7

pairs for both types of junctions. Bond lengths analysis shows
that the existence of more 5/7 pairs leads to a larger distortion
to the sp2 carbon network around the junction and therefore a
resultant larger formation energy of the junction (see
figures 4(i)–(n)). Moreover, for each type of Z–Z or A–A
SWCNT junctions with same number of 5/7 pairs, their
formation energy decreases with the diameters of constituent
SWCNTs (figures 4(g), (h)). Compared with a thinner Z–Z/
A–A SWCNT junction, the spacing between two neighboring
5/7 pairs in a fatter one with same number of 5/7 pairs is
larger, which results in the decreased repulsive interaction and
the lowered formation energy as well.

3.2. Structures and stabilities of C–C SWCNT junctions

3.2.1. Symmetric junctions (J–S) between two SWCNTs of
opposite handednesses. According to the chirality of two
SWCNTs, the misorientation angles (Δθ=|θ1−θ2|) of all the
symmetric C–C SWCNT junctions are trapped in the period of
0°∼60°. Different from the Z–Z and A–A SWCNT junctions,
the 5/7 dislocations at a C–C SWCNT junction are head-to-tail
aligned along the circumference of the junction (figures S5–S9
in SI), which is very similar to the formation of grain

Figure 1. (a)–(c) Schematic diagrams of two SWCNTs (T1, T2) and a fused SWCNT junction formed by welding them together, θ1, θ2 andΔθ
respects the chiral angle of T1, T2 and their misorientation angle, respectively. (d), (e) the sketches of left-handed (L) (8, 4) and right-handed
(R) (4, 8) SWCNTs. Atomic configurations of junctions between two zigzag SWCNTs (f), two armchair SWCNTs (g), two symmetric chiral
SWCNTs with just opposite handedness (h) and two asymmetric chiral SWCNTs with same or opposite handedness (i), (j).
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boundaries (GBs) in graphene [37, 40–42]. According to the
5/7 dislocations arrangements, the symmetric C–C SWCNT
junctions can mainly be classified into three families:

(I) C–C(1) J–Ss with Δθ in the range of 0°∼21.79°
(figures 5(a)–(f), S6, S7 in SI), in which the 5/7 defects at
the interfaces are separated by one or more hexagons.
With the increase of Δθ, the line density of 5/7
dislocations increase and the distance between neighbor-
ing 5/7 pairs decreases (see figure 6(a)). At Δθ=21.79°
(figure 5(f)), the separation between two adjacent 5/7
dislocations remain only one hexagon [37, 41, 42].

(II) C–C(2) J–Ss withΔθ in the range of 42.1°∼60°, which
is similar to the first family but the 5/7 pairs sit a bit
tilted with respect to the tube circumference direction

(figures 5(m)–(r), S8–S10 in SI). In contrast, the line
density of 5/7 pairs decrease with the increase of Δθ

(see figure 6(a)) with the maximum at Δθ=42.1°
(figure 5(m)), where two adjacent 5/7 pairs are spaced
by only one hexagon.

(III) C–C(3) J–Ss with Δθ between 21.79° and 42.1°
(figures S7, S8 in SI), in which some of the 5/7
dislocations at the junction are tail-to-head connected
with each other (see figure 6(a)). For example, the
C–C J–S with 24.02° misorientation angle (figure 5(g))
has three isolated 5/7 pairs and one fused 5/7-5/7
dislocations at the junctions. In the misorientation angle
region of 21.79°�Δθ�32.2°, the number of isolated
5/7 dislocations decreases with Δθ while that of the
consecutive 5/7 dislocations increases (figure 6(a),
S7(l), (m), S8(a)–(d) in SI). AtΔθ=32.2° (figure 5(j)),
the junction is completely constructed of continuous
5/7 pairs. An opposite tendency is found in the range
of 32.2°�Δθ�42.1°, where the ratio of isolated 5/7
dislocations increases while that of the consecutive ones
decreases with the increase of the misorientation angles
(figures 5(j)–(m), 6(a) and S8(e)–(j) in SI).

Similarly, for all the optimum C–C J–Ss, (n1, m1)–(n3, m3),
with sub-tubes in zone-I and zone-II(1) (figure 2), respec-
tively, the number of 5/7 dislocations is equivalent to the
lowest number of steps from (n1, m1) to (n3, m3) or the
equivalent counterpart (n4, m4) on the map, which can be
summarized as:

- - - + - -

- + -

 { ∣ ∣ {∣ ∣ ∣ ∣}

∣ ∣ ∣ ∣}
( )

n n m m n n m m

n n m m

min min , ,

6

3 1 3 1 3 1 3 1

3 1 3 1

or

- - - + - -

- + -

 { ∣ ∣ {∣ ∣ ∣ ∣}

∣ ∣ ∣ ∣}
( )

n n m m n n m m

n n m m

min min , ,

7

4 1 4 1 4 1 4 1

4 1 4 1

where (n4, m4) is the equivalent counterpart of (n3, m3) by
rotating π/3. For example, the number of 5/7 dislocations for
(11,7)–(7,11) and (10,6)–(6,10) are 4 and 4, respectively.
While for (10,1)–(1,10) and (15,3)–(3,15), the number of 5/7
dislocations becomes 2 and 6, respectively. It is found that
linear density of 5/7 dislocations increase linearly from 0° to
32.2° then decrease linearly to 60° (figure 6(a)).

Interestingly, the formation energies of these C–C J–Ss
display an M-shape function with respect to their misorientation
angles (see figure 6(d)). It is noted that the formation energies of
these C–C J–Ss around the SWCNT circumferences per unit
length are in the range of 0 eV/Å∼0.5 eV/Å, similar to previous
results for graphene GBs [43–46]. The smallest formation
energy of 0 eV/Å atΔθ=0° andΔθ=60° refers to the defect
free SWCNTs. The highest energy peak (peak-I) at the left
panel of the energy curve appears at around Δθ=17°, while at
the right panel of the curve, the highest formation energy occurs
(peak-II) at around Δθ=44°. As for the C–C J–Ss with
smaller Δθ than peak-I and larger Δθ than peak-II, a nearly

Figure 2. The map of (n1, m1)–(n2, m2) SWCNT junction connecting
two sub-tubes of (n1, m1) and (n2, m2) at different zones (I, II(1),
II(2)). In zone-I, the SWCNT is right-handed (R) with the chiral
angle in the range of (0°, 30°). In zone-II(1) and zone-II(2), the
SWCNT is left-handed (L) with the chiral angle in the range of (30°,
60°) and (−30°, 0°), of which, one (n3, m3) SWCNT in zone-II(1)
can be transformed to zone-II(2) as (n4, m4) by rotating π/3 angle.

Figure 3. Energy differences of (17, 0)–(15, 0) Z–Z SWCNT
junction with different arrangement of two 5/7 dislocations. From
configure I to configuration IV, the spacing between two 5/7
dislocations decreases sequentially.
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linear relationship of formation energy to Δθ is found, namely,
the formation energies of C–C J–Ss increase from Δθ=0° to
peak-I and decrease from peak-II to Δθ=60°, respectively.
While in the mediate misorientation angle region, the formation
energies of C–C J–Ss decrease firstly and then increase almost
linearly to peak-II with a local minimum locating at around
Δθ=32.2°.

Similar to the Z–Z/A–A SWCNT junctions, the 5/7
dislocations at the interface of C–C SWCNT junctions introduce
extra strain and destabilizes the structures (see figures 6(g)–(l)).
Conversely, the adjacent 5/7 dislocations at the junctions of
chiral SWCNTs are attracted to each other, which can release the
strain to some degree once they come together [43, 45, 47].
Therefore, the formation energies of such C–C SWCNT
junctions can be simply evaluated by the equation (8):

å åe eD ~ - + ( )( )( )E , 8
i

i
i

i i57, 5, 7, 1

where the ε57,i and ε(5,i)(7,i+1) items represent the strain energy
caused by ith isolated 5/7 dislocation and the strain energy

canceled by the fusion of adjacent pentagons and heptagons
(figure S11(a) in SI). In the C–C(1) J–Ss (∼0°�Δθ�21.79°)
and C–C(2) J–Ss (∼42.1°�Δθ�60°), the strains applied on
the junctions are caused mainly by isolated 5/7 dislocations (see
figure S11(a) in SI), therefore, the formation energies of such
C–C SWCNT junctions are almost proportional to the line
density of 5/7 dislocations (the first item of equation (8)). In
contrast to the C–C(1) J–Ss, the projection density of 5/7 pairs
around the SWCNTs circumference is a bit larger in those C–C
(2) J–Ss (see figures 5(a)–(f), (m)–(r)), which causes the energy
curve reach the peak-I on the left panel a bit larger than the peak-
II on the right panel (see figure 6(d)). While for C–C(3) J–Ss
(∼21.79°�Δθ�42.1°), the line density of head-to-tail 5/7
connections increase first and then decrease with the maximum
at aroundΔθ=32.2° (see figure 6(a)). In this region, the strains
induced by isolated 5/7 dislocations are offset in some degree
due to the appearance of two or more adjacent 5/7 dislocations
connecting (see figures 6(a), S11(b) in SI), as a result, the
formation energies of the systems are moderately decreased as
the second item of equation (8) is no longer zero. A local

Figure 4. The geometries of three Z–Z (a)–(c) and three A–A SWCNT junctions (d)–(f). The formation energies (Ef) of Z–Z (g) and A–A
SWCNT junctions (h) per unit length around the SWCNT circumferences. The black squares, red circles and blue triangles represent the
formation energies at |n1−n2|/|m1−m2|=1, 2, 3, respectively. Strain distributions around the 5/7 defects (colors from blue to red
corresponding to the largest compression strain and the largest stretching strain) of three Z–Z (i)–(k) and three A–A (l)–(n) SWCNT
junctions.
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minimum appears at Δθ=32.2°, the head-to-tail 5/7 connec-
tion at the interface offset the strain on the pentagon or heptagon
in largest degree and leads to a largest reduction of formation
energy at the energy curve. Based on the discussion, we can fit
the formation energies in equations (9) and (10):

* *

 
r r

q
= -

~  D 

( )
( ) ( )
E 3.57 2.33 eV

0 32.2 9
f 57iso 57con

* *

 
r r
q

= -

~  

( )
( ) ( )
E

D

3.11 1.87 eV

32.2 60 10
f 57iso 57con

where 3.57 eV and 3.11 eV respect the formation energy of
isolated 5/7 dislocation of C–C(1) J–Ss and C–C(2) J–Ss,
respectively, and the 2.33 eV and 1.87 eV respects the decrease
information energy when two 5/7 dislocations meet together.
ρ57iso and ρ57con is the linear density of isolated 5/7 dislocations
and their connections, respectively. It can be seen that the
equations (9) and (10) well describe the evolution of formation
energies of the C–C J–Ss (green line in figure 6(d)).

3.2.2. Asymmetric C–C J–RR(J–LL) and J–RL(J–LR). To reach
a general view on the structural and energetic character of
C–C SWCNT junctions, a number of asymmetric J–RRs(J–LLs)
and J–RLs(J–LRs) are also extended (figures S12–S22 in SI).
Due to the chirality limit of the SWCNTs with same handedness
(L–L or R–R), the misorientation angles for J–RRs(J–LLs)

are only in the range of 0°∼30°. Different from the C–C J–Ss,
the mismatch of the diameters between two sub-SWCNTs
here make the geometries of those J–RRs(J–LLs) and J–RLs
(J–LRs) a bit complicate, where some irregular 5/7 pairs with
a larger tilt angle (to the line around the tube circumference)
appear. For example, some discrete C–C(2)-style 5/7 pairs
appear in the smaller misorientation angle region
(0°�Δθ<21.79°) due to the nonuniform structures.
Besides, a tail-to-head 5/7 connection can be found even in
the smaller (0°�Δθ<21.79°) and larger misorientation
angle region (42.1°�Δθ<60.0°) (see figures S17, S18 in
SI). As a result, even for same Δθ, different topological
structures are found between the symmetric and asymmetric
C–C SWCNT junctions. Similar to the C–C J–Ss, the number
of 5/7 pairs of J–RLs(J–LRs) can be counted by equation (6),
which increase linearly in the range of around 0°�
Δθ<32°, but decrease linearly to Δθ=60°. Moreover,
the formation energies display a M-shape relationship to the
misorientation angles, which the peak on the left and right
panel of the energy profile are around Δθ=17° and 44°,
respectively, leaving the local minimum around Δθ=32°
(figure 6(e)). While for those asymmetric J–RRs(J–LLs), the
largest formation energy appears at around Δθ=19°
(figure 6(f)) and the number of 5/7 dislocations can be
counted by equation (5). Importantly, the formation energies
of these asymmetric SWCNT junctions can also be well

Figure 5. Optimum structures of (a)–(f) type-I, (g)–(l) type-III, and (m)–(r) type-II C–C J-Ss.
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described by equations (9) and (10) (see the fitted lines in
figures 6(e), (f)), respectively.

3.2.3. Diameter dependent stabilities of C–C SWCNT
junctions. Furthermore, for the C–C SWCNT junctions with
same misorientation angles, their formation energies are found
to slightly increase with the diameters of the constituent
SWCNTs (figures 6(g)–(l), S11(c) in SI), which is just in
opposite tendency with that of Z–Z and A–A SWCNT
junctions. For example, with same misorientation angle
(Δθ=13.17°) and 5/7 dislocation line density, the thinner
(9, 6)–(6, 9) J–S (see figure 6(g)) has relatively smaller
formation energy (∼0.413 eV/Å) than the larger (12, 8)–(8, 12)
J–S (∼0.425 eV/Å) (see figure 6(h)). Similar energetic
characters are found for (8, 4)–(4, 8) (figure 6(i)) J–S vs (12,
6)–(6, 12)) J–S (figure 6(j)) and (9, 3)–(3, 9) (figure 6(k)) J–S
vs (12, 4)–(4, 12)) J–S (figure 6(l)). In figure S11(d) in SI, we
plot the diagrams of two symmetric C–C J–Ss with same
misorientation angle (Δθ) but different diameters (the bigger
circle and smaller circle). The number of 5/7 pairs is two and

three (blue short lines), and the intersection angle (α) between
the tangent lines of two neighboring 5/7 pairs is α1=90°and
α2=120°, respectively. Unlike the Z–Z and A–A SWCNT
junctions, the 5/7 pairs in such C–C J–Ss orientate along the
perimeter of SWCNTs, thus, the strain caused by 5/7 pairs here
can be averaged by the curvature of tube walls. As shown in
figure S11(d) in SI, the curvature of thinner tube is a bit larger
than that of the fatter one, which leads to the larger offset of the
structural deformation and smaller formation energy for the
former.

4. Conclusions

We systematically study the structures and stabilities of var-
ious one-dimensional mixed (n1, m1)–(n2, m2) SWCNT
junctions consisting of two different chiral carbon nanotubes
by density functional tight binding methods. For the straight
Z–Z [(n1,0)−(n2,0)], A–A [(m1, m1)−(m2, m2)] SWCNT
junctions and those C–C SWCNTs, (n1, m1)−(n2, m2)], with
the sub-tubes of same handedness, the number of 5/7 pairs is

Figure 6. (a)–(c) The linear density of 5/7 dislocations and (d)–(f) the formation energies of C–C J–Ss and asymmetric J–LRs(J–RLs) and
J–RRs(J–LLs) related to Δθ in the range of 0°∼60°. The line respects the fitted results of 5/7 densities and formation energies, of which,
ρ57total is the 5/7 dislocations density of the total system, and the ρ57con refers to the line density of head-to-tail connective 5/7 dislocations;
(g–l) strain distributions around the 5/7 dislocations (colors from blue to red corresponds to the largest compression strain and the largest
stretching strain) of six C–C J–Ss.
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equal to the different index value of |n1−n2|+|m1−m2|.
While for the C–C SWCNT junctions with the sub-tubes
having opposite handedness, the number of 5/7 dislocations
is the lowest number of steps between (n1, m1) to (n2, m2) and
(n1, m1) to (n2′, m2′), which (n2′, m2′) is equivalent to (n2, m2)
by only rotating π/3 angle. Moreover, regularly organized 5/7
pairs around the circumferences are found on those C–C J–Ss,
contrast to the organized 5/7 pairs for those asymmetric
junctions. For Z–Z and A–A SWCNT junctions, their for-
mation energies increase with a diameter difference of the two
constituent nanotubes, but have opposite dependence with
respect to the tube diameters. Most interestingly, an M-shape
formation energy tendency is found for the C–C SWCNT
junctions consisting of SWCNTs with similar diameters.
Besides, the stabilities of the C–C SWCNT junctions with
the same misorientation angles are found to increase with
the diameters of the two-side SWCNTs. In future studies, the
structures and stabilities of other carbon nanotube-based
intramolecular junctions, such as the massive multiwall
CNx/carbon nanotube intramolecular junctions are expected to
be explored.
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