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Abstract

Background: Abnormal fatty acid oxidation (FAO) is associated with maternal and fetal complications during
pregnancy. The contribution of maternal and fetal tissues to FAO capacity during late pregnancy is important to
understand the pathophysiology of pregnancy-associated complications. The aim of this study was to determine
the expression levels of mitochondrial FAO enzymes in maternal and fetal tissues during late normal pregnancy.

Methods: We have measured by Real-time PCR the levels of long- and medium -chain acyl-CoA dehydrogenase
(LCHAD and MCAD), two acyl-CoA dehydrogenases that catalyze the initial step in the mitochondrial FAO spiral.

Results: LCHAD and MCAD were expressed in maternal skeletal muscle, subcutaneous adipose tissue, placenta, and
maternal and fetal blood cells. LCHAD gene expression was four- to 16-fold higher than MCAD gene expression in
placenta, adipose tissue and skeletal muscle. In contrast, MCAD gene expression was ~5-fold higher in fetal blood
than maternal blood (p = 0.02), whereas LCHAD gene expression was similar between fetal blood and maternal
blood (p =0.91).

Conclusions: LCHAD and MCAD are differentially expressed in maternal and fetal tissues during normal late
pregnancy, which may represent a metabolic adaptation in response to physiological maternal dyslipidemia during
late pregnancy.

Keywords: Fatty acid metabolism, Long-chain acyl CoA dehydrogenase, Medium-chain acyl CoA dehydrogenase,
Placenta

Background
A hallmark of late normal pregnancy is a physiological
hyperlipidemic state characterized by maternal hypertri-
glyceridemia and elevated plasma free fatty acids (FFA)
levels [1, 2]. In this way, maternal fat accumulated in the
adipose tissue during early pregnancy, become available
for placental transfer during the last trimester of preg-
nancy, satisfying the exacerbated fetal demand for fatty
acids [1, 3, 4]. It has been proposed that mitochondrial
fatty acid oxidation (FAO) in placenta is an important
energy source for survival, function and growth of both
the placenta and the fetus [5–7].

FAO capacity in maternal and fetal tissues has not
been extensively investigated in normal late pregnancy.
Furthermore, there are no previous data comparing the
expression levels of FAO enzymes in the placenta with
other maternal and fetal tissues. Therefore, the aim of
this study was to analyse FAO gene expression and
protein levels in different tissues during late preg-
nancy. To this end, we analysed the expression levels
of long- and medium -chain acyl-CoA dehydrogenase
(MCAD and LCHAD respectively), two acyl-CoA de-
hydrogenases that catalyze the initial step in the mito-
chondrial FAO spiral.

Methods
Study group and tissue collection
This is a prospective study performed from pregnan-
cies monitored at the Department of Obstetrics and
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Gynecology, University Hospital “Puerta del Mar”
(HUPM). Twelve healthy pregnant women at term
who were going to have an elective Caesarean section
(without labour) for clinical reasons were recruited
from our maternity ward for the study. Characteristics
of the study group are shown in Table 1. Reasons for
Caesarean section included: previous Caesarean sec-
tion because of cephalopelvic disproportion (n = 6),
breech presentation (n = 4), previous poor perinatal
outcome (n = 1) and extreme myopia (n = 1). Specific
exclusion criteria included women with history of
LCHAD deficiency, preeclampsia, HELLP syndrome
or acute fatty liver disease in previous pregnancies,
history of chronic hypertension or other co-morbid
disease.
During Caesarean section, 6 mL of maternal blood,

samples of subcutaneous fat tissue and rectoabdominal
striated muscle were taken. After placenta delivery, sam-
ples of the maternal side of the placenta and 6 mL of
fetal blood from the umbilical vein were also taken. Pla-
cental samples were obtained from at least four different
portions after careful examination to remove contamin-
ating fragments of maternal decidua, and pooling them
together for the gene expression analysis. All tissues
were washed with ice-cold PBS to remove residual
blood, and samples were snap-frozen in liquid nitrogen
and stored at −80 °C. Leukocytes were isolated from
blood samples using the Red Blood Cell Lysis Buffer Kit
(Roche) following manufacturer’s instructions, and sam-
ples were store at −80 °C.

Quantitative real-time PCR
Total RNA was extracted from fetal and maternal blood,
placenta, subcutaneous fat tissue and skeletal muscle by
using the High Pure RNA Isolation kit (Roche) following
the manufacturer’s protocol. This procedure included an
on-column DNase I digestion step. cDNA synthesis was
carried out using random hexamer primers and the
components from the Transcriptor First Strand cDNA
Synthesis kit (Roche). LCHAD, MCAD and an internal
reference β-actin transcript were quantified according to
a fluorescence-based real-time detection method

performed with an ABI PRISM 7000 sequence detection
system (Applied Biosystems). The real-time quantitative
PCR reaction was performed from cDNA using Taq-
Man® Universal PCR Master Mix, No AmpErase® UNG
(Applied Biosystems). PCR was performed with anneal-
ing at 55 °C for 30 s, extension at 72 °C for 90 s, and
denaturation at 94 °C for 30 s and 25 cycles. Primer se-
quences and target-specific fluorescence labelled TaqMan
probes were obtained from TaqMan® Gene Expression As-
says (Applied Biosystems). Assay references were as fol-
lows: Hs00426191_m1 (amplicon length 134 bp) for
LCHAD, Hs00163494_m1 (amplicon length 117 bp) for
MCAD and Hs99999903_m1 (amplicon length 171 bp)
for β-actin. PCRs were performed in 96-well microtiter
plates, according to the manufacturer’s instructions
(Applied Biosystems). Relative gene expression levels
were calculated by using the 2 -ΔΔCT method [8]. Data
are presented as the LCHAD and MCAD gene expres-
sion normalized to the β -actin gene and relative to
placental sample. Two independent analyses were per-
formed for each sample and for each gene [9].

Immunoblot analyses
To determine tissue protein levels, aliquots (100 mg) of
placenta or skeletal muscle tissue were homogenized in
1 mL of ice-cold PBS, pH 7,5, supplemented with 2 μl of
protease inhibitor cocktail (Sigma, Madrid, Spain) and
1 mM phenylmethylsulfonyl fluoride (Sigma). The tissue
lysates were sonicated three times for 10 s each on ice.
Afterwards, the lysates were subjected to centrifugation
at 18,000 X g for 30 min at 4 °C, and the protein concen-
tration of the supernatant was measured by the Bradford
method. Aliquots of 20 μg of protein extracts per lane
were applied to 10% SDS polyacrylamide gels. Proteins
were transferred onto polyvinylidene difluoride (PVDF)
membranes for immunoblotting by conventional means,
using a polyclonal anti-LCHAD antibody (1:500 dilution;
Abcam, Cambridge, UK), polyclonal anti-MCAD anti-
body (1:200 dilution; ab23675, Abcam), and anti-actin
(1:2000 dilution, Sigma). Signals were detected by
chemiluminescence, and bands within the linear range
were quantified using the NIH Image software.

Statistical analysis
Distribution of variables was checked using both the
histogram and the Kolmogorov-Smirnov test. Since most
of variables followed a non-normal distribution, numer-
ical data are shown as median and interquartile range.
Comparisons in FAO gene expression between LCHAD
and MCAD, and between the placenta and the different
tissues were done by using the Wilcoxon Signed Ranks
Test as well as the median and 95% confidence interval
method. Statistical significance was previously set to the
95% level (p < 0.05).

Table 1 Demographics of the women and newborns participating
in the study

Median Percentile 25 Percentile 75

Gestational age at delivery
(weeks)

39,00 38,00 40,00

Maternal weight (Kg) 67,00 59,25 82,75

Maternal height (m) 1,62 1,57 1,65

Body mass index (Kg/m2) 26,66 22,82 32,23

Maternal age (years) 33 29 34

Birth weight (g) 3160,00 2900,00 3720,00
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Results
MCAD and LCHAD gene expression in the different tis-
sues are shown in Table 2. As expected, MCAD and
LCHAD were expressed in three important maternal tis-
sues involved in the regulation of FAO, such as skeletal
muscle, adipose tissue and placenta. Interestingly, these
genes were also expressed in both fetal and maternal
blood cells (Table 2).
When analysing LCHAD and MCAD gene expression

in fetal and maternal blood cells, we found that MCAD
gene expression was ~5-fold higher in fetal blood than
maternal blood (median 4.55 95% CI 2.07–16.00) (p =
0.02). In contrast, LCHAD gene expression ratio was
similar between fetal blood cells and maternal blood
cells (median 0.84 95% CI 0.40–5.17) (p = 0.91).
A detailed analysis of the LCHAD relative expression

to MCAD in each tissue revealed that LCHAD gene ex-
pression was 16-fold higher than MCAD gene expres-
sion in placenta (Table 3). In addition, LCHAD
expression was ~4-fold higher than MCAD in subcuta-
neous fat, striated muscle and maternal blood cells;
whereas LCHAD expression was ~2-fold higher than
MCAD expression in fetal blood cells (Table 3). Western
blot analyses in maternal tissues confirmed gene expres-
sion data. As shown in Fig. 1, LCHAD protein expres-
sion was four-fold higher than MCAD protein
expression in placenta (Fig. 1a) and skeletal muscle
(Fig. 1b) tissues.
Finally, we examined the relative MCAD and LCHAD

gene expression levels in each tissue relative to placental
tissue. MCAD expression levels were significantly higher
in placenta than in fetal and maternal blood cells, but
similar than in maternal subcutaneous fat and stri-
ated muscle (Table 4). On the other hand, LCHAD
expression levels were significantly higher in placenta
than in fetal and maternal blood cells, and maternal

Table 2 MCAD and LCHAD gene expressiona

Median Percentile 25 Percentile 75

MCAD

Placenta 0,0057 0,0047 0,0138

Fetal blood 0,0015 0,0011 0,0038

Maternal blood 0,0007 0,0002 0,0013

Maternal subcutaneous fat 0,0098 0,0053 0,0183

Maternal striated muscle 0,0190 0,0019 0,0759

LCHAD

Placenta 0,1277 0,0950 0,1767

Fetal blood 0,0048 0,0038 0,0079

Maternal blood 0,0063 0,0020 0,0093

Maternal subcutaneous fat 0,0538 0,0349 0,1366

Maternal striated muscle 0,0552 0,0359 0,1339
aValues are given in URA (units relative to β-actin)

Table 3 LCHAD relative to MCAD expression in each tissue

Median 95% CI p = 1

Placenta 16,06 11.80–29.04 0.002

Fetal blood 2,60 1.09–8.68 0.01

Maternal blood 4,06 2.71–24.00 0.008

Maternal subcutaneous fat 4,56 2.57–9.06 0.003

Maternal striated muscle 3,85 1.21–25.11 0.02
1Based on Wilcoxon Signed Ranks Test, differences between LCHAD and
MCAD gene expression in each tissue

Fig. 1 a, b Expression levels of LCHAD and MCAD in maternal
tissues. Western blot analyses of LCHAD and MCAD protein levels
were carried out in placenta (n = 12) and skeletal muscle (n = 12)
from pregnant women. Frozen placental and skeletal muscle tissues
were used to quantify placental LCHAD and MCAD content (see
Methods for details). β-actin expression was determined to ensure
similar protein loading. Top: the y-axis represents the relative protein
expression levels of MCAD vs. LCHAD in arbitrary units (A.U.). Bottom:
a representative picture of the western blot is shown. Data are
means ± SEM for 12 independent experiments.*p < 0.05 relative to
MCAD by unpaired Student’s t-test
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subcutaneous fat. In addition, LCHAD expression
levels were significantly higher in placenta than in
striated muscle although this difference did not
achieve statistical significance.

Discussion
In this study, we have used gene expression and western
blot analyses to investigate the mitochondrial FAO cap-
acity of maternal and fetal blood. We took advantage of
comparing different tissues from the same pregnant
women avoiding using tissues from non-pregnant
women. Overall, we found a good correlation between
gene expression levels and protein expression levels in
maternal placenta and skeletal muscle tissues. In the
case of placental tissue, LCHAD protein levels were 4-
fold higher than MCAD. The discrepancies between data
from gene expression levels (16-fold higher than
MCAD) and protein levels may be explain in two ways:
1) the sensitivity of the PCR analysis is higher than west-
ern blot, accounting for the differences in expression
levels; and 2) LCHAD might be post-transcriptionally
regulated in human placenta.
Given the paucity, and sometimes, contradictory stud-

ies on the physiological and pathophysiological regula-
tion of placental fatty acid metabolism, our study point
out the relevance of fatty acid metabolism during late
pregnancy [10–13]. The observation that LCHAD ex-
pression is higher in placenta than in maternal skeletal
muscle underline the energetic demand of this tissue
during late pregnancy, and its specificity regarding
medium- or -long fatty acid metabolites. In addition,
LCHAD is one of the two acyl-CoA dehydrogenase that
carries out the third step in the β-oxidation of fatty
acids with chain lengths of C12 to C18 [6]. LCHAD de-
ficiency is an inborn error associated with reduced FAO
capacity and pregnancy-associated complications such
as preeclampsia [6]. From a mechanistic point of view,
a deficiency of LCHAD would lead to the accumulation
of toxic metabolites such as hydroxyacylcarnitines.
These harmful metabolites inhibit mitochondrial FAO

enzymes, uncouple oxidative phosphorylation, and im-
pair ATP production, leading to reduced mitochondrial
FAO capacity [14–17]. In addition, these metabolites
would increase placental lipid peroxidation [18], and
might be transferred to maternal circulation contribut-
ing to endothelial damage and hypertension [6, 19].
Following this rationale is plausible to hypothesize that
elevated levels of LCHAD in placenta would enhance
placental FAO, avoiding accumulation of harmful me-
tabolites, and protecting maternal and fetal tissues.
Thus, our observations that LCHAD expression is ele-
vated in placenta might reflect a physiological response
to maternal dyslipidemia.
Due to ethical reasons, we have used leukocytes iso-

lated from blood to analyse the expression levels of
LCHAD and MCAD in fetal tissues. Leukocytes are
able to β-oxidize short- and long -chain fatty acids
[20]. We found that comparing fetal with maternal
blood cells, a much higher MCAD expression was
found in fetal blood. These observations suggest that
fetal leukocytes preferentially use medium-chain fatty
acids rather than long-chain fatty acids as an energy
source. Medium-chain fatty acids in fetal circulation
might come from the placenta, where elevated levels
of LCHAD transform long-chain fatty acids into
medium-chain fatty acids. Thus, the differential ex-
pression of mitochondrial genes in maternal and fetal
tissues would contribute to a more efficient utilization
of fatty acids as an energy source. Nonetheless, the
contribution of blood cells to the overall fatty acid
metabolism in the fetus remains to be deciphered.
We acknowledge that a limitation of this study is the

small sample size. Thus, our results may not be consid-
ered representative of the general population. Further
studies including greater sample size are warranted to
generalize our conclusions.

Conclusion
In conclusion, LCHAD and MCAD are differentially
expressed in maternal and fetal tissues during normal
late pregnancy, which may represent a metabolic adapta-
tion in response to physiological maternal dyslipidemia
during late pregnancy.

Key message box

� Abnormal fatty acid oxidation (FAO) is associated
with maternal and fetal complications during
pregnancy.

� LCHAD and MCAD are differentially expressed in
maternal and fetal tissues during normal late
pregnancy, which may represent a metabolic
adaptation in response to physiological maternal
dyslipidemia during late pregnancy.

Table 4 MCAD and LCHAD gene expression relative to placenta

Median 95% CI p = 1

MCAD Fetal blood 0.22 0.13–0.27 0.003

Maternal blood 0.05 0.04–0.09 0.008

Maternal subcutaneous fat 1.71 0.41–2.18 0.11

Maternal striated muscle 1.39 0.35–10.67 0.15

LCHAD Fetal blood 0.03 0.02–0.08 0.002

Maternal blood 0.04 0.01–0.10 0.002

Maternal subcutaneous fat 0.54 0.25–0.88 0.003

Maternal striated muscle 0.52 0.28–1.07 0.22
1Based on Wilcoxon Signed Ranks Test, differences in gene expression
between the placenta and the rest of the studied tissues
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