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Zusammenfassung

In den letzten Jahren bekam die Resummation von kleinen transversalen Impulsen viel
Aufmerksamkeit im Feld der störungstheoretischen Quantenchromodynamic. Sie führte
zu einem neuen Faktorisierungsschema, bekannt als „TMD“-Faktorisierung, bei der die
Partonverteilungs- und Fragmentationsfunktionen abhängig von transversalen Impulsen
werden (transverse momentum dependent) im Gegensatz zur kollinearen Faktorisierung,
die transversale Impulse vernachlässigt.

In der vorliegenden Arbeit beschäftigen wir uns mit mehreren Aspekten der Re-
summation kleiner transversaler Impulse, welche in direktem Zusammenhang mit
dem TMD Formalismus steht. Außerdem führen wir eine globale Analyse der Lepton-
Winkelverteilungen im Drell-Yan-Prozess durch.

Im Speziellen führen wir sämtliche Arbeiten durch die notwendig sind für die Bestim-
mung von nichtperturbativen Parametern, die im Resummationsformalismus unver-
zichtbar sind, da dieser per Konstruktion auch nicht störungstheoretisch zugängliche
Impulsbereiche benutzt. Um den Landaupol, ein Relikt aus dem störungstheoretischen
Ansatz zur Quantenchromodynamik, zu umgehen folgen wir der Idee ihn in der kom-
plexen Ebene auszuweichen. Zu diesem Zweck untersuchen wir die Problematik der
Entwicklung von Partonverteilungsfunctionen zu komplexen Impulsskalen, wobei wir ein
besonderes Augenmerk auf Reproduzierbarkeit und Präzision legen. Zuerst betrachten
wir die Möglichkeiten Partonverteilungsfunktionen im Mellinraum zu parametrisieren,
in dem die DGLAP Evolutionsgleichungen analytisch gelöst werden können um eine
Entwicklung zu komplexen Skalen zu ermöglichen. Wir nutzen kubische Splines, die
gute Eigenschaften in Bezug auf Reproduzierbarkeit und Präzision aufzeigen, jedoch
potentiell hohe numerische Laufzeiten bedingen können. Daher haben wir im zweiten
Schritt eine allgemeine Integrationsroutine entwickelt, die sowohl auf einer CPU als auch
auf einer GPU genutzt werden kann. Die Nutzung einer GPU kann dabei numerische
Berechnung signifikant beschleunigen. Die daraus entstandene Bibliothek ist fähig jede
numerische Berechnung mit einer allgemeinen Integrationsroutine zu beschleunigen —
auch außerhalb der Teilchenphysik. In einem weiteren Projekt untersuchen wir die Ab-
hängigkeit des Sudakov-Formfaktors von der analytischen Form der laufenden Kopplung
der starken Wechselwirkung. Dabei finden wir messbare Unterschiede, die durchaus die
Konvergenz zukünftiger Bestimmungen von nichtperturbativen Parametern beeinflussen
könnten.

In der Arbeit berechnen wir auch den im transversalen Impuls differentiellen Wir-
kungsquerschnitt für die semiinklusive tiefinelastische Streuung eines Leptons an einem
Hadron genauer als jemals zuvor. Dabei reproduzieren wir alle nicht regulären Teile,
die üblicherweise resummiert werden. Zusätzlich bestimmen wir alle zwar regulären
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Zusammenfassung

jedoch immer noch divergenten Terme, die nach der Resummation der nicht regulären
Terme potentiell dominant werden und daher ebenfalls resummiert werden sollten, um
eine physikalisch sinnvolle Verteilung zu erhalten.

Die globale Analyse der Lepton-Winkelverteilungen im Drell-Yan-Prozess ist durchge-
führt in der nächst zu führenden Ordnung und berücksichtigt alle zur Zeit verfügbaren
experimentellen Daten. Die Studie bestätigt die Vorhersagen der störungstheoretischen
Quantenchromodynamik zur festen Ordnung.
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Summary

Over the last decades the resummation of small transverse momenta has gained a
lot of attention in the field of perturbative Quantum Chromodynamics, leading to a
whole new factorization scheme, known as the ‘TMD’ factorization, where the parton
distribution and fragmentation functions become transverse momentum dependent in
contrast to the collinear factorization scheme, where transverse momenta are neglected.

In this thesis we investigate several aspects of the transverse momentum resummation,
which is intimately related to the TMD formalism. Furthermore we perform a global
analysis of the Drell-Yan lepton angular distributions.

In particular we pave the road for a future determination of the nonperturbative parts,
which are a vital ingredient in the resummation formalism, as it uses the nonperturbative
momentum region by construction. We follow the idea of a prescription which avoids the
Landau pole—a remnant of the perturbative ansatz to Quantum Chromodynamics—in
the complex plane. For this purpose we investigate the problem to evolve parton
distribution functions to complex scales with special attention to reproducibility and
precision. First we examine the possibilities to describe parton distribution functions in
Mellin space, where the DGLAP evolution equations can be solved analytically allowing
to evolve to complex scales. We use cubic splines, which show great properties in terms
of reproducibility and precision, while potentially causing large numerical costs. In a
second step we developed a general purpose integration routine that can be used on a
CPU as well as on a GPU, where the use of the latter accelerates numerical calculations
substantially. The resulting library is capable to accelerate every numerical calculation
including an integration also outside of the field of particle physics. In another project
we examine the dependence of the Sudakov form factor on the analytical form of the
running coupling constant and demonstrate measurable differences which may influence
the convergence of a future fit of the nonperturbative parameters.

Additionally we calculate the transverse momentum differential cross section of the
semi inclusive deep inelastic process more precisely than ever before. We reproduce the
non-regular parts, which are typically resummed, and determine additionally all terms
which are divergent for small transverse momentum but still regular and hence become
potentially dominant after resummation and should be resummed too to achieve a
physical distribution.

The global analysis of the Drell-Yan lepton angular distributions is performed in next-
to-leading order and takes into account all currently available experimental data. The
study confirms the fixed-order prediction of perturbative Quantum Chromodynamics.
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Introduction

It’s pronounced ‘nucular’.
— Homer J. Simpson (1998)

The goal of physics is to describe the extremely complex structures found in nature by
the formulation of a preferably simple underlying theory, which then in turn illuminates
all possible observations (ideally made by reproducible experiments). For example the
large amount of chemical substances can be decomposed into aggregates of only a few
dozen elements, called atoms. The complex substances and molecules are built out of
atoms like lego bricks, hence the original complexity is greatly reduced by describing
the atoms and their interactions. Going one step further even the still large number of
different atoms can be explained by the fact that they are compound objects of more
fundamental particles: protons, neutrons and electrons. The first two of them are again
found to be composed out of up- and down-quarks.1

Particle physics is concerned with these smallest building blocks that have been
found yet. In this case ‘small’ is synonym to the statement that these particles can be
resolved at very high energy. It turns out the higher the energy scale the more nature
is described by symmetries. It is therefore not surprising that nowadays one tries to
explain low-energy phenomena as a limit of an underlying high-energy theory, partly
by breaking some of the symmetries.

The currently widely accepted model of particle physics is commonly referred to as
the ‘Standard Model’, which consists of a minimal number of fundamental particles
and interactions, which then build up the rich phenomenology that can be observed in
nature. It describes all of the known fundamental forces except gravity, which can still
not be unified with the other forces. Guided by the principles we described before it is
believed that gravity can be unified with the other forces at an energy scale which is
still not attainable by experiments or astronomical observations. The Standard Model
describes the electromagnetic, the weak and the strong force with unmatched precision
and predictive power. It predicted for example the existence of the top quark, which
then could be detected in 1995. Only recently the last building block of the Standard
Model, the Higgs boson, has been discovered in 2012 and the Higgs mechanism has
been awarded by the Nobel prize only one year later.

However, the Nobel prize of 2015 reminds us that the Standard Model still cannot
describe all phenomena we observe, as neutrinos are massless in the Standard Model

1Of course other quark flavours are also part of the proton and neutron, however they only contribute
as sea particles, which means they only exist for short time scales by the uncertainty principle.
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Introduction

but are known to have mass, which has been demonstrated by the measurement of
neutrino oscillations. Another example is the presence of Dark Matter, which can
be inferred because of its gravitational effects but is not part of the Standard Model.
This observation leads to the surprising conclusion that only roughly 15 percent of
the matter in the universe is described by the Standard Model, while all the rest is
Dark Matter. This kind of matter does not interact with the particles we know in any
way we are able to detect. By other cosmological observations we also know about
Dark Energy, which degrades the visible matter to be only about five percent of the
total energy in the universe. As a consequence of these deficiencies of the Standard
Model one of the most important tasks is to find a theory that can explain phenomena
that the Standard Model is not being aware of, id est which are beyond the Standard
Model. A vital part of this research is to improve the predictions that are made by
the Standard Model to be able to state whether a measurement is possible within the
model or not.

As mentioned, one of the forces described in the Standard Model is the strong
force, which describes the interaction of colored particles. The force is unique in a
sense that particles that interact via the strong force cannot be detected directly but
only in colorless, compound states. Still it is arguably the most important force for
measurements at hadron colliders, which nowadays produce the highest energy collisions
in experiment. While the perturbative approach to Quantum Chromodynamics can
describe cross sections very precisely in most regions of the phase space at high energy
as it uses the strong coupling constant as perturbative parameter which becomes small
at high energies, it fails terribly at some regions with fixed order predictions. The reason
is that in these regions large contributions appear which spoil the original perturbative
series systematically.

Historically and also still nowadays one of the most important examples is the
description of the transverse momentum differential cross section of the Drell-Yan
process and semi inclusive deep inelastic scattering. In the former two hadrons interact
via an intermediate boson, which then decays into an lepton anti-lepton pair in the
final state, while the latter describes the interaction of a lepton with a hadron, which is
breaking apart and the final state consists of the scattered lepton as well as one additional
hadron originating from the parton struck by the lepton. If the transverse momentum
of the intermediate vector boson becomes small the perturbative series in the strong
coupling constant collapses as large logarithms of the transverse momentum over the
boson mass systematically appear. By a reorganization of the perturbative series such
that it takes the logarithms into account, it is possible to restore the predictive power
of the theory in this particular part of the phase space. This reorganization is called
resummation. However, the small transverse momentum still leads to some ambiguities,
as can be expected because Quantum Chromodynamics is not a perturbative theory
at low energies. This becomes noticeable by the Landau pole of the strong coupling
constant, which bedevils the resummation. As this particular kind of resummation is
carried out in impact parameter space instead of momentum space, the inverse Fourier
transform induces scales that are smaller than accessible perturbatively. This signals

xiv



clearly that also nonperturbative physics has to be taken into account, while regulating
the perturbative part for these configurations.

The easiest way to accomplish the regularization of the perturbative part and to
consider nonperturbative effects is to make a nonperturbative model in the impact
parameter space and fit the parameters of this model to data while simply freezing
the perturbative input at some scale; in fact this is the preferred method currently.
Unfortunately it bequeaths not only the nonperturbative parameters but also the need
to define the scale which has to separate the perturbative from the nonperturbative
regime. It turns out that the parameters of the nonperturbative model depend strongly
on this choice, but there is no simple physical argument that could fix this ambigu-
ity. An alternative would be to avoid the Landau pole in the complex plane. By
the complexification the scale that separates perturbative and nonperturbative parts
becomes superfluous and the parameters of the nonperturbative model lose the induced
ambiguity. The drawback is a numerically much more complicated task for the inverse
Fourier transform.

In this thesis we will perform all kinds of preparations that have to be done to
succeed with a global fit using the complexified approach. Further we illuminate topics
that are all too often overseen related to the resummation of transverse momenta.
Altogether we are confident that it can lead to an improved understanding of the
transverse momentum resummation as a whole.

In chapter 1 we introduce the basics of the perturbative approach to Quantum
Chromodynamics, starting from its Lagrangian and the renormalization of the theory,
introducing its unique features of asymptotic freedom and confinement, proceeding
to the treatment of physical observables using factorization and evolution and finally
giving a compact introduction into the topic of resummation.

Chapter 2 presents the main work of this thesis: the development of a general-purpose
integration routine that can be executed on an ordinary CPU as well as on a GPU,
improving our ability to integrate complex functions in a reasonable amount of time. It
is the key ingredient for the determination of the parameters of the nonperturbative
model used in small transverse momentum resummation for Drell-Yan as well as the
SIDIS process. Of course it can accelerate all physical applications that need an
integration routine and hence should improve numerical calculations also in many other
fields.

In contrast to most other chapters, chapter 3 is not related to transverse momentum
resummation. In contrast it treats the angular distribution of the final state leptons
in the Drell-Yan process, performing a global analysis for all experimental data sets
available, demonstrating the overall very good agreement of theory with experiment.

Chapter 4 returns to the small transverse momentum resummation. It examines the
corresponding observable of the SIDIS process taking into account subleading terms for
the very first time. These terms do not have to be resummed, as they are still integrable
for small transverse momentum, but cannot be neglected as after resummation they
are likely the most important terms in the particular part of the phase space.

In chapter 5 we introduce a new method to parametrize parton distribution functions
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Introduction

in Mellin space, which is in contrast to the commonly used method easier to reproduce
and to automatize. It has direct impact to the resummation of small transverse
momenta, as the resummation causes the parton distribution functions to be evaluated
at a complex scale if the impact parameter is complexified. As it is only possible to
evolve the parton distribution functions to a complex scale in Mellin space, the pros
and cons of the different ways to describe them in Mellin space have to be carefully
discussed.

The last chapter 6 checks the numerical dependence of the resummation formula for
different perturbative expressions for the running coupling constant. A priori it is not
possible to favor one expression over the other, but we demonstrate that the choice
influences the numerical result of the resummation formula in a non negligible way and
hence becomes an important ingredient for future determinations of the nonperturbative
parameters.

We like to highlight two appendices, which contain more than just additional infor-
mation. First in appendix C we present the software library finael, which is the actual
implementation of all the theory presented in chapter 2 to perform general-purpose
integrations on the GPU and way more, as it contains also many tools, math or Quan-
tum Chromodynamics related classes that simplify the calculations on the GPU, as
for example routines to perform the DGLAP evolution. Second in appendix D we
present the whole calculation necessary in chapter 4 in great detail starting from well
known techniques such that it might be useful for young students and proceeding to
more advanced calculations that have not been presented in literature as far as we
know, for example the next-to-next-to-leading order expansion of the kinematic delta
distribution.

All chapters are written in a way that they can be read without knowledge of the
preceding topics. Although this introduces some repetitions especially in the introduc-
tions, this way we ensure that it is possible to follow the topic without unnecessary
browsing through the thesis.
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Chapter 1

Perturbative quantum chromodynamics

In general we look for a new law by the
following process. First we guess it. Then
we compute the consequences of the guess
to see what would be implied if this law
that we guessed is right. Then we compare
the result of the computation to nature,
with experiment or experience, compare it
directly with observation, to see if it works.
If it disagrees with experiment it is wrong.
In that simple statement is the key to
science.

— Richard P. Feynman

The Standard Model of particle physics (SM) is one of the most successful theories
in the history of science. It describes nature with very high accuracy resting upon
few basic principles and assumptions, combining three of the four known fundamental
forces. These are the electromagnetic and the weak force, which are unified in the
electroweak sector, and the strong force.1 All of them are described by relativistic
quantum field theories. The underlying gauge groups are

SU(3)c × SU(2)w × U(1)Y (1.1)

where the SU(2)w describes the weak isospin Iw and U(1)Y the weak hypercharge Y .
In this thesis we will set them aside, because we will use only elementary parts like the
exchange of the neutral photon and Z boson, which are a result of the electroweak sector
SU(2)w × U(1)Y after symmetry breaking by the Higgs mechanism [1–3]. Instead we
focus on the strong force described by SU(3)c, where the label ‘c’ stands for color, which
labels the corresponding theory as quantum chromodynamics (QCD). The massive
color charged particles are called quarks, which are spin one-half fermions interacting
electroweakly as well as strongly. The mediator particles of the strong force are spin one
bosons called gluons. In this chapter we will explore the rich phenomenology of QCD

1The force not described in the SM is the gravitational force, which will also play no role in this thesis
because it is much weaker than any force described by the SM at the energy and mass scales which
are relevant for this work.
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Chapter 1 Perturbative quantum chromodynamics

in the perturbative approach and will highlight some key differences to the electroweak
sector.

1.1 QCD Lagrangian

The history of QCD starts, as for all gauge theories, with the early work of Yang
and Mills [4] who found the general Lagrangian being invariant under local gauge
transformations of the SU(N) group. Driven by the necessity to introduce colored
particles to describe the particle zoo of hadrons and mesons [5, 6] (especially the
discovery of the ∆++-baryon, where the additional degree of freedom was crucial to
guarantee an antisymmetric wave function), the birth of QCD may be set to the
formulation of the gauge theory by Fritzsch, Gell-Mann and Leutwyler [7, 8].

In this section we will construct the Lagrangian of QCD, starting with the part
describing free quarks and their anti-particles

Lfree ≡
∑
q∈Q

ψ̄q(i/∂ −mq)ψq (1.2)

We suppress the Dirac indices of the fermionic quark fields ψq and the operator (i/∂−mq)
as well as the color indices of the fields (the operator is color diagonal anyway). For a
more detailed presentation see [9]. The sum runs over all knowns quark species, which
are given by

Q ≡
{
u, d, s, c, b, t

}
(1.3)

where the labels u, d, s, c, b and t correspond to the up, down, strange, charm, bottom
and top quark, respectively. Equation (1.2) is invariant under the global SU(3)c gauge
transformation

ψq(x) → exp
[
−igsαata

]
ψq(x) (1.4)

The ta are the eight generators of the fundamental representation of SU(3) group
given by the Gell-Mann matrices up to a factor of one-half [10], the αa are the gauge
parameters and gs will turn out to be the strong coupling constant. Now by the gauge
principle which enforces the symmetry to hold also locally (αa → αa(x)) it is necessary
to introduce the eight gluon fields Gaµ which transform under the gauge transformation
as

Gaµ → Gaµ − (∂µα
a)− gsf

abcGbµα
c (1.5)

The totally antisymmetric structure constants fabc reflect that the gluons belong to
the adjoint representation of the underlying group. We can now modify the free
Lagrangian (1.2) by replacing the derivative with the covariant derivative

Dµ ≡ ∂µ − igsGaµta (1.6)

2



1.1 QCD Lagrangian

to render it also invariant under local gauge transformations.2 Adding the kinetic term
of the gluons via the corresponding field strength tensor

Gaµν ≡ ∂µG
a
ν − ∂νG

a
µ + gsf

abcGbµG
c
ν (1.7)

we can now write down the classical QCD Lagrangian

Lclassic ≡
∑
q∈Q

ψ̄q(i /D −mq)ψq −
1

4
GaµνG

µν,a (1.8)

At this point a crucial difference to the electromagnetic sector is apparent. Because
SU(3) is non-abelian, which manifests in the structure constants fabc being non-zero,
the kinetic term of the gluons includes also self interaction terms. In particular, we
find terms cubic and quartic in the gluon fields, which belong to a three- and a four-
gluon interaction respectively, or to describe it more vividly: gluons themselves are
color-charged particles in contrast to photons, which are electromagnetically neutral.

Quantizing the theory is performed by use of the path integral formalism [11]. During
the procedure it is necessary to fix the gauge. Two major ways of doing this are
widespread in the community. The first one is using physical gauges like the Coulomb
or axial gauges. The latter ones are especially useful to determine parton distribution
functions, see also section 1.4 or appendix D.2. They are accomplished by choosing
a fixed vector nµ, where we distinguish between pure axial, light-cone and temporal
gauges (n2 < 0, n2 = 0 and n2 > 0 respectively), and implementing n · Ga = 0 by
adding a gauge fixing term to the Lagrangian, which reads

Lgauge, axial ≡ −ξ
2

(
nµGaµ

)2 (1.9)

with the gauge parameter ξ, which is arbitrary and cancels in all physical observables.
It is common to choose it to be ξ = 1 (Feynman gauge), ξ = 0 (unitary gauge) or
ξ → ∞ (Landau gauge).

The second way to fix the gauge is by choosing a covariant gauge which implements
∂ ·Ga = 0, which can be done similarly by adding the gauge fixing term

Lgauge, cov ≡ −ξ
2

(
∂µGaµ

)2 (1.10)

By choosing a covariant gauge the resulting gluon propagator simplifies greatly compared
to axial gauges, but as a drawback unphysical polarizations appear. These have to be
canceled out by introducing an additional field, which is a complex anti-commuting
scalar field φa. The field is associated with the so called Faddeev-Popov ghosts [12]. It
is important to mention that these ghosts do not map to any physical particles, but

2More precisely the transformation of the gluon fields (1.5) is a consequence of the definition of
the covariant derivative (1.6) and the invariance of the free Lagrangian (1.2) under local gauge
transformations.
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Chapter 1 Perturbative quantum chromodynamics

are a pure technical trick to eliminate all non-physical degrees of freedom in gluon
polarization sums. It is not possible to have ghosts in initial or final states. They
contribute typically only at higher-order calculations. The Lagrangian implementing
the ghosts is defined by

Lghost ≡
(
∂µφ†a

)(
Dab
µ φ

b
)

(1.11)

where Dab
µ is the covariant derivative in the adjoint presentation

Dab
µ ≡ ∂µδ

ab + gsf
abcGcµ (1.12)

Finally we may now write down the full QCD Lagrangian by summing up the single
parts introduced in the last few paragraphs (equations (1.8), (1.10) and (1.11))

LQCD ≡ Lclassic + Lgauge, cov + Lghost

=
∑
q∈Q

ψ̄q(i/∂ −mq)ψq −
1

4

(
∂µG

a
ν − ∂νG

a
µ

)2 − ξ

2
(∂µGaµ)

2 + (∂µφ
†a)(∂µφa)

+ gs
∑
q∈Q

ψ̄q /G
a
taψq + gsf

abc(∂µφ†a)Gcµφ
b

− gs
2
fabc

(
∂µG

a
ν − ∂νG

a
µ

)
Gµ,bGν,c − g2s

4
fabcfadeGbµG

c
νG

µ,dGν,e (1.13)

We choose a covariant gauge, as we will typically do in the rest of the thesis unless
mentioned otherwise. In the last step we wrote down the terms explicitly, such that we
can identify the kinematic terms in the first line, the quark-gluon and the ghost-gluon
vertices in the second line and the two self interaction terms in the third line. In
appendix A we collect the corresponding Feynman rules.

1.2 Renormalization
As the title of this chapter already points out, we want to study QCD by a perturbative
approach, id est we want to expand the elements of the scattering matrix in a series of
the strong coupling gs. This approach is only meaningful if the coupling is small, as we
will show in the subsequent section 1.3. Calculations beyond the leading order of the
series are vital to obtain predictions of high accuracy. These higher-order calculations
include loops, where the momenta flowing through these loops are unconstrained and we
have to assume all possible momentum configurations. In particular the momenta may
become infinitely large. For QCD—as for most relativistic field theories—these cause
divergences in the integrals over the loop momenta. We call such theories ultraviolet
(UV) divergent. The divergences are a feature of QCD as a whole and are not specific
to the perturbative approach [13].

In order to handle UV divergent theories the first step is to make the divergences
manifest. This procedure is called regularization, which is a purely technical trick.
Several different regularization methods exist. In the early days regularization by a
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1.2 Renormalization

hard cut-off or the Pauli-Villars method [14] were proposed. Decades later dimensional
regularization [15, 16] revolutionized the field and is still the dominant method in
analytical calculations. In the field of lattice QCD the regularization is mostly performed
by using the non-zero lattice spacing as regulator, commonly referred to as lattice
regularization [17]. Recently a new method has been introduced, the four dimensional
regularization [18], where also the renormalization procedure is altered.3 However,
compared to dimensional regularization all of them have drawbacks as being not invariant
under Lorentz or gauge transformations or being very pedestrian for actual calculations.
In the following we will therefore discuss and use dimensional regularization only. In
dimensional regularization the space-time is expanded to d dimensions, where d = 4−2ε
and, at least for UV divergences, ε > 0. By this shift it is possible to calculate the
divergent integrals. The result will naturally depend on ε and the divergences manifest
as 1/ε poles.

In dimensional regularization one has to take care of the dimension of the Lagrangian
to avoid spurious logarithms of mass dependent quantities. The reason is that the
action S has to stay dimensionless also in d dimensions (dim[S] = 0). Therefore the
Lagrangian must have mass dimension dim[L] = d. This causes that in particular the
coupling constant has to be redefined to stay dimensionless

gs → µεrgs (1.14)

with µr being an arbitrary mass scale, which we will call in the following the renormal-
ization scale.

Having the UV poles manifest the renormalization can take place. It consists of the
statement that the Lagrangian in equation (1.13) does not contain the physical but
bare parameters, which will turn out to be divergent themselves. We label the bare
parameters by an additional subscript, for example gs,0. The physical parameters are
then defined by the multiplication of a divergent renormalization constant Z with the
divergent bare parameters

ψq = Z
−1/2
ψq

ψq,0 (1.15a)

mq = Z−1
mq
mq,0 (1.15b)

Gaµ = Z
−1/2
Ga Gaµ,0 (1.15c)

ξ = Z−1
ξ ξ0 (1.15d)

φa = Z
−1/2
φ φa0 (1.15e)

gs = Z−1
g gs,0 (1.15f)

Then the renormalization constants will be defined such that their expansion in the
coupling constant cancels exactly the divergences of the bare parameters. As a result

3We will see soon that the divergences will be absorbed into a redefinition of the parameters of the
Lagrangian. In four dimensional regularization some of them can be absorbed into the vacuum
instead.
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Chapter 1 Perturbative quantum chromodynamics

we find finite physical parameters. The Lagrangian itself is split up into a Lagrangian
that is identical to the one in equation (1.13) but now consists of the renormalized
fields and parameters and a Lagrangian that absorbs all the rest

LQCD,0 = LQCD + Lct (1.16)

We call the terms in Lct counter terms. From these new Feynman rules can be derived.
They have to be taken into account at every order and cancel the UV divergences of
the loop diagrams that we still find using LQCD (it is still the same as before). For an
example see the calculation in appendix D.3.

In order to be renormalizable a theory has to fulfill certain criteria. In general we
distinguish three scenarios. A theory with only a finite set of divergent diagrams, such
that renormalizing these makes also all diagrams at higher orders finite, is called super-
renormalizable. An example for a super-renormalizable theory is the scalar φ3-theory
in four dimensions. A theory with an infinite number of divergent diagrams is called
renormalizable if at every order only a finite number is divergent. Furthermore it is
necessary that these divergences are accompanied by the parameters of the theory
such that the divergences can be absorbed into the renormalization constants Z. Id
est, still a finite number of counter terms is sufficient. Finally it is possible that every
perturbative order reveals new divergences that need additional parameters to render
the observables finite. Because a theory can only have a finite number of parameters,
such a theory is non-renormalizable. QCD is a renormalizable theory, as has been shown
in [19]. In fact, there is proven a more general argument about the renormalizability of
non-abelian gauge theories, which includes QCD.4

The renormalization of a theory is not unique as it is possible to absorb also finite
terms along with the divergences into the renormalization constants. In order to decide
which finite terms are subtracted by the renormalization constants, one has to fix the
renormalization scheme. In the SM two different schemes are usually applied. For
the electroweak part the so called on-shell scheme is applied [21, 22], which sets the
renormalized parameters equal to the experimentally observed values. In QCD this
is not possible, since the quarks are not directly observable (and therefore also not
their masses) but are always found in compound states. We will discuss this feature
of QCD in detail in the following two sections. Instead in QCD the modified minimal
subtraction scheme (MS—speak ‘MS-bar’) is used [23]. It is based on the minimal
subtraction scheme (MS) [24], in which only the 1/ε-poles are subtracted by the counter
terms. The MS scheme subtracts additionally the constant term ln(4π) − γE which
typically accompanies the poles. γE is the Euler-Mascheroni constant. For a more
detailed discussion on renormalization of the whole SM see for example [25].

4In the same year also the renormalizability of spontaneously broken gauge theories has been shown [20].
As a consequence the QCD as well as the electroweak sector of the SM are renormalizable.
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1.3 Asymptotic freedom and confinement

1.3 Asymptotic freedom and confinement
As pointed out in the last section one consequence of renormalization is the introduction
of the renormalization scale µr. Because the renormalization constants Z depend on
µr also the coupling gs and all quark masses mq depend on this arbitrary scale

gs → gs(µr) (1.17a)
mq → mq(µr) (1.17b)

Because the coupling appears only quadratic we define analogously to the fine structure
constant in QED α the strong fine structure constant αs by

αs ≡
g2s
4π

(1.18)

However, observables should not depend on an arbitrary scale. To demonstrate this
let us consider a dimensionless observable O of a physical process with a dominant
momentum Q. Because O is dimensionless it can only depend on other dimensionless
arguments. Then the statement that it should be independent of µr is given by [26]

0 = µ2r
d

dµ2r
O

(
m(µ2r)

Q
,
Q2

µ2r
, αs(µ

2
r)

)
=

[
µ2r

∂

∂µ2r
+ β(αs)

∂

∂αs
−mγm(αs)

∂

∂m

]
O

(
m(µ2r)

Q
,
Q2

µ2r
, αs(µ

2
r)

)
(1.19)

which is the renormalization group equation (RGE). To write down the RGE we
introduced the QCD β-function

β(αs) ≡ µ2r
∂

∂µ2r
αs (1.20)

and the anomalous dimension

γm ≡ −µ2r
1

m

∂

∂µ2r
m (1.21)

describing the dependence of the coupling and the quark masses on µr. Note that the
scale dependence of the mass is ultimately a result of our ignorance of the physical
masses of the quarks. If they were known, it would be possible to use an on-shell
renormalization with no resulting scale dependence.

The β-function as well as the anomalous dimension can be expanded in the coupling.
The expansion of the β-function is given in equation (1.26). In case of the coupling we
speak of the running coupling constant to emphasize the fact that it is not a constant
in terms of its scale dependence. Note that we simplified the situation by considering
only one mass, which turns out to be justifiable, because we will neglect the quark
masses in the following anyway. It can be shown that the effective masses are small for
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Chapter 1 Perturbative quantum chromodynamics

large momenta in asymptotic free theories [26]. In this section we will demonstrate that
QCD is an asymptotic free theory and can therefore safely neglect all quark masses
from now on. This simplifies the RGE to[

µ2r
∂

∂µ2r
+ β(αs)

∂

∂αs

]
O

(
Q2

µ2r
, αs(µ

2
r)

)
= 0 (1.22)

where we omitted the first argument of O because it is trivial after setting all masses
to zero

O

(
0,
Q2

µ2r
, αs(µ

2
r)

)
→ O

(
Q2

µ2r
, αs(µ

2
r)

)
(1.23)

Solving the differential equation (1.20) for αs we immediately find

ln
(
Q2

µ2r

)
=

αs(Q2)∫
αs(µ2r)

dx
β(x)

(1.24)

Differentiating this equation with respect to αs(µ2r) and Q2 leads to

∂αs(Q
2)

∂αs(µ2r)
=
β
(
αs(Q

2)
)

β
(
αs(µ2r)

) (1.25a)

∂αs(Q
2)

∂Q2
=
β
(
αs(Q

2)
)

Q2
(1.25b)

With these it is easy to show that O(1, αs(Q
2)) is a solution of the RGE (1.22). This

means that the whole scale dependence of the observable is completely determined by
the scale dependence of the coupling.

To analyze the scale dependence of the running coupling constant we parametrize
the expansion of the β-function in terms of the coupling as

β(αs) = −αs
∞∑
n=0

βn

(
αs
4π

)n+1

(1.26)

The coefficients βn are known up to fifth order for the gauge group SU(N) [27–31]. We
present the first two coefficients which are given by

β0 =
11

3
CA − 4

3
TRnf (1.27a)

β1 =
34

3
C2
A − 4CFTRnf −

20

3
CATRnf (1.27b)

where nf is the number of active quark flavours. CA and CF are the quadratic Casimir
operators of the adjoint and the fundamental representation of the gauge group. TR is
the Dynkin index of the fundamental representation. For QCD with N = 3 the Casimir
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1.3 Asymptotic freedom and confinement

operators are given by CA = 3, CF = 4/3 and the Dynkin index is TR = 1/2 and thus
the coefficients simplify to

β0 = 11− 2

3
nf (1.28a)

β1 = 102− 38

3
nf (1.28b)

Note that the coefficients depend in general on the renormalization scheme, however
this is first true for β2.

We notice that another expansion of the β-function is also commonly used. It is
related to the expansion in equation (1.26) by rearranging factors of 4π

β(αs) = −α2
s

∞∑
n=0

bnα
n
s (1.29)

This means the coefficients bn are related to the βn by

βn = (4π)n+1bn (1.30)

Before we solve the differential equation for the running coupling at a fixed order, we
want to discuss the qualitative behavior of the coupling depending on the β-function
briefly. Based on equation (1.24) we can identify major aspects of the theory. We can
distinguish between two cases.

β(αs) > 0 : In this case the theory has to be perturbative for Q2 → 0. Because
the left-hand side of (1.24) is minus infinity, the coupling αs(Q2) has to become
smaller than αs(µ

2
r). It is even approaching zero, because the β-function starts

with a quadratic term, causing a divergence as it should to fulfill (1.24). This
behavior is independent of the reference point µr. This is called an infrared
fix point or infrared freedom. The most important example for an infrared free
theory is QED. The behavior of the theory for large scales is determined by
the β-function at large argument, which is determined by higher orders of the
perturbative series. A detailed analysis about this topic can be found in [32].

β(αs) < 0 : A negative β-function causes the theory to be perturbative for large
scales Q2 → ∞. The left-hand side of equation (1.24) becomes large and in the
limit of infinite momentum it becomes plus infinity. As a consequence on the
right-hand side the coupling αs(Q2) has to become smaller than αs(µ2r) and with
the same argument as in the other case it has to approach zero. The theory
has an ultraviolet fix point and is called asymptotic free. The most important
example is QCD, which is asymptotically free for nf < 175 (as the first coefficient

5More precisely the limit depends on the number of colors Nc ≡ N and is given by

nf <
11CA

4TR
=

11

2
Nc
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Chapter 1 Perturbative quantum chromodynamics

Figure 1.1: Measurements of the strong coupling constant as a function of the energy scale
αs = αs(Q

2). Figure taken from [36].

β0 is positive as long as not too many flavours are present, see equation (1.28a)).
The asymptotic freedom of QCD has been discovered by Gross and Wilczek [33]
and independently by Politzer [34, 35]. In fact the two articles were received
only a few days apart and all three of them were awarded the Nobel prize in
2004. In our argument we already used that asymptotic freedom can be justified
by the first term of the β-function, as it determines the behavior for small αs.
Higher-order terms cannot change this. Instead they define the coupling at small
scales. Again a more detailed analysis is presented in [32].

It is quite easy to solve equation (1.24) at leading order. The result reads

αs(Q
2) =

αs(µ
2
r)

1 + β0
4παs(µ

2
r) ln

(
Q2

µ2r

) (1.31)

In chapter 6 we need the coupling at a higher perturbative order. The respective
formulas are given there. Equation (1.31) gives us the coupling at a certain scale Q
given the coupling at a fixed scale µr. Commonly the Z-boson mass MZ is taken, where
αs(M

2
Z) = 0.118. Note that pQCD predicts the variation of the coupling with the

energy scale, but cannot predict the overall size. This information has to be extracted
from experimental data and is updated frequently [37, 38]. In figure 1.1 we show the
current measurements of the strong coupling. We see indeed the asymptotic freedom
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1.3 Asymptotic freedom and confinement

of QCD for large scales, which means that quarks and gluon interact weakly in this
regime. This confirms the perturbative approach retrospectively. We may estimate
the scale at which perturbative QCD becomes valid with Q & 1 GeV. For smaller
scales the coupling becomes of order one and perturbative QCD does not apply, as
the corrections of higher orders become systematically larger than lower orders. The
perturbative formula (1.31) even diverges for small scale Q. The divergence is called
the Landau-pole Λqcd. At leading order we find

Λqcd = µr exp
(
− 2π

β0αs(µ2r)

)
(1.32)

Using the Z-boson mass as fix point we can derive the numerical value of the Landau-
pole to be Λqcd ≈ 250 MeV. Inserting the Landau-pole in equation (1.31) we can
express the coupling by using the pole as the only parameter

αs(Q
2) =

4π

β0 ln
(
Q2

Λ2
qcd

) (1.33)

At higher orders this formula becomes a series with ln−1(Q/Λqcd) as the expansion
parameter. The next order is reported in chapter 6.

In nature the Landau-pole is nonexistent. The presence of the pole is a relict of the
perturbative approach. It indicates the incapacity to describe the strong interaction at
small scales. Lattice QCD or Dyson-Schwinger equations can be used to investigate
the coupling in this regime [39, 40]. In a nutshell it is found that the coupling becomes
nonperturbative but of order one. Some investigations suggest a saturation for small
momentum, others find that the coupling decreases again and has a maximum at a few
hundred MeV.

The large coupling for small scales has another important phenomenological con-
sequence that we have not mentioned so far, namely confinement. It states that the
interactions between quarks and gluons become strong at small energy scales. As
a consequence they form compound objects which are colorless, called hadrons. To
phrase it differently: quarks and gluons are confined in the hadrons. If one separates
two colored particles of a hadron the binding energy increases until it is larger than
the mass of a new quark anti-quark pair. Because the state including the new pair
is favorable the system ends up with two hadrons, which are again colorless. This
makes QCD especially demanding because its elementary particles cannot be detected
separately. It is also the reason why it is not possible to use an on-shell scheme for the
renormalization of the theory.

Confinement is ultimately a result of the non-abelian nature of QCD. Because a gluon
does carry color-charge they interact among each other, which gives rise to additional
quantum corrections not present for example in QED. These gluon contributions
dominate, which can be seen in the coefficient of the β-function in equation (1.27a),
where the first summand is due to gluon contributions, while the second summand
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Chapter 1 Perturbative quantum chromodynamics

originates from quark contributions. This means that the color-charged gluons cause
the β-function to be negative and finally make QCD an asymptotic free theory with
confinement.6

To conclude this section we will finally discuss the importance of QCD in terms of
quantum corrections, which are essential for high-accuracy predictions. As can be seen
in figure 1.1 for large energies the coupling is of order

αs ∼ O
(

1

10

)
(1.34)

while the electromagnetic coupling is about one order of magnitude smaller

α ∼ O
(

1

100

)
(1.35)

This is the reason why QCD is said to describe the strong force. As a consequence
QCD corrections are way more important than QED corrections for observables that
contain hadronic states. The magnitudes above give a naive approximation about the
impact of the corrections. On this basis we may expect a next-to-next-to-leading-order
(NNLO) correction in QCD to be of the same size as a next-to-leading-order (NLO)
electroweak correction. However, electroweak corrections more often affect the shape of
differential observables, as their kinematic dependencies are typically stronger. This
means for precision calculations one has to balance the corrections carefully to obtain
reasonable results.

1.4 Infrared safety and factorization
In the last section we have shown that the strong coupling αs is sufficiently small at
larges scales to justify perturbative calculations. However, due to confinement the
perturbative part is inevitably mingled with the complicated inner structure of hadrons,
which is not perturbative. This concerns us in two ways: first in hadron colliders, where
obviously it is necessary to distinguish between the inner structure of the hadrons
and the actual calculable scattering; second also in experiments with clean initial
states, for example e+e− colliders, where hadronic states are measured in the final
state. Since the detectors are far apart from the collision we will measure hadronized
partons (quarks or gluons) and consequently have again to distinguish between the
calculable scattering and the small-scale (long-distance) effects of hadronization. As
a consequence we can use perturbative QCD only for certain observables. They have
to be either insensitive to long-distance physics or the long-distance part has to be
separable from the perturbatively accessible part.

6Due to the central role of the gluon, the experimental evidence was of special interest. It has
been found that the gluon with its postulated properties described the data of three-jet events by
the PLUTO collaboration at DESY [41, 42] best. This established QCD as the theory of strong
interaction.
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H2(P2)

H1(P1)

q(p1)

q̄(p2)

X2(PX2)

X1(PX1)

l(l1)

l̄(l2)

Φq̄

H

Φq

Figure 1.2: Invariant amplitude of the Drell-Yan process at leading order. The incoming hadrons
Hi participate in the hard scattering process H via one parton. This is described by
the green blobs, which are defined in equations (1.39). The final states consists of the
hadronic remnants Xi and the typically measured lepton pair ll̄.

The first type of observables, which are insensitive to long-distance physics, are called
infrared safe. In the perturbative calculation this means that possibly occurring infrared
singularities have to cancel among real and virtual corrections. The singularities of the
real emissions are typically due to a propagator that is going on-shell.7 One can track
this down to two situations: a collinear or a soft radiation. In the first a parton splits
into two collinear partons that share the momentum of their parent parton. In the latter
a parton radiates a parton with negligible momentum. In both cases an experiment will
not be able to distinguish between the reaction where the radiation has taken place and
the reaction where no radiation occurred. Hence also the observable has to be insensitive
to these splittings. The classical textbook example for an infrared observable is the
inclusive annihilation of a e+e− pair into hadrons [43]. Another important infrared-safe
observable is the so called thrust distribution [44], which measures how ‘jetlike’ an
event is. This leads to the probably most important observable at current experiments:
jets. They describe a bunch of collimated particles. However, no unique definition of a
jet exists and the many available definitions differ greatly of what they pronounce to
be a jet. Historically the first infrared-safe jet definition has been proposed by Sterman
and Weinberg [45]. Currently the mostly used algorithms can be divided into cone [46]
and successive recombination algorithms [47–49]. The latter ones are often abbreviated
as kT -algorithms. In this thesis we will not use jets or other observables that do not
contain long-distance physics. Therefore we will not go deeper into detail. A more
extensive introduction into infrared safety is given for example in [50, 51].

Instead we will use in this thesis the second type of observables exclusively, for
which short- and long-distance physics can be separated systematically. The short-

7We notice that infrared singularities are present whenever a massless particle becomes soft or collinear
to another particle. In the standard model the massless particles are the photon, the gluons and
the neutrinos. Because we neglect the mass of the light leptons and quark flavours, we introduce
additional infrared singularities. These are a remnant of our treatment but not part of the actual
theory. Nevertheless they have to cancel to construct an infrared observable.
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Chapter 1 Perturbative quantum chromodynamics

distance interactions will be calculable with perturbative QCD, while the long-distance
physics has to be measured. The separation is called factorization. We will introduce
this topic by the example of the Drell-Yan process [52–54], which is for instance the
central process of chapter 3. It describes the scattering process of two hadrons which
create a lepton pair via an intermediate vector boson. The Drell-Yan process has been
extremely popular because of its clean final state and also because it turned out that
the perturbative series converges well. In particular we will focus on the photon as the
intermediate boson. The process can schematically be described by

H1(P1) +H2(P2) → γ∗(q) +X(PX) → l(l1) + l̄(l2) +X(PX) (1.36)

where the particle momenta are denoted in parenthesis and X includes all remnants
of the incoming hadrons Hi that do not participate in the hard scattering. The
following calculations will partly follow [55]. The process is described at leading order
by quark-antiquark annihilation and the corresponding invariant amplitude M is given
by

Mδ4(P1 + P2 − PX − q)

=

∫
d4p1
(2π)4

∫
d4p2
(2π)4

∫
d4η1 eip1·η1

∫
d4η2 eip2·η2

×Hij(p1, p2, l1, l2) 〈PX |ψ̄i(η2)ψj(η1)|P1, P2〉 δ4(p1 + p2 − q) (1.37)

The momentum of the intermediate boson is given by q ≡ l1 + l2 and we absorb the
leptonic part completely into the hard function H.8 We denote Dirac indices explicitly,
while suppressing color and flavour indices for brevity. The amplitude is shown in
figure 1.2, which already implies the factorization. We address this later. First we
assume that the hadronic matrix element approximately factorizes

〈PX |ψ̄i(η2)ψj(η1)|P1, P2〉 → 〈PX1 |ψj(η1)|P1〉 〈PX2 |ψ̄i(η2)|P2〉 (1.38)

This is consistent with the depiction in figure 1.2. We can now identify the green blobs
as Fourier transforms of a hadronic matrix elements where a quark/antiquark is created
by acting with the ψi(η)/ψ̄i(η) on the initial hadron state

Φqi (p, P, PX) ≡
∫

d4η eip·η 〈PX |ψi(η)|P 〉 (1.39a)

Φq̄i (p, P, PX) ≡
∫

d4η eip·η 〈PX |ψ̄i(η)|P 〉 (1.39b)

and thus rewrite the invariant amplitude

Mδ4(P1 + P2 − PX − q) =

∫
d4p1
(2π)4

∫
d4p2
(2π)4

Hij(p1, p2, l1, l2)δ
4(p1 + p2 − q)

8In fact it would not be necessary to discuss the Drell-Yan process at all. We could have used vector
boson production instead, where we could have omitted the whole leptonic part.
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×
∫

d4η1 eip1·η1 〈PX1 |ψj(η1)|P1〉

×
∫

d4η2 eip2·η2 〈PX2 |ψ̄i(η2)|P2〉 (1.40)

where we keep the hadronic matrix elements explicit, because they will be manipulated
in the next steps: using the translation operator to shift the argument of the Dirac
fields we can make them independent of the space parameters ηi, because the states are
all eigenstates of the momentum operator. Therefore we can simplify the expression of
the invariant amplitude to

M = Hij(P1 − PX1 , P2 − PX2 , l1, l2) 〈PX1 |ψj(0)|P1〉 〈PX2 |ψ̄i(0)|P2〉 (1.41)

where PX = PX1 + PX2 . However, to write down the cross section of the process
depicted in figure 1.3 it is more convenient to use the original form

dσ
dR

=
∑
q∈Q

∫
X1

∑ ∫
X2

∑
|M|2(2π)4δ4(P1 + P2 − PX − q)

=
∑
q∈Q

∫
X1

∑ ∫
d4p1
(2π)4

∫
d4p′1
(2π)4

×
∫

d4η1

∫
d4η′1 ei(p1·η1−p′1·η′1) 〈P1|ψ̄l(η′1)|PX1〉 〈PX1 |ψj(η1)|P1〉

×
∫
X2

∑ ∫
d4p2
(2π)4

∫
d4p′2
(2π)4

×
∫

d4η2

∫
d4η′2 ei(p2·η2−p′2·η′2) 〈P2|ψk(η′2)|PX2〉 〈PX2 |ψ̄i(η2)|P2〉

×Hij(p1, p2, l1, l2)H
∗
lk(p

′
1, p

′
2, l1, l2)(2π)

4δ4(p1 + p2 − q) (1.42)

where dR denotes the final state phase space of the leptons and also includes the Møller
flux factor. Both will play no role in the following discussion. The sum over the quark
flavours q ∈ Q (see equation (1.3)) is stated explicitly, although the index is suppressed
for the Dirac fields and the hard scattering function at the moment. It is important to
distinguish the flavour index from the momentum q of the intermediate boson. Further
we defined the shorthand notation for the phase space of the hadronic remnant by∫

X

∑
≡
∑
X

∫
d3PX

2EPX
(2π)3

(1.43)

To simplify the expression we notice that for both intermediate states Xi we can use
the completeness relation after including the phase space integral∫

X

∑
|PX〉 〈PX | = 1 (1.44)
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Chapter 1 Perturbative quantum chromodynamics

H2(P2) H2(P2)

H1(P1) H1(P1)

q(p1)

q̄(p2)

q(p′1)

q̄(p′2)

l(l1)

l̄(l2)

Φq̄

Φq

H H∗

Figure 1.3: Cross section of the Drell-Yan process at leading order. At the final state cut a
summation/integration over all states takes place. The quark and antiquark PDF
correlators are shown as blue blobs, which are essentially the green blobs of figure 1.2
plus the final state hadron remnants multiplied by their complex conjugates.

As a result we now face matrix elements with two quark fields between two well-defined
hadron states instead of a single quark field and an unknown remnant state

dσ
dR

=
∑
q∈Q

∫
d4p1
(2π)4

∫
d4p′1
(2π)4

∫
d4η1

∫
d4η′1 ei(p1·η1−p′1·η′1) 〈P1|ψ̄l(η′1)ψj(η1)|P1〉

×
∫

d4p2
(2π)4

∫
d4p′2
(2π)4

∫
d4η2

∫
d4η′2 ei(p2·η2−p′2·η′2) 〈P2|ψk(η′2)ψ̄i(η2)|P2〉

×Hij(p1, p2, l1, l2)H
∗
lk(p

′
1, p

′
2, l1, l2)(2π)

4δ4(p1 + p2 − q) (1.45)

This formula is shown schematically in figure 1.3. The blue blobs Φq and Φq̄ are
the quark and the antiquark correlators respectively, which we define soon. Further
simplification can be achieved by using the invariance under translations of the matrix
elements. Similar to the simplification step of the invariant amplitude in equation (1.41)
we can use the translation operator to shift the arguments of the fields and make one
of the Fourier integrals redundant∫

d4η

∫
d4η′ ei(p·η−p′·η′) 〈P |ψ̄l(η′)ψj(η)|P 〉

=
1

16

∫
d4λ e

i
2
(p−p′)·λ

∫
d4κ e

i
2
(p+p′)·κ

× 〈P | e
i
2
p̂·(λ−κ) ψ̄l(0) e−

i
2
p̂·(λ−κ) e

i
2
p̂·(λ+κ) ψj(0) e−

i
2
p̂·(λ+κ) |P 〉

= (2π)4δ4(p− p′)

∫
d4κ eip·κ 〈P |ψ̄l(0)ψj(κ)|P 〉 (1.46)
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1.4 Infrared safety and factorization

where we used the sum and the difference of the two integration variables λµ ≡ ηµ + η′µ
and κµ ≡ ηµ − η′µ. Note that it is essential that initial and final state of the matrix
element are equal to achieve the translation invariance. Now eliminating also the
momentum integrals via the delta distributions, we can write down the final expression
for the cross section

dσ
dR

=
∑
q∈Q

∫
d4p1

∫
d4p2 (2π)

4δ4(p1 + p2 − q)

× tr
(
H(p1, p2, l1, l2)Φ

q(p1, P1)H
∗(p1, p2, l1, l2)Φ

q̄(p2, P2)
)

(1.47)

where we defined the fully unintegrated quark and antiquark correlators

Φqij(p, P ) ≡
∫

d4η

(2π)4
eip·η 〈P |ψ̄j(0)ψi(η)|P 〉 (1.48a)

Φq̄ij(p, P ) ≡
∫

d4η

(2π)4
eip·η 〈P |ψi(0)ψ̄j(η)|P 〉 (1.48b)

The typical setup in high energy colliders consists of interacting partons that are
almost collinear to their parent hadron. Every hadron contributes exactly one parton.
Multiple contributions are power suppressed by the mass of the intermediate boson
Q−2. Historically this idea is called the parton model, where every parton carries
a momentum fraction of the hadron. It was proposed by Feynman in 1969 [56].
Motivated by Feynman’s framework Bjorken and Paschos applied the parton model to
deep inelastic scattering (DIS) [57]. Subsequently it was adapted also to other processes.
More generally we can identify various directions that give contributions of different
importance to describe the physical process. This observation is driven by the ordering

p1 · P1 � p2 · P1 (1.49a)
p2 · P2 � p1 · P2 (1.49b)

which allows us to approximate the parton momenta in the hard scattering and in the
overall delta distribution such that the small terms are neglected. Breaking down also
the phase space integrations via∫

d4p1 =
2

S

∫
d(p1 · P1)

∫
d(p1 · P2)

∫
d2p1,T (1.50)

where S = (P1 + P2)
2 is the hadronic center of mass energy and we neglect the

hadron masses, we can then observe that only the correlators depend on the otherwise
ignored components. For the following discussion let us assume that the hadron has
a momentum that can be parametrized by the normalized light-cone vector nµ+ by
Pµ ∼ nµ+, which will simplify the notation greatly. This is possible because we treat
not only the quarks but also the hadrons as massless P 2 = 0. Further we introduce
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Chapter 1 Perturbative quantum chromodynamics

the conjugated light-cone vector nµ− with n+ · n− = 1. Then the components of a four
vector aµ can be decomposed as

aµ = (a · n−)nµ+ + (a · n+)nµ− + aµT = a+n
µ
+ + a−n

µ
− + aµT (1.51)

where the transverse component aµT is defined to be orthogonal to the light-cone
components. The smallest components that are neglected first are the parton directions,
which are opposite to their parent hadrons momentum, id est the p ·P ∼ p ·n+ direction.
This leads to the transverse momentum dependent (TMD) correlator functions. For
example the transverse momentum dependent quark PDF correlator is given by

Φqij(p+, ~pT , P ) ≡
∫

d(p · n+)Φqij(p, P )

=

∫
dp−

∫
d4η

(2π)4
ei(p+η−+p−η+−~pT ·~ηT ) 〈P |ψ̄j(0)ψi(η+, η−, ~ηT )|P 〉

=

∫
dη−d2ηT
(2π)3

ei(p+η−−~pT ·~ηT ) 〈P |ψ̄j(0)ψi(0, η−, ~ηT )|P 〉 (1.52)

TMDs describe the partons inside hadrons via their longitudinal momentum fraction
as well as transverse momenta. They make it possible to create a three-dimensional
image of the hadrons, which causes the large popularity and activity of the field over
the last decades [58–70]. Especially for spin dependent observables they introduce
a rich phenomenological playground. The Sivers asymmetry alone has attracted an
enormous amount of efforts [71–80]. On the other side it is very difficult to conduct
TMD studies, as a lot of free parameters have to be determined, which entails the risk
of simply fitting data. In this thesis we will not use TMDs explicitly, instead we will
use the more common framework in which only the longitudinal momentum fraction is
taken into account. By neglecting also the transverse momenta in the hard scattering
and the overall delta distribution, only the correlators depend on them. As before we
can integrate them out to obtain the collinear correlator functions. We write down
again only the collinear quark PDF correlator

Φqij(ξ, P ) ≡
∫

d2pTΦ
q
ij(p+, ~pT , P )

=

∫
dη−
2π

eip+η− 〈P |ψ̄j(0)ψi(0, η−,~0T )|P 〉

=

∫
dη
2π

eiξP+η 〈P |ψ̄j(0)ψi(0, η,~0T )|P 〉 (1.53)

Note that we describe the longitudinal momentum no longer by the component p+ but
by its longitudinal momentum fraction ξ defined by p+ = ξP+. This links us again to
the original parton model (see above).

For a complete description of the correlators we should include also additional gluon
exchanges between the hadronic matrix elements and the incoming particle legs. Because
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1.4 Infrared safety and factorization

these do not necessarily carry a large momentum, it is not possible to neglect them
being of higher order in the coupling αs. It has been shown that the additional terms
exponentiate [58, 60, 61, 75]. The result are path ordered exponents called Wilson
lines which connect two points in space time. For example the collinear quark PDF
correlator reads

Φqij(ξ, P ) =

∫
dη
2π

eiξP+η 〈P |ψ̄j(0)Wψi(0, η,~0T )|P 〉 (1.54)

with the Wilson line

W ≡ P exp

−igsta
η∫

0

dαGa+(0, α,~0T )

 (1.55)

and P being the path ordering operator. Due to the Wilson lines the definitions of the
correlators become gauge independent. However, in light-cone gauge (Ga+ = 0) the line
reduces to a unit matrix. This means that equation (1.53) is still the correct definition
in light-cone gauge. For more informations on the definitions of Wilson lines also in the
TMD formalism, see [55] and references therein. To see a distinct example including
a partly different set of correlators see chapter 4 and the corresponding appendix D,
where we carefully calculate the semi inclusive DIS (SIDIS) cross section at small
transverse momentum, including similar steps that have been presented here so far,
but being way more explicit in order to get all factors correct.

For unpolarized cross sections without considering hadronic masses the collinear
correlator can be expanded very simply by incorporating the properties of the correlator
under different transformations, for example parity or time reversal,

Φq(ξ, P ) = fq(ξ)/p (1.56)

For polarized states or considering hadron masses, additional terms would be present on
the right-hand side.9 The function fq(ξ) is called a parton distribution function (PDF).
In the original parton model it is a probability density for finding the parton q with
longitudinal momentum fraction ξ inside the considered hadron. A formal definition can
be achieved by taking the trace of equation (1.56) multiplied by /n−. The multiplication
projects out the PDF even if we had written down the full expansion of the correlator
respecting polarized spin states or the hadron mass. With tr(/p/n−) = 4p · n− = 4p+ we
find for the definition of the PDF [81]

fq(ξ) =
1

4ξP+
tr(Φq(ξ, P )/n−)

=
1

4ξP+

∫
dη
2π

eiξP+η 〈P |ψ̄(0)γ+ψ(0, η,~0T )|P 〉 (1.57)

9For TMDs the expansion consists of a larger number of independent functions, describing individual
properties of the hadron. Some of these vanish if integrated over transverse momentum, but have
important physical meanings. To examine the nature of hadrons they are therefore indispensable.
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Figure 1.4: Next-to-leading-order proton parton distribution functions fitted by the CTEQ collab-
oration [82] (CT10) at squared scale 100 GeV2. The error bands describe the overall
fitting error of the 26 parameters used for every quark flavour. The gluon distribution
is divided by ten to accomplish a better visualization.

Naturally also for the definition of the PDF a Wilson line has to be taken into account,
similarly to the correlator itself. And alike we can deduce a definition of a TMD PDF
or the fully unintegrated PDF by applying the same steps to the expression we had
before integrating out the transverse and minus components of the quark momentum.

As described before, factorization relies on the separation of short- and long-distance
physics. We have seen this already in equation (1.47) where the calculable short-distance
physics is described by the hard scattering function H while the long-distance physics
has been entailed in the correlators Φq and Φq̄. Until now we have only considered
leading order in the coupling αs. Factorization states that for arbitrary order we can
separate the perturbative from the nonperturbative part. For the Drell-Yan process
the cross section can be written as [83]

dσ
dηdQ2

=
∑
a,b∈P

1∫
x1

dξ1

1∫
x2

dξ2 fa(ξ1, µ2f )Hab

(
x1
ξ1
,
x2
ξ2
, Q2,

µ2f
Q2

, αs

)
fb(ξ2, µ

2
f ) (1.58)

To obtain this formula from the ones we derived before, we have to specify the phase
space of the two leptons dR, integrating out all degrees of freedom except for the
invariant mass of the lepton pair Q2 = q2 and its rapidity η defined by

η ≡ 1

2
ln
(
P1 · q
P2 · q

)
(1.59)
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1.4 Infrared safety and factorization

Furthermore we have introduced the variables

x1,2 ≡
√
Q2

S
e±η (1.60)

and have to sum over all parton species

P ≡ Q ∪Q ∪ {g} (1.61)

where Q contains all quark flavours and is defined in equation (1.3). The bar indicates
anti-quarks and the label g stands for the gluon. These sums generalize the leading-order
sum in equation (1.47), as in leading order only a qq̄ pair can form the partonic initial
state, while at higher orders arbitrary combinations are possible. Moreover we have to
redefine the hard scattering function Hab to entail the whole trace including all but the
PDFs (after replacing the correlators by them) and to gather all additional occurring
factors. Finally we introduce a scale µf , which is used to renormalize the calculations
necessary for Hab. It is called the factorization scale and should not be confused with
the renormalization scale µr we introduced in the previous section, although they are
often chosen to be equal. Equation (1.58) is often called the factorization formula
because it now explicitly contains the ingredients we have talked about before. The
partonic scattering is buried in Hab and can be calculated perturbatively. The PDFs
have to be measured by experiments, as they are not accessible by perturbative QCD.10

This may seem as a huge loss of predictive power to pQCD, but because the PDFs are
universal, id est they do not depend on the underlying process, it is possible to fit them
to a clearly defined set of data and retain predictive power for all other data. Nowadays
several collaborations offer PDF sets, the most popular are the PDFs of the CTEQ
group [82, 86–88], MSTW or MMHT [89, 90] and of the NNPDF collaboration [91,
92]. All of them consider the proton as the parent hadron. As an example we show
the CTEQ set [82] (CT10) in figure 1.4. In the large ξ region around one third the u
and d quark distributions dominate, nicely fitting the naive parton model, in which the
proton consists of two u quarks and one d quark, which should carry approximately
one third of the protons momentum each and compose its quantum numbers. These
distributions are called valence distributions. Due to gluon interactions they smear out
and the generation and annihilation of temporary sea quarks has to be added, which
contribute mostly for small momentum fractions. This introduces also quark flavours
being part of the proton that are not present in the naive parton model.

The distributions have to fulfill certain constraints, which are called sum rules. For
example they have to reproduce the proton quantum numbers, as mentioned before,

1∫
0

dξ
[
fu(ξ, µ

2
f )− fū(ξ, µ

2
f )
]
= 2 (1.62a)

10In the field of lattice QCD much effort has been expended to calculate PDFs directly from the QCD
Lagrangian [84, 85]. Nevertheless, current high-precision predictions still rely on the measured
PDFs.
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1∫
0

dξ
[
fd(ξ, µ

2
f )− fd̄(ξ, µ

2
f )
]
= 1 (1.62b)

1∫
0

dξ
[
fq(ξ, µ

2
f )− fq̄(ξ, µ

2
f )
]
= 0 ∀q ∈ Q \

{
u, d
}

(1.62c)

Further all parton momenta have to add up to the proton momentum

∑
q∈P

1∫
0

dξ ξfq(ξ, µ2f ) = 1 (1.63)

These already imply for example the isospin, strangeness and the charge of the proton,
which are linear combinations of the equations (1.62). As these quantities can be
measured directly, they offer a direct access to the PDFs. For example the isospin is
measured as a difference of the structure function F2 in neutrino scattering off protons
and neutrons. The corresponding formula is known as the Adler sum rule [93]. Another
example relates the baryon number and the strangeness of a nucleon (again measured
via neutrino scattering) to the PDFs [94]

∑
q∈P

1∫
0

dξ
[
fq(ξ, µ

2
f )− fq̄(ξ, µ

2
f )
]
= 3 (1.64)

which is called the Gross-Llewellyn Smith sum rule. An introduction to sum rules
can be found in [95]. The PDFs shown in figure 1.4 assume that quark flavours that
only appear in the sea have identical quark and anti-quark distributions. Note that
this is not necessarily true, as long as the sum rules are respected. Finally we want to
point out the very large error band of the s quark, which is a peculiarity of the CT10
fit [82]. The authors point out that they released several formal constraints on the s
distribution. The large error band emphasizes that the experimental data taken into
account were not sufficient to determine all parameters of the s distribution equally well
as for the other ones. More details about common PDF parameterizations is provided
in chapter 5 of this thesis, which treats PDFs transformed in Mellin space.

To prove factorization it is essential to show that the factorization formula (1.58)
holds to all orders. The proofs are process dependent and we can distinguish between
formal proofs to all orders, as for the Drell-Yan process, DIS or semi inclusive DIS [83,
96], while it is verified for other processes by direct calculation at fixed orders, see
for example [97, 98]. As a rule of thumb one can assume factorization to be proven
the more inclusive the underlying process is. For TMDs a formal proof—again for
Drell-Yan and (semi inclusive) DIS—has been given in this decade [62, 63].

We will now demonstrate how to apply the factorization theorem to calculate the
hard scattering part Hab in equation (1.58). Because of factorization the partonic
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1.4 Infrared safety and factorization

scattering is insensitive to the parent hadrons of the participating partons. This means
that we can substitute the hadron, which prevents a completely perturbative calculation
in the first place, by another parton. We call the resulting cross section Gab, where a
and b are the parton flavours replacing the hadrons

Gab =
∑
c,d∈P

1∫
x1

dξ1

1∫
x2

dξ2 fc/a(ξ1, µ2f )Hcd

(
x1
ξ1
,
x2
ξ2
, Q2,

µ2f
Q2

, αs

)
fd/b(ξ2, µ

2
f ) (1.65)

The PDFs have been replaced by their equivalents containing simple quark states
instead of a hadron state, see equation (1.57). These quark states can be written as
creation and annihilation operators acting on the vacuum state. Using the definition
of a free fermionic field it is possible to calculate the fa/b order by order. For a
detailed calculation see [99]. A good summary is provided in appendix B of [50].
The calculation reveals UV as well as IR divergences, which are made manifest by
dimensional regularization similar to the renormalization procedure we described in
section 1.2. The UV pole is subtracted by a counterterm in the MS scheme, while the
IR pole remains. Up to NLO the quark-in-quark PDFs are given by [81]

fa/b(ξ) = δabδ(1− ξ)− 1

2ε

αs
π
P

(0)
ab (ξ) +O(α2

s) (1.66)

where the P
(0)
ab (ξ) is the leading-order Altarelli-Parisi splitting function defined in

equation (1.74). We will discuss its meaning in the next section 1.5. Now we can
expand also the cross section Gab and the hard scattering functions in the strong
coupling constant

Gab =

∞∑
n=0

(αs
π

)n
G

(n)
ab (1.67a)

Hab =
∞∑
n=0

(αs
π

)n
H

(n)
ab (1.67b)

We can calculate the coefficients G(n)
ab in perturbation theory. Except for the leading

order n = 0 we find again UV and IR divergences. The UV divergences are removed as
usual in the MS scheme. The IR divergences can be separated into two classes. The
first are soft divergences which originate from configurations where a parton is emitted
with vanishing momentum. They cancel among virtual and real diagrams. The second
class are collinear divergences which originate from configurations where an emitted
parton has a momentum collinear to its parent parton. These have to be eliminated
to achieve a finite result. Effectively this is done by shifting them into the PDFs. If
and only if these cancel the pole in the PDFs, see equation (1.66), the cross section
factorizes with finite expressions as well for the PDFs as for the hard scattering function.
We want to note once more that the IR divergences are—at least in this case—a relict
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of the massless treatment of the quarks. To be more specific we expand both sides of
equation (1.65) up to NLO using (1.66) and (1.67)

G
(0)
ab +

αs
π
G

(1)
ab = H

(0)
ab +

αs
π
H

(1)
ab

− 1

2ε

αs
π

∑
c∈P

1∫
x1

dξ1 P (0)
ca (ξ1)H

(0)
cb +

∑
d∈P

1∫
x2

dξ2H(0)
ad P

(0)
db (ξ2)

 (1.68)

The arguments of Gab and Hab are suppressed for brevity. Now the expression for the
hard scattering functions can be identified order by order

H
(0)
ab = G

(0)
ab (1.69)

H
(1)
ab = G

(1)
ab +

1

2ε

∑
c∈P

1∫
x1

dξ1 P (0)
ca (ξ1)G

(0)
cb +

∑
d∈P

1∫
x2

dξ2G(0)
ad P

(0)
db (ξ2)

 (1.70)

They are finite for ε→ 0 as the poles originating from the PDFs cancel exactly the IR
poles in Gab. We can now use the Hab to calculate physical cross sections including
hadronic states by inserting the expressions into the factorization formula (1.58) and
using measured PDFs describing the nonperturbative physics.

1.5 DGLAP evolution
In the previous section we saw that the factorization introduces an arbitrary scale
µf , the factorization scale, similar to the renormalization procedure introducing the
renormalization scale µr. Due to the factorization the PDFs as well as the hard
scattering function depend on µf , which we also denoted for example in figure 1.4
without mentioning it explicitly in the discussion. In this section we will discuss the
corresponding RGE and its consequences. Because we implemented the results in the
C++ library finael, which is presented in appendix C, we will give a rather technical
recapitulation of the topic, mainly following the more general discussion in [100].
To clarify the notation remind the definitions given in equations (1.3) and (1.61).
Furthermore we define a function that maps integer numbers to P (see equation (1.61))

fidx :
{
−6, . . . , 6

}
7→ P (1.71)

in the natural way (fidx(−6) = t̄, . . . , fidx(−1) = ū, fidx(0) = g, fidx(1) = u, . . .). Finally
we introduce the abbreviation p ≡ fp for a PDF of the flavour p.

It is obvious that physical observables O should not depend on the factorization scale
as they should not depend on the renormalization scale

µ2f
d

dµ2f
O = 0 (1.72)
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1.5 DGLAP evolution

One can construct various observables, depending on different parton flavours. By
choosing smart linear combinations it is possible to extract the evolution equations for
all partons of the form (p ∈ P)11

µ2f
∂

∂µ2f
p(x, µ2f ) =

∑
p̃∈P

1∫
x

dξ
ξ
Ppp̃
(
x

ξ
, αs(µ

2
f )

)
p̃(ξ, µ2f )

=
∑
p̃∈P

[
Ppp̃(αs(µ2f ))⊗ p̃(µ2f )

]
(x) (1.73)

These 2nf + 1 coupled differential equations are called the DGLAP-equations, be-
cause they have been promoted by Dokshitzer, Gribov and Lipatov, and Altarelli
and Parisi [101–103]. The Ppp̃ are the Altarelli-Parisi evolution kernels, which have a
perturbative expansion

Ppp̃
(
z, αs(µ

2
f )
)
≡

∞∑
n=0

(
αs(µ

2
f )

4π

)n+1

P
(n)
pp̃ (z) (1.74)

At leading order these have the very descriptive meaning of the probability for a parton
p̃ to become a parton p with longitudinal momentum fraction z by emitting another
parton. Hence they are also known as splitting functions. The coefficients are well
known up to NNLO [102, 104–121]. They are presented in appendix B up to NLO.
We already met the leading-order coefficient in the previous section as part of the
PDF corrections, see equation (1.66). This is consistent, as these introduce the scale
dependence in the first place and should be driven by the same functions.

In this section we choose the factorization scale to be equal to the renormalization
scale µf = µr, as we already did in the equations above. It is a very common choice. In
a fixed-order calculation one can use the Taylor expansion of αs(µ2f ) in terms of αs(µ2r),
if the two scales differ to retain a description using both independently. For example at
NLO this is given by

Ppp̃
(
z, µ2f , αs(µ

2
r)
)
=
αs(µ

2
r)

4π
P

(0)
pp̃ (z)

+

(
αs(µ

2
r)

4π

)2[
P

(1)
pp̃ (z)− β0 ln

(
µ2f
µ2r

)
P

(0)
pp̃ (z)

]
+O

(
α3
s(µ

2
r)
)

(1.75)

We aim now at solving the evolution equations (1.73) up to NLO. The analytical
solution is expressed most easily in Mellin space (see appendix E), where the convolutions
11It is important to notice that it is impossible to extract all evolution equations from one observable.

For instance the DIS process can only distinguish between the gluon and the sum of all quarks
flavours (which is called the singlet distribution and will be defined soon). The process cannot
identify different quark flavours.
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Chapter 1 Perturbative quantum chromodynamics

turn into simple products. Defining the moments of the parton distributions and
splitting functions (p, p̃ ∈ P)

p(N,µ2f ) ≡
1∫

0

dxxN−1p(x, µ2f ) (1.76a)

γpp̃(N,µ
2
f ) ≡

1∫
0

dz zN−1Ppp̃
(
z, αs(µ

2
f )
)

(1.76b)

the DGLAP-equations (1.73) turn into

µ2f
∂

∂µ2f
p(N,µ2f ) =

∑
p̃∈P

γpp̃(N,µ
2
f )p̃(N,µ

2
f ) (1.77)

From now on we will suppress the arguments for brevity if not necessary for comprehen-
sion. To solve the 2nf +1 coupled differential equations, it is advantageous to decouple
them to the highest possible extent. For this purpose, we recognize that the coupling
to the gluon is flavour independent. Consequently the quark-gluon and the gluon-quark
splitting functions are also flavour independent. Hence we define the splitting functions

γgq ≡ γga (1.78a)
γqg ≡ 2nfγag (1.78b)

with a ∈ Q ∪ Q. Furthermore it is convenient to use the general structure of the
(anti-)quark splitting functions. These can be divided into a flavour diagonal and a
non-diagonal part (a, e ∈ Q and ā, ē ∈ Q)

γae = δaeγ
v
qq + γs

qq (1.79a)
γāē = δāēγ

v
qq + γs

qq (1.79b)

The flavour diagonal is also called the ‘valence’ part and the non-diagonal the ‘sea’
part, which is indicated by the superscripts v and s. The same can be done for the
quark-antiquark splitting functions

γaē = δaeγ
v
qq̄ + γs

qq̄ (1.80a)
γāe = δaeγ

v
qq̄ + γs

qq̄ (1.80b)

Including the gluon-gluon splitting function γgg one has at leading order four inde-
pendent splitting functions, because at leading order it is not possible to change the
quark flavour γs

qq = γs
qq̄ = γv

qq̄ = 0. At NLO one has six independent splitting functions,
because at that order γs

qq = γs
qq̄. First at NNLO all seven splitting functions are

required.
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1.5 DGLAP evolution

Since the coupling to the gluon does not depend on the flavour or whether it is a
quark or an antiquark, every difference of two quark distributions does not couple to
the gluon. We can therefore define the so-called nonsinglet combinations, denoted with
the subscript ns

q±ns,ae = (a± ā)− (e± ē) (1.81a)

qv
ns =

∑
p∈Q

(p− p̄) (1.81b)

where again a, e ∈ Q. It is easy to prove that

µ2f
∂

∂µ2f
(a± ā) = (γv

qq ± γv
qq̄)a+ (γv

qq̄ ± γv
qq)ā+

1

2nf
(γqg ± γqg)g

+
∑
p∈Q

(γs
qq ± γs

qq̄)p+
∑
p∈Q

(γs
qq̄ ± γs

qq)p (1.82)

and therefore the nonsinglet combinations evolve as

µ2f
∂

∂µ2f
q±ns,ae = (γv

qq ± γv
qq̄)q

±
ns,ae ≡ γ±nsq

±
ns,ae (1.83a)

µ2f
∂

∂µ2f
qv

ns =
[
γv
qq − γv

qq̄ + nf (γ
s
qq − γs

qq̄)
]
qv

ns ≡
[
γ−ns + γs

ns
]
qv

ns (1.83b)

To perform the evolution at higher orders than NLO it is advantageous to introduce
2nf − 2 linearly independent combinations of the q±ns,ae

q±ns,n ≡ −n(fidx(n)± fidx(−n)) +
n∑
k=1

(fidx(k)± fidx(−k)) (1.84)

with (n ∈
{
2, . . . , nf

}
). We do the same already at NLO to be prepared for generaliza-

tions to higher orders. Obviously they evolve similarly

µ2f
∂

∂µ2f
q±ns,n = γ±nsq

±
ns,n (1.85)

and in sum we have now 2nf − 1 evolution equations in the nonsinglet case.
Since the nonsinglet case is decoupled from the gluon, one chooses the linear combi-

nation which couples maximally with the gluon for the so called singlet distribution

qs ≡
∑

p∈Q∪Q

p (1.86)

We want to point out that the DIS process is sensitive only to the singlet distribution
and the gluon but not to the various nonsinglet distributions. With the given definitions
it is easy to show that the singlet and the gluon evolve with

µ2f
∂

∂µ2f
qs =

[
γ+ns + nf (γ

s
qq + γs

qq̄)
]
qs + γqgg
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≡
[
γ+ns + γps

]
qs + γqgg (1.87a)

≡ γqqqs + γqgg (1.87b)

µ2f
∂

∂µ2f
g = γgqqs + γggg (1.87c)

which is often denoted in a vector notation

µ2f
∂

∂µ2f

(
qs
g

)
=

(
γqq γqg
γgq γgg

)(
qs
g

)
(1.88)

To restore the original quark distributions one uses the relations (n ∈
{
1, . . . , nf

}
)

1

nf
qs −

1

n
q+ns,n +

nf∑
k=n+1

1

k(k − 1)
q+ns,k = fidx(n) + fidx(−n) (1.89a)

1

nf
qv

ns −
1

n
q−ns,n +

nf∑
k=n+1

1

k(k − 1)
q−ns,k = fidx(n)− fidx(−n) (1.89b)

with q±ns,1 ≡ 0. The left-hand sides can be calculated by using the definitions of the
singlet and nonsinglet distributions and indexing the double sum as n ∈

{
1, . . . , nf

}
nf∑

k=n+1

1

k(k − 1)

k∑
j=1

f(j) =

n∑
j=1

f(j)

nf∑
k=n+1

1

k(k − 1)
+

nf∑
j=n+1

f(j)

nf∑
k=j

1

k(k − 1)

=
nf − n

nfn

n∑
j=1

f(j) +

nf∑
j=n+1

f(j)
1 + nf − j

nf (j − 1)
(1.90)

which is true for arbitrary functions f that are not singular for integer argument. This
is clearly true for all functions we are interested in. The last step of the calculation
uses the finite sum

m∑
i=2

1

i(i− 1)
=
m− 1

m
(1.91)

which can be shown easily by mathematical induction.
We have now finally managed to write down all evolution equations in the form

µ2f
∂

∂µ2f
Q = ΓQ (1.92)

where Γ and Q are one of the linear combinations of splitting functions and parton
distributions in Mellin space respectively. They are scalar quantities for the nonsinglet
combinations and a matrix and a vector in the singlet case. As independent splitting
functions it is common to choose γ+ns, γ−ns and γs

ns in the nonsinglet sector and γps,
γqg, γgq and γgg in the singlet sector to solve the evolution equations and perform the
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1.5 DGLAP evolution

evolution. As already mentioned at leading order the functions γs
qq, γs

qq̄ and γv
qq̄ all

vanish. For our set this translates into γ+ns = γ−ns and γs
ns = γps = 0. In NLO it holds

γs
qq = γs

qq̄ which means that still γs
ns = 0.

For the evolution it is convenient to evolve directly in αs instead of µ2f , which is
possible because the coupling is bijective and as long as the factorization and the
renormalization scale are linearly dependent. The corresponding change of variables is
given by the β-function (see equation (1.20))

µ2f
∂

∂µ2f
Q = µ2f

∂αs
∂µ2f

∂Q

∂αs
= β(αs)

∂Q

∂αs
(1.93)

Expanding the β-function (1.26) as well as the splitting functions we find [122, 123]
∂Q

∂αs
=

1

β(αs)
ΓQ

= − 1

β0αs

[
1 +

∞∑
k=1

βk
β0

(
αs
4π

)k]−1 [ ∞∑
n=0

Γ(n)

(
αs
4π

)n]
Q

= − 1

β0αs

[
Γ(0) +

αs
4π

(
Γ(1) − β1

β0
Γ(0)

)
+O(α2

s)

]
Q

= − 1

αs

[
R0 +

∞∑
k=1

(
αs
4π

)k
Rk

]
Q (1.94)

with the recursively defined coefficients

Rk ≡


1

β0
Γ(0) if k = 0

1

β0
Γ(k) −

k∑
n=1

βn
β0
Rk−n if k > 0

(1.95)

Because in the singlet case the matrices Rk do not commute, it is not possible to
diagonalize them simultaneously and as a consequence to write a solution in closed
exponential form beyond leading order. To stay consistent we will use the same technique
for the singlet and nonsinglet case, although the latter has a closed exponential solution
we will obtain from the singlet result.

The leading-order solution is given in both cases by

Q(αs(µ
2)) =

 ∞∑
k=0

1

k!

(
−R0 ln

(
αs(µ

2)

αs(µ20)

))kQ(αs(µ
2
0)) ≡

(
αs(µ

2)

αs(µ20)

)−R0

Q(αs(µ
2
0))

(1.96)
evolving from the scale µ0 to µ. For higher orders we use the following ansatz, which is
an expansion around the leading-order solution

Q(αs(µ
2)) = U(αs(µ

2))

(
αs(µ

2)

αs(µ20)

)−R0

U−1(αs(µ
2
0))Q(αs(µ

2
0)) (1.97)
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where U(αs) is defined by the perturbative expansion

U(αs) = 1+

∞∑
n=1

(
αs
4π

)n
Un (1.98)

The inverse factor in the ansatz (1.97) ensures that the evolution reduces to unity for
µ = µ0. Inserting (1.97) on both sides of (1.94) we find

∞∑
n=1

(
αs
4π

)n
[Un, R0] =

∞∑
n=1

(
αs
4π

)n
(nUn +Rn) +

∞∑
n,m=1

(
αs
4π

)n+m
RnUm (1.99)

which leads order by order to the commutation relations

[Un, R0] = nUn +Rn +
n−1∑
m=1

RnUn−m ≡ nUn + R̃n (1.100)

The equations can be solved iteratively. At next-to-leading order we have to solve

[U1, R0] = U1 +R1 (1.101)

For this purpose we write the matrix R0 in terms of its eigenvalues

r±0 =
1

2β0

(
γ(0)qq + γ(0)gg ±

√(
γ
(0)
qq − γ

(0)
gg

)2
+ 4γ

(0)
gq γ

(0)
qg

)
(1.102)

and define the normalized (in a sense of complete P+
0 + P−

0 = 1) projectors (P±
0 P

±
0 =

P±
0 ) on the corresponding orthogonal (P±

0 P
∓
0 = 0) eigenspaces

P±
0 ≡ 1

r±0 − r∓0

(
R0 − r∓0 1

)
(1.103)

to decompose R0

R0 = r+0 P
+
0 + r−0 P

−
0 (1.104)

and U1 and R1

U1 = (P+
0 + P−

0 )U1(P
+
0 + P−

0 ) = P+
0 U1P

+
0 + P+

0 U1P
−
0 + P−

0 U1P
+
0 + P−

0 U1P
−
0

(1.105a)
R1 = (P+

0 + P−
0 )R1(P

+
0 + P−

0 ) = P+
0 R1P

+
0 + P+

0 R1P
−
0 + P−

0 R1P
+
0 + P−

0 R1P
−
0

(1.105b)

Inserting equations (1.104) and (1.105) into the commutation relation (1.101) we find

(r+0 − r−0 )(P
−
0 U1P

+
0 − P+

0 U1P
−
0 ) = U1 +R1 (1.106)

By multiplying the different combinations of the projectors we get

P+
0 U1P

+
0 = −P+

0 R1P
+
0 (1.107a)
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1.5 DGLAP evolution

P−
0 U1P

−
0 = −P−

0 R1P
−
0 (1.107b)

P+
0 U1P

−
0 =

1

r−0 − r+0 − 1
P+
0 R1P

−
0 (1.107c)

P−
0 U1P

+
0 =

1

r+0 − r−0 − 1
P−
0 R1P

+
0 (1.107d)

and finally we can express the matrix U1 by

U1 = −(P+
0 R1P

+
0 + P−

0 R1P
−
0 ) +

1

r−0 − r+0 − 1
P+
0 R1P

−
0 +

1

r+0 − r−0 − 1
P−
0 R1P

+
0

(1.108)
It is possible to generalize the result by using the definition of R̃n in equation (1.100)
to

Un = − 1

n
(P+

0 R̃nP
+
0 + P−

0 R̃nP
−
0 ) +

1

r−0 − r+0 − n
P+
0 R̃nP

−
0 +

1

r+0 − r−0 − n
P−
0 R̃nP

+
0

(1.109)
Note that the poles (r±0 (N)) are canceled by the inverse factor U−1 in (1.97). For a fixed
order this can be shown explicitly by truncating all present series, but the statement is
also true on a general basis [100]. The statement is highly nontrivial because not only
the sum in the denominator can be zero but also the splitting functions have poles.
Also these have to cancel by the inverse factor U−1.

To write down an analytical solution one has to determine the accuracy or the level
of truncation. At a fixed order it is possible to use different expressions, which only
differ beyond the considered order. These choices make a difference by the handling of
the series in equation (1.94) and (1.97). The most obvious choices are

Full solution: Using all orders (in practice to a sufficiently high order) of the β-function
and the splitting functions. Note that the R̃n (and therefore the Un) can be
calculated to an arbitrary high order because they are defined recursively (although
the R̃n will miss the Γ(n) for n being larger than the considered order). This
solution is equivalent to a direct iterative solution in longitudinal momentum
space (x-space) of equation (1.73). For this purpose also the αs solution has
to be exact, which means it has to be calculated iteratively instead of using
an approximated analytical solution. In the past a major contribution of the
detected difference of Mellin and x-space codes [124] had its origin in the different
calculation of αs [100].

αs-truncated solution: Removing all terms of order αms in equation (1.94) with m > n,
where n is the considered order. This removes also the higher-order terms that
depend on the β-function and the splitting functions of the considered order. At
NLO the solution is given in the next-to-last line of equation (1.94).

Truncated solution: Additionally to the truncation of equation (1.94) also the series
in equation (1.98) is truncated to the considered order. This means that the
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inverse factor U−1 is not calculated as an inverse from the previously determined
U but is expanded as a series in αs. As does already the αs-truncated solution,
the truncated solution solves the evolution equation only in the sense of a power
expansion. But in contrast to the αs-truncated solution it does not introduce
scheme-dependent higher-order terms.

To conclude the singlet case we will calculate the truncated solution of the evolution
at NLO. For this purpose it is useful to rewrite the leading-order solution (1.96) in
terms of the projectors by using equation (1.104) and [P+

0 , P
−
0 ] = 0(

αs(µ
2)

αs(µ20)

)−R0

=

(
αs(µ

2)

αs(µ20)

)−r+0
P+
0 +

(
αs(µ

2)

αs(µ20)

)−r−0
P−
0 (1.110)

For the truncated solution we can write(
1+

αs
4π
U1

)−1

= 1− αs
4π
U1 +O(α2

s) (1.111)

Inserting everything in the ansatz (1.97) we obtain

Q(αs(µ
2)) =

[(
αs(µ

2)

αs(µ20)

)−r+0
U+− +

(
αs(µ

2)

αs(µ20)

)−r−0
U−+

]
Q(αs(µ

2
0)) (1.112)

where we defined the matrices

Us1s2 = P s10 +
αs(µ

2
0)− αs(µ

2)

4π
P s10 R1P

s1
0

+

[
αs(µ

2)

4π

(
αs(µ

2)

αs(µ20)

)rs10 −rs20
− αs(µ

2
0)

4π

]
1

rs20 − rs10 − 1
P s10 R1P

s2
0 (1.113)

with si ∈ {+,−}. Here we can see that the poles for r±0 − r∓0 = 1 cancel with the
prefactor in brackets. The cancellation of the poles of the r±0 (N) should be considered
as well for an entire analysis. The analytic expression of the truncated solution up to
N3LO can be found in [122, 123].

As mentioned before the nonsinglet case can easily be extracted from the singlet case.
We can define the solution in equation (1.97) analogously but with the simplification
that all Un commute with R0. Equation (1.100) becomes

Un = − 1

n
R̃n (1.114)

and the nonsinglet solutions are given by (note that all quantities are scalar)

Q(αs(µ
2))

Q(αs(µ20))
=

[
1−

∞∑
n=1

(
αs(µ

2)

4π

)n R̃n
n

][
1−

∞∑
n=1

(
αs(µ

2
0)

4π

)n R̃n
n

]−1(
αs(µ

2)

αs(µ20)

)−R0

(1.115)
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Figure 1.5: Next-to-leading-order up-quark PDFs fitted by the CTEQ collaboration [82] (CT10)
at three different scales. The error bands specify the overall fitting error of the 26
parameters used to describe the PDF.

The truncated solutions at NLO are easily derived as

Q(αs(µ
2))

Q(αs(µ20))
=

(
αs(µ

2)

αs(µ20)

)−R0
[
1− R̃1

αs(µ
2)− αs(µ

2
0)

4π

]
(1.116)

At NLO it is also possible to solve equation (1.94) directly, which gives for the αs
truncated solution the closed exponential form

Q(αs(µ
2))

Q(αs(µ20))
=

(
αs(µ

2)

αs(µ20)

)−R0

exp
[
αs(µ

2
0)− αs(µ

2)

4π
R1

]
(1.117)

consistent with the truncated result, because R̃1 = R1.
In figure 1.5 we show the PDF of the up-quark of the CT10 fit [82] for three different

values of the scale. We notice that the evolution causes an enhancement of the small
momentum fraction region, while it reduces the probability density for large momentum
fraction. This is intuitive as for larger energies the sea particles become more important
and easier to generate.

We want to emphasize the importance of the DGLAP evolution for perturbative
QCD as a whole. Because low energy physics cannot be described by perturbative QCD
we have to fit the PDFs to experimental data, which means a huge loss of predictability
for the whole theory. Thanks to the evolution it is not necessary to fit the PDFs for
every scale but for only one. Then they can be calculated for all other scales by the
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DGLAP evolution. This increases the predictability of the theory tremendously. A
typical fit procedure of the PDFs can be separated into the following parts: first for
every flavour a sensible parameterization is guessed. Then they are evolved to the scale
that dominates the cross section in pQCD. A subset of data is chosen to compare the
theoretical description to the experiment. Finally the parameterization is adjusted and
the whole procedure starts again until the data are described as precisely as possible.
The chosen subset of data is responsible for the restriction of the parameterization.
Hence it is a very delicate task to choose as many data as necessary without constricting
the predictive efficiency.

1.6 Resummation

So far we considered fixed-order calculations. However, under certain circumstances
this approach fails although the small coupling αs seems to justify the usage of the
perturbative series. This is the case if the series is systematically spoiled. The technique
widely used to overcome this issue is called resummation. It stands for an all-order
summation of the terms that spoil the original series. However, resummation is not a
definite technique that can be used in every situation. Instead it is a general term that
collects many different techniques.

Usually the series is spoiled by large logarithms. A typical perturbative expansion
contain terms of the form

αns lnk(. . .) (1.118)

The power k that can appear at most is dependent on the particular case. Often
one encounters k ≤ 2n (double logarithmic) or k ≤ n (single logarithmic) settings. If
the argument of the logarithms becomes very small or very large it counteracts the
smallness of the coupling.

In fact we already saw two situations in which a resummation has been taken place,
but we did not mention it explicitly. The first was the solution of the renormalization
group equation of the coupling itself, see equation (1.31). Expanding the expression

αs(Q
2) =

αs(µ
2)

1 + β0
4παs(µ

2) ln
(
Q2

µ2

) = αs(µ
2)

∞∑
n=0

[
−β0
4π
αs(µ

2) ln
(
Q2

µ2

)]n
(1.119)

we can identify the logarithms that have been resummed: ln(Q/µ). If the ratio of the
two scales becomes too large or small we find exactly the situation described above.
We can identify it as a single logarithmic resummation. Additionally it demonstrates
one possible way to achieve resummation: by solving an appropriate RGE. The second
example we already saw is the DGLAP evolution of PDFs. Again a RGE is used to
resum the single logarithmic series.

A type of resummation we encounter more explicitly is often in particular regions of
phase space, where again large logarithmic contributions arise. For example for the
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Figure 1.6: Factorization of the invariant amplitude including n soft gluon emissions into a product
of the born diagram and the n-th power of a one gluon emission, see equation (1.123b).

Drell-Yan process one will find terms in the partonic part of the form

αns

(
lnk(1− z)

1− z

)
+

(1.120)

with k ≤ 2n, z ≡ Q2/s and s = ξ1ξ2S. The plus distribution is defined by

1∫
0

dz
[
f(z)

]
+
g(z) ≡

1∫
0

dz f(z)
(
g(z)− g(1)

)
(1.121)

It regularizes the limit z → 1, where all available energy is transferred into the lepton
pair, which means that real higher-order corrections can consist of the emission of
soft gluons only. The logarithms are a remnant of the cancellation of virtual and real
infrared divergences at the partonic threshold. To achieve a meaningful theoretical
prediction we have to resum these terms. This is called threshold resummation [125,
126]. It is even more enhanced because of the PDFs that are convoluted with the
partonic cross section. They become very big for small momentum fraction, which
makes the contribution at z → 1 dominant to a larger domain of the cross section.

We will briefly sketch how the resummation works before presenting a more formal
approach. During this and in the subsequent discussions we will follow [50, 127, 128]
and references therein. We write down the total Drell-Yan cross section as

σ(P + n) =
1

2S

∫
dΦn(P, k1, . . . , kn)|Mn(P, k1, . . . , kn)|2 (1.122)

where P denotes the produced vector particle, n is the number of gluon emissions, the
ki are the momenta of the gluons, Φn is the n + 1 particle phase space and Mn the
corresponding invariant amplitude. In the infrared limit, where all gluon emissions are
soft, the ingredients simplify as

dΦn(P, k1, . . . , kn) → dΦ(P )
n∏
i=1

dΦ1(ki)
1

n!
(1.123a)

|Mn(P, k1, . . . , kn)|2 → |M(P )|2
(
|M1(k1, . . . , kn)|2

)n (1.123b)

35



Chapter 1 Perturbative quantum chromodynamics

Id est the production of the particle P and the emission of the soft gluons factorize into
two separate contributions. The factor of 1/n! takes into account the bosonic nature
of the gluons. A schematic depiction of the factorization of the invariant amplitude is
shown in figure 1.6. Summing over all possible numbers of emitted gluons we find an
exponentiation of the one gluon emission

∞∑
n=0

σ(P + n) = σ(P ) exp
[∫

dΦ1(k)|M1(k)|2
]

(1.124)

If we like to measure not only the total but also a differential cross section, say in the
invariant mass Q of the particle P , we have to insert the appropriate condition into
the phase space measure

δ(s−Q2 − 2P ·K −K2) (1.125)

where we used the definition of the momentum sum of all emitted gluons

Kµ ≡
∑
i

kµi (1.126)

The term proportional to K2 can be neglected in the soft limit as being small. After
factoring out S from the delta distribution we may use the soft limit, where P =
(
√
S, 0, 0, 0), to introduce the weights

wi ≡
2k0i√
s

(1.127a)

w ≡ 1− z (1.127b)

and finally find

∞∑
n=0

σ(P + n) = σ(P )
∞∑
n=0

1

n!

[∫
dΦ1

]n (
|M1|2

)n
δ

(
w −

n∑
i=0

wi

)
(1.128)

Apparently the distribution prevents the direct exponentiation. To overcome this
problem we transform the cross section into Laplace space with the following integral
transformation

f(N) =

∞∫
0

dw e−wN f(w) (1.129)

The delta distribution can be used to evaluate the integral and the exponential term
factorizes the sum of all weights wi. Then it is again possible to exponentiate the
expression and we can write the resummed cross section in Laplace space as

σres(N) = σ0 exp
[∫

dw e−wN σ1(w)
]

(1.130)

36



1.6 Resummation

−→

p1 + l

p2 − l

−→

p1 + p2

←
−l

p1

p2

Figure 1.7: One loop QCD correction of the electromagnetic vertex.

The price to pay is the inverse Laplace transform, which is typically not possible
analytically and thus a numerical task. This scheme is quite common in many flavours
of resummation. However, the exact transform depends on the process and the
observable. For example for small transverse momentum resummation it is common to
use a Fourier transform, while for Drell-Yan threshold resummation often the Mellin
transform is favored. However, all these transforms are related to each other and might
be expressed by another after a proper substitution.

With this descriptive picture in mind we can now turn to the more formal approach.
As already said, the large logarithms in threshold resummation are a remainder of
the cancellation of infrared singularities. In the previous section we got to know the
cancellation statement as factorization. Indeed, the resummation is intimately related
to the infrared structure of QCD. More precisely, it is based on a further factorization of
the cross section in the threshold regime, as we just argued in the previous illustration.
Again we will use a simple example which will lead us to more general statements.
Let us consider the one loop correction of the electromagnetic quark photon vertex as
shown in figure 1.7. The graph G that is depicted in the figure is given in d dimensions
by

G =

1∫
0

dα1

1∫
0

dα2

1∫
0

dα3 δ(1− α1 − α2 − α3)

∫
ddl

(2π)d
N(l, p1, p2)

D3
(1.131)

where the Feynman parameters αi disentangle the denominator D which then reads

D = α1l
2 + α2(p1 + l)2 + α3(p2 − l)2 − iη (1.132)

and we collect the rest of the structure in the numerator N . A necessary condition to
form a singularity is obviously that the denominator vanishes

D = 0 (1.133)

However this is not sufficient for a singularity as shown in figure 1.8. Due to the
regulator iη the integration contour does not cross any singularity. Hence it is possible
to deform the contour by Cauchy’s theorem to recede from the singularities and the
integral is still finite. To actually find a singularity the contour has to be trapped
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lµ

lµ

D(lµ)

lµ

lµ

D(lµ)

↔

↔

Figure 1.8: Illustration of a pinch singularity. On the left-hand side the position of the poles (red
crosses) in the lµ plain and the integration contour (green) are shown while on the
right-hand side the corresponding functional form of the denominator D is shown. In
the top row the poles do not coalesce, which makes it possible to deform the contour
to recede it from the poles. In the bottom row the poles do coalesce, producing a
pinch singularity.

between two of them, which is called a pinch singularity. The necessary conditions are
given by

∂D

∂lµ
= 0 (1.134)

which is again illustrated in figure 1.8.
In a more general setup we can consider a graph containing I internal lines and L

loops. Then equation (1.131) turns into

G = (I − 1)!

 I∏
i=1

1∫
0

dαi

 δ(1− I∑
i=1

αi

) L∏
j=1

ddlj
(2π)d

N(ki, pext)

DI
(1.135)

where the argument pext is a collective for all external momenta. The internal momenta
are labeled by ki. Then the denominator is given by

D =

I∑
i=1

αi
(
k2i (lj , pext)−m2

i

)
+ iη (1.136)

Hence we find a pinch condition for every internal momentum, which is now besides
the obvious D = 0 given by

∂D

∂lµj
= 0 (1.137)
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1.6 Resummation

for all j and µ. Since D is linear in the Feynman parameters αi, the contour cannot
be pinched in an analogous manner to the momenta. Still, for the endpoints of the
integrals where αi = 0, the denominator has a singularity, as it has for k2i = m2

i in
which case D becomes independent of αi. Altogether the conditions are called Landau
equations and read

αi = 0 ∨ k2i = m2
i∑

i∈loop l

αikiεil = 0 (1.138)

where the incidence matrix εil is defined by

εil =


+1 ki in the same direction as ll
−1 ki in opposite direction to ll
0 otherwise

(1.139)

and ensures that all momenta are added vectorially while summing up all loop lines.
Returning to the simple example of the vertex correction shown in figure 1.7 the

Landau equations are given by

α1l
µ + α2(p1 + l)µ − α3(p2 − l)µ = 0 (1.140)

Three solutions exist to this equation. The first is given if the gluon is collinear to the
quark with momentum p1

lµ = −zpµ1 (1.141a)
α1z = α2(1− z) (1.141b)
α3 = 0 (1.141c)

the second if the gluon is collinear to the quark with momentum p2

lµ = z′pµ2 (1.142a)
α1z

′ = α3(1− z′) (1.142b)
α2 = 0 (1.142c)

and the third if the gluon is soft

lµ = 0 (1.143a)
α2

α1
=
α3

α1
= 0 (1.143b)

There also exist configurations where the singularity is collinear as well as soft, which
is the case if z → 0 or z′ → 0.

A tool exists to represent the solutions of the Landau equations in reduced diagrams,
in which all lines with vanishing α on the pinch surface are contracted to one point while
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Chapter 1 Perturbative quantum chromodynamics

every line with k2 = m2 is left as before, but commonly the decoration is dropped as it
is irrelevant for this analysis. To find all solutions to the Landau equations Coleman
and Norton invented a graphical method, which simplifies the task enormously [129].

However, the Landau equations are not sufficient for a singularity because the
numerator N might cancel it out. It is necessary to perform an IR power counting [83,
99]. It consists of an parameterization of every pinch surface and identification of
coordinates being ‘intrinsic’, id est remaining in the surface, or ‘normal’, id est moving
outside of the surface. We still stick to our example of the vertex correction. Therefore
we choose a frame in which

pµ1 =
Q√
2
δµ+ (1.144a)

pµ2 =
Q√
2
δµ− (1.144b)

and define the parts of the denominator

D1 ≡ l2 = 2l+l− − l2T (1.145a)
D2 ≡ (p1 + l)2 = 2p+1 l

− + 2l+l− − l2T (1.145b)
D3 ≡ (p2 − l)2 = −2p−2 l

+ + 2l+l− − l2T (1.145c)

where the second equal uses the frame definition and the decomposition of the loop
integral is ∫

d4l =

∫
dl+

∫
dl−

∫
dl2T

∫
dϕ (1.146)

Now let us consider the soft pinch surface of equations (1.143), which implies D1 =
D2 = D3 = 0. For this surface all lµ are normal variables and there are no intrinsic
ones. This means that to leading power in the normal variables the Di are given by

D1 → 2l+l− − l2T (1.147a)
D2 → 2p+1 l

− (1.147b)
D3 → −2p−2 l

+ (1.147c)

This gives us a power of four in the denominator as well as in the numerator by the
integral measure, which leads to a logarithmic divergence. Let us now turn to the
situation in which l is collinear to the particle with momentum p1, see equations (1.141).
Here l− and l2T are normal variables while l+ and ϕ are intrinsic. Hence the Di are
given in leading power in the normal variables by

D1 → 2l+l− − l2T (1.148a)
D2 → 2(p+1 + l+)l− − l2T (1.148b)
D3 → −2p−2 l

+ (1.148c)
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HS

J
1
J
1

J2J2

Figure 1.9: Structure of the one loop QCD correction of the electromagnetic vertex close to
partonic threshold.

which means the denominator has a power of two as has the integral measure and
we find again a logarithmic divergence. The analysis for the situation in which the
gluon is collinear to the particle with momentum p2 is identical, yielding a logarithmic
divergence, too.

The analysis of the infrared structure reveals that the considered diagram factorizes
at the pinch surfaces as shown in figure 1.9. The hard part H contains only particles
that are off-shell, the soft part S on the other hand consists of soft gluons and fermion
loops only. The Jet functions Ji collect all terms that are in jet-like parts of the reduced
diagrams, including vertices and propagators. In every jet all particles have a large
component in the same direction. In the depiction in figure 1.9 we already use that only
one line can connect the jets with the hard part. It is possible to show that additional
collinear partons do not cause a singular behavior in physical gauges. In covariant
gauges the same statement can be made because then all additional lines are equivalent
to a rotation of the quark field [83]. Further no lines exist between the hard and the
soft part. This is due to the fact that all particles in H are off shell. If an additional
soft gluon attaches to the hard part, an additional propagator 1/Q2 suppresses the
contribution—it belongs to a higher twist.

It is possible to further disentangle the different parts, yielding a factorization of
purely scalar functions. Until now the connection between jets and the soft part is
given by the following Lorentz structure

Jµ1...µn1 J
µn+1...µn+m

2 Sµ1...µn+m (1.149)

However, all these connections are soft, which leads to further factorization. We will
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M
−→
p

−→

k

k → 0
M

−→
p

−→

k

Figure 1.10: Decoupling of a soft gluon attaching to a quark line into the same gluon attaching
to an eikonal line that has no information about the original quark line.

HS

J
1

J2

Figure 1.11: Structure of the one loop QCD correction of the electromagnetic vertex close to
partonic threshold. In comparison to figure 1.9 the Lorentz structure connecting jets
Ji and soft part S is decoupled.
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p2

p1

J2

J1

H H∗

S

Figure 1.12: Factorization of the Drell-Yan process close to partonic threshold. The final state
lepton pair is omitted for clarity.

demonstrate this using figure 1.10. The left diagram is given by

ū(p)
(
−igstaγµ

) i(/p+ /k)

(p+ k)2
M (1.150)

In the soft limit kµ → 0 we can neglect the term proportional to kµ in the numerator
and commute the propagator with the vertex. Using the Dirac equation ū(p)/p = 0 we
are left with the expression

gst
a 2pµ

2(p · k)
(
ū(p)M

)
(1.151)

The first factor is called an eikonal factor, the second factor corresponds to the case
where no emission is present. If the momentum pµ is part of a jet, for example with a
large plus component pµ = (p+, 0,~0T ) the eikonal factor becomes actually independent
of it. This means the soft radiation decouples from the quark line, which is usually
depicted by an additional double line, called an eikonal line as shown in the right
diagram of figure 1.10. In fact it is possible to show this in a much more general way.
In a nutshell the soft approximation is used to extract the Lorentz structure of the
jets into light-like vectors. Then by use of Ward identities the sum over all possible
connections of the gluons to the jets can be replaced by connections to the respective
eikonal lines [130–133]. For our example the resulting situation is shown in figure 1.11.
Now it is possible to redefine the soft part to include also the eikonal lines and we have
succeeded to find a fully factorized form of the vertex at partonic threshold

G ∼ H · J1 · J2 · S (1.152)

The additional factorization now opens the window for resummation, in the same
way as the factorization of PDFs and hard scattering in the previous section set the
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stage for the DGLAP evolution. We will turn again to the Drell-Yan cross section.
Using the results we obtained so far, it is possible to write it as [134]

σ̂(w) = H

(
p1
µ
,
p2
µ
, ξ1, ξ2

)∫
dw1

w1

∫
dw2

w2

∫
dw3

w3
δ(w − w1 − w2 − w3)

× J1

(
p1 · ξ1
µ

,
w1Q

µ

)
J2

(
p2 · ξ2
µ

,
w2Q

µ

)
S

(
w3Q

µ
, vi, ξi

)
(1.153)

where ξi are the gauge vectors defining the jet functions, which are calculated in the
ξi ·G = 0 gauge. The vi are the velocities of the momenta pi and the weights wi have
been defined in equation (1.127). Here and in the following we suppress flavour indices
for simplicity, as the factorization holds regardless of them. The whole situation is
depicted in figure 1.12. Note that we connected the jets again with the soft function
albeit they factorize as we discussed before, as this is standard convention. Further
note that we are just considering the partonic cross section. Hence the hard function
H is not to be confused with the function H we encountered in the previous section,
where it contained the complete partonic cross section which is now further dissected.
Taking now the Laplace moments of the cross section entangles the convolutions and
yields

σ̂(N) = H

(
p1 · ξ1
µ

,
p2 · ξ2
µ

)
J1

(
p1 · ξ1
µ

,
Q

µN

)
J2

(
p2 · ξ2
µ

,
Q

µN

)
S

(
Q

µN
, vi, ξi

)
(1.154)

The cross section is also in Laplace space independent of the arbitrary scale µ

µ
d

dµ
σ̂(N) = 0 (1.155)

Introducing the anomalous dimensions of the hard, soft and jet functions

γH
(
αs(µ

2)
)
≡ −µ d

dµ
ln(H) (1.156a)

γS
(
αs(µ

2)
)
≡ −µ d

dµ
ln(S) (1.156b)

γJi
(
αs(µ

2)
)
≡ −µ d

dµ
ln(Ji) (1.156c)

the independence of the cross section with respect to µ becomes

γH
(
αs(µ

2)
)
+ γS

(
αs(µ

2)
)
+

2∑
i=1

γJi
(
αs(µ

2)
)
= 0 (1.157)

Furthermore gauge invariance, id est

(p1 · ξ1)
d

d(p1 · ξ1)
σ̂(N) = 0 (1.158)
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demands that

(p1 · ξ1)
d

d(p1 · ξ1)
ln(J1) = G

(
p1 · ξ1
µ

, αs(µ
2)

)
+K

(
Q

µN
,αs(µ

2)

)
(1.159)

where we defined the functions

G

(
p · ξ
µ
, αs(µ

2)

)
≡ −(p · ξ) d

d(p · ξ)
ln(H) (1.160a)

K

(
Q

µN
,αs(µ

2)

)
≡ −(p · ξ) d

d(p · ξ)
ln(S) (1.160b)

The same equation holds for the second jet and thus we omit the index from now on.
Because the anomalous dimension γJ does only depend on µ but not on the gauge
vectors we can deduce

µ
d

dµ
K + µ

d
dµ
G = 0 (1.161)

by taking the derivative of ln(J) with respect to µ as well as p · ξ. Now, by defining
the Sudakov anomalous dimension

γK
(
αs(µ

2)
)
≡ −µ d

dµ
K (1.162)

which immediately implies
µ

d
dµ
G = γK

(
αs(µ

2)
)

(1.163)

it is possible to integrate back both differential equations for the jet functions, which
yields the resummed structure

J

(
p · ξ
µ
,
Q

µN
,αs(µ

2)

)
= C(αs(µ

2)) exp

− p·ξ∫
Q/N

dλ
λ

λ∫
Q/N

dµ
µ
γK(αs(µ

2))

 (1.164)

where we focus on the most important logarithmic terms. The exact integration requires
a very careful calculation, which can be found for example in [135]. To conclude this
part of the discussion we have to notice that for QCD processes the hard and the soft
function are dependent on the color states. Hence their factorization is more complex
but still possible. Instead of scalar functions H and S become matrices in color space.
Also the exponentiation for the non-abelian theory is highly non-trivial. One possible
proof relies on defining subsets of eikonal diagrams with modified color factors that
occur in the exponent, called webs [136, 137]. However, the proof is also possible using
the RGE approach similar to the jet functions, but becomes more complicated due to
the non-abelian nature.

To present some actual results and discuss some phenomenology we write down the
cross section following the common notation in [51, 138]. Further we restrict ourselves
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to a quark anti-quark pair in the initial state. Then the cross section is given in Mellin
moment space by

σ(N) ∼ fq(N,µ
2)fq̄(N,µ

2)ωqq̄

(
N,

Q2

µ2
, αs(µ

2)

)
(1.165)

where the fq(N) denote the PDFs in Mellin space and ωqq̄(N) the partonic scattering.
In the resummed cross section we replace

ωqq̄ → ωres
qq̄ (1.166)

and the resummed function is of the form

ωres
qq̄

(
N,

Q2

µ2
, αs(µ

2)

)
= Cqq

(
N,αs(µ

2),
Q2

µ2

)
∆DY
qq̄

(
N,αs(µ

2), Q2,
Q2

µ2

)
(1.167)

where ∆DY
qq̄ is exactly the exponent that consists of gluon radiation at partonic threshold.

As expected from the previous calculations in this section it splits up into

ln∆DY
qq̄

(
N,αs(µ

2), Q2,
Q2

µ2

)
= 2 ln∆q(N,Q

2, µ2) + ln∆DY(N,Q2) (1.168)

with

ln∆q(N,Q
2, µ2) =

1∫
0

dxx
N−1 − 1

1− x

(1−x)2Q2∫
µ2

dν
ν
Aq(αs(ν

2)) (1.169a)

ln∆DY(N,Q2) =

1∫
0

dxx
N−1 − 1

1− x
DDY(αs((1− x)2Q2)

)
(1.169b)

It is easy to map the functions to the expressions in our previous considerations. The
coefficient function C corresponds to the hard function H including all off-shell particles.
The jet functions J consisting of collinear radiations map to the process independent
∆q. Because we have two initial partons, the terms appears in the exponent twice.
The soft emissions that are not collinear we denoted as S also exponentiate and give
a process dependent exponent ∆DY. The integrands Aq and DDY have perturbative
expansions. Using the coupling to a specific order12 we can solve the integrals in the
exponents and sort them respective to their resummation order

ωres
qq̄ =

(
1 + αsC

(1)
qq + . . .

)
exp
[
ln(N)h0(λ) + h1(λ) + αsh2(λ) + . . .

]
(1.170)

with λ ≡ αsb0 ln(N). This leads us back to the discussion at the very beginning of this
section. We pointed out that large logarithms spoil the original perturbative series and
12For subtle effects that depend on the chosen form of the coupling, see chapter 6.
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resummation reorders it in such a way that we obtain a new perturbative series. This
is exactly given by equation (1.170). Every term in the exponent sum corresponds to
a resummation order. Each of them consists of all orders in the original series. The
leading order, called leading log (LL), uses the one of the coefficient function and the
term h0. In next-to-leading log (NLL) the term h1 is taken into account additionally.
For NNLL h2 but also C(1) have to be considered. In case of the Drell-Yan process the
leading term in the exponent is given by

hDY
0 (λ) =

CF
2πb0λ

[
2λ+ (1− 2λ) ln(1− 2λ)

]
(1.171)

Another common way to characterize the series is called tower resummation which first
expands the exponential and characterizes the order afterwards

ωres
qq̄ =

∞∑
k=0

αksCk,2k ln2k(N) +
∞∑
k=0

αksCk,2k−1 ln2k−1(N) + . . . (1.172)

where the first sum is called the leading log, first and second the next-to-leading log
and so on. It is important to notice that the two definitions are not equal (for more
details see appendix D in [9]).

To obtain the desired cross section it is necessary to perform the inverse Mellin
transform. However, because of the Landau pole of the coupling, also the resummed
expression contains a Landau singularity, which is already present at leading log, see
equation (1.171). The logarithm induces a branch cut into the N plane, starting at the
Landau pole

NL = exp
(

1

2b0αs

)
(1.173)

As is explained in detail in appendix E, the inverse Mellin transform consists of a
contour integral that has to be to the right of all poles of the integrand. This is
obviously not possible, but it has been shown that integrating to the left of the Landau
pole but still to the right of all other poles yields the correct result up to exponentially
suppressed corrections [139]. This is called the minimal prescription. We notice that it
is also common to use Cauchy’s theorem to bend the contour of the integral to improve
numerical convergence.

However, the resummed cross section is not sufficient to describe the whole cross
section. This is evident as terms that are subleading at threshold, id est not singular
for z → 1, are not included but may be the main contributors for other kinematic
regions. To achieve results that are accurate in both regimes it is necessary to match
both terms. This is done by adding the resummed expression at order NkLL with the
full result at order NkLO. To avoid double counting of terms that occur in both of
them, one subtracts the resummed expression expanded to the desired order

dσmatch = dσfull
NkLO + dσres

NkLL − dσres
NkLL

∣∣∣
O(αk

s )
(1.174)
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We want to finish this section with a discussion of the generic behavior that can be
expected from threshold resummation. Hadronic cross sections at the threshold limit
have the generic form

lim
N→∞

σ(N) ∼ exp
[
− ln2(N)

]
(1.175)

which implies a Sudakov suppression. But since we resum the correction to the partonic
cross section instead of the hadronic one, we also have to consider the contributions of
the PDFs. Because they are also Sudakov suppressed for large N

lim
N→∞

fp(N) ∼ exp
[
− ln2(N)

]
(1.176)

we find for the partonic cross section indeed a Sudakov enhancement

lim
N→∞

σ̂(N) ∼ lim
N→∞

σ(N)(
fp(N)

)2 ∼ exp
[
+ ln2(N)

]
(1.177)

This means that the PDFs radiate too few gluons at threshold, so that all in all the
effect is an enhancement. That is the reason why threshold resummation is such an
important tool to describe experimental data at all.
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Chapter 2

Perturbative QCD using a graphics
processing unit

The city’s central computer told you?
R2D2, you know better than to trust a
strange computer!

— C3PO

We present the development of the most important ingredient to perform perturbative
QCD calculations on a graphics processing unit: a suitable integration routine. For
this purpose the famous Vegas routine of Peter Lepage is ported to the GPU and
subsequently improvements that become applicable to a GPU are applied. The resulting
software component will improve all applications that make use of it, as long as the
computational load of the integrand function is large enough, and will not degrade
performance compared to other available implementations of the Vegas algorithm if
no GPU is used at all. The remaining tasks for a widespread use of GPUs by the
community are described and partly also performed, paving the way to faster, more
precise and more economic numeric calculations.

2.1 Introduction
All calculations in perturbative QCD incorporate numerical integrations. They cannot
be avoided as already the parameterizations of large distance physics are always present
and not known analytically. But even without this complication many observables
include phase space integrations that cannot be carried out analytically. As a con-
sequence the numerical integration and hence the implementation of the analytical
expressions is vital to compute theoretical predictions. As the integrands are often
very complicated and even badly converging the algorithm that is mainly used is the
Vegas algorithm [140, 141]. Its strength is due to its iterative and adaptive behavior,
which works also well in for multidimensional integrands. This is achieved by applying
importance instead of stratified sampling for high dimensional integrals. Other very
important features are the reliable error estimate, a dimension independent convergence
rate and the freedom of the integrand to be not contiguous.
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Chapter 2 Perturbative QCD using a graphics processing unit

To improve the numerical performance of every algorithm there are two ways without
changing the algorithm as a whole, id est on the hardware side. The first is to increase
the processor speed, the second to increase the parallelism. In fact both ways have been
taken. For example the processor speed of an Intel i386 DX core in 1985 with 12 MHz
has grown by magnitudes to the Sandy Bridge in 2011 with 3.7 GHz. The drawback of
this improvement is the exploding power consumption as the power is proportional to
the frequency cubed. Especially for high performance computing this results in high
energy costs also for cooling of the processors. The alternative approach, the increase
of parallelism, is much cheaper as the power is only proportional to the number of cores.
This drives the massive expansion of computer clusters. Even in personal computers it
is nowadays common that the CPU consists of several cores. The idea of parallelism is
exhausted by graphics processing units (GPUs). Instead of a few cores they consist of
thousands of cores, each of them with a relatively small frequency. This makes them
exceptional cheap in terms of frequency per consumed power. Although their original
purpose was to compute computer graphics, which also explains their name, they are
used also in high performance computing. The field of general purpose computation
on GPUs (GPGPU) is still quite young but already established and it is developing
fast offering nowadays even GPUs that are primary designed for GPGPU. In the list of
supercomputers a growing number is equipped with GPU co-processors [142].

Unfortunately it is not possible to use code that has been written for a common
CPU directly on a GPU. In November 2006 the introduction of the NVIDIA compute
unified device architecture (CUDA) and the corresponding programming model made
GPGPU available for a large community. It offers a C interface but allows also several
C++ techniques up to the 2011 standard. Nevertheless existing codes have to be
mostly rewritten to be executable on the GPU. The alternative OpenCL can be used
also on non NVIDIA GPUs, which offers a even cleaner C++ interface. Presently the
competition between CUDA and OpenCL is open and it is impossible to rank one over
the other definitely. Another alternative is the OpenACC framework, which follows
the idea of OpenMP. By additional pragmas existing code can be transformed by a
minimum of effort to produce parallelized executables. The idea relies on a smart
compiler optimizing the code respective to the underlying architecture such that the
programmer only has to declare certain loops to be parallelizable and the compiler
takes care of all the rest. However, in practice still a huge amount of knowledge about
the GPU structure is necessary, such that one could have taken CUDA or OpenCL in
the first place for all but the simplest applications.

Vegas is a Monte Carlo algorithm, which means that it samples the integrand
randomly. From the function values evaluated at the sample points the integral and
its error estimate are computed and—in the case of Vegas—an adaption suitable for
the integrand is performed. It is trivial that all function evaluations are independent
and thus it is possible to compute them in parallel. The Cuba library [143] which
besides of Vegas contains several other Monte Carlo integration routines implemented
the parallelization for multiple CPUs only recently [144]. Instead of using multiple
CPUs the problem seems almost as being designed to be ported for a GPU. A few years
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Figure 2.1: Thread hierarchy of the CUDA programming model.

ago the pioneering work [145] made the proof of principle by parallelizing the original
program using the CUDA framework.

In this chapter we will present a completely new implementation of the Vegas
algorithm, that runs using a CPU as well as on a GPU. It is written entirely in
modern C++ and extends the original interface to satisfy the requirements of the
special environment of GPUs. For this purpose we will briefly explain the CUDA
programming model in section 2.2. Then we will give a detailed presentation of the
Vegas algorithm in section 2.3. In the consecutive section 2.4 we highlight the key
steps in terms of the parallelization and perform several performance measurements.
Finally we discuss a possible way for applications in perturbative QCD using GPUs in
section 2.5. The conclusions are given in section 2.6. This chapter will explicitly not
present the programming interfaces of Vegas or other developed tools to simplify the
use of a GPU. Instead they are presented together with finael in appendix C, which
currently embeds our Vegas implementation.

2.2 CUDA programming model

The CUDA programming model has been invented to avoid the somewhat complicated
detour by graphics APIs or shaders. A simple C interface makes it possible to focus
on parallel algorithms instead of the management. It has been taken special care to
guarantee a simple execution model combined with communication between concurrent
operation branches. We will give in this section only a very brief description to
introduce the most important terms. For a more details introduction see the official
CUDA programming guide [146] or an introductory text book like [147].

The core of the programming model are so called kernels. They are functions that
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Figure 2.2: Simplified memory hierarchy of the CUDA programming model. The thickness of the
lines orders the memory bandwidth.

connect the host and the device. The term host is used for the (most likely) sequential
processing with the CPU. The device is synonym to the GPU. This means every kernel
is called from the host and will execute parallel instructions on the device. Each kernel
is called for a fixed number of parallel threads. They are grouped into blocks. All
blocks together form the grid. The structure is illustrated in figure 2.1. The index
of the block and the thread are accessible in the kernel and all subsequently called
device functions such that each thread can be identified uniquely. A kernel call has to
specify the number of blocks (grid size) and the number of threads per block (block
size). The product of both numbers gives the total number of (potentially) parallel
executing threads. In general the whole structure may be up to three dimensional
due to the origin in 3d computer graphics. For our purposes one dimension will be
sufficient. The subdivision of the grid into blocks ensures scalability over several devices
with different numbers of multiprocessors. This means that the number of blocks is
partitioned to the available multiprocessors. As a consequence threads of different
blocks cannot communicate. Because the execution sequence of the blocks in the grid
is not guaranteed (as is the thread sequence in a block) it is necessary to translate
every problem in such a way that the blocks are completely independent. Inside of a
block the threads can communicate via the shared memory, see figure 2.2. However in
practice the threads are not executed independently but in groups called warps, which
execute completely synchronous.1 This implies that possible conditional branches will
cause partial serial execution, if threads follow distinct code paths. This effect is called
warp divergence and should be avoided to achieve maximal efficiency.

As figure 2.2 indicates several memory types are available on the device. The perhaps

1This is not true any more for the brandnew Volta architecture, which introduces independent thread
scheduling.
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2.2 CUDA programming model

Model GeForce GTX 680 GeForce GTX TITAN

Architecture Kepler Kepler
Compute capability 3.0 3.5
Number of SMs 8 14
Number cores per SM 192 192
Clock rate 1.0585 GHz 875.5 MHz
Global memory 4 GB 6 GB
Constant memory 64 kB 64 kB
L2 cache 512 kB 1.5 MB
Shared memory per SM 48 kB 48 kB
32 bit registers per SM 64 k 64 k
Max. registers per thread 63 255
Warp size 32 32

Table 2.1: Selection of technical specifications of used devices.

most important type is the global memory, which can be accessed from every thread
on the device as well as from the host and is stable also between different kernel calls.
But the bandwidth from the host to the device and vice versa is limited by the PCIe
bus. Thus every memory transfer between host and device should be minimized. The
bandwith for transfers on the device is distinctly higher, but can be further improved
by using the shared memory of every block (streaming multiprocessor SM). In figure 2.2
also the registers of every thread are shown, which have naturally the highest bandwidth.
We omitted several caches as the L1 and L2 cache for simplicity.

Every GPU differs in architectural details. This makes it possible to optimize every
problem for every architecture individually. Since we aim for a broad application field
we cannot assume that a specific architecture dominates. Hence we did not perform any
such optimizations despite signaling the compiler the underlying compute capability. As
we will see also the very general implementation will give remarkable good results. For
our measurement we have two devices at hand: the GeForce GTX 680 and the GeForce
GTX TITAN which both belong to the Kepler architecture and have compute capability
3.0 and 3.5, respectively. Some of their specifications are collected in table 2.1. We
can detect the tendency of newer devices to have a larger number of cores with lower
clock rate, further improving the FLOPS per Watt. However it is not that easy to rank
two devices only by comparing their specifications. The actual performance is much
more dependent on the considered algorithm, to what extend it utilizes the device and
how the ratio of arithmetic operations and memory transfers suits the specific device.
However, still the specifications give a rough orientation.
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Chapter 2 Perturbative QCD using a graphics processing unit

2.3 Vegas algorithm
As already mentioned Vegas is a Monte Carlo integration routine that prefers importance
over stratified sampling in high dimensions. Before we describe the algorithm in detail,
we will introduce the very basics of the topic. We follow mainly the explanations in [140,
141, 148].

Let us assume a function f we like to integrate in a d-dimensional volume V

I =

∫
V

ddx f(x) (2.1)

Then the central limit theorem used for Monte Carlo integrations states that the value
can be approximated by sampling N random points xi ∈ V to approximate the integral

IN ≡ V

N

N−1∑
i=0

f(xi) (2.2)

In the limit of large N the estimate will converge to the exact value

lim
N→∞

IN = I (2.3)

Naturally for finite N the estimate will depend on the randomly chosen samples. This
dependency is described by the variance

σ2N ≡ 1

N

V ∫
V

ddx f2(x)− I2

 (2.4)

Due to the central limit theorem the estimate tends towards a Gaussian distribution.
Therefore we can approximate for large N

σ2N ≈ 1

N − 1

[
1

N

N−1∑
i=0

f2(xi)− I2N

]
(2.5)

Note the factor (N − 1)−1 instead of N−1 to correct the sample bias, giving us the
unbiased sample variance.

One extremely important advantage of Monte Carlo integrations is their flexibility
for non regular integration volumes. If the volume V is difficult to parametrize it is
sufficient to use another volume that includes V and using a Heaviside function that
excludes the surplus volume in the integrand. This comes with the cost of a potentially
larger variance, as all samples outside of V will not contribute to the estimate, effectively
reducing the overall number of samples.

Instead of increasing the number of samples we can also combine several estimates to
improve the final estimate. This will turn out useful as the final algorithm will adapt
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to the integrand in several iterations as we will see soon. Consider m independent
estimates IiNi

with variances σiNi
and i ∈ {0, . . .m−1}. Each estimate may be calculated

with a distinct number of samples Ni. Then the total estimate and variance are given
by

Im ≡
(
σm
)2 m−1∑

i=0

IiNi(
σiNi

)2 (2.6a)

(
σm
)2 ≡ [m−1∑

i=0

1(
σiNi

)2
]−1

(2.6b)

where IiNi
and σiNi

are the estimate and the variance of the iteration i using Ni samples.
To kind of measure the consistency of the individual estimates the χ2 per iteration can
be used

χ2

m
≡ 1

m− 1

m−1∑
i=0

(
IiNi

− Im
)2(

σiNi

)2 (2.7)

As it will turn out it is more useful to use the equivalent form

χ2

m
=

1

m− 1

m−1∑
i=0

(
IiNi

)2 − Im · IiNi(
σiNi

)2 (2.8)

The equivalence is easy to prove by inserting equation (2.6a), such that the term
∼ (Im)2 cancels against half of the mixed term of the binomial expansion. An increase
of the χ2 per iteration such that it becomes much greater than one indicates that the
single estimates are not consistent to each other and should be treated with care.

To keep track of the results over several iterations one simply has to store the value
of the three sums

m−1∑
i=0

(
IiNi

)k(
σiNi

)2 , k ∈ {0, 1, 2} (2.9)

2.3.1 Importance sampling
The very idea of importance sampling is to sample the random points not uniformly but
determined by a normalized probability density p such that the variance is minimized.
The normalization is given by ∫

V

ddx p(x) = 1 (2.10)

Sampling by this density is equivalent to changing the integral measure from ddx to
ddx p(x) or

I =

∫
V

(
ddx p(x)

)f(x)
p(x)

(2.11)

55



Chapter 2 Perturbative QCD using a graphics processing unit

Note that the previous discussed integral estimates use the special case of a constant
density p = V −1. The estimate of the integral and its variance become

IN =
1

N

N−1∑
i=0

f(xi)

p(xi)
(2.12a)

σ2N =
1

N

∫
V

ddx f
2(x)

p(x)
− I2

 ≈ 1

N − 1

[
1

N

N−1∑
i=0

f2(xi)

p2(xi)
− I2N

]
(2.12b)

To minimize the variance, id est to find a better estimate, we minimize the bracket
respective to the probability density constrained by the side condition of its normaliza-
tion

δ

δp

∫
V

ddx f
2(x)

p(x)
− I2 + λ

∫
V

ddx p(x)

 = 0 (2.13)

which results in

p(x) = |f(x)|

∫
V

ddx |f(x)|

−1

(2.14)

Using this density causes the variance to vanish and the integral estimate is perfect.
This is even true for a function that has positive as well as negative values in its image,
because we can shift the integrand by a constant such, that the whole image has only
one sign. However, at the same time this result is evidently meaningless, because we
already have to know the desired integral to determine the optimal probability density.

In the actual algorithm the probability density is assumed to be separable

p(x) ≡
d−1∏
j=0

pj(xj) (2.15)

which is important to overcome storage limitations, we will see in subsection 2.3.3. Also
the normalization is supposed to hold in every single dimension∫

dxj pj(xj) = 1 ∀j ∈ {0, . . . , d− 1} (2.16)

In this case the optimal density in direction i can be computed similar to the general
case to be

pi(xi) =
p̃(xi)∫

dxi p̃(xi)
(2.17)

with

p̃(xi) ≡

√√√√(d−1∏
j 6=i

∫
dxj

)
f2(x)∏d−1
j 6=i pj(xj)

(2.18)
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As we will see soon the Vegas algorithm will try to adapt the optimal density in
several iterations, using the single iterations for improvement of the density. Finally
we like to comment that the density concentrates the samples where the integrand is
largest, explaining the name ‘importance sampling’.

2.3.2 Stratified sampling
The idea of stratified sampling is to subdivide the integration volume into n boxes, such
that in every box a Monte Carlo integration with in average N/n samples is carried
out using equations (2.2) and (2.5). The total estimate and variance are then given by
summing up the corresponding equivalents of all boxes

IN =
1

n

n−1∑
i=0

Ii,Ni (2.19a)

σ2N =
1

n2

n−1∑
i=0

σ2i,Ni
(2.19b)

with
n−1∑
i=0

Ni = N (2.20)

We like to express the variance of each box by the variance of the function defined by

σ2 ≡ 1

V

∫
V

ddx f2(x)−

 1

V

∫
V

ddx f(x)

2

(2.21)

They are asymptotically related by

σ2i,Ni
≈ σ2i
Ni

(2.22)

where σ2i is identical to σ2 with the integration volume constricted to the volume of
box i. Then we may write

σ2N =
1

n2

n−1∑
i=0

σ2i
Ni

(2.23)

The minimum respective to the number of samples in box j can be calculated to be
proportional to the variance in the box. We demonstrate it for the case with only two
boxes (n = 2). Then the optimum for the first box is given by

σ0
N0

=
σ1

N −N0
⇔ N0

N
=

σ0
σ0 + σ1

(2.24)

This means for stratified sampling one samples the region with largest variance. As for
the importance sampling precise knowledge about the integrand would be necessary,
which makes the integration redundant. We will see in the next subsection how both
strategies can still be applied successfully.
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Chapter 2 Perturbative QCD using a graphics processing unit

2.3.3 Adaption

The problem of importance as well as stratified sampling is that they require the
solution of the integral we want to solve to minimize the variance. To come over
this problem one makes the algorithm iterative. We start with importance sampling.
Therefore we subdivide the integration volume into Md increments2. We choose this
particular naming because along each axis we define the probability density to be a
step function. Normalizing integration limits to [0, 1] in every dimension we define the
step function for dimension j by

pj(xj) ≡
M−1∑
i=0

Θ(xi+1
j − xj)Θ(xj − xij)

M∆xij
(2.25)

where Θ(x) is the Heaviside function and the xji define the increments along axis j with

0 = x0j < x1j < . . . < xM−1
j < xMj = 1 (2.26)

such that
M−1∑
i=0

∆xij = 1 (2.27)

and ∆xij ≡ xi+1
j − xij . As mentioned before the total probability density is given by

the product of the densities in the individual directions, see equation (2.15). We can
now see the benefit of the factorization of the probability density, as it reduces the
number of data to be stored from Md to M · d. Hence only due to the factorization the
adaption becomes usable for reasonable M and large d.

The iterative algorithm consists in principle of three steps

(1) Use a constant density to sample the integration volume with N random points.

(2) Store the result, updating the sums in equation (2.9), and analyze the contributions
of the increments to the whole estimate to refine the probability density.

(3) If another iteration is requested sample the integration volume with N random
points using the refined probability density. Then goto step (2). Else calculate
the cumulative result of all iterations using equations (2.6) and (2.8).

In step (2) the actual adaption takes place. It is designed such that regions with large
contributions to the estimate are assigned a large weight. As we have seen previously
the optimal probability density (2.17) is similar for every dimension. Thus also the
adaption can be performed for every dimension j individually. It is depicted in figure 2.3
in two dimension showing the change from the initial increments due to the adaption

2Some Vegas implementations call them bins [149], not to be confused with the bins we will introduce
in the actual implementation of stratified sampling.
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Figure 2.3: Adaption step of Vegas increments in two dimensions.

assuming that large contributions are at low x0 and medium x1. To accomplish the
adaption one defines

wij ≡
f̄ ij∆x

i
j∑M−1

k=0 f̄kj ∆x
k
j

(2.28)

with the accumulated values that have been sampled in the increment respective to
this particular direction

f̄ ij ≡
∑

xj∈[xij ,x
i+1
j ]

∑
xk 6=xj

f2(x)∏
l 6=j p

2
l (xl)

(2.29)

Note that in the continuous limit this becomes

f̄ ij ≈
1

∆xij

xi+1
j∫
xij

dxj

∏
k 6=j

1∫
0

dxk

 f2(x)∏
l 6=j pl(xl)

(2.30)

which nicely suits equation (2.17). A nice description of the algorithm is given in the
original paper [140]. There the weights are multiplied by a fictional factor K such that
the wij can be interpreted as subincrements, such that every increment is subdivided
in at maximum K + 1 subincrements per dimension. Then the subincrements are
put together in such a way that again M increments are retained. These are defined
by containing all the same number of subincrements, which causes a change of their
sizes. The algorithm does not alter if the bare wij are used. The adaption is saturated
in dimension j, if wij = wkj for all i and k. In practice the algorithm has shown to
be not stable enough. Therefore the common notion is to damp it to avoid possibly
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Figure 2.4: Adaption step of Vegas increments (thick black lines) in two dimensions incorporating
bins (thin green lines) applying stratified sampling.

destabilizing changes by redefining the weights

w̃ij ≡

[
wij − 1

ln
(
wij
)]α (2.31)

The parameter α determines the adaption rate. Typical values are between one and
two. Note that the adaption can be disabled by setting α = 0.

Now let us turn to stratified sampling. It is possible to reuse the increments structure
to apply also this distinct sampling strategy. Therefore we subdivide the integration
volume into bins3 but in such a way that the same integer number of bins is in every
increment, see figure 2.4. In every of the bins a Monte Carlo integration with at least
two samples is performed. To achieve an adaption of the increments to the region with
highest variance the weights are not fed by the squared function values but rather with
the variance obtained from the minimal Monte Carlo integrations. By this modification
the original adaption algorithm can be left unchanged. Because the increments will
tighten where the variance of the estimate is largest while holding the number of
samples per bin and the number of bins per increment constant, the effective number
of samples increases where the variance is largest. In this way the combination of
increments and bins constructs the boxes that we introduced to describe stratified
sampling. But note that this construction is not perfect, as the boxes do not vary in
size and the Monte Carlo integration is performed in each box, while we perform it
in each bin and achieve the increase/decrease of samples in a box by varying the size
of the increments. However, the net effect is identical, hence the implementation is
conform with a stratified sampling.

3Some Vegas implementations call these boxes [149]. However this term is occupied by the boxes we
defined in subsection 2.3.2.
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Figure 2.5: Strategy determination of Vegas. If importance sampling is requested explicitly only
one bin (thin green lines) is used, containing the whole integration volume. If the
strategy is left free, it is selected depending on the number of requested samples Ñ ,
which in this case may differ from the number of actual samples N with Ñ ≥ N .
Increments are drawn with thick black lines.

2.3.4 Strategy determination
This final ingredient to finish the Vegas algorithm is to decide which strategy should
be applied. The short answer is: it depends. Naively stratified sampling seems to be
more effective as we aim for a reduction of the variance and this does not necessarily
originate from the region where the magnitude of the integrand is large. But since
every bin has to contain at least two sample points, the total number of samples grows
exponentially with the dimension d

N = 2Nd
b (2.32)

where Nb is the number of bins per dimension. Id est to apply stratified sampling also
in high dimensions it would be inevitable to reduce the number of bins and consequently
the number of increments tremendously, which would limit the adaption algorithm
greatly. And since the ability to adapt the integrand is the major strength of the whole
algorithm stratified sampling becomes inferior compared to importance sampling in high
dimensions, as importance sampling does not suffer from this problem. To incorporate
this fact Vegas selects the adaption strategy considering the actual requested number
of samples and the dimension of the integrand. Although this is true in principle
the common implementation is slightly more complex as shown in figure 2.5. Vegas
uses as maximum of possible increments per dimension Mmax. Further the number of
samples N is not necessarily identical to the number of requested samples Ñ . If the
user selects importance sampling explicitly, Vegas will use only one bin that includes
the whole integration volume, which means it disables the stratification. In this case
M = Mmax and N = Ñ . If the user delegates the decision to Vegas two outcomes
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are possible. If the number of requested samples is too small to perform a reasonable
stratified sampling (Vegas demands at least two bins per increment per dimension),
still importance sampling is taking place. However, in this case the integration volume
is divided into several bins, which will in general not coincide with the increments.
This is because the total number of bins is limited by half of the samples, while the
total number of increments may exceed the number of samples. Because the number of
samples per bin is fixed they are distributed somewhat more uniformly in the integration
volume. As the bins size will change respective to the increments they do not counteract
the importance sampling, although the estimates of the individual bins are not taken
into account for the adaption algorithm. For this strategy the number of increments is
M =Mmax but to accommodate the bins the total number of samples maybe smaller
than requested N ≤ Ñ . If finally the number of requested samples is sufficient to
apply stratified sampling, Vegas will align the bins inside each increment, adjust the
number of increments and samples such that all have integer values and, of course, use
stratified sampling for the adaption of the increments. Due to the adjustments there
are in general fewer increments per dimension M ≤Mmax and also less samples than
requested N ≤ Ñ . Finally we want to emphasize again that the exponential growth of
increments can only be handled as every dimension is treated independently, reducing
Md to M · d.

2.4 Vegas using a GPU
The algorithm described in the last section is greatly parallelizable, as the evaluations
of the integrand function of all samples are independent. Therefore the naive approach
is simple. In every iteration step:

(1) Generate N · d random numbers to determine the random points on the host.4

(2) Transfer the random numbers together with other settings to the device.

(3) Launch a kernel to calculate a random point and subsequently the integrand
function in every thread, storing the result on the device.

(4) Copy the results to the host.

(5) Reduce the results.

(6) Perform post analysis, including the adaption of the increments.

2.4.1 Performance measure

The actual Vegas version we developed is presented in appendix C.6. We will refer to
it as ‘finael Vegas’. A special feature of finael Vegas is that it is able to perform the

4Parallel generation of random numbers is not trivial. We will treat this problem in subsection 2.4.2.
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System Host only & GTX 680 GTX TITAN

CPU Intel Core i5-4460 (Haswell) Intel Xeon E5-2609
Clock rate 3.20 GHz 2.50 GHz
Memory 8 GB 32 GB
Cache 6 MB 10 MB
OS openSUSE Leap 42.2 openSUSE 13.2

Table 2.2: Selection of technical specifications of used hosts.

exact same integration on the host as well as on the device. This not only simplifies
debugging of the integrand, which is especially difficult in parallel applications. It
guarantees that finael Vegas can be used even if no GPU or a specialized compiler is
available. Every C++ compiler should be sufficient. As an independent opponent we
have chosen the freely available and widely used Vegas implementation of the GNU
Scientific Library (GSL) [149].

To measure the performance of the distinct Vegas versions, we use as measure the time
per integration sample. The actual tool is part of finael and presented in appendix C.
Note that, in computing communities two other measures are often favored. The first
of them is floating point operations per second (FLOPS). It relies on the idea that a
processing unit has a theoretical limit and for a given algorithm one can deduce how
good it utilizes the unit. This number is also quiet stable for different processing units.
The second measure is the memory bandwidth, which is especially useful for problems
that are not compute but memory bound, which is often the case for algorithms using
a GPU. However, both suffer from the problem that one can increase the measure by
superfluous instructions. And, more important to us, they require knowledge of the
number of FLOPs5 or memory transfers. As Vegas is a general purpose integrator, it is
impossible to know how many FLOPs will be executed in the kernel or how many data
are copied along with the functor that is integrated. This means although time is in
general a more unstable measure, as it depends heavily on the underlying hardware, it
will give us a clear picture of the potential of Vegas on a GPU without usurping to be
generally true for all given integrands.

The underlying hardware specifications of the host systems are given in table 2.2.
The technical data of the GPUs has already been reported in table 2.1. The compiler
and their settings are given in table 2.3.

As first test case we choose the inverse Mellin transform of PDF splines, which are
presented in chapter 5. In fact the results in figure 5.5 are obtained using the GPU
to be able to use a sufficient number of samples to reduce the variance such that the
spline fluctuations are not multiplexed by the noise of Vegas. The integrand seems to
be a good representative for a large class of integrands, where a parallelization should

5Note that the ‘s’ is not a capital letter, meaning FLOPs being the plural of FLOP (floating point
operation), in contrast to FLOPS (floating point operations per second).
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System Host only GTX 680 GTX TITAN

Host compiler g++ 6.2.1 g++ 5.3.1 g++ 4.8.3
CUDA compiler — nvcc release 8.0 nvcc release 7.0
Optimization Level 3 3 3
std C++14 C++11 C++11
arch — sm_30 sm_35

Table 2.3: Compiler versions and flags.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

GSL

finael host

finael device
GTX 680

finael device
GTX TITAN

Speedup normalized to GSL implementation in double precision

single precision
double precision

Figure 2.6: Speedup against the GSL vegas function of the naive implementation of finael Vegas.
See text for details of the measurement and peculiarities of the different setups.
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be considered, as it contains a lot of FLOPs, concentrating the total execution time in
this function for a serial application. In the actual measurement we use 105 sample
points per integration, which are enough to utilize the device but are not chosen to
favor it, which would be the case the the number of samples were a power of the warp
size, which is 32. To measure the times we used a simple tool that is presented in
appendix C.2 using the std::chrono::steady_clock. The measurement consists of
a warm up integration that is ignored and then 20 integrations consisting of eight
iterations. The time measured is divided by the total number of evaluated samples
for every integration. The averaged results are compared to the times achieved by the
GSL routine in double precision, giving the speedup shown in figure 2.6 for single as
well as double precision. For scientific applications in most cases only double precision
is relevant. However, since the devices of our tests are mainly optimized for single
precision, it is worthwhile to consider them too to demonstrate the full potential of
GPUs.

The first observation in figure 2.6 is that the host version of finael shows the same
performance as the GSL implementation for double precision. For single precision,
however, GSL seems to be faster by roughly a factor of two. This is surprising for
several reasons. First is is not possible to use the GSL routine in single precision at all.
To perform the measurement we had to cast between the GSL Vegas and the integrand
function to achieve single precision execution at least in the integrand function. This
means that the routine itself is unchanged. Since the integrand function is identical
for all measurements, we would not expect any improvement due to the Vegas routine
but only the integrand, which in turn should show up also in the finael host version.
However, for some reason the compiler seems to be able to perform much more efficient
optimizations in the precision mixing version of GSL than for the single precision only
executions with finael. Now let us turn to the speedup achieved by the GPUs. For the
GTX 680 the computation is more than 60 times faster for double and more than 250
times faster for single precision. The large difference is due to the preference of the
device for single precision, as discussed before. The GTX TITAN contains a lot more
processors designed for double precision, which results in a large gain in this respect.
For double precision it is more than 150 times faster than the host version, for single
precision even almost 300 times faster. Albeit we had to change the setup slightly for
the GTX TITAN in double precision. It turned out that the block dimension of 512 we
used for all other time measurements with finael is not optimal for the given integrand.
Therefore we used a block dimension of 32 instead.

2.4.2 Random number generation

We have demonstrated the overwhelming superiority of GPUs in terms of execution
time. However, this comes with a cost: large memory consumption. This is troublesome
in two ways. First it limits the number of samples by the available memory and second
we know that the memory bandwidth between host and device is quite slow, giving
also some impact on the execution time.
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For a serial execution it is easiest to hold only that much memory as necessary,
which is mostly even on the stack. But parallelized we have to store for example the
results of all samples for subsequent processing. These are inevitable, but in our naive
implementation we also have to store the random numbers that are used to determine
the sample point. We now aim for a direct production of the random numbers on the
device to come over this problem.

Generating random numbers on a computer is obviously a very delicate task, as
all computations are deterministic by construction. To obtain random numbers it
would be necessary to observe a physical process which underlies true randomness.
Indeed the computer has access to suitable observables, for example the fluctuations
of the supply voltage. However, in practice this is cumbersome. Additionally it is not
necessary to have real randomness. Instead it is sufficient to produce numbers that are
deterministic but seem to be random. Functions that provide such numbers are called
pseudo random number generators (PRNGs). The randomness of them can be tested
against expectations that would hold for truly randomness. The to our knowledge
currently most extensive tests are provided by the TestU01 library [150], also known by
the names of its three levels ‘Small Crush’, ‘Crush’ and ‘Big Crush’ consisting of 10, 96
and 160 tests respectively. A random number generator that passes all of these tests is
called Crush-resistant. But this is not necessary for most practical issues, although it
is surely comforting. We also like to mention that pseudo randoms numbers even have
a benefit over truly random numbers: they are reproducible, which is extremely useful
for comparisons or debugging purposes.

In our naive implementation of Vegas we used a very common class of PRNGs, which
are linear congruential generators (LCGs). They consist of a function f that generates
a sequence of integers

f(n) = (a · n+ c) mod m (2.33)

using the result as next input, so f is called a state transition function. Then a
subsequently applied function g (the output function) converts the integers uniformly
into a real value, mostly in the interval (0, 1), for example

g(n) =
n

m
(2.34)

Here the multiplier a and the modulus m are positive integers. The constant c has
to be smaller than m and is mostly chosen to be zero, in which case the generator is
a multiplicative linear congruential generator (MLCG).6 The quality of a MLCG is
determined by the choice of a and m. Extensive studies have been performed to find
good values, see for example [153]. To further improve the generators several generators
can be combined as proposed in [154]. In our naive implementation we followed their
best values for a combination of two distinct MLCGs. A very impressive fact about the

6Another way to generate numbers that seems to be random are so called quasi random sequences,
which sample a given volume more uniformly as a MLCG does. A particular useful algorithm are
Sobol sequences [151, 152]. We will however not consider them in this chapter.
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generator is that is passes all but one test of the Small Crush test battery, while the
famous Mersenne twister algorithm [155] which is also used in the GSL Vegas version
fails two of the tests. To further improve the generator we adopted the idea proposed
in [148] that an additional shuffle board will break up still present serial correlations.
Note that by using a shuffle board one looses the ability of a MLCG to jump forward in
the sequence that still holds after the combination of several MLCGs [154]. Further we
did not prove whether this really improves the randomness in terms of Crush-resistance.

In principle MLCGs are capable to be used in parallelized applications, since different
seeds will produce distinct sequences. However, as just described, they are known
to be flawed and typically do not pass randomness tests. Although this will to some
certainty not affect the quality of Vegas we decided us for another ansatz proposed
in [156], which is Crush-resistant and explicitly manufactured for the parallel use on
GPUs. In contrast to ‘conventional’ MLCGs that focus on the state transition function
f by finding good values for a and m while the output function g mapping the integers
to the interval (0, 1) is trivial, they use a very simple state transition function, which
degrades it to a kind of simple counter. Hence these generator type is called ‘counter
based’. To achieve the randomness they focus instead on the output function g, using
advanced cryptographic techniques. As a result the PRNG Philox is presented, which
has all described properties. Additionally it is very attractive due to its very small
internal state and huge speed on the device. On the host it is still reasonable fast
achieving half the speed of the Mersenne Twister.

To measure the effect of the PRNG we isolate the process of generating the random
numbers (if this happens on the host) and the kernel call that calculates the integrand
function, which is reduced to a sum over all coordinates in the hypercube, to need only
a small amount of time in the execution. Additionally we perform a synchronization
after the kernel to avoid a flawed measurement by the asynchronous execution of the
kernel with the host code. The results are shown in figure 2.7 for 106 sample points
in 20 dimensions. The large number of dimensions focuses the measurement on the
production of random numbers. A larger number of dimensions was not possible for
single precision without changing the code base. The reason is that the total number
of increments Md exceeds the limit of single precision for larger dimensions. For
consistency we did not increase the number of dimensions for double precision. To
average the process time per sample, the measurement consists of a warm up run of one
iteration followed by the measured integration, consisting of 20 iterations. The time is
taken for every single iteration and averaged for the presented results in figure 2.7.

For the host system we detect that the Philox PRNG is only slightly faster than
the two combined MLCGs with additional shuffle board, which we called ‘L’Ecuyer’,
after its inventor. For the devices we measure also a large improvement of the process
time using the Philox PRNG, which can be ascribed to two effects. First, as mentioned
before, the memory transfer of the random numbers from the host to the device is
extremely slow. And second the random numbers themselves are generated in parallel
instead of serially. Note that the GTX TITAN system is slower than the GTX 680
system using the L’Ecuyer PRNG, as the host system is slower, which overcompensates
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Figure 2.7: Execution time of the generation of random numbers and a minimal integration kernel
of Vegas for the L’Ecuyer and the Philox PRNG. Details of the measurement are
provided in the text.
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Figure 2.8: Same as figure 2.6, but using the Philox PRNG for the finael implementations.

the superiority of the GTX TITAN over the GTX 680, and for this measurement the
random number generation is dominant and executed on the host.

Summarizing we can improve Vegas for the host as well as for the device by using
Philox as PRNG, not only in respect of memory as initially intended, but also in
terms of speed. Further the quality of the produced random numbers improves and
becomes Crush-resistant. To quantify the speed improvement for a typical use case we
repeat the measurement of the last subsection (see figure 2.6) but with a Philox PRNG
instead of the naive implementation using the L’Ecuyer PRNG. The results are shown
in figure 2.8. As we expect, the times do not change or only insignificantly for the host
version. On the devices however we detect a measurable improvement. This means that
the usage of a device made the originally compute bound calculation less compute but
more memory bound. However, compared to other applications of GPGPU as lattice
QCD, which are almost completely memory bound, we are still mostly compute bound,
although the memory transfers contribute to a measurable degree. The improvement is
dependent on the GPU, as we find for the GTX 680 a modest improvement of three
percent for double precision, but a already sizable improvement of ten percent for single
precision. In case of the GTX TITAN setup the improvement is even bigger, being
about 13 percent for double and 22 percent for single precision. As a consequence
also the relative factors to the host version improve significantly in these cases. The
single precision calculation on the GTX 680 is now more than 280 times faster than
the double precision calculation on the host. For the GTX TITAN the calculations are
more than 170 faster for double and more than 360 times faster for single precision.
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Figure 2.9: Processing of bins in two dimensions using the classic manner (left) and refined
for stratified sampling (right). The bins (thin green lines) are separated for clarity.
Increment borders are drawn with thick black lines. The green arrows indicate the
processing sequence of the bins.

2.4.3 Sample reduction

Optimizing the PRNG is certainly the most important step to reduce the memory
usage of Vegas. Having this done, the program is only left with two large blocks of
memory: the results of the samples (N times the size of the floating point type) and
their positions in respect to the segments for the adaption algorithm (N · d times the
size of an integer). Clearly the first one cannot be avoided, while for the second one it
is possible, at least for stratified sampling. As shown in figure 2.5 all bins are aligned
in the segments. Because we know of every sample its parent bin, we can also deduce
its parent segment. Note that this is not possible for the two other internal strategies,
as a bin may be part of several segments of even contain them completely. However,
for stratified sampling the knowledge of the concrete increment by the sample index
makes storing the segment indices superfluous. Additionally reduction is besides matrix
matrix multiplication perhaps the classic example for using a GPU at all, which implies
possible speed improvements, too. For us this is even more interesting, as the samples
are stored on the device anyway. So we do not only benefit by the faster reduction,
but also of the reduced amount of memory that has to be copied to the host after the
reduction (one floating point type per segment).

Unfortunately it is not that easy. First the classical processing of the bins it not
compatible with typical reduction algorithms, which require the data in sequential
memory for maximal efficiency. Hence we changed the processing as shown in figure 2.9
for two dimensions. Instead of processing all bins in one dimension, while holding all
other bin indices constant, the processing is separated into a processing of segments in
the manner as before the bins and a processing of bins in the segments. Hence all data
that belong to a segment will reside next to each other in the memory. The penalty
of the refined processing sequence is the higher computational cost for calculating the
bin index, which should however be negligible for integrands with high computational
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Figure 2.10: Selection of Vegas configurations of bins and increments for d ∈ {1, . . . , 6}.

costs.
The second point to be considered for reducing the data on the device is its utilization

and the actual benefit in terms of saved memory transfer in respect to the results of
the samples. For this purpose we investigate the actual number of bins per increment
depending on the dimension as shown in figure 2.10. The single points represent a
possible configuration where stratified sampling can be applied. We selected them
by dividing the interval of requested sample points Ñ between two and the limit of
unsigned integers on our machine logarithmically. For most configurations every bin
contains two samples. For some it might become larger, especially as long as there
are very few bins per increment. This causes in figure 2.10 that several points are
indistinguishable. Large gaps between points are a quite reliable indication. However,
for the following analysis the exact number of samples N does not add any value. Still
the product of both axes in figure 2.10 is a good approximation for N . First we can
observe that the number of increments in our current implementation is limited to
Mmax = 50 per dimension. For few samples the number is reduced to align with the
bins, approaching the maximal value as the number of samples increases. For all these
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Figure 2.11: Execution time of the classic reduction and the refined version. Bin processing is
included in the measurement. Further details are provided in the text.

configurations every increment contains only one bin. Assuming two samples per bin,
the amount of data that have to be copied to the host does not reduce at all, as the two
function values are replaced by an Monte Carlo estimate and its variance. Furthermore,
to be efficient, the device has to be fully utilized, which means that all configurations
with less than a few thousand bins per increment are likely to be doomed in terms
of speed. Hence only for d ≤ 3 there seem to be configurations that may provide
additional speed improvement beside the memory benefit.

In our first attempt we implemented the reducer very naive, such that one iterates
over all increments, reducing one after another. This is obviously a bad idea for all
but the points in the top half in figure 2.10, as it causes at least Md (most likely
inefficient) kernel calls followed by small copy instructions. Hence we improved the
approach by using the smallest possible multiple of the warp size for a single increment,
pooling several increments in one kernel call. This reduces the area, where the device
is inefficient due to too small utilization to the bottom left corner in figure 2.10.

To demonstrate the potential use of the refined reduction also in terms of speed under
certain circumstances we choose the following setup: the time measurement includes the
evaluation of the samples points as well as the reduction. Former is included because
we have also to take account for the more complex bin processing. Apart from that
the integrand is f(x) = x in one dimension (equivalent to the measurement in the
last subsection), such that also the PRNGs computation time is reduced. To focus on
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Figure 2.12: Same as figure 2.8, but using the refined reduction for the finael implementations.

the reduction, we increase the number of samples points to 108. The results of the
measurement are shown in figure 2.11.

The host system becomes measurable slower, which can, as expected, be ascribed
to the more complicated bin processing using several more divisions, which have a
especially large computational cost. On the GPUs however the refined reduction pays
off, being more than one order of magnitude faster, despite the bin processing penalty.
As we had already seen for the random number generation the otherwise superior
GTX TITAN system is slower for the classic reduction as the GTX 680 system due to
the slower host processor.

Summarizing we have to record that despite the clear benefit of saved memory the
situation is not that easy for the reduction. Its effect on the speed does not only depend
on the system but most notably on the specific parameters N and d. If the memory is
not the limiting factor the perhaps best policy is to explicitly test all configurations
for every use case to determine the fastest possible setup. However, in all cases one
will benefit by a more precise result, as the reduction does add values which should
potentially be of equal size. In the classic approach it is likely that in a configuration
with many samples the values that are added last do not contribute due to the finite
precision of floating point numbers.

Concluding we like to examine again the speedup of the setup of the measurements
in figure 2.6 and 2.8 using the refined reduction. The results are shown in figure 2.12.
Not visible due to the enormous speedup for the GPUs and expected from the previous
discussion is the only slight slowdown for the host versions compared to the ones using
the classic reduction, which is approximately a half percent. This basically means:
Nothing changes, the speed of the host version is identical (up to sub permil level) to
the one using the GSL implementation. For the GTX 680 we obtain a improvement of
about two percent for double and 16 percent for single precision compared to the classic
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reduction. This means for that the speedup compared to the GSL implementation
increases to more than 65 for double and more than 325 for single precision. For the
GTX TITAN the effects are more pronounced, giving a speedup of about eight percent
for double and 27 percent for single precision compared to the versions using the classic
reduction. This results in the total speedup against the GSL routine of more than
190 for double and more than 460 for single precision. As we now know this large
improvement is due to two effects. First the reduction is much faster on the device.
Second less memory has to be copied from the device to the host (100 floating point
numbers compared to 105 for the classical reduction). Note that the number of samples
is still quite small and we expect an even larger effect if it is increased. Note also that
this shows again the shift of the completely compute bound problem on the CPU to
partly being memory bound on a GPU.

2.5 Towards perturbative QCD applications

The main task to compute perturbative QCD observables using a GPU has definitely
been done with the development of a GPU capable version of Vegas presented in
the last section. In contrast to earlier studies our implementation does not rely on
specializations for a particular device and is designed for direct use without any initial
training by offering an easy to use interface. The only restriction is that every user
has still to keep in mind that a GPU is used, id est that the integrated function is
executable and that memory has to be allocated on the device. For the latter point we
developed a tool to manage the memory transfer in a secure and straightforward way,
see appendix C.2. The former point is typically not that difficult, as long as the code
does not rely on algorithms and classes of the standard library. Note that even this
restriction is quite small, as it is only because of the fact that the implementations are
not guaranteed to use memory that is not allocated on the device. For most functions
however it would in principle be sufficient to declare them to be executable on the
device.

So the remaining task is definitely the transformation of legacy codes. These are to
a large degree still written in Fortran. We notice that due to the PGI compiler it is
nowadays also possible to use Fortran directly on the device. However, this does not
give any direct benefit, because also for the PGI compiler the legacy codes had to be
rewritten to satisfy the modern requirements and would make them C like anyway. So
a clean rebuild in C++ seems to be advantageous, given the strong impression that the
future development will mainly be based on C/C++. Fortunately many applications
do not rely on large code bases, allowing a fast transformation. This is true up to two
obvious exceptions. The first is the use of soft functions such as PDFs or FFs. The
groups that offer modern sets are mostly focused on the determination of their sets and
do only offer minimal interfaces. This and the fact that every group offers a distinct
interface makes this approach depressing. But we a lucky. A much more promising way
has shown up by the currently developed C++ library LHAPDF version 6 [157], which
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offers access to a large class of sets using one unique interface. If it turns out to be
possible to redesign this one library to allow for GPU usage, the whole task would be
done. The second exception are evolution codes that evolve the soft functions from
one scale to another. In turn of the project described in chapter 5 that is concerned of
soft functions in Mellin space, we developed a GPU capable DGLAP evolution version
up to next-to-leading order, presented in appendix C.7, which can act as the starting
point for an evolution library with a more extensive functionality.

2.6 Conclusions

We have presented a brand new implementation of the Vegas integration algorithm that
can be executed on the host as well as on the device. We measured the performance by
an toy example integrand with very large computational cost, that simulates a typical
integrand that may be used in perturbative QCD calculations. The performance on the
host can compete with the current GSL implementation. Using the device outperforms
the host version by orders of magnitude. The precise performance is dependent on the
actual device and is likely to increase further for newer devices. We presented several
optimizations we applied to the naive implementation, which further increased the
performance. Finally we achieved a speedup compared to the GSL routine in double
precision of about 190 in double and 460 in single precision using a GTX TITAN on a
even slower host system as the system that had been used to measure the execution
times for the GSL routine. Actually only calculations in double precision matter in high
precision calculations, however the single precision performance can be taken to indicate
the potential of the GPU, which are nowadays still mainly optimized for single precision.
This is likely to change in the future, as GPUs become more and more important for
GPGPU, such that specialized cards are manufactured that do not focus on graphics
processing, where single precision is sufficient. Taking the development of host CPUs
in the last decades as an example, where initially double precision calculations had
also been much slower but are now comparably fast respective to single precision
calculations, the future of GPGPU seems bright. Having that said, we like to note that
the simple statement ‘newer is better’ does not hold on GPUs, as their performance
depends mainly how well the given integrand uses the particular hardware specifications.
For example we had access to a GeForce GTX 580, which belongs to the compute
capability 2.0, for one day during the development. At that stage this otherwise inferior
card outperformed the GTX 680 by 35 percent for single and more than 50 percent
for double precision, taking the total process time as a measure. Obviously our tool
integrand did match the architecture better.

We argued that the main limitations of the GPGPU approach are due to finite
memory. Our improvements had been performed mainly to reduce this limitation,
improving the performance as a byproduct. Especially the reduction of samples is
difficult because of the adaptive nature of Vegas. Our optimizations in this regard can
only be applied for stratified sampling, id est if enough samples are used. We discussed
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that even then the performance depends heavily on the dimension of the integral. A
possible future extension is to optimize the reduction also for increments that contain
less bins than the warp size. Another improvement that might be made in the future is
to split up the kernels again into smaller parts. As long as all parts do still utilize the
device, the performance overhead should not be significant. But this extends the use
also to systems with very restricted memory, as the memory use can be controlled by
the size of the parts. Besides this opens also the way to use multiple GPUs in parallel,
as the parts are independent and can again be parallelized, which further improves the
performance.

We briefly discussed how to transform legacy codes to use them also with a GPU,
hinting that the only remaining important task seems to be a reasonable portation of
the LHAPDF library to be CUDA compatible. Then the typical computational tasks
that are encountered in perturbative QCD are a perfect match for using a GPU as
they are entirely compute bound. Such the use of GPUs can decrease execution times
or increase precision or both, while at the same time reducing the energy cost of the
computations.
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Chapter 3

Drell-Yan lepton angular distributions in
perturbative QCD

We present a comprehensive comparison of the available experimental data for the
Drell-Yan lepton angular coefficients λ and ν to calculations at leading and next-to-
leading order (NLO) of perturbative QCD. To obtain the NLO corrections, we make
use of publicly available numerical codes that allow us to compute the Drell-Yan cross
section at second order in perturbation theory and from which the contributions we
need can be extracted. Our comparisons show that overall perturbative QCD is able
to describe the experimental data rather well, even in the fixed-target regime. There
appears to be little evidence for effects that go beyond fixed-order collinear factorized
perturbation theory, although the presence of such effects is not ruled out. We also
address the recent ATLAS data which show tension with NLO theory for the coefficient
ν. All results of this chapter have been published previously [158, 159]. The authors
acknowledge support by the state of Baden-Württemberg through bwHPC [160].

3.1 Introduction
It has been known for a long time [161, 162] that leptons produced in the Drell-Yan
process H1H2 → `¯̀X may show nontrivial angular distributions. We denote the
momentum of the intermediate virtual boson V ∈ {γ∗, Z} that decays into the lepton
pair by q. In a specific rest frame of the virtual boson (for our purposes, the Collins-
Soper frame [161], see figure 3.1) we can define polar and azimuthal lepton decay angles
θ and φ, respectively. Considering, for simplicity, a situation where contributions by
Z-bosons are negligible and only the exchange of an intermediate virtual photon is
relevant, one can show that the cross section differential in d4q and dΩ ≡ d cos(θ)dφ
may be written as [163]

dσ
d4qdΩ

=
α2

2πNcQ2s2

[
WT

(
1 + cos2(θ)

)
+WL

(
1− cos2(θ)

)
+W∆ sin(2θ) cos(φ) +W∆∆ sin2(θ) cos(2φ)

]
(3.1)

where α is the fine structure constant, Nc = 3 the number of colors in QCD, Q2 = q2

and s the c.m.s. energy squared of the incoming hadrons H1 and H2. The structure
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Figure 3.1: Illustration of the Collins-Soper frame, which is a rest frame of the virtual boson.
As such, one is free to define two angles to specify the frame. In the Collins-Soper
frame this freedom is used to define the Z-axis such, that it bisects the angle between
the three-vectors of the two incoming hadrons. The X-axis defines in conjunction
with the Z-axis the hadron plane. For non-trivial angular dependence the incoming
hadrons are not back-to-back due to initial state radiations.

functions WT , WL, W∆, W∆∆ are functions of q. They parametrize the hadronic tensor
as

Wµν = −(gµν − TµT ν)(WT +W∆∆)− 2XµXνW∆∆

+ ZµZν(WL −WT −W∆∆)− (XµZν + ZµXν)W∆ (3.2)

where X, Y , Z and T are the set of orthonormal axes that one introduces in the
Collins-Soper frame. If also Z-bosons contribute, there are additional angular terms
and structure functions in the cross section formula. For details of the derivation of the
cross section (also for discussion of other related reference frames), see references [161,
162, 164–167].

From the differential cross section one easily derives an expression for the normalized
decay angle distribution

dN
dΩ

≡
(

dσ
d4q

)−1 dσ
dΩd4q

(3.3)

in terms of the structure functions. Using equation (3.1) we obtain

dN
dΩ

=
3

8π

1

2WT +WL

[
WT

(
1 + cos2(θ)

)
+WL

(
1− cos2(θ)

)
+W∆ sin(2θ) cos(φ) +W∆∆ sin2(θ) cos(2φ)

]
(3.4)

One usually writes this as

dN
dΩ

=
3

4π

1

λ+ 3

[
1 + λ cos2(θ) + µ sin(2θ) cos(φ) + ν

2
sin2(θ) cos(2φ)

]
(3.5)
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where
λ =

WT −WL

WT +WL
µ =

W∆

WT +WL
ν =

2W∆∆

WT +WL
(3.6)

Much effort has gone into studies of these angular coefficients λ,µ and ν, both
experimentally and theoretically. On the experimental side, measurements of the
coefficients are by now available over a wide range of kinematics, from fixed-target
energies [168–171] all the way to the Tevatron [172] pp̄ and the LHC pp colliders [173,
174]. In the fixed-target regime various combinations of beams and targets are available;
data have been taken with pion beams off nuclear (tungsten) targets [168, 169] and
also for pp and pd collisions [170, 171]. The experimental results are typically given as
functions of the transverse momentum qT of the virtual boson, in a certain range of
the lepton pair mass, Q ≡

√
Q2. For the fixed-target data, qT is limited to a few GeV

and Q is usually around 5 to 10 GeV. This is very different for the high-energy collider
measurements which are carried out around Q = mZ , where mZ is the Z-boson mass.
The range in qT explored here is much larger and reaches to almost 100 GeV at the
Tevatron and even much beyond that at the LHC.

The lowest-order (LO) partonic channel qq̄ → V (→ `¯̀) with collinear incoming
partons leads to the prediction λ = 1, µ = ν = 0. However, for this process the virtual
photon has vanishing transverse momentum, qT = 0, so it cannot contribute to the
cross section at finite qT . The situation changes when ‘intrinsic’ parton transverse
momenta are taken into account. The coefficient ν, especially, which corresponds to a
cos(2φ) dependence in azimuthal angle, has received a lot of attention in this context
since it was discovered [175] that it may probe interesting novel parton distribution
functions of the nucleon, known as Boer-Mulders functions [176]. These functions
represent a transverse-polarization asymmetry of quarks inside an unpolarized hadron
and are ‘T-odd’ and hence related to nontrivial (re)scattering effects in QCD (see [74,
177, 178]). Detailed phenomenological [179, 180] or model-based [59, 181, 182] studies
have been presented that confront the fixed-target experimental data with theoretical
expectations based on the Boer-Mulders functions.

Already the early theoretical studies [183–188] revealed that also plain perturbative-
QCD radiative effects lead to departures from the simple prediction λ = 1, µ = ν = 0,
starting from O(αs) with the processes qq̄ → V g and qg → V q. At qT 6= 0 in fact the
latter processes become the LO ones. A venerable result of [162, 189] obtained on the
basis of these LO reactions is the Lam-Tung relation,

1− λ− 2ν = 0 (3.7)

which holds separately for both partonic channels in the Collins-Soper frame [161].
Next-to-leading-order (NLO) corrections to the cross sections relevant for the angular
coefficients have first been derived in references [190, 191]. These suggest overall
modest O(α2

s) effects on λ, µ, ν, so that also the Lam-Tung relation, although found
to be violated at NLO, still holds to fairly good approximation. The data from the
fixed-target experiment E615 [168] indicate a violation of the Lam-Tung relation, while
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Chapter 3 Drell-Yan lepton angular distributions in perturbative QCD

the other fixed-target sets are overall consistent with it, as are the Tevatron data [172].
A clear violation of the Lam-Tung relation, on the other hand, was observed recently
at the highest energies, in pp collisions at the LHC [173, 174].

In the following sections, we take a fresh look at the Drell-Yan angular dependences in
the framework of perturbative QCD. Specifically, we present an exhaustive comparison
of the LO and NLO QCD predictions for the parameters λ and ν with the experimental
data, over the whole energy range available. Rather than attempting to retrieve the
results of [190, 191], we determine new NLO predictions. For this purpose, we use the
publicly available codes fewz (version 3.1) [192–194] and dynnlo [195, 196]. These
allow us to compute the full Drell-Yan cross section at next-to-next-to-leading (NNLO)
order of QCD, when qq̄ → V is the LO process. As discussed above, the contributions
to the angular coefficients that we are interested in are at nonvanishing qT , so that
the order α2

s in this case is only NLO. Since all O(α2
s) contributions are included in

the fewz and dynnlo codes, we can therefore use these codes to extract the angular
coefficients λ, µ, ν at NLO, providing a new and entirely independent calculation.

To our knowledge, such a comprehensive analysis has never been performed in the
past. Our study was very much inspired by the recent work [197], in which the LHC
results of the CMS collaboration [173] for the angular coefficients were analyzed on
general theoretical grounds, attributing the observed violation of the Lam-Tung relation
to a ‘noncoplanarity’ of the axis of the incoming partons with respect to the hadron
plane, which may be constrained by the combined Tevatron and LHC data. As the
authors of [197] pointed out, the most likely physical explanation for the CMS result
on the violation of the Lam-Tung relation is QCD radiative effects at NLO (or beyond).
We indeed confirm this in our study. New results from ATLAS [174], on the other
hand, show tension with the theoretical results even at NLO, as will be discussed in
section 3.4.

We push the purely perturbative framework also to the fixed-target regime, where
there have been hardly any phenomenological analyses of the Drell-Yan angular co-
efficients in the context of hard-scattering QCD. Reference [198] presents results at
the energy of the NA10 experiment; however the kinematics relevant at NA10 was not
properly implemented. Of course, in the fixed-target regime qT can become quite small,
smaller than, say, 1 GeV or so. For such low values one does not expect fixed-order
perturbation theory to provide reliable results for cross sections, even if Q is relatively
large. Intrinsic transverse momenta of the initial partons may become relevant, among
them precisely the Boer-Mulders functions mentioned earlier. The possible role of
higher-twist contributions has been discussed as well [199–202]. Furthermore, as is
well known, large logarithmic perturbative corrections of the form αks logm(Q2/q2T )/q

2
T ,

m ∈ {1, . . . , 2k − 1}, appear in calculations at fixed perturbative order k, as a result of
soft-gluon emission. In order to describe the cross sections, one needs to resum these
corrections to all orders in the strong coupling and also implement nonperturbative
contributions (see especially [203–208] and references therein or the discussion in chap-
ter 4). As was discussed in references [164–166], such corrections will likely cancel to a
significant degree in the angular coefficients λ and ν, since the same type of leading

80



3.2 Extraction of angular coefficients

logarithms occur in the numerator and denominator for both quantities. Also, it is
expected [165, 166] that the Lam-Tung relation will remain essentially untouched by
the soft-gluon effects.

Thus, although clearly collinear perturbation theory at fixed-order (NLO) that we
will use here cannot provide a completely adequate framework for describing cross
sections in all kinematic regimes of interest for the angular coefficients, our results
to be presented below yield important benchmarks, in our view. In the light of the
observations concerning the soft-gluon effects mentioned above, it appears likely that
fixed-order perturbation theory will work much better for ratios of cross sections than
for the cross sections themselves. In fact, we will find that we can describe most data
sets well, and that we do not find any clear-cut evidence for nontrivial additional
contributions to be attributed to parton intrinsic momenta. We stress that QCD
radiative effects are typically not considered at all when for example Boer-Mulders
functions are extracted from data for ν (although the conceptual framework for such
a combined analysis is available [209]). At the very least, our results establish the
relevance of the radiative effects for phenomenological studies of the Drell-Yan angular
dependences.

In section 3.2 we will present the extraction method of the angular coefficients from
the available Drell-Yan NNLO codes. Section 3.3 shows the phenomenological result
for all fixed-target experiments and for the collider experiments at Tevatron and of the
CMS collaboration. Section 3.4 does the same for the ATLAS data and adds some
investigations to the coefficient ν and its trend from leading to next-to-leading order.
Finally we will conclude our work in section 3.5.

3.2 Extraction of angular coefficients

It is actually relatively straightforward to use the Monte Carlo codes fewz [192–194]
and dynnlo [195, 196] to determine the angular coefficients λ, µ and ν. The programs
allow us to compute cross sections over suitable ranges of any kinematic variable,
providing full control over the four-momenta of the produced particles. As already
pointed out in [162], the structure functions WT , WL, W∆, W∆∆ may be projected out
by computing the following combinations of cross sections:

2WT +WL = N dσ
d4q

(3.8a)

WT −WL =
8

3
N
[

dσ
d4q

(
| cos(θ)| > 1

2

)
− dσ

d4q

(
| cos(θ)| < 1

2

)]
(3.8b)

W∆ =
π

2
N
[

dσ
d4q

(
sin(2θ) cos(φ) > 0

)
− dσ

d4q

(
sin(2θ) cos(φ) < 0

)]
(3.8c)

W∆∆ =
π

2
N
[

dσ
d4q

(
cos(2φ) > 0

)
− dσ

d4q

(
cos(2φ) < 0

)]
(3.8d)
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where N = 12π3(Qs/α)2. Using equations (3.6), the angular coefficients follow imme-
diately:

λ = 12

dσ
d4q

(
| cos(θ)| > 1

2

)
− dσ

d4q

(
| cos(θ)| < 1

2

)
3 dσ

d4q
− 4
[

dσ
d4q

(
| cos(θ)| > 1

2

)
− dσ

d4q

(
| cos(θ)| < 1

2

)] (3.9a)

µ =
9π

4

dσ
d4q

(
sin(2θ) cos(φ) > 0

)
− dσ

d4q

(
sin(2θ) cos(φ) < 0

)
3 dσ

d4q
− 4
[

dσ
d4q

(
| cos(θ)| > 1

2

)
− dσ

d4q

(
| cos(θ)| < 1

2

)] (3.9b)

ν =
9π

2

dσ
d4q

(
cos(2φ) > 0

)
− dσ

d4q

(
cos(2φ) < 0

)
3 dσ

d4q
− 4
[

dσ
d4q

(
| cos(θ)| > 1

2

)
− dσ

d4q

(
| cos(θ)| < 1

2

)] (3.9c)

We note that equations (3.8) and therefore also equations (3.9) are valid both for
exchanged photons and Z bosons. As mentioned earlier, in cases where Z bosons
contribute the cross section has additional angular pieces (see also [173, 197])

dN
dΩ

∼
[
WT

(
1 + cos2(θ)

)
+WL

(
1− cos2(θ)

)
+W∆ sin(2θ) cos(φ)

+W∆∆ sin2(θ) cos(2φ) +W5 sin(θ) cos(φ) +W6 cos(θ)

+W7 sin2(θ) sin(2φ) +W8 sin(2θ) sin(φ) +W9 sin(θ) sin(φ)
]

(3.10)

However, it is easy to show, that the angular pieces associated to Wi, i ∈
{
5, . . . , 9

}
do

not survive the integrations in equations (3.8) and 3.9, respectively. Thus the presence
of Z-bosons introduces no further complication to extract the angular coefficients.

The remaining task is to determine the kinematical variables that appear in equa-
tions (3.9) from the momenta of the outgoing leptons given in the Monte Carlo
integration codes of [192–196]. To this end, we use that the momentum of one lepton,
written in the Collins-Soper frame as (see figure 3.1)

`µcs =
Q

2


1

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 (3.11)

becomes in the hadronic c.m.s.

`µcm =
1

2


q0(1 + sin(α) sin(θ) cos(φ)) + qL cos(α) cos(θ)

qT cos(ϕ) +Q sin(θ)
cos(α)(cos(φ) cos(ϕ)− cos(α) sin(φ) sin(ϕ))

qT sin(ϕ) +Q sin(θ)
cos(α)(cos(φ) sin(ϕ) + cos(α) sin(φ) cos(ϕ))

qL(1 + sin(α) sin(θ) cos(φ)) + q0 cos(α) cos(θ)

 (3.12)

via the Lorentz boost (see [210] for the special case ϕ = 0 or [211] for arbitrary ϕ but
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different parity)

(
Bcs→cm

)µ
ν
=


q0
Q

q0
Q sin(α) 0 qL

Q cos(α)
qT
Q cos(ϕ) cos(ϕ)

cos(α) − sin(ϕ) 0
qT
Q sin(ϕ) cos(ϕ)

cos(α) cos(ϕ) 0
qL
Q

qL
Q sin(α) 0 q0

Q cos(α)

 (3.13)

where
sin(α) ≡ qT√

Q2 + q2T

cos(α) ≡ Q√
Q2 + q2T

(3.14)

and where q0 and qL are the energy and the longitudinal component (with respect
to the collision axis) of the virtual boson in the hadronic c.m.s., so that qµcm =
(q0, qT cos(ϕ), qT sin(ϕ), qL). To project out the combinations of trigonometric functions
in equations (3.8), we introduce

Pµ
1 ≡


qL
0
0
q0

 Pµ
2 ≡ qT


0

cos(ϕ)
sin(ϕ)

0

 Pµ
3 ≡ qT


0

sin(ϕ)
− cos(ϕ)

0

 (3.15)

With these we can calculate the trigonometric functions by

cos(θ) = − 2`cm · P1

(Q2 + q2T ) cos(α)
(3.16a)

sin(2θ) cos(φ) = 4`cm · P1

Q2 + q2T

[
qT
Q

+
2`cm · P2

qTQ

]
(3.16b)

cos(2φ) = 1− 2

q2T
(`cm · P3)

2

[
Q2

4
− (`cm · P1)

2

Q2 + q2T

]−1

(3.16c)

The four-momentum of the lepton in the hadronic c.m.s. is provided in the Monte
Carlo integration codes, while that of the virtual boson is fixed by the external
kinematics. Writing `µcm = (`0cm, `

1
cm, `

2
cm, `

3
cm), we have

`cm · P1 = qL`
0
cm − q0`

3
cm (3.17a)

`cm · P2 = −qT (`1cm cos(ϕ) + `2cm sin(ϕ)) (3.17b)
`cm · P3 = qT (`

2
cm cos(ϕ)− `1cm sin(ϕ)) (3.17c)

Inserting these expressions into equations (3.16), one can now easily implement the
appropriate cuts in the codes so that the structure functions WT , WL, W∆, W∆∆

and the angular coefficients λ, µ, ν can be extracted via equations (3.8) and (3.9),
respectively. We will present only the angular coefficients, because they do not depend
on the lepton pair mass Q. Since the experiments always integrate over a whole range
of lepton pair masses, one had to take different Q into account to calculate the structure
functions.
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Figure 3.2: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
to the CMS data [173] for the angular coefficients λ and ν taken at

√
s = 8 TeV. We

have integrated over 81 ≤ Q ≤ 101 GeV and over a central rapidity interval |η| < 1 of
the virtual boson.

3.3 Comparison to data
We now present comparisons of the theoretical predictions at LO and NLO to the
available experimental data for the angular coefficients λ and ν. We do not show any
results for the coefficient µ which comes out always extremely small and in fact usually
consistent with zero both in the theoretical calculation and in experiment, within
the respective uncertainties. We first note that we have validated our technique for
extracting the Drell-Yan angular coefficients from the fewz (version 3.1) [192–194]
and dynnlo [195, 196] codes by writing a completely independent LO code. We have
found perfect agreement between this code and the LO results we extracted from fewz
and dynnlo. In the figures below, the LO curves will always refer to those from our
own code. We also note that the NLO results we show in the following have all been
obtained with the fewz code. We have compared to the results of dynnlo and found
excellent consistency of the two codes both at LO and NLO.

Although the implementation of equations (3.8) and the relevant kinematics into
the fewz or dynnlo codes is relatively straightforward, the computational load for
performing a comprehensive comparison of the data with NLO theory is very large.
To obtain the NLO results presented in this a the following section, we have run an
equivalent of one 3.20 GHz Intel Quad-Core i5-3470 CPU using all of its cores for
more than two and a half years.1. In order to collect sufficiently high statistics at

1The reported time is a very rough extrapolation. In fact we used multiple desktop machines and the
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Figure 3.3: Same as figure 3.2, but for a more forward/backward rapidity interval 1 < |η| < 2.1.

very high values of qT , where the cross section drops very rapidly, we have performed
dedicated runs for which we have implemented cuts on the low-qT region, forcing the
Monte Carlo integration to sample high qT . We also note that typically the result
for the lowest-qT bin is unreliable, since this bin contains the (NNLO) contributions
at qT = 0. Nonetheless, our results are sufficiently accurate in all regions of interest
and thus allow us to derive solid conclusions. We mention that we also had to modify
the codes to accommodate pion beams and nuclear (deuteron/tungsten) targets. This
implementation was always checked against our own LO code.

Throughout this paper, we use the parton distribution functions of the proton of
reference [89], adopting their NLO (LO) set for the NLO (LO) calculation. The choice
of parton distributions has a very small effect on the Drell-Yan angular coefficients.
When dealing with nuclear targets (tungsten was used for all of the pion scattering
experiments and deuterons for one set of E866 measurements) we compute the parton
distributions of the nucleus just by considering the relevant isospin relations for protons
and neutrons, averaging over the appropriate proton and neutron number. We do not
add any other nuclear effects. For the parton distributions of the pion, we use the
set in [212]; the set in [213] would give very similar results. Finally, our choice for
the factorization and renormalization scales will always be µ = Q. We have checked
that other possible scale choices such as µ =

√
Q2 + q2T do not change the results

for the angular coefficients significantly even at LO, making an impact of at most a

bwHPC cluster [160] The time estimate is based on the time average of the calculations performed
on desktop machines equipped with one 3.20 GHz Intel Quad-Core i5-3470 CPU. Then we assume
that all calculations have been performed on this machines.
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Figure 3.4: Same as figure 3.3, but with the NLO theoretical results integrated over the eight qT
bins used by CMS. In this figure, the dashed histograms show the LO results and
the solid ones the NLO results. To guide the eye, we also show the LO results from
figure 3.3 as smooth lines.
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Figure 3.5: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
to the CDF data [172] for the angular coefficients λ and ν taken in pp̄ scattering at√
s = 1960 GeV. We have integrated over 66 ≤ Q ≤ 116 GeV and over |η| < 3.6 of

the virtual boson.
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few percent, and only at high values of qT . Here we have simultaneously varied the
scales in the cross sections appearing in the numerators and in the denominators of
the angular coefficients; relaxing this condition one would likely be able to generate a
larger dependence on the choice of scale. On the other hand, as is known from previous
calculations [192–196], the scale dependence of the Drell-Yan cross section is overall
much reduced at higher orders anyway.

We present our results essentially in the order of decreasing energy, starting with
a comparison to the high-energy collider data from the CMS experiment [173] and
Tevatron [172]. The data of the ATLAS experiment [174] will be accompanied by a
more detailed analysis, which is therefore postponed to section 3.4. The reason for
this ordering is that for these data sets Q is very large, Q ≈ mZ , so that perturbative
methods should be well justified. The transverse momentum qT varies over a broad
range, taking low values as well as values of order Q. At the lower end, where qT � Q,
it may well be necessary to perform an all-order resummation of perturbative double
logarithms in qT /Q in order to describe the Drell-Yan cross section properly. However,
as mentioned in the introduction (section 3.1), such logarithms are expected to cancel to
a large extent in the angular coefficients [164–166]. Thus, if ever fixed-order perturbative
QCD predictions are able to provide an adequate description of the angular coefficients,
it should be in the kinematic regimes explored at the LHC and Tevatron.

Figures 3.2 and 3.3 show our results for λ and ν compared to the CMS data [173],
for two separate bins in the rapidity of the virtual boson,

η ≡ 1

2
log
(q0 + qL
q0 − qL

)
(3.18)

Additionally for all plots we applied a kinematical cut to the lepton pair mass, which is
close to the Z-boson mass: 81 ≤ Q ≤ 101 GeV [214]. We assume that the same cuts
have been applied in [173]. Further we note that CMS presents their data in terms of a
different set of angular coefficients termed A0, A1, A2, A3, which are directly related
to the coefficients we use here. In particular, we have

λ =
2− 3A0

2 +A0
and ν =

2A2

2 +A0
(3.19)

As in reference [197], in order to present a full comparison in terms of λ and ν,
we transform the experimental data correspondingly. Here we have propagated the
experimental uncertainties, albeit without taking into account any correlations. This
might lead to an overestimation of the experimental errors. The lines in the figures
show our LO results for the coefficients. As one can see, they qualitatively follow the
trend of the data, but for the coefficient ν a clear deviation between data and LO theory
is observed. This is precisely the finding also emphasized in reference [197] where it was
argued (without explicit NLO calculation) that the discrepancy ought to be related to
higher-order QCD effects. Indeed, this is what we find. The NLO results (histograms)
show a markedly better agreement with the data, which in fact is nearly perfect. The
coefficient λ, on the other hand, changes only marginally from LO to NLO. As is visible
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in the figures, the results at very high values of qT are numerically less accurate, as
shown by the somewhat erratic behavior of the histograms. In order to collect higher
statistics, we have also performed runs for which we integrated over only eight qT bins,
choosing exactly the ones used in the experimental analysis. The corresponding results
are shown in figure 3.4 for the rapidity range 1 < |η| < 2.1. Our goal was to make sure
that the numerical uncertainty for these bins is much smaller than the experimental
one even in the bin at highest qT . The figure once more impressively shows how NLO
theory leads to an excellent description of the CMS data.

It is interesting to note that NLO fewz results were also shown in the CMS paper [173].
However, the agreement with the data for the coefficient A2 (which multiplies the cos(2φ)
dependence of the cross section) reported there appears to be not quite as good as
the one we find for our coefficient ν. It is conceivable that our computation of the
coefficients via equations. (3.8) is numerically more stable.2

We next turn to the comparison to the CDF data [172] taken in pp̄ collisions at√
s = 1960 GeV at the Tevatron with lepton pair masses of 66 ≤ Q ≤ 116 GeV and a

allowed rapidity interval of |η| < 3.6. The results are shown in figure 3.5. We observe
that both the LO and the NLO results are in good agreement with the data, NLO doing
a bit better overall. Both coefficients λ and ν decrease slightly when going to NLO.
For ν, this effect is less pronounced than for the LHC case, which may be attributed to
a much stronger contribution by the qq̄ channel in the present pp̄ case, which receives
smaller radiative corrections. Again, this feature was predicted phenomenologically in
reference [197].

We now consider the fixed-target regime, where we start with a comparison to the
Fermilab E866/NuSea data taken with an 800 GeV proton beam in pp [171] and pd [170]
scattering. The data are taken with lepton pair masses of 4.5 ≤ Q ≤ 15 GeV excluding
the bottonium region 9 ≤ Q ≤ 10.7 GeV and with the kinematical cut 0 ≤ xF ≤ 0.8,
with the Feynman variable xF counted as positive in the forward direction of the proton
beam:

xF =
2qL√
s

(3.20)

The comparisons to the two data sets are shown in figures 3.6 and 3.7. We first note
that the pp data are overall in much better agreement with the theoretical curves than
the pd ones. For pp scattering, the coefficient λ is well described, given the relatively
large experimental uncertainties. There is a slight trend in the data for the coefficient ν
to be lower than the theoretical prediction. The NLO corrections in fact provide a slight
improvement here. For pd scattering, the two data points for ν at the highest qT are
clearly below theory even at NLO. The coefficient λ is not well described, neither at LO
nor at NLO. An important point to note in this context is the positivity constraint [162]

WL ≥ 0 (3.21)
2fewz itself provides the angular coefficients Ai (see equations (3.19)). Unfortunately this coefficients

do not fulfill the Lam-Tung relation at leading order, where the relation holds exactly. Again it is
likely that our computation of the coefficients is more stable. However, it is not specified in [173]
how exactly the coefficients are deduced and which version of fewz is used.
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Figure 3.6: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
to the pp scattering data from E866 [171] for the angular coefficients λ and ν taken
with an 800 GeV beam. Error bars are statistical only. We have integrated over the
mass range 4.5 ≤ Q ≤ 15 GeV, excluding the bottomonium region 9 ≤ Q ≤ 10.7 GeV.
We have also integrated over 0 ≤ xF ≤ 0.8, see equation (3.20).

which immediately implies
λ ≤ 1 (3.22)

This condition is completely general and relies only on the hermiticity of the neutral
current. It is interesting to observe that the pd data shown in figure 3.6 are only in
borderline agreement with this positivity constraint.

Going further down in energy, we finally discuss the data from the π + tungsten
scattering experiments NA10 [168] and E615 [169]. NA10 used three different energies
for the incident pions, Eπ = 286, 194 and 140 GeV, while E615 operated a pion beam
with energy 252 GeV. The NA10 experiments use a lower cut on the lepton pair mass of
Q ≥ 4 GeV (except for the pion beam with 194 GeV, where the mass is Q ≥ 4.05 GeV)
excluding the bottonium region 8.5 ≤ Q ≤ 11 GeV. Furthermore a cut 0 ≤ xπ ≤ 0.7 is
applied, where

xπ =
1

2

(
xF +

√
x2F +

4Q2

s

)
(3.23)

and xF is again the Feynman variable in equation (3.20), which is counted positive
in the forward direction of the pion beam. E615 uses the lepton pair masses 4.05 ≤
Q ≤ 8.55 GeV and applies the additional cuts 0 ≤ xF ≤ 1 and 0.2 ≤ xπ ≤ 1, where the
definitions are the same as for NA10.
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Figure 3.7: Same as figure 3.6, but for pd scattering. Data are from reference [170]

Figures 3.8, 3.9 and 3.10 show the comparisons of our LO and NLO results for
λ and ν to the NA10 data. The NLO corrections are overall small for ν, but for λ
they become more pronounced toward larger qT . We note that NLO results for one
of the NA10 energies were also reported in reference [198], where however not the
appropriate kinematical regime in Q was chosen, leading to an underestimate of ν which
has unfortunately given rise to the general notion in the literature that perturbative
QCD cannot describe the Drell-Yan angular coefficients. We also note that for the
kinematics used in [198] the NLO corrections appear to be somewhat smaller than
the ones we find here. The three cases shown in figures 3.8, 3.9 and 3.10 have in
common that the data for ν are well described, perhaps slightly less so for the pion
energy 194 GeV. The experimental uncertainties for the coefficient λ are very large,
and it is not possible to draw solid conclusions from the comparison. We note that
wherever there are tensions between data and theory concerning λ, the data tend to lie
uncomfortably close to (or even above) the positivity constraint λ ≤ 1.

In case of E615, we find the results shown in figure 3.11. We observe that neither
the description of λ nor that of ν is good. The NLO corrections are overall small and
thus do not change this picture. It is clear that on the basis of the data one would
derive a significant violation of the Lam-Tung relation (3.7), since λ and ν both enter
the relation with the same sign, and the data for both λ and ν are higher than theory
(the latter satisfying the relation at LO). It is worth pointing out, however, that the
experimental uncertainties are large and, more importantly, again the data show a
certain tension with respect to the positivity limit (3.22).
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Figure 3.8: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
of the angular coefficients λ and ν to the π+tungsten scattering data from NA10 [168]
taken with pion beam energy Eπ = 286 GeV. Error bars are statistical only. We have
integrated over the mass range Q ≥ 4 GeV, excluding the bottomonium region 8.5 ≤
Q ≤ 11 GeV. We have also implemented the cut 0 ≤ xπ ≤ 0.7, see equation (3.23).
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Figure 3.9: Same as figure 3.8, but at pion energy Eπ = 194 GeV and integrated over Q ≥
4.05 GeV.
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Figure 3.10: Same as figure 3.8, but at pion energy Eπ = 140 GeV.
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Figure 3.11: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
of the angular coefficients λ and ν to the π+tungsten scattering data from E615 [169]
taken with pion beam energy Eπ = 252 GeV. We have integrated over the mass
range 4.05 ≤ Q ≤ 8.55 GeV. We have also implemented the cuts 0 ≤ xF ≤ 1 and
0.2 ≤ xπ ≤ 1, see equations(3.20) and (3.23).
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Figure 3.12: Comparison of LO (lines) and NLO (fewz [192–194], histograms) theoretical results
for the angular coefficients λ and ν to the ATLAS data [174]. The pp scattering
data are taken at

√
s = 8 TeV, integrated over the mass range 80 ≤ Q ≤ 100 GeV of

the produces lepton pair. Further we integrated for the theoretical predictions over
the rapidity |η| < 8 also of the virtual boson.

3.4 ATLAS data analysis

In summer 2016 the ATLAS Collaboration published new data on the angular coefficients
at

√
s = 8 TeV for Z-Boson events [174]. The uncertainties quoted by ATLAS are

overall much smaller than the CMS ones [173]. The results are shown in figures 3.12,
3.13, 3.14 and 3.15. ATLAS provides the angular coefficients just as CMS in terms
of A1, A2, A3 and A4. We transformed them accordingly to equations (3.19). As for
the CMS data we propagated the experimental errors without knowledge of present
correlations. As a consequence the errors in our plots might overestimate the real error.
For the coefficient λ the data confirm theory both in leading and in next-to-leading
order which show little difference. This is different for the coefficient ν. Unlike for the
CMS data, even NLO fails to describe the data well, as is evident from figures 3.12,
3.13 and 3.14, although next-to-leading order makes a essential improvement towards
the data. The agreement is reasonable for the extremely forward/backward rapidity
bin shown in figure 3.15, where however the experimental uncertainties are large.

The tension between theory and data observed in the figures requires further attention.
It appears unlikely that effects related to the logarithms in qT /Q mentioned above or
to transverse-momentum dependent parton distributions would have any impact on
the predicted ν at transverse momenta of the order of a few tens of GeV or even above.
If the data persist, NNLO effects would arguably offer the only viable explanation for
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Figure 3.13: Same as figure 3.12, but integrated over a central rapidity interval |η| < 1 of the
virtual boson only.
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Figure 3.14: Same as figure 3.12, but integrated over a forward/backward rapidity interval
1 < |η| < 2 of the virtual boson only.
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Figure 3.15: Same as figure 3.12, but integrated over an extreme forward/backward rapidity
interval 2 < |η| < 3.5 of the virtual boson only.

the observed trend. Fortunately, NNLO predictions are expected to become available
very soon [215, 216]. In the meantime, we investigate some features of the NLO results.
Figure 3.16 shows the ‘K-factors’ relevant for the coefficient ν, that is,

KTL ≡ (WT +WL)NLO
(WT +WL)LO

(3.24a)

K∆∆ ≡ (W∆∆)NLO
(W∆∆)LO

(3.24b)

As one can see, the K-factor is much bigger for the denominator of ν than for the
numerator. If this trend continues at the next order, a smaller ν will result, which will
be in better agreement with the data. We note, however, that the additional NNLO
contributions would have to be quite large in order to lead to a good description of
the data. Figure 3.17 shows the different channels contributing to the numerator
of ν. We distinguish among the gg, qg and qq̄ + qq subprocesses, where in the latter
case all possible flavour contributions are included. It is straightforward to extract the
subprocess contributions gg and qq̄+ qq by suitably setting the quark or gluon PDFs to
zero. The channel qg is taken as the difference of the full result and all other channels.
We always keep all channels in the denominator of ν. In figure 3.17 it can be clearly
seen, that from LO to NLO all channels receive corrections that drive the result closer
towards the data. The qg channel is the major contributor and decreases considerably
at NLO. The qq̄ + qq contribution becomes smaller in the qT regime of interest, despite
the fact that a lot of more initial states are possible at NLO. Finally the gg channel,
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Figure 3.16: K-factors defined in equations (3.24). LO and NLO are calculated by fewz [192–194].
The kinematic regime is identical to figure 3.12.
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Figure 3.17: Illustration of the contributions by the different partonic channels contributing to
the angular coefficient ν. Lines are LO, histograms NLO. Latter are computed by
fewz [192–194]. To calculate the gg and the qq̄ + qq channels all quark PDFs and
the gluon PDF are set to zero respectively. The qg channel is calculated as difference
of the full result and the gluon-only and quarks-only channels. The denominator of
ν is always calculated with all channels enabled. The kinematic regime is identical
to figure 3.12.
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which is new at NLO, contributes negatively, lowering the overall ν.

3.5 Conclusions
We have presented detailed and exhaustive comparisons of data for the Drell-Yan
lepton angular coefficients λ and ν to LO and NLO perturbative-QCD calculations. To
obtain NLO results, we have employed public codes that allow us to compute the full
Drell-Yan cross section at NNLO, and in which the angular pieces we are interested in
are contained.

Our numerical results show that overall perturbative QCD is able to describe the
experimental data quite well, except for the new ATLAS data. For the CMS data
the agreement is very good, when the NLO corrections are taken into account. This
finding is in line with arguments made in the recent literature [197]. Also the Tevatron
data are very well described at NLO. Toward the fixed-target regime, we again find an
overall good agreement, with possible exceptions for the E866 pd data set for ν at high
qT and for the E615 data. We remark that the latter data sets carry large uncertainties
and also hint at tensions with the positivity constraint λ ≤ 1.

To be sure, the description of the cross sections that enter the angular coefficients
requires input beyond fixed-order QCD perturbation theory, notably in terms of
resummations of logarithms in qT /Q and of transverse-momentum dependent parton
distributions. On the other hand, based on the angular coefficients alone, in our view
there is no convincing evidence for any effects other than the ones we have considered
here. In particular, we argue that one should dispel the myth that perturbative QCD is
not able to describe the Drell-Yan angular coefficients, which in fact has been iterated
over and over in the literature. While we most certainly do not wish to exclude the
presence of contributions by the Boer-Mulders effect in the cos(2φ) part of the angular
distribution, it is also clear from our study that future phenomenological studies of the
effect should incorporate the QCD radiative effects.

It will be interesting to see whether the gap between theory and the ATLAS data
will be bridged by the NNLO contributions. Concerning the fixed-target regime, our
results clearly make the case for additional new precision data for the Drell-Yan angular
coefficients that would allow to convincingly establish whether there are departures
from the ‘plain’ QCD radiative effects we have considered here. We hope that such
data will be forthcoming from measurements at the COMPASS [217] or E906 [218]
experiments, or possibly at RHIC.
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Chapter 4

Divergent terms for SIDIS at small
transverse momentum
We present an improved calculation of the SIDIS process at small transverse momentum
qT . For the first time all divergent terms for qT → 0 are included, which marks a
milestone on the way to a complete resummation formalism that incorporates not only
non-regular terms. We write down the explicit analytical form of the cross section
including the Y -term that has to be used to adjust the low to the high qT region.
Our detailed calculation illustrates the crucial steps which are also applicable to other
processes as the Drell-Yan process or electron-positron annihilation, where similar
results can now be computed in the same way. The computations in this chapter have
been performed in collaboration with Marc Schlegel.

4.1 Introduction
The transverse momentum distribution has been of special interest in the history
of perturbative QCD, because the corresponding variables include QCD interactions
already at the leading order. This is especially true for the perhaps most important
examples respective to transverse momentum which are the Drell-Yan processH1+H2 →
l+ l̄+X and the SIDIS process l+H → l+ h+X. While the leading-order diagrams
without any QCD corrections consist of purely electromagnetic interactions (besides the
parton distributions and in case of SIDIS the fragmentation function), these are also
constraint to have no transverse momentum at all. First at O(αs) it is possible to find
a non-zero transverse momentum. This next-to-leading order in terms of the strong
coupling constant is therefore the leading order for transverse momentum distributions.

While the cross sections obtained by plain perturbative QCD in collinear factorization
describe the experimental data quite well as long as all involved scales are large, they
fail to describe the kinematic region where the transverse momentum qT is much smaller
as the hard scale of the process qT � Q. The effect is well understood: as the transverse
momentum becomes small, higher perturbative orders can only emit soft and collinear
gluons. This leads to an imperfect cancellation of real and virtual diagrams, leaving
large logarithms as remainder. At fixed order n these are of the form

αns
1

q2T
lnm
(
Q2

q2T

)
(4.1)
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with m ∈ {1, . . . , 2n − 1}. If the transverse momentum becomes smaller than the
hard scale of the process qT � Q the logarithms spoil the perturbarive series in the
strong coupling constant αs. But it is possible to reorder the series such that the
perturbative expansion is described in terms of the logarithms itself. This is called the
resummation of the cross section, as it is obtained by summing up (resumming) all
logarithms of a specific power compared to the power of αs up to all orders of the original
expansion. The techniques for resummation have been developed first for electron-
positron-annihilation and the Drell-Yan process [219–225]. This progress peaked at the
development of the so called CSS formalism [225], which is still one of the standard
methods for the resummation of small transverse momenta. A decade later the results
had also been applied to the SIDIS process [226–230]. Subsequently also spin dependent
processes, again first the Drell-Yan and later on the SIDIS process, have been calculated
with incorporated resummation of small transverse momenta [98, 231–237], where for
SIDIS an extensive collection for various combinations of polarized incoming and/or
outgoing particles have been calculated in [237]. Beside small transverse momentum
resummation has been generalized with the introduction of the TMD (transverse
momentum dependent) formalism [62], which is equivalent for a specific choice of two
auxiliary scales ζF = ζD = Q2, differing only in higher orders of αs [238].

Technically the resummation is performed in the impact parameter space, which is
the Fourier space corresponding to the transverse momentum. In this space momentum
conservation is guaranteed. Schematically the cross section is written as

dσ
dqT

∼
∫

d2~bT ei~bT ·~qT W (bT ) + Y (qT ) (4.2)

where in W the soft gluon contributions, more precisely all terms that are not regular
for qT → 0, are resummed. It is dominant for the region with qT � Q. But because it
contains only terms that are at least proportional to q−2

T it cannot describe the cross
section for large qT . The Y term is defined to compensate this deficit such that the
cross section is described well for all qT . It roughly contains all terms that are finite
or at most logarithmically divergent for qT → 0. Further it is designed to guarantee a
smooth transition of the two kinematical regimes [239].

As has already been pointed out in the original paper proposing of the CSS formalism,
it is necessary to treat the singularities that are regular [225]. They promote a cutoff
by replacing

Y (qT ) → Y
(√

q2T + q2T,min

)
(4.3)

where qT,min defines the cutoff, and suggest a value of around qT,min ≈ 300 MeV. At
this point we want to perform further investigations and identify precisely all terms
that are divergent as qT approaches zero. A strong motivation is that by the common
resummation procedure the terms that are divergent but are still regular for qT → 0
maybe overly suppressed, since they are inhibited in the region where their major
contribution lies. For our calculation we will choose the unpolarized SIDIS process as
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an example. But it can be applied similarly for other processes, unpolarized as well as
polarized.

This chapter is organized as follows: in section 4.2 we introduce the kinematic used
throughout our calculation, in the sections 4.3 to 4.5 we compute the unpolarized SIDIS
cross section with special care to describe all divergent terms precisely even if they
are regular. At NLO we encounter three different channels: the qq channel with a
quark in the initial state and a quark that hadronizes into the measured hadron, the
gq channel, where the measured hadron originates from a gluon, and the gq channel,
where the initial parton is a gluon. Each of these channels is computed in a designated
section, 4.3, 4.4 and 4.5 respectively. As side product we reproduce the unpolarized
results in [237]. In section 4.6 we finally conclude the results and discuss their impact
and effects for a more general resummation in the future. While in this chapter we
present the most important steps, we provide also an exhausting detailed calculation in
appendix D, which we will refer to during the calculation if appropriate.

4.2 Kinematics
As explained in the introduction we will perform the calculation through the example
of the SIDIS process

l(l1) +H(P ) → l(l2) + h(Ph) +X(PX) + Y (PY ) (4.4)

where the momenta of the particles are denoted in brackets. X and Y include all
particles that are not measured, with X including the remnants of the initial state
hadron that do not participate in the hard scattering and Y including particles in
addition to h originating from a final state parton of the hard scattering process.
Similar to [237] we will perform our calculation in the hadron-frame [240] (which is the
infinite-momentum frame of the initial hadron and the virtual photon) . We will adapt
also the notation in [237] to simplify the comparison of similar terms, except for using
light-cone vectors instead of naive four vectors. Light-cone vectors will be indicated by
square brackets. To describe the process we will use five Lorentz invariant variables

S = (P + l1)
2 (4.5a)

Q2 = −q2 = −(l1 − l2)
2 (4.5b)

x =
Q2

2P · q
(4.5c)

z =
P · Ph
P · q

(4.5d)

cosh(ψ) = 2xS

Q2
− 1 (4.5e)

where S is the center of mass energy squared, qµ is the momentum of the virtual photon,
x is the Bjorken scaling variable known from the DIS process, z is the equivalent scaling
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variable for the final state hadron and ψ parametrizes the lepton momenta (see below).
The transverse component of qµ is defined by

qµt = qµ − 1

P · Ph
(
(Ph · q)Pµ + (P · q)Pµh

)
(4.6)

which is spacelike as is qµ. Its magnitude is defined equally via

qT =
√
−q2t (4.7)

In terms of the variables the momenta are given in our particular frame by

Pµ =
Q√
2x
nµ+ (4.8a)

Pµh =
zQ√
2
mµ (4.8b)

qµ =
Q√
2

[
−1, 1,~0T

]
(4.8c)

lµ1 =
Q

2

[
1√
2
(cosh(ψ)− 1),

1√
2
(cosh(ψ) + 1), sinh(ψ) cos(φ), sinh(ψ) sin(φ)

]
(4.8d)

lµ2 =
Q

2

[
1√
2
(cosh(ψ) + 1),

1√
2
(cosh(ψ)− 1), sinh(ψ) cos(φ), sinh(ψ) sin(φ)

]
(4.8e)

where φ is the angle between the lepton and the hadron plane and we introduced the
normalized light-cone vectors

nµ+ =
[
1, 0,~0T

]
(4.9a)

nµ− =
[
0, 1,~0T

]
(4.9b)

mµ =

[
q2T
Q2

, 1,

√
2qT
Q

, 0

]
(4.9c)

mµ =

[
1, 4

Q2

q2T
, 2
√
2
Q

qT
, 0

]
(4.9d)

with n2± = m2 = m2 = 0 and n+ · n− = m · m = 1. Obviously in our frame the
transverse component is shifted completely to the measured hadron.

We will decompose the parton momenta of the incoming parton p and the fragmenting
parton ph via a Sudakov decomposition [241]

pµ = (p · n−)nµ+ + (p · n+)nµ− + pµ⊥ (4.10a)
pµh = (ph ·m)mµ + (ph ·m)mµ + pµh⊥ (4.10b)

where the orthogonal components to the light-cone vectors are defined by

pµ⊥ = pν(g
µν − nµ+n

ν
− − nµ−n

ν
+) (4.11a)
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Figure 4.1: Invariant amplitude Mqq of the SIDIS process with additional n gluons in the final
state. The hard scattering amplitude is depicted with the red blob H, while soft
functions are depicted with green blobs. For this channel these are in particular the
Fourier transform of a hadronic matrix element where a quark is created Φq and
equally the Fourier transform of a hadronic matrix element where a quark creates a
hadronic state containing one measured hadron ∆q. The definitions can be read of
easily in equation (4.14) Particle momenta are denoted in brackets.

pµh⊥ = phν(g
µν −mµmν −mµmν) (4.11b)

Finally we define the phase space of the measured particles including the Møller flux
factor in d dimensions

dRd ≡
1

4P · l1
dd−1l2

2E2(2π)d−1

dd−1Ph
2Eh(2π)d−1

(4.12)

with E2 and Eh being the energy of the measured lepton and hadron respectively. To
compare with [237] we use

dσ
dxdQ2dzdq2Tdφ

↔ 1

(4π)5
z

Q2

dσ
dR4

(4.13)

where we integrated out the azimuthal angle of the measured hadron φh to get from
the right to the left-hand side, giving us a trivial factor of 2π. As we will see, all results
will be independent of φh, which justifies the integration.

4.3 Quark PDF and quark FF—the qq channel
In this section we will present the calculations that incorporate a quark PDF and a
quark FF. The corresponding invariant amplitude Mqq is depicted in figure 4.1 for
additional n gluons in the final state. Using the common Feynman rules it is equal to

Mqqδ
d

(
P + l1 − PX − l2 − Ph − PY −

n∑
m=0

gm

)
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=

∫
ddp
(2π)d

∫
ddph
(2π)d

δd
(
l1 + p− l2 − ph −

n∑
m=1

gm

)
×
[∫

ddη eip·η 〈PX |ψBj (η)|P 〉
]
HAB
ij

[∫
ddηh e−iph·ηh 〈PY , Ph|ψ̄Ai (ηh)|0〉

]
= 〈PX |ψBj (0)|P 〉HAB

ij 〈PY , Ph|ψ̄Ai (0)|0〉

× δd
(
P + l1 − PX − l2 − Ph − PY −

n∑
m=0

gm

)
(4.14)

where ψAi is a quark field with Dirac index i and color index A. We absorbed the hard
scattering as well as the leptonic parts and the additional gluon emissions into H. Then
the differential cross section is given by the sum over all possible numbers of emitted
gluons

dσqq
dRd

=

[ ∞∑
n=0

n∏
m=1

∑
λm,Am

∫
ddgm

(2π)d−1
δ((gm)

2)Θ(g0m)

]∫
ddp

∫
ddph

× (2π)dδd
(
l1 − l2 + p− ph −

n∑
m=0

gm

)
1

Nc
tr
(
HΦq(p, P )γ0H†γ0∆q(ph, Ph)

)
(4.15)

where the trace is over Dirac as well as color indices. λm and Am are the polarization and
the color state of the m-th emitted gluon. Further we introduced the fully unintegrated
quark PDF correlator

Φqij(p, P ) ≡
∫

ddη
(2π)d

eip·η 〈P |ψ̄Aj (0)ψAi (η)|P 〉 (4.16)

and the fully unintegrated quark FF correlator

∆q
ij(p, P ) ≡

1

Nc

∫
Y

∑ ∫
ddη
(2π)d

eip·η 〈0|ψAi (η)|P, PY 〉 〈P, PY |ψ̄Aj (0)|0〉 (4.17)

where we use the shorthand notation∫
X

∑
≡
∑
X

∫
dd−1PX

2EPX
(2π)d−1

(4.18)

for the phase space integrations of the unobserved remnants. We will perform the
calculation in collinear factorization. In order to do this we use the collinear expansion,
which assumes that the initial parton is collinear to its parent hadron and carries the
momentum fraction ξ. Similarly the measured hadron is assumed to be collinear with
its parent parton, carrying a momentum fraction ζ. Mathematically we drop the terms
proportional to the transverse directions ∼ pµ⊥ and ∼ pµh⊥ as well as the terms that
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are ∼ nµ− for the initial and ∼ mµ for the final parton (see the Sudakov decomposition
in equations (4.10)) in the hard scattering as well as in the overall delta distribution.
This leaves us with

pµ ≈ (p · n−)nµ+ ≡ ξPµ (4.19a)

pµh ≈ (ph ·m)mµ ≡ 1

ζ
Pµh (4.19b)

After the collinear expansions we are able to integrate out the corresponding degrees of
freedom in the correlators, resulting in the collinear correlation functions

Φq,coll
ij (ξ, P ) ≡

∫
dη
2π

ei(P ·n−)ξη 〈P |ψ̄Aj (0)[0, ηn−]ψAi (ηn−)|P 〉 (4.20a)

∆q,coll
ij (ζ, Ph) ≡

1

Nc

∫
Y

∑ ∫
dη
2π

ei (Ph·m)

ζ
η

× 〈0|ψAi (ηm)[ηm,∞]|Ph, PY 〉 〈Ph, PY |[∞, 0]ψ̄Aj (0)|0〉 (4.20b)

In the definition of the correlators we included Wilson lines (gauge links), denoted in
square brackets. These take into account additional gluons that may connect the soft
parts of the process with the particles involved in the hard process. These cannot be
ignored by arguing that they are of higher order, because the transfered momentum
is not necessarily large. All these additional terms would enter with additional gluon
fields in the correlators. It can be shown, that the sum over all possible numbers of
additional gluons exponentiates, yielding the Wilson lines [58, 60, 61, 75] (for an explicit
calculation that computes the first order of the gauge links see appendix B in [242]).
For our unpolarized calculation the correlators can be parameterized by [55, 242–244]

Φq,coll(ξ, P ) =
1

2
fq(ξ)/n+ (4.21a)

∆q,coll(ζ, Ph) =
1

ζ
Dq(ζ) /m (4.21b)

where fq(ξ) is the ordinary unpolarized parton distribution function for quark q with
momentum fraction ξ and Dq(ζ) is the unpolarized fragmentation function where the
measured hadron carries momentum fraction ζ of its parent quark q. The differential
cross section can thus be written as

dσqq
dRd

=

[ ∞∑
n=0

n∏
m=1

∑
λm,Am

∫
ddgm

(2π)d−1
δ((gm)

2)Θ(g0m)

] 1∫
0

dξ
1∫

0

dζ
ζ
fq(ξ)Dq(ζ)

Q2

4

z

xζ2

× (2π)dδd
(
l1 − l2 + ξP − 1

ζ
Ph −

n∑
m=0

gm

)
1

Nc
tr
(
H/n+γ

0H†γ0 /m
)

(4.22)

Fur our purpose—a calculation up to NLO—we need the hard diagrams containing
no gluon (n = 0), which are the leading-order diagram and all virtual diagrams up to
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Chapter 4 Divergent terms for SIDIS at small transverse momentum

order αs, and the diagrams containing one real gluon in the final state (n = 1). We
start with n = 0. For this an exhaustive calculation is presented in appendix D.3.1.1.
The result is given by

dσn=0
qq

dRd
= Γ(1− ε)

(
q2T
4π

)ε 2π(4π)4α2

zQ2
δ(q2T )(A1 + εA2)e

2
qfq(x)Dq(z)

×

[
1− αsCF

2π

(
4πµ2

Q2

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

]]
(4.23)

where we introduce analogous to [226, 237, 245, 246] the structure functions

A1 = 1 + cosh2(ψ) (4.24a)
A2 = −2 (4.24b)
A3 = − cos(φ) sinh(2ψ) (4.24c)
A4 = cos(2φ) sinh2(ψ) (4.24d)

and used the global δ(q2T ) to eliminate contributions to the structure functions Ak with
k ∈ {3, 4}. Further ε > 0 is the parameter that defines the dimension d via d = 4− 2ε.
Note that in the literature another set of structure functions is also widely used (see for
example [247] and references therein), which relies on the kinematic variable y, which
is the transferred energy fraction of the lepton to the hadron and is defined by

y ≡ P · q
P · l1

(4.25)

The set of structure functions is a simple linear combination of the Ak and defined by

B1 ≡ 1− y +
y2

2
=
y2

4
A1 (4.26a)

B2 ≡ 1− y =
y2

4
(A1 +A2) (4.26b)

B3 ≡ (2− y)
√
1− y cos(φ) = −y

2

4
A3 (4.26c)

B1 ≡ (1− y) cos(2φ) = y2

4
A4 (4.26d)

Now we turn to n = 1. Details of the calculation are again provided in ap-
pendix D.3.1.2. The result for the cross section is given by1

dσn=1
qq

dRd
= (4π)4

α2αsµ
2ε

2zQ4

∑
k

Ak

1Note that we vary from the results in [237, 245, 246] by a factor of Q4/(x2S2). This will hold for the
whole calculation, id est also for all other channels. The discrepancy is given exactly by a factor of
y−2, because xyS = Q2. Interestingly this is part of the prefactor of the conversion from the Bk to
the Ak.
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4.3 Quark PDF and quark FF—the qq channel

×
1∫
x

dξ
ξ

1∫
z

dζ
ζ
e2qfq(ξ)Dq(ζ)σ̂

n=1
qq,k δ

((
1− ξ

x

)(
1− ζ

z

)
−
q2T
Q2

)
(4.27)

where we characterize the partonic cross sections σ̂n=1
qq,k by a series over the dimensional

regulator ε

σ̂n=1
qq,k ≡

∞∑
i=0

εiσ̂n=1
qq,k,i (4.28)

The non-zero coefficients are given by

σ̂n=1
qq,1,0 = 2CF

xz

ξζ

[
1

Q2q2T

(
Q4 ξ

2ζ2

x2z2
+
(
Q2 − q2T

)2)
+ 6

]
(4.29a)

σ̂n=1
qq,1,1 = −2CF

Q2

q2T

(
1 +

ζ

z
+
ξ

x
− 4

[
x

ξ
+
z

ζ

]
+ 5

xz

ξζ

)
+ CF − 2CF

q2T
Q2

xz

ξζ
(4.29b)

σ̂n=1
qq,2,0 = 8CF

xz

ξζ
(4.29c)

σ̂n=1
qq,2,1 = 2CF

Q2

q2T

(
ξζ

xz
− 3

xz

ξζ
+ 4

[
x

ξ
+
z

ζ

]
− 4

)
− 4CF

xz

ξζ
+ 2CF

xz

ξζ

q2T
Q2

(4.29d)

σ̂n=1
qq,2,2 = 2CF

Q2

q2T

(
ξζ

xz
− xz

ξζ
− 2

[
ζ

z
+
ξ

x

]
+ 4

)
+ 4CF

xz

ξζ
− 2CF

xz

ξζ

q2T
Q2

(4.29e)

σ̂n=1
qq,3,0 = 4CF

xz

ξζ

Q2 + q2T
QqT

(4.29f)

σ̂n=1
qq,3,1 = 4CF

x(ζ − z) + z(ξ − x)

ξζ

Q

qT
(4.29g)

σ̂n=1
qq,4,0 = 4CF

xz

ξζ
(4.29h)

σ̂n=1
qq,4,1 = −4CF

xz

ξζ
(4.29i)

Up to higher twist corrections the derived formulas precisely describe the transverse
momentum distribution. To regulate it for qT → 0 we have to expand the delta
distribution in equation (4.27). As the most divergent terms are ∼ q−2

T the expansion
has to include all terms up to O(q2T ) to guarantee that all divergent terms are taken into
account. The calculation regarding the expansion of the delta distribution is presented
in appendix D.4, the result is given in equation (D.84). We will use the alternative
form of the generalized plus distribution (for its definition see equation (D.83)) in
terms of ordinary plus and delta distributions, given in equation (D.86). Besides we
adjust the prefactor to be consistent with the leading order in equation (4.23). Note
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Chapter 4 Divergent terms for SIDIS at small transverse momentum

that the factor including the transverse momentum, which is required to perform the
regularization, is only introduced by this adjustment. Moreover the global prefactor
will not participate when the dimension will be set to four (ε = 0), because no finite
terms are generated by it after regularization. Nevertheless we will not drop it for
clarity and the result reads

dσn=1
qq

dRd
≈ (4π)4

α2αs
2zQ4

Γ(1− ε)

(
q2T
4π

)ε∑
k

Ak

1∫
x

dξ
1∫
z

dζ

×

[
δ(ξ − x)δ(ζ − z) ln

(
Q2

xzq2T

)
+
δ(ξ − x)

(ζ − z)+
+
δ(ζ − z)

(ξ − x)+

+
xzq2T
Q2

{
δ(ξ − x)δ(ζ − z)∂ξ∂ζ

[
2 + ln

(
Q2

xzq2T

)]
+

[
δ(ξ − x)

(ζ − z)+
+
δ(ζ − z)

(ξ − x)+

]
∂ξ∂ζ

− δ(ξ − x)δ(1− ζ)

1− z
− δ(ζ − z)δ(1− ξ)

1− x

}]

× 1

Γ(1− ε)

(
4πµ2

q2T

)εxz
ξζ
e2qfq(ξ)Dq(ζ)σ̂

n=1
qq,k (4.30)

For the regularization of the expressions as qT → 0 only the leading-order terms
of the delta distribution expansion are necessary, because the next-to-leading-order
terms produce no non-regular divergences. This means we can follow the standard
way described in [224]. A detailed analysis of the regularization is provided in the
appendix D.5, including the renormalization of the PDF and FF. In order to present
the result of this section we have to define the convolutions

fq(x)⊗ g ≡
1∫
x

dξ
ξ
fq(ξ)g

(
x

ξ

)
(4.31a)

g ⊗Dq(z) ≡
1∫
z

dζ
ζ
Dq

(
z

ζ

)
g(ζ) (4.31b)

the plus distribution respective to the transverse momentum
Q2

T∫
0

dq2T f(q2T )
[
g(q2T )

]
+
≡

Q2
T∫

0

dq2T
[
f(q2T )− f(0)

]
g(q2T ) (4.32)

where QT is the kinematic limit of the transverse momentum

Q2
T = Q2 (1− x)(1− z)

xz
(4.33)
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and the plus distribution regarding momentum fractions

1∫
a

dy
y

f(y)

(1− y)+
≡

1∫
a

dy
y

f(y)− f(1)

1− y
+ f(1) ln

(
1− a

a

)
(4.34)

Furthermore we will use the ordinary leading order qq splitting function Pqq defined by
equations (1.76b), (1.87b) and (B.1) and define in the spirit of [224] the abbreviations

cq(y) ≡ (1− y)− 4δ(1− y) (4.35a)

P̃ i(y) ≡ yi

(1− y)+
(4.35b)

We present the result by dividing it into three parts

dσqq
dR4

= e2q
2π(4π)4α2

zQ2

[
X(1)
qq δ(q

2
T ) +

αs
2π

(
X(2)
qq + Yqq

)]
(4.36)

The first part obviously describes all parts that contribute exclusively for zero transverse
momentum

X(1)
qq = A1

[
fq(x)Dq(z) +

αs
2π

{
ln
(
Q2
T

µ2

)(
fq(x)

[
Pqq ⊗Dq(z)

]
+Dq(z)

[
fq(x)⊗ Pqq

])
+ fq(x)Dq(z)CF

(
3 ln
(
Q2

Q2
T

)
− ln2

(
Q2

Q2
T

))
+ CFDq(z)

[
fq(x)⊗ cq

]
+ CF fq(x)

[
Dq(z)⊗ cq

]}]
(4.37)

which contains the leading-order and also next-to-leading-order contributions. Further
the structure function A1 is sufficient. The second part collects all terms that are
divergent as qT → 0. This implies all terms that are usually resummed, id est the non
integrable terms but also all integrable terms that are less but still divergent. Because
the leading order is already described by X(1)

qq we factored out the coupling constant
αs in the definition. The term then reads

X(2)
qq = A1CF fq(x)Dq(z)

2
 ln

(
Q2

q2T

)
q2T


+

− 3

(q2T )+


+

A1

(q2T )+

(
fq(x)

[
Pqq ⊗Dq(z)

]
+Dq(z)

[
fq(x)⊗ Pqq

])
+
CF
Q2

[
4A1 + 4A2 + 2A4

]
fq(x)Dq(z) ln

(
Q2

q2T

)

109



Chapter 4 Divergent terms for SIDIS at small transverse momentum

+
2CF
Q2

A3
Q

qT

[
fq(x)Dq(z) ln

(
Q2

q2T

)
+Dq(z)

[
fq(x)⊗ P̃ 2

]
+ fq(x)

[
Dq(z)⊗ P̃ 2

]]
+

2CF
Q2

A1 ln
(
Q2

q2T

)
×
[
2fq(x)Dq(z)− xf ′q(x)Dq(z)− zfq(x)D

′
q(z) + xzf ′q(x)D

′
q(z)

]
(4.38)

where a prime denotes the first derivative of a function. In Yqq all terms that are finite
for qT → 0 are collected

Yqq =
2CF
Q2

[
2A1 + 2A2 +A4

](
Dq(z)

[
fq(x)⊗ P̃ 2

]
+ fq(x)

[
Dq(z)⊗ P̃ 2

])
+
CF
Q2

A1
q2T
Q2

[
fq(x)Dq(z) ln

(
Q2

q2T

)
+Dq(z)

[
fq(x)⊗ P̃ 2

]
+ fq(x)

[
Dq(z)⊗ P̃ 2

]]
+

2CF
Q2

A3
qT
Q

[
fq(x)Dq(z) ln

(
Q2

q2T

)
+Dq(z)

[
fq(x)⊗ P̃ 2

]
+ fq(x)

[
Dq(z)⊗ P̃ 2

]]
+

2CF
Q2

(
2A2 +A4 +A3

[
Q

qT
+
qT
Q

])
q2T
Q2

×

[(
xzf ′q(x)D

′
q(z)− 2xf ′q(x)Dq(z)− 2zfq(x)D

′
q(z) + 4fq(x)Dq(z)

)
×
[
2 + ln

(
Q2

q2T

)]
+ xzD′

q(z)
[
f ′q(x)⊗ P̃ 2

]
+ xzf ′q(x)

[
D′
q(z)⊗ P̃ 2

]
− 2xDq(z)

[
f ′q(x)⊗ P̃ 2

]
− 2xf ′q(x)

[
Dq(z)⊗ P̃ 3

]
− 2zD′

q(z)
[
fq(x)⊗ P̃ 3

]
− 2zfq(x)

[
D′
q(z)⊗ P̃ 2

]
+ 4Dq(z)

[
fq(x)⊗ P̃ 3

]
+ 4fq(x)

[
Dq(z)⊗ P̃ 3

]]

+
CF
Q2

A1

(
4
q2T
Q2

+
q4T
Q4

)
×

[(
4fq(x)Dq(z)− 2xf ′q(x)Dq(z)− 2zfq(x)D

′
q(z)

)[
2 + ln

(
Q2

q2T

)]
− 2xDq(z)

[
f ′q(x)⊗ P̃ 2

]
− 2xf ′q(x)

[
Dq(z)⊗ P̃ 3

]
− 2zD′

q(z)
[
fq(x)⊗ P̃ 3

]
− 2zfq(x)

[
D′
q(z)⊗ P̃ 2

]
+ 4Dq(z)

[
fq(x)⊗ P̃ 3

]
+ 4fq(x)

[
Dq(z)⊗ P̃ 3

]]

+
CF
Q2

A1

[
−2x

(
Dq(z)

[
f ′q(x)⊗ P̃ 2

]
+ f ′q(x)

[
Dq(z)⊗ P̃ 3

]
+ 2f ′q(x)Dq(z)

)
− 2z

(
D′
q(z)

[
fq(x)⊗ P̃ 3

]
+ fq(x)

[
D′
q(z)⊗ P̃ 2

]
+ 2fq(x)D

′
q(z)

)
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q(pq)
H(P )

q(p)

g(ph)

l(l1) l(l2) h(Ph)

Y (PY )

X(PX)

Φq

H ∆g

Figure 4.2: Invariant amplitude Mgq of the SIDIS process. The hard scattering amplitude is
depicted with the red blob H, while soft functions are depicted with green blobs.
For this channel these are in particular the Fourier transform of a hadronic matrix
element where a quark is created Φq and the Fourier transform of a hadronic matrix
element where a gluon creates a hadronic state containing one measured hadron ∆g.
The definitions can be read of easily in equation (4.40). Particle momenta are denoted
in brackets.

+ 4Dq(z)
[
fq(x)⊗ P̃ 3

]
+ 4fq(x)

[
Dq(z)⊗ P̃ 3

]
+ 8fq(x)Dq(z)

]

+
1

Q2
A1xz

[(
4
q2T
Q2

+
q4T
Q4

)
CF
(
D′
q(z)

[
f ′q(x)⊗ P̃ 2

]
+ f ′q(x)

[
D′
q(z)⊗ P̃ 2

])
+D′

q(z)
[
f ′q(x)⊗ Pqq

]
+ f ′q(x)

[
Pqq ⊗D′

q(z)
]
− 3CF f

′
q(x)D

′
q(z)

+

(
4
q2T
Q2

+
q4T
Q4

)
CF f

′
q(x)D

′
q(z)

[
2 + ln

(
Q2

q2T

)]
+ 4CF f

′
q(x)D

′
q(z)

]
(4.39)

4.4 Quark PDF and gluon FF—the gq channel

This section is concerned with the terms that incorporate a quark PDF but a gluon
FF. The corresponding invariant amplitude Mgq is shown in figure 4.2. We will follow
the same steps as in the previous section. By using the Feynman rules the invariant
amplitude can be expressed by

Mgqδ
d
(
P + l1 − PX − l2 − Ph − PY − pq

)
=

∫
ddp
(2π)d

∫
ddph
(2π)d

δd
(
l1 + p− l2 − ph − pq

)
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×
[∫

ddη eip·η 〈X|ψAi (η)|P 〉
]
Ha,µ
i,A

[∫
ddηh e−iph·ηh 〈PY , Ph|Gaµ(ηh)|0〉

]
=

−i
(Ph + PY ) ·m

〈X|ψAi (0)|P 〉H
a,µ
i,A 〈PY , Ph|mνGaνµ(0)|0〉

× δd
(
P + l1 − PX − l2 − Ph − PY − pq

)
(4.40)

As before ψAi denotes a quark field with Dirac index i and color index A, where the
fundamental representation is used. Now also a gluon field is present, denoted by Gaµ
with µ being the Lorentz index and a the color index of the adjoint representation. Gaµν
is the corresponding field strength tensor. The hard scattering H encloses the leptonic
parts of the amplitude again. Its indices are adapted to its external interface compared
to the hard scattering function we defined in the previous section. The cross section
deduced from the amplitude is given by

dσgq
dRd

=

∫ ddpq
(2π)d−1

δ((pq)
2)Θ(p0q)

∫
ddp

∫
ddph (2π)dδd(l1 − l2 + p− ph − pq)

× 1

(ph ·m)2
1

Nc
tr
(
HµΦq(p, P )γ0H†,ν∆g

νµ(ph, Ph)
)

(4.41)

where the trace is again over all indices. In this case these are in particular the
Dirac indices of H and Φq and both types of color indices (fundamental and adjoint
representation) that are embodied in H. We keep the Lorentz indices of H and ∆g

explicit. Latter is the fully unintegrated gluon FF correlator defined by

∆g
νµ(p, P ) ≡

1

N2
c − 1

∫
Y

∑ ∫
ddη
(2π)d

eip·η

× 〈0|mρGaρν(0)|P, PY 〉 〈P, PY |mσGaσµ(η)|0〉 (4.42)

while Φq is again the quark PDF correlator defined in equation (4.20a). Note that the
complex conjugated hard part is accompanied by only one γ0, because it contains an ex-
ternal quark. We use again the collinear expansion to accomplish collinear factorization
for the following computation. That means we approximate the parton momenta in the
hard scattering part and in the delta distribution by means of equations (4.19) which
allows us to integrate out the other degrees of freedom in the unintegrated correlator
and to find the collinear gluon FF correlation function

∆g,coll
νµ (ζ, Ph) ≡

1

N2
c − 1

∫
Y

∑ ∫
dη
2π

ei (Ph·m)

ζ
η

× 〈0|mρGaρν(ηm)[ηm,∞]|Ph, PY 〉 〈Ph, PY |[∞, 0]mσGaσµ(0)|0〉 (4.43)

where we have included the appropriate Wilson lines as before. The quark PDF
correlator is again parametrized according to equation (4.21a). For the gluon FF
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correlator the parametrization is given by

∆g,coll
νµ (ζ, Ph) =

ph ·m
ζ

Dg(ζ)
∑
λ

ε∗µ(m,λ)εν(m,λ) (4.44)

Here εµ is the polarization vector of the hadronizing gluon and Dg the ordinary
unpolarized collinear gluon fragmentation function. We use Feynman gauge, which
means the polarization sum gives

∆g,coll
νµ (ζ, Ph) = −gµν

ph ·m
ζ

Dg(ζ) (4.45)

and we may write the differential cross section in collinear factorization

dσgq
dRd

=
π

zQ2

1∫
x

dξ
ξ

1∫
z

dζ
ζ
fq(ξ)Dg(ζ)δ

((
1− ζ

z

)(
1− ξ

x

)
−
q2T
Q2

)
× −gµν

Nc
tr
(
Hµ

/pγ
0H†,ν) (4.46)

where we already used the d dimensional delta distribution to evaluate the pq integral
(in contrast to the qq channel, here we only have to take care for this kinematics). The
partonic scattering amplitude is computed in appendix D.3.2. Inserting the result into
the hadronic cross section yields

dσgq
dRd

= (4π)4
α2αsµ

2ε

2zQ4

∑
k

Ak

×
1∫
x

dξ
ξ

1∫
z

dζ
ζ
e2qfq(ξ)Dg(ζ)σ̂gq,kδ

((
1− ξ

x

)(
1− ζ

z

)
−
q2T
Q2

)
(4.47)

with

σ̂gq,k ≡
∞∑
i=0

εiσ̂gq,k,i (4.48)

and the non-zero coefficients are given by

σ̂gq,1,0 = 2CF

[
Q2

q2T

x

ξ

(
1− z

ζ

)(
ξ2ζ2

x2z2
+
ζ2

z2

(
1− z

ζ

)2
)

+ 4
x

ξ
+
z

ζ
− 5

xz

ξζ

]
(4.49a)

σ̂gq,1,1 = 2CF

[
q2T
Q2

(
1− x

ξ

)(
1− z

ζ

)
− Q2

q2T

(
1− z

ζ

)

×

{
ξ

x

(
1− ζ

z

)2( ξ
x
− 2

)
−
(
1− ζ

z

)(
3 +

ζ

z

)
+
x

ξ

(
5− 4

ζ

z

)}]
(4.49b)
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σ̂gq,2,0 = 8CF
x

ξ

(
1− z

ζ

)
(4.49c)

σ̂gq,2,1 = 2CF
Q2

q2T

(
1− z

ζ

)[
4− 6

ζ

z
+
x

ξ

(
ζ2

z2
+ 4

ζ

z
− 4

)
+
ξ

x

(
1 +

ζ2

z2

)]
(4.49d)

σ̂gq,2,2 = −2CF
Q2

q2T

(
1− z

ζ

)[
xζ2

ξz2
+ 2

ζ

z

(
1− ζ

z

)
+
ξ

x

(
1− ζ

z

)2
]

(4.49e)

σ̂gq,3,0 = −4CF

[
Q

qT

xζ

ξz

(
1− z

ζ

)2

+
qT
Q

xz

ξζ

]
(4.49f)

σ̂gq,3,1 = −4CF
Q

qT

(
1− z

ζ

)(
ζ

z
+ 2

x

ξ
− xζ

ξz
− 1

)
(4.49g)

σ̂gq,4,0 = 4CF
x

ξ

(
1− z

ζ

)
(4.49h)

σ̂gq,4,1 = −4CF
x

ξ

(
1− z

ζ

)
(4.49i)

As we have done for the n = 1 case of the qq channel we now apply the approximation
of the delta distribution and adjust the prefactor to match the leading-order expression,
see the similar transition form equation (4.27) to (4.30). Then the regularization for
qT → 0 is performed, including the renormalization of the PDF and the FF, where we
encounter the splitting function Pgq as defined in (B.1d) and additionally define

cig(y) ≡ yi (4.50)

Then the final result of this channel can be expressed by

dσgq

dR4
= e2q

2π(4π)4α2

zQ2

αs
2π

[
X(1)
gq δ(q

2
T ) +X(2)

gq + Ygq
]

(4.51)

where again X(1)
gq contains all terms that contribute only for qT = 0, X(2)

gq is accounting
all divergent terms as qT → 0 and Ygq collects all finite terms. In contrast to the qq
channel all terms are of order αs, which motivates a slightly different segmentation
of the result. In particular we have factored out the overall factor αs/(2π) from X

(1)
gq .

The coefficients are then given by

X(1)
gq = A1

[
ln
(
Q2
T

µ2

)
fq(x)

[
Pgq ⊗Dg(z)

]
+ CF fq(x)

[
Dg(z)⊗ c1g

]]
(4.52)

X(2)
gq = A1

[
1

(q2T )+
fq(x)

[
Pgq ⊗Dg(z)

]
+
CF
Q2

xf ′q(x)Dg(z) ln
(
Q2

q2T

)]
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−A3
2CF
QqT

fq(x)
[
Dg(z)⊗ (c0g − c1g)

]
(4.53)

Ygq = A1
CF
Q2

[
Dg(z)

[
fq(x)⊗ c1g

]
+ 4fq(x)

[
Dg(z)⊗ c1g

]
+ xzf ′q(x)

[
D′
g(z)⊗ c−1

g

]
+ xDg(z)

[
f ′q(x)⊗ P̃ 0

]
+ xf ′q(x)

[
Dg(z)⊗ P̃ 0

]
+ 2xf ′q(x)Dg(z) +

[
xf ′q(x)− 2fq(x)

]
×
([
Dg(z)⊗

(
c0g + c1g − 2c2g

)]
+ z

[
D′
g(z)⊗

(
1

CF
Pgq − c−1

g

)])
+
q2T
Q2

(
2Dg(z)

[
fq(x)⊗

(
P̃ 2 − 6P̃ 3

)]
+ 2fq(x)

[
Dg(z)⊗

(
4P̃ 2 − 9P̃ 3

)]
+ 2xDg(z)

[
f ′q(x)⊗

(
3P̃ 2 − P̃ 1

)]
+ 2xf ′q(x)

[
Dg(z)⊗

(
5P̃ 3 − 3P̃ 2

)]
+ zD′

g(z)
[
f ′q(x)⊗

(
2P̃ 3 − P̃ 2

)]
+ zfq(x)

[
D′
g(z)⊗

(
9P̃ 2 − 8P̃ 1

)]
+ xzD′

g(z)
[
f ′q(x)⊗ c1g

]
+ 4xzf ′q(x)

[
D′
g(z)⊗ c1g

]
+

[
2 + ln

(
Q2

q2T

)]
×
[
zfq(x)D

′
g(z) + 4xf ′q(x)Dg(z)− 10fq(x)Dq(z)

])]

+
(
2A2 +A4

)2CF
Q2

×

[
fq(x)

[
Dg(z)⊗ c1g

]
+
q2T
Q2

(
−2Dg(z)

[
fq(x)⊗ P̃ 3

]
+ 2fq(x)

[
Dg(z)⊗

(
P̃ 2 − 2P̃ 3

)]
(
xf ′q(x)Dg(z)− 2fq(x)Dg(z)

)[
2 + ln

(
Q2

q2T

)]
+ xDg(z)

[
f ′q(x)⊗ P̃ 2

]
− xf ′q(x)

[
Dg(z)⊗

(
P̃ 2 − 2P̃ 3

)]
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− 2zfq(x)
[
D′
g(z)⊗ c1g

]
+ xzf ′q(x)

[
D′
g(z)⊗ c1g

])]

−A3
2CF
Q2

qT
Q

×

[
fq(x)Dg(z) ln

(
Q2

q2T

)
+Dg(z)

[
fq(x)⊗ P̃ 2

]
+ fq(x)

[
Dg(z)⊗ P̃ 2

]
+
(
xf ′q(x)− 2fq(x)

)(
2
[
Dg(z)⊗ c2g

]
+ z
[
D′
g(z)⊗ (c0g − c1g)

])
+
q2T
Q2

((
4fq(x)Dg(z)− 2xf ′q(x)Dg(z)− 2zfq(x)D

′
g(z) + xzf ′q(x)D

′
g(z)

)
×
[
2 + ln

(
q2T
Q2

)]
+ 4
(
Dg(z)

[
fq(x)⊗ P̃ 3

]
+ fq(x)

[
Dg(z)⊗ P̃ 3

])
− 2x

(
Dg(z)

[
f ′q(x)⊗ P̃ 2

]
+ f ′q(x)

[
Dg(z)⊗ P̃ 3

])
− 2z

(
D′
g(z)

[
fq(x)⊗ P̃ 3

]
+ fq(x)

[
D′
g(z)⊗ P̃ 2

])
+ xz

(
D′
g(z)

[
f ′q(x)⊗ P̃ 2

]
+ f ′q(x)

[
D′
g(z)⊗ P̃ 2

]))]
(4.54)

4.5 Gluon PDF and quark FF—the qg channel
The final channel contributing at O(αs) to the cross section includes a gluon PDF and
a quark FF. The related invariant amplitude Mqg is shown in figure 4.3. As in the
sections before we can read off the analytical expression

Mqgδ
d
(
P + l1 − PX − l2 − Ph − PY − pq̄

)
=

∫
ddp
(2π)d

∫
ddph
(2π)d

δd
(
l1 + p− l2 − ph − pq

)
×
[∫

ddη eip·η 〈X|Gaµ(η)|P 〉
]
Ha,µ
i,A

[∫
ddηh e−iph·ηh 〈PY , Ph|ψ̄Ai (ηh)|0〉

]
=

i
(P − PX)+

〈X|Ga+µ(0)|P 〉H
a,µ
i,A 〈PY , Ph|ψ̄Ai (0)|0〉

× δd
(
P + l1 − PX − l2 − Ph − PY − pq

)
(4.55)

We denote the plus component of a four vector by a superscript plus p+ ≡ p · n−. All
other notations are similar to the notations we introduced during the computation of
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q(pq̄)
H(P )

g(p)

q(ph)

l(l1) l(l2) h(Ph)

Y (PY )

X(PX)

Φg

H ∆q

Figure 4.3: Invariant amplitude Mqg of the SIDIS process. The hard scattering amplitude is
depicted with the red blob H, while soft functions are depicted with green blobs. For
this channel these are in particular the Fourier transform of a hadronic matrix element
where a gluon is created Φg and the Fourier transform of a hadronic matrix element
where a quark creates a hadronic state containing one measured hadron ∆q. The
definitions can be read of easily in equation (4.55). Particle momenta are denoted in
brackets.

the other channels. The corresponding differential cross section is given by

dσqg
dRd

=

∫ ddpq̄
(2π)d−1

δ((pq̄)
2)Θ(p0q̄)

∫
ddp

∫
ddph (2π)dδd(l1 − l2 + p− ph − pq̄)

× 1

(k+1 )
2

1

N2
c − 1

tr
(
HµΦgνµ(H

†,νγ0)∆q
)

(4.56)

where we defined the unintegrated gluon PDF correlator

Φgνµ ≡
∫

ddη
(2π)d

eip·η 〈P |Ga+ν(0)Ga+µ(η)|P 〉 (4.57)

The quark FF correlator ∆q
ij has been defined in equation (4.17). Applying the collinear

expansion (see equations (4.19)) in the partonic parts and the overall delta distribution
lets us integrate out the non-collinear degrees of freedom of the correlators. The
collinear quark FF correlator is given in equation (4.20b), for the gluon PDF correlator
we find

Φg,coll
νµ =

∫
dη
2π

eiP+ξη 〈P |Ga+ν(0)[0, ηn−]Ga+µ(ηn−)|P 〉 (4.58)

where as always we included the appropriate gauge link. The parameterization of the
collinear quark FF correlator is given in equation (4.21b) and the collinear gluon PDF
correlator can be parametrized in Feynman gauge in terms of the ordinary gluon PDF
fg by

Φg,coll
νµ =

p+

2
fg(ξ)

∑
λ

ε∗µ(n+, λ)εν(n+, λ) = −gµν
p+

2
fg(ξ) (4.59)
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Putting everything together the cross section can be expressed by

dσqg
dRd

=
π

zQ2

1∫
x

dξ
ξ

1∫
z

dζ
ζ
fg(ξ)Dq(ζ)δ

((
1− ζ

z

)(
1− ξ

x

)
−
q2T
Q2

)
× −gµν
N2
c − 1

tr
(
HµH†,νγ0/ph

)
(4.60)

Similar to the gq but in contrast to the qq channel we have used the d dimensional
delta distribution to eliminate the pq̄ integral. Details to the calculation of the partonic
invariant amplitude are presented in appendix D.3.3. The result is given by

dσgq
dRd

= (4π)4
α2αsµ

2ε

2zQ4

∑
k

Ak

×
1∫
x

dξ
ξ

1∫
z

dζ
ζ
e2qfg(ξ)Dq(ζ)σ̂qg,kδ

((
1− ξ

x

)(
1− ζ

z

)
−
q2T
Q2

)
(4.61)

with

σ̂qg,k ≡
∞∑
i=0

εiσ̂qg,k,i (4.62)

and the non-zero coefficients

σ̂qg,1,0 = 2TR
x

ξ

(
1− x

ξ

)[
Q2

q2T

(
ξ2ζ2

x2z2
− 2

ξζ

xz
+ 2

)
+ 10− 2

ξ

x
− 2

ζ

z

]
(4.63a)

σ̂qg,1,1 = 2TR
Q2

q2T

ζ2

z2

(
1− ξ

x

)
(4.63b)

σ̂qg,2,0 = 16TR
x

ξ

(
1− x

ξ

)
(4.63c)

σ̂qg,2,1 = 2TR
Q2

q2T

(
1− x

ξ

)[
2
ζ2

z2

(
x

ξ
− 1

)
+
ξ

x

(
ζ2

z2
− 2

ζ

z
+ 2

)]
(4.63d)

σ̂qg,2,2 = 2TR
Q2

q2T

ζ2

z2

(
1− ξ

x

)
(4.63e)

σ̂qg,3,0 = 2TR
x

ξ

(
1− x

ξ

)
2

qTQ

[
2(Q2 + q2T )−Q2 ξζ

xz

]
(4.63f)

σ̂qg,3,1 = −2TR
qT
Q

(
1− x

ξ

)2(
1− 2

z

ζ

)
(4.63g)

σ̂qg,4,0 = 8TR
x

ξ

(
1− x

ξ

)
(4.63h)
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In order to regularize the expression for qT → 0 it is again necessary to adjust the
prefactor to match the global prefactor of the leading order. After using the expansion
formula of the delta distribution the regularization can be performed including the
renormalization of the PDF and the FF, for this channel with the appropriate splitting
function Pqg, see equation (B.1e). After setting ε to zero the result can be splitted up
similarly to the gq channel

dσqg
dR4

= e2q
2π(4π)4α2

zQ2

αs
2π

[
X(1)
qg δ(q

2
T ) +X(2)

qg + Yqg
]

(4.64)

where X(1)
qg collects all terms that contribute at qT = 0 only, X(2)

qg includes all terms
that are divergent as qT → 0 and Yqg contains all the rest. Their analytical expressions
are

X(1)
qg = A1

[
ln
(
Q2
T

µ2

)
Dq(z)

[
fg(x)⊗ Pqg

]
+ TRDq(z)

[
fg(x)⊗ c0g

]]
(4.65)

X(2)
qg =

A1

(q2T )+
Dq(z)

[
fg(x)⊗ Pqg

]
+
TR
Q2

A1 ln
(
Q2

q2T

)(
zfg(x)D

′
q(z)− fg(x)Dq(z)

)
+A3

2TR
QqT

Dq(z)
[
fg(x)⊗ (2c2g − c1g)

]
(4.66)

Yqg = A1
TR
Q2

[
2Dq(z)

(
4
[
fg(x)⊗ c2g

]
−
[
fg(x)⊗ c1g

])
+ xzD′

q(z)
1

TR

[
f ′g(x)⊗ Pqg

]
+ xDq(z)

[
f ′g(x)⊗

(
c0g − 2c2g

)]
+ 2
(
zfg(x)D

′
q(z)− fg(x)Dq(z)

)
+ zD′

q(z)
[
fg(x)⊗

(
3P̃ 2 − 8P̃ 3 + 6P̃ 4

)]
+ zfg(x)

[
D′
q(z)⊗

(
2P̃ 1 − P̃ 0

)]
+Dq(z)

[
fg(x)⊗

(
P̃ 2 + 4P̃ 3 − 6P̃ 4

)]
+ fg(x)

[
Dq(z)⊗

(
P̃ 0 +−2P̃ 2

)]
+
q2T
Q2

(
xzD′

q(z)
[
f ′g(x)⊗

(
8c2g − 2c1g

)]
+ xDq(z)

[
f ′g(x)⊗

(
2c1g − 10c2g

)]
+

[
2 + ln

(
Q2

q2T

)](
6zfg(x)D

′
q(z)− 8fg(x)Dq(z)

)
+ zD′

q(z)
[
fg(x)⊗

(
2P̃ 2 − 20P̃ 3 + 24P̃ 4

)]
+ zfg(x)

[
D′
q(z)⊗

(
−2P̃ 0 + 8P̃ 1

)]
− 8fg(x)

[
Dq(z)⊗ P̃ 2

]
+Dq(z)

[
fg(x)⊗

(
−2P̃ 2 + 24P̃ 3 − 30P̃ 4

)])]
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+ (2A2 +A4)
4TR
Q2

×

[
Dq(z)

[
fg(x)⊗ c2g

]
+
q2T
Q2

((
xzD′

q(z)− xDq(z)
)[
f ′g(x)⊗ c2g

]
+

[
2 + ln

(
Q2

q2T

)](
zfg(x)D

′
q(z)− fg(x)Dq(z)

)
+ zfg(x)

[
D′
q(z)⊗ P̃ 1

]
− zD′

q(z)
[
fg(x)⊗

(
2P̃ 3 − 3P̃ 4

)]
+Dq(z)

[
fg(x)⊗

(
2P̃ 3 − 3P̃ 4

)]
− fg(x)

[
Dq(z)⊗ P̃ 2

])]
+ 2A3TR

qT
Q3

×

[
2Dq(z)

[
fg(x)⊗ c2g

]
+

[
2 + ln

(
Q2

q2T

)](
zfg(x)D

′
q(z)− 2fg(x)Dq(z)

)
+ xzD′

q(z)
[
f ′g(x)⊗

(
2c2g − c1g

)]
− 2xDq(z)

[
f ′g(x)⊗ c2g

]
− zD′

q(z)
[
fg(x)⊗

(
6P̃ 3 − 6P̃ 4 − P̃ 2

)]
− zfg(x)

[
D′
q(z)⊗

(
P̃ 0 − 2P̃ 1

)]
+ 2Dq(z)

[
fg(x)⊗

(
2P̃ 3 − 3P̃ 4

)]
− 2fg(x)

[
Dq(z)⊗ P̃ 2

]
+
q2T
Q2

((
xzD′

q(z)− xDq(z)
)[
f ′g(x)⊗ c2g

]
+

[
2 + ln

(
Q2

q2T

)](
zfg(x)D

′
q(z)− fg(x)Dq(z)

)
+
(
zD′

q(z)−Dq(z)
)[
fg(x)⊗

(
3P̃ 4 − 2P̃ 3

)]
+ zfg(x)

[
D′
q(z)⊗ P̃ 1

]
− fg(x)

[
Dq(z)⊗ P̃ 2

])]
(4.67)

4.6 Result and Conclusions

In this chapter we have presented a full NLO calculation of the SIDIS process that
is capable to describe the cross section for small or even zero transverse momentum
qT . While this has been done before decades ago, concentrating on the non-regular
terms as qT → 0, which are then subsequently resummed up to all orders to get a
finite expression even for vanishing qT , our calculation includes for the first time not
only the non-regular but all divergent terms as qT → 0. This is mainly achieved by a
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higher-order expansion of the overall delta distribution, which limited the access to the
sub-dominant but still divergent terms. Now it can be guaranteed that all divergent
terms are taken into account. The overall analytical result of this chapter is given by
the sum over the three channels that contribute at NLO and all possible quark flavours

dσ
dR4

≡
∑

q∈Q∪Q

[
dσqq
dR4

+
dσgq
dR4

+
dσqg
dR4

]
(4.68)

where the result of the single channels have been reported in equations (4.36), (4.51)
and (4.64) for the qq, gq and qg channel respectively. The sum runs over all quark and
anti-quark flavours. For this purpose we use the set Q of all quark flavours defined in
equation (1.3).

This chapter can be seen as a starting point for a more complete description of the
physics of small transverse momenta. Future work might incorporate it to generate
a more general resummation formalism. In order to do this, we want to make some
remarks. Our careful calculation revealed divergent terms that depend not on the
PDF and FF of the process but their derivatives. In order to handle these it might be
necessary to perform a Mellin transformation (see appendix E), which allows to perform
a integration by parts to shift the derivatives on analytically manageable expressions
(namely powers of the transformed variable). The transformation is desirable anyway,
as it turns all the convolutions into simple products. Additionally it is known from
the original resummation formalism that it has to be handled in Fourier space of the
transverse momentum, the impact parameter space. A very simple attempt would be
to exponentiate all divergent terms without having regard for higher-order implications,
as it is performed in [224]. Unfortunately we encounter an integral in the exponent
that we cannot solve analytically in such a way that it would be numerically possible
to perform the Fourier and double Mellin inverse transforms.

A byproduct of the calculation is the gain of knowledge of the Y term that contains
all finite (and in the literature all regular) terms. This is particularly helpful for a
subsequent matching procedure once a resummation has been performed, independent
of whether the resummation accounts for non-regular or divergent terms.

Finally the key step—the expansion of the delta distribution—does not depend on
the SIDIS process, which makes it straightforward to apply the calculation also for
other processes like the Drell-Yan process or electron-positron annihilation. This is
also not limited to unpolarized cross sections but can be extended to polarized cross
sections as well.
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Chapter 5

Parton distribution functions in Mellin
space

In science if you know what you are doing
you should not be doing it. In engineering if
you do not know what you are doing you
should not be doing it. Of course, you
seldom, if ever, see either pure state.

— Richard Hamming

In this chapter we will present various methods of describing the parton distribution
functions and fragmentation functions in Mellin space. We will give an overview over
the most common technique and then introduce a method, that has not been used for
this purpose in the past. We will discuss its benefits and also its drawbacks in detail.
Finally we will present numerical implementations in Fortran and C++, showing their
public interfaces and discussing their ability for future improvements and extendability.

5.1 Introduction

Since all particles interacting via the strong force can only be found in bound states,
one of the most demanding and important tasks to get reliable results from perturbative
QCD is the treatment of nonperturbative parts. As has been pointed out in the intro-
ductory chapter 1 one key point, one may say the starting point, of perturbative QCD
is to disentangle short-distance and long-distance interactions. While the former can
be calculated inside the framework, the latter have to be gathered by phenomenological
studies. For collinear factorization the nonperturbative parts, that cannot be retrieved
directly by the theory, are the collinear parton distribution functions, which are usually
referred to simply as the parton distribution functions (PDFs).

In the last decades several vendors for parton distribution functions produced a
large variety of sets that are distributed and can be implemented for numerical studies
incorporating perturbative QCD. Most of them are concerned with the unpolarized
proton, as are the perhaps widest known sets of the CTEQ group [82, 86–88], MSTW
and MMHT [89, 90] and the NNPDF collaboration [91, 92]. These are updated regularly
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and offer a wide range of different error sets, number of flavours and incorporated
electroweak effects for the available perturbative orders. Beside a lot of other sets
have been developed, of especial interest are perhaps the sets constructed using only
the data of one specific collider, as there are the sets of HERA [248] or the Jefferson
Laboratory [249, 250]. Additionally there has been much work performed to describe
the polarized proton, starting with the early publications [251–253] and also up-to-
date sets like [254]. Although the proton is the particle, which is investigated most,
descriptions of other particles as pions [212, 213, 255] and large nuclei, for example [256],
are available. Naturally the second long-distance process, fragmentation, describing
the fragmentation process of final state partons into observable hadrons, has also been
modeled by various groups [257–260]. For the purpose of this topic, fragmentations
functions and parton distribution functions are similar. We will therefore reference
to both as parton distribution functions or PDFs. Finally there is also ongoing work
beside the collinear factorization on creating a reasonable description for generalized
parton distribution functions (GPDs) [261] and transverse momentum dependent parton
distribution functions (TMDs). For the latter a remarkable advance has been obtained
in the last years to perform a global fit [79, 80, 207, 262]. We will not address GPDs or
TMDs in this chapter. But in principle the technique that will be introduced can also
be applied to them.

The large amount of different vendors and sets required a reference book to follow
recent developments. This need has been satisfied by the Durham high energy particles
data project on their website [263]1, directing to the several original sources of the PDF
provider. A second need arising by the large amount of vendors is an unified interface
to enable easy comparisons between different sets for all computations relying on them.
This is offered by the lhapdf library [157]. It provides an universal interface and makes
many different sets easily interchangeable and comparable in every customer application.
Until lhapdf version 5 the program has been written in Fortran, presumably because
most customers also used Fortran in that time, but offering also a C++ interface. Since
2013 the program is distributed as version 6 written in C++, superseding version 5
in every manner. Still Fortran is taken account of by an interface that is identical to
the one of version 5. By its nature lhapdf is also a tremendous reference for existing
parton distributions. However, it should be mentioned, that not all existing sets are
available. First lhapdf only supports collinear PDFs. Second also some collinear sets
are not available at lhapdf, as is the DSS set [258, 259] for collinear fragmentation
functions.

The common procedure to produce PDFs is to find an appropriate functional form
for the PDFs in terms of the longitudinal momentum fraction of the parton inside the
hadron x (or of the hadron ‘inside’ the parton in case of the fragmentation functions)
at one specific scale µ20. This functional form is typically driven by the boundary
conditions, that xfi(x, µ2) → 0 for x → 1 and for x → 0, where fi is the parton

1The website has been superseded lately, but the current version does (at least at the moment) not
offer the list, that is available at the reference.
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5.1 Introduction

distribution function for parton i (sometimes also a superscript indicates the parent
hadron, which we suppress for clarity). Therefore the generic PDF parameterization is

xfi(x, µ
2
0) = ci,0x

ci,1(1− x)ci,2Pi(x) (5.1)

where Pi(x) is a polynomial. However, the details are much more sophisticated, as is
for example the MMHT parameterization [90]

xfi(x, µ
2
0) = ci,0x

ci,2(1− x)ci,3

[
1 +

4∑
k=1

ck,i,4T
Ch
k (1− 2xk)

]
(5.2)

with TCh
k (y) being Chebyshev polynomials. Most parametrizations of the CTEQ group

do even alter the generic parameterization [86]

xfi(x, µ
2
0) = ci,0x

ci,1(1− x)ci,2 eci,3x
(
1 + eci,4 x

)ci,5
(5.3)

To obtain the PDFs at an arbitrary scale µ2 the DGLAP evolution presented in
section 1.5 is applied. With this machinery a χ2 fit is performed to carefully selected
data to determine the parameters of the initial parameterization.

An alternative way is applied by the NNPDF collaboration using neural networks.
The technique contains of generating replicas of the experimental data (typically ≈ 1000
to achieve a reasonable error estimate) with artificial data generated by Monte Carlo
inputs. The functional form is extremely over-parameterized. To avoid overlearning,
each replica divides its data into a training and a validation set. The fit is performed in
the usual manner only on the training set, the validation set checks every fit-iteration
that no overlearning occurs, typically by stopping the fit, if the new parameters are
worse than the previous ones.

As different are the techniques and implementation details of the various set vendors,
all of them provide their results in the same way. As the functions are dependent
on x and µ2, the vendors offer grid files, spanning the supported (x, µ2) plane, and a
program containing an appropriate user interface and interpolation routines to access
(x, µ2) points in between the grid points. Some vendors also deliver an extrapolation
routine to reach areas not included in their grid.

For many calculations in pertubative QCD it is beneficial to transform the analytical
expressions into Mellin space (for details about the Mellin transform see appendix E).
Typical reasons are the need to perform an additional DGLAP evolution, resummation
of soft gluon logarithms at edges of the phase space, where the soft gluon kernels are
analytically only available in Mellin space, or simple the demand to turn multiple
convolutions into products. In any case one needs the parton distribution functions
also in Mellin space. Interestingly many fits itself are performed in Mellin space, as
for example GRV [255] or DSS [258, 259]. Unfortunately it is difficult use their fit
parameters directly, because by construction these are given at one initial scale only.
To obtain reliable results it would be necessary to implement the DGLAP evolution in
the exact same way, as was done for the fitting procedure.
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Chapter 5 Parton distribution functions in Mellin space

The common way to extract Mellin PDFs from a given set at one fixed scale, is a
second fit. One chooses a specific generic parameterization like in equation (5.1) (see
for example [264])

fi(x, µ
2
0) = ci,0x

ci,1(1− x)ci,2(1 + ci,3
√
x+ ci,4x+ . . .) (5.4)

with an appropriate number of terms inside the polynomial (note that for the following
the polynomial can contain every sort of power). This form translates into beta functions
B(N,M) in Mellin space

fi(N,µ
2
0) =

1∫
0

dxxN−1fi(x, µ
2
0)

= ci,0

[
B(N + ci,1, ci,2 + 1) + ci,3B(N + ci,1 + 0.5, ci,2 + 1)

+ ci,4B(N + ci,1 + 1, ci,2 + 1) + . . .
]

(5.5)

which can be calculated numerically without need of an integration and thus makes
the PDFs available in Mellin space. However, this procedure has to be followed for
every parton flavour and for every PDF set separately. The quality of the fit depends
strongly on the chosen parameterization, which might also be dependent on the parton
flavour. Furthermore results depend on the fit which exacerbates reproduction, unless
the fit is specified exactly. Most likely the fit will perform better, the closer the chosen
parameterization is to the parameterization of the PDF set. It is worth noticing that for
example the CTEQ parameterization in equation (5.3) can never be matched, because
the Mellin transform of the exponential leads to a result, that cannot be expressed
without the need of an additional integration, which in most cases could have been the
convolution with the original set in the first place. Still, with sufficient effort very good
results can be obtained.

To achieve also a scale dependence in Mellin space on can add a logarithmic depen-
dence on the parameters ci,j , like

ci,j → ci,j + di,j ln
(
µ2

µ20

)
(5.6)

and new parameters di,j for every parton flavour i. Most parameterizations are more
sophisticated, adding fit parameters also inside the logarithm. However, the main goal
is to simulate the logarithmic DGLAP evolution and find a reasonable description of
the PDFs set for the kinematics under consideration. The resulting parameterization
in Mellin space can be used for every scale that is covered by the fit, but naturally the
precision of the fit will suffer slightly.

In the following sections we will introduce a new technique to describe parton
distribution functions in Mellin space, by using simple cubic splines to interpolate
the PDFs. Then we will demonstrate their superior precision over existing Mellin
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5.2 Cubic spline approximation

PDF descriptions, especially their uniform quality for all different parton flavours.
Subsequently we will demonstrate the use of the method using the calculation of a
resummed Drell-Yan cross section differential in the mass of the intermediate vector
boson and discuss possible benefits in analytical calculations. Finally we will give a
brief introduction into two libraries (Fortran and C++) that provide an easy to use
access to the Mellin PDFs.

5.2 Cubic spline approximation

A very common problem in several disciplines, especially in engineering, is the search
for a smooth interpolation between fixed points or an approximation of a known but
difficult functional form. While a pure polynomial interpolation leads to sometimes
uncontrollable oscillations, the only slightly more difficult approach of splines yields
typically to a more stable interpolation. In particular if the goal is the approximation of
a known function splines typically give a much better result because of their flexibility.
Splines are classified by the degree of the polynomials in between the sampling points. A
higher degree guarantees smoother transitions between to concatenated polynomials (in
the sense of differentiability at the sampling points), but needs also higher computational
cost to calculate the splines and, as we will see, also higher computational cost to use
them in Mellin space. A good balance between these concerns is a cubic spline, which
is therefore our choice.

In case of parton distribution functions, every distributed set is given as grid in x, µ2
space. In the following we will consider a fixed scale µ2 only. We therefore will drop the
scale argument. Further the procedure does not depend on the parton flavour and we
can drop the subscript to indicate the flavour, too. For a grid with n sampling points in
x direction, which means we have the points fj ≡ f(xj) with j ∈

{
1, . . . , n

}
, we define

the cubic spline by its n− 1 polynomials defined in between the fj (k ∈
{
2, . . . , n

}
)

sk :
[
xk−1, xk

]
→ R (5.7a)

x 7→ pk(x− xk−1)
3 + pk−1(xk − x)3

6hk
+

[
fk
hk

− hk
6
pk

]
(x− xk−1)

+

[
fk−1

hk
− hk

6
pk−1

]
(xk − x) (5.7b)

with hk ≡ xk − xk−1 and the parameters pj . Latter are constrained by the demands of
continuity and differentiability at the sampling points

sk(xk−1) = fk−1 (5.8a)
sk(xk) = fk (5.8b)

∂xsk(xk) = ∂xsk+1(xk) (5.8c)
∂2xsk(xk) = ∂2xsk+1(xk) (5.8d)
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Chapter 5 Parton distribution functions in Mellin space

Further one has to decide the behavior at the boundaries. One common choice is what
we will call a ‘natural’ spline which implies

∂2xs2(x1) = ∂2xsn(xn) = 0 (5.9)

Another common choice is to fix the first derivatives to be equal to the analytical
derivative of the function

∂xs2(x1) = ∂xf1 (5.10a)
∂xsn(xn) = ∂xfn (5.10b)

We will call this choice ‘fixed’. Our ansatz in equation (5.7) fulfills three of the constraints
by construction ((5.8a), (5.8b) and (5.8d)). Equation (5.8c) results in a set of n − 2
linear independent equations (i ∈

{
2, . . . , n− 1

}
)

1

6
pi−1(xi−xi−1)+

1

3
pi(xi+1−xi−1)+

1

6
pi+1(xi+1−xi) =

fi+1 − fi
xi+1 − xi

− fi − fi−1

xi − xi−1
(5.11)

The final two equations are given by the boundary conditions. In case of a natural
spline, equation (5.9) translates to

p1 = pn = 0 (5.12)

For a fixed spline one receives

p1 = −p2
2

+
3

x2 − x1

[
f2 − f1
x2 − x1

− ∂xf1

]
(5.13a)

pn = −pn−1

2
+

3

xn − xn−1

[
∂xfn −

fn − fn−1

xn − xn−1

]
(5.13b)

If the function is not known analytically (the spline interpolates a pure grid), the
derivative can be approximated by the difference quotient of the two sample points at
the boundary, which simplifies equations (5.13) to

p1 = −p2
2

(5.14a)

pn = −pn−1

2
(5.14b)

To solve the full set of coupled linear equations ((5.11) and depending on the spline
type (5.12), (5.13) or (5.14)), we will use the Doolittle decomposition, sometimes also
referred to as LU decomposition. The procedure and the simplifications to the general
algorithm because of the especially easy form of the system is described in appendix F.

In figure 5.1 we show a comparison of the original CT10n central set [82] to calculated
natural splines over the full range of longitudinal momentum fractions x provided by
the set for the u quark, the d̄ quark and the gluon. The splines use the native grid of
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Figure 5.1: Comparision of the interpolation spline with the original PDF routine (CT10n central
set [82]) over the whole provided range for the longitudinal momentum fraction x.
The top, middle and bottom panel show the comparision for the u quark, the d̄ quark
and the gluon respectively. The scale for all panels is µ = 4.75 GeV.
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Figure 5.2: Comparision of the interpolation spline with the original fragmentation function
routine (DSS07 set using the DSS14 interface [258, 259]) by taking the π+ distribution
inside an u quark. The plot covers the whole provided range for the longitudinal
momentum fraction x. The scale is µ = 10 GeV.

the CT10n set at sample points. The scale of the PDFs is chosen to be µ = 4.75 GeV,
which equals also one µ in the CT10n grid. Both choices ensure, that the spline uses
only data that are directly coming from the PDF fit and the interpolation routine of
the set does not influence the spline sample points. We will always use natural splines,
because the approximations at the boundaries (5.14) seems ambitious, as the derivatives
of the PDFs change rapidly in this regions. As the splines are equal to the input at
the sample points, the comparison is in fact a comparison between the interpolation
routine provided by the PDF group and the spline interpolation. It is worth noting
that none of both will be equal to the functional form including full DGLAP evolution,
as is applied in the PDF fitting procedure.

In the top panel of figure 5.1 the distributions of the u quark are compared. We
see a nearly perfect agreement between the native interpolation and the spline. In the
main range of the distribution the differences are in sub per mill level. The splines
oscillate around the PDF set, which is a typical behavior. At the boundaries of the
grid, the quality of the spline suffers, indicating that the PDF itself becomes awkward,
as these regions are difficult to restrict in PDF fits. Summarized the spline quality is
best in the region where also the PDFs are known best and which is most likely the
dominant region for perturbative calculations.

The middle and the bottom panel of figure 5.1 show the corresponding graphs for the
d̄ quark and the gluon respectively. In the majority of the x range the ratio behaves
exactly as discussed for the u quark. For the gluon a small modulation is apparent
for x ∈

[
10−7, 10−2]. The d̄ quark, which is especially difficult to describe with a fit

performed with a parameterization similar to (5.4), is also slightly worse described for
large x, again indicating a less smooth behavior of the underlying sample points. But
overall all flavours are described equally well and uniformly.

Figure 5.2 shows the similar plot for the DSS routine [258, 259], where we selected
the π+ distribution inside the u quark at scale µ = 10 GeV. As before the latter choice
ensures no interference of the interpolation routine shipped with the DSS14 set with
the spline interpolation, as the sample points equal grid points that directly originate
by the DSS fit. As demonstrated in figure 5.1 all other choices of the final state partons
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Figure 5.3: Comparision of the interpolation spline with the original MMHT routine [89, 90]. The
top panel shows the comparison for the u quark distribution, the bottom panel for the
ū quark distribution. The plot covers the whole provided range for the longitudinal
momentum fraction x. The scale of both PDFs is µ = 10 GeV.

or hadrons will result in similar plots and it is therefore sufficient to analyze only one
representative. The first point we recognize is, that the difference between the result of
the DSS interpolation routine and the spline is still small, although not in sub per mill
level. This is expected, as the sample points are much more scattered as they are for
the CTEQ sets. Again the behavior at the boundaries of the supported longitudinal
momentum fraction range is more difficult, as the original fit is less constrained. An
entirely new feature is the bumping behavior, which is also apparent in the region
where DSS and spline interpolation agree well, although less pronounced. As it turns
out, this behavior is due to the interpolation routine of DSS, which simply fails to
interpolate a smooth curve through the grid points. In this setup it is reasonable that
the spline interpolation is closer to the analytical expression used in the DSS fit at their
own interpolation routine. For a direct use of the DSS routine the mistake is negligible
because it occurs in the highly suppressed region x→ 1. However, for all attempts to
describe the set with Mellin transformable expressions like (5.4) that means a residual
impact, as long as it is not taken care of checking against the grid points only. This
will ultimately lead to an overall worse description of the set.

Now we consider the MMHT set [90] in figure 5.3, showing the comparison of the
original set for the u and the ū quark in the top and bottom panel respectively. The
scale µ = 10 GeV is again chosen to match the underlying MMHT grid, as are the x
sample points for the spline. We can see immediately that the interpolation is much
worse than for the previous examined sets. The main reason will be the again very
sparse grid and therefore sample points. However, in the region that is well constrained
by experimental data, both interpolations are again equal up to sub per mill level. And
in the light of the discussion to the DSS interpolation, one can state that it is at least
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µ2

x

Figure 5.4: Illustration of an interpolation by splines in two dimensions. The black crosses
represent the initial grid. The red cross is the point where the interpolation is needed.
In a first step several splines are calculated (green lines) to establish a new grid (green
crosses). Then a spline is calculated to finally interpolate the function at the desired
point (red line).

not obvious which interpolation routine is doing the better job. From a technical point
of view the splines are likely to be superior because of their flexibility between two
sample points. On the other hand this may smoothen the distribution, while also the
original analytical form used in the MMHT fit is more turbulent. However, it is clear
that the difference will diminish if more sample points are taken into account, although
this combines two consecutive interpolations. A second observation is that for the ū
quark distribution and large x one can see a premature decrease of similarity of the
interpolations compared to the u quark case. This is not as we have seen for d̄ of the
CTEQ set because of the more difficult form to interpolate. Instead the origin is a
sign change of the MMHT distribution. While in the naive parton model this seems
unphysical, higher orders allow negative PDFs, as long as the sum rules are satisfied
(the integral stays positive). However, the sign change causes in figure 5.3 the indication
of a very large difference between the interpolations, which is not true, as only the nulls
are slightly shifted.

Finally we want to discuss the option of interpolating the PDFs also in both dimen-
sions, the longitudinal momentum fraction x as well as the scale µ2. In principle this is
done simply by splitting the computation into two parts, as illustrated in figure 5.4.
First one calculates a spline for every point in one dimension. The resulting splines are
taken as input for the final spline in the other dimension. The choice which dimension
should be taken for the final spline depends on the specific need. For PDFs it is most
likely that, if a one dimensional spline is not sufficient, one needs only one specific
point. For this scenario the decisive factor is the computation time. As the Doolittle
algorithm is of O(n) the dimension in which multiple splines are defined (in figure 5.4
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5.3 Splines in Mellin Space

the µ2 dimension) is not strictly determined by the number of points in it. But it is
reasonable that it is superior to define as less splines as possible. However, this should
be tested. In this thesis we did not use or implement multidimensional splines, although
it would be straightforward. But as we want to use the spline to integrate cross sections
in Mellin space, the computation of the two dimensional splines should occur inside
the integrand, which could increase the computational load dramatically (depending
on the percentage it would take of the total integrand computation). Therefore we
will restrict ourselves to one dimensional splines and situations, where only one scale is
needed. Nevertheless it is worth to think about the two dimensional splines to replace
also the interpolation routine in scale of the PDF vendors. The very same procedure
can be applied to higher dimensions, opening the spline interpolation also to GPDs
and TMDs, which depend on three parameters.

5.3 Splines in Mellin Space
To perform the Mellin transformation we have to notice, that the complete spline is
defined by the piecewise definitions given in equation (5.7) accompanied by Heaviside
functions

s(x) =

n∑
k=2

sk(x)Θ(xk − x)Θ(x− xk−1) =

n∑
k=2

3∑
m=0

em,kx
mΘ(xk − x)Θ(x− xk−1)

(5.15)

where we disentangled the monomials with the coefficients

em,k =


dk for m = 0

ck for m = 1

bk for m = 2

ak for m = 3

(5.16)

and

ak =
pk − pk−1

6(xk − xk−1)
(5.17a)

bk =
pk−1xk − pkxk−1

2(xk − xk−1)
(5.17b)

ck =
fk − fk−1

xk − xk−1
+

1

6

(
xk − xk−1

)(
pk−1 − pk

)
+
pkx

2
k−1 − pk−1x

2
k

2
(
xk − xk−1

) (5.17c)

dk =
fk−1xk − fkxk−1

xk − xk−1
+

1

6

[(
xk − xk−1

)(
pkxk−1 − pk−1xk

)
+
pk−1x

3
k − pkx

3
k−1

xk − xk−1

]
(5.17d)
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Then the transformation is straight forward

S(N) =

1∫
0

dxxN−1
n∑
k=2

sk(x)Θ(xk − x)Θ(x− xk−1)

=

n∑
k=2

xk∫
xk−1

dx
3∑

m=0

xN−1+mem,k (5.18)

We can simplify the analytic expression in equation (5.18) sorting the coefficients to
the same sample point

S(N) =

n∑
k=2

3∑
m=0

em,k
N +m

(xN+m
k − xN+m

k−1 )

=
3∑

m=0

1

N +m

[
em,nx

N+m
n − em,2x

N+m
1 +

n−1∑
k=2

xN+m
k (em,k − em,k+1)

]

=

n∑
k=1

3∑
m=0

gm,k
xNk

N +m
(5.19)

with the final set of coefficients

gm,k = xmk ·


−em,2 for k = 1

em,n for k = n

em,k − em,k+1 otherwise
(5.20)

Using equations (5.11) reveals that the gm,k are not independent for k /∈
{
1, n
}

g2,k = −g1,k (5.21a)
g3,k = −g0,k (5.21b)

One can therefore disentangle the sum again and write the Mellin moment of the spline
as

S(N) =

3∑
m=0

gm,1x
N
1 + gm,nx

N
n

N +m
+

n−1∑
k=2

2xNk

(
g0,k

N(N + 2)
+

g1,k
(N + 1)(N + 3)

)
(5.22)

However, although this is in principle a simplification, we will use the form in equa-
tion (5.19) in the following analytical expressions to hold these clear. Nevertheless
equations (5.21) may be useful for numerical implementations. The current realizations
described in section 5.5 do not use (5.21).

The main result of the transform is that splines are described by simple sums in
Mellin space. The coefficients gm,k depend only on the spline parameters pk and the grid
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itself. They are therefore constants for a single spline. All dependence on the Mellin
variable N is in powers of the sample points and the denominator in equation (5.19).
They have therefore a very simple pole structure, with only four poles, at the integers 0,
−1, −2 and −3, which makes them especially handy for the transformation back into
x space. This transformation involves a subtlety regarding the integration contour C

s(x) =

∫
C

dN
2πi

x−NS(N) =

∫
C

dN
2πi

x−N
n∑
k=1

3∑
m=0

xNk gm,k
N +m

(5.23)

Analytically the exact contour plays no role, as long as we do not cross any poles,
because we integrate a holomorphic function. But numerically the integral will only
converge if we choose a path that is falling off rapidly. This goal cannot be accomplished
for all terms in the k sum, because the asymptotic behavior of the integral is dependent
on the relative position of x to the sample points xk

x−NxNk = exp
[
N ln

(
xk
x

)]
(5.24)

This means the contour should approach Re(N) → −∞ as long as x < xk and
Re(N) → +∞ as soon as x > xk. We will call the contours C− and C+ respectively. As
a consequence we have to split up the sum over the sample points depending on the
value of x

s(x) =
∑

k;xk>x

3∑
m=0

gm,k

∫
C−

dN
2πi

eN ln
(

xk
x

)
N +m

+
∑

k;xk≤x

3∑
m=0

gm,k

∫
C+

dN
2πi

e−N ln
(

x
xk

)
N +m

≡ s−(x) + s+(x) (5.25)

The contour C+ can be closed without enclosing any pole. So the integral vanishes

s+(x) =
∑

k;xk≤x

3∑
m=0

gm,k

∫
C+

dN
2πi

e−N ln
(

x
xk

)
N +m

= 0 (5.26)

The integral following the contour C− can be calculated easily by use of the residuum
theorem. Every term in the m sum results in one term (because there is only one pole).
The sum over k then collapses as it represents a telescope sum

s(x) = s−(x) =
3∑

m=0

∑
k;xk>x

xm

xmk
gm,k =

3∑
m=0

xmem,k̃ (5.27)

where k̃ ≡ min
{
k|xk > x

}
. This is exactly the same as the spline in its definition (5.15)

because the Heaviside functions restrict the splines to their domain x ∈
[
xk−1, xk

]
, as

is implicit in their original definition in equation (5.7).
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Figure 5.5: Comparision of the spline in Mellin space with the original PDF set (top panel) and
with the parent spline in x space (bottom panel) for the same PDF set as shown
in figure 5.1. The spline in Mellin space has been transformed into x space by
equation (5.25).

{
k|xk = x

}
∈ s−/sx s+/sx

x = x1 s−
1
5 0

s+ 1 −1
5

x 6= x1 s− 1 0
s+ 1 0

Table 5.1: Contributions of the sums s− and s+ to the numerical value of the spline in x space
sx. We distinct the scenarios of testing the first grid point x = x1 or any other valid
point x 6= x1. In both cases we further distinct, whether a the grid point with xk = x
is counted to s− or s+.

All the calculations in the section apply similar to non-cubic splines. The degree of
the spline will determine the number of summands in the m sum. Changing the degree
will therefore linearly increase the computational cost to calculate the spline in Mellin
space numerically. Naturally the concrete form of the coefficients em,k will also change.
However, they will always be easily computed from the sample points (xk, fk) and the
spline parameters pk.

We will now compare the Mellin space splines to the original PDFs. This is done
numerically by applying the transformation in equation (5.25). To achieve a good
precision we use 105 points in a monte carlo integration tool. As the computational
load is quite large, we use the integrator described in chapter 2. The result is shown in
figure 5.5. As expected analytically the spline in Mellin space shows the exact same
behavior as the spline in x space (compare to upper panel of figure 5.1). In the bottom
panel of figure 5.5 we show that it is in fact almost exactly the same as the spline

136



5.4 Calculating a cross section with Mellin splines

in x space. The difference that can be seen for x → 1 is only due to the integration
error. Because in this region the function is almost zero, the integration error rises
up to a few per cent. The only difference that is not of this nature is located at one
point: the lowest sample point. This is true for every set and for every flavour. As
this is no continuous effect, it is not possible to visualize it in the plot properly. In
table 5.1 we document the numerical values of the compared quantities at x = x1 and
x 6= x1, where x1 is the lowest sample point of an arbitrary set. Although a spline is by
construction identical to the original set at any sample point, the Mellin spline exhibits
a large difference. Even more astonishing is the fact, that the difference is described by
a constant factor of the correct result for every set2 and also for the different types of
the spline (natural and fixed). We did not examine the reason of this behavior, as it
is not important for every possible use of the splines we can think of. It is extremely
unlikely to use exactly the lowest sample point. Even if, it indicates that one should
use another PDF set anyway, as the current does obviously not cover the needed range.

Table 5.1 demonstrates that the decision to put x into the s+ sum gives at least the
correct result for s− also at x = x1. Anyway this is already justified by equation (5.27).
If the sum would include xk = x we would end up in the interval defined by k̃ =
min

{
k|xk ≥ x

}
, which would be the wrong interval for xk = x.

Furthermore we want to emphasize that table 5.1 and equation 5.27 demonstrate
that (also numerically) only the s− sum contributes, reducing the computational load
and more importantly using only the parts of the splines that describe the PDFs best.
This is of especial interest for sets, where small x are not described too well by the
default grid, see for example figure 5.3. If needed, it is always possible to improve the
description of the PDF by the spline by using more grid points. In this manner one
trades accuracy against computational load (in the Mellin space—the x space splines
will be mainly unaffected in this point). We emphasize again that by introducing
another than the native grid of the PDF will mingle the interpolation of the spline
with the interpolation of the PDF set. However, as the sets should provide a reliable
interpolation compared to their analytical form, this seems acceptable. Especially
because in use cases at least the scale µ2 will most likely not meet the grid of the
set and the interpolation of it will be applied in that direction anyway. However, the
interpolation in scale will be different to the interpolation in longitudinal momentum
fraction. The former is well described by a logarithmic dependence, why the latter
might be more complicated.

5.4 Calculating a cross section with Mellin splines

To demonstrate the use of splines in Mellin space we will show the accompanying
calculation for a specific cross section and compare the numerical result with a result

2In some configurations one does not see this effect. The reason is a numerical inaccuracy that causes
x 6= x1. As pointed out, the slightest shift from the lowest sample point suffices to obtain the
expected result.
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that uses an additional fit similar to equation (5.4). For this purpose we choose the
resummed unpolarized Drell-Yan cross section, which has been calculated in [265]. We
have been able to receive the numerical code, which used the GRV parton distribution
functions [255] for the numerical calculations in [265]. Because the current state of
our numerical spline implementations considers only PDF sets of this decade (see
section 5.5), we exchanged the set by an already existing fit to the CT10 set [87] which
is valid for scales µ2 in 10 to 640 GeV2 and longitudinal momentum fractions x in 0.01
to 0.9 for valence and 0.01 to 0.6 for sea quarks. This assures a sufficient proximity to
the set accessible in our Fortran code implementing the spline interpolation, which is
the CT12 set [82].3

For the analytical discussion the exact formular of the cross section is not necessary.
It will therefore not be repeated here, as it is described in detail in [265]. The only
important point for our discussion is, that the cross section (and also differential cross
sections) take the form

σ(τ) =

∫
C

dN
2πi

τ−Nh(N)f(N)f̃(N) (5.28)

where τ = Q2/s ∈
[
0, 1
]
, f(N) and f̃(N) are the parton distribution functions of the

incoming protons and h(N) contains all the details we do not need for the discussion.
We also omitted the flavour indices of the quarks and the corresponding sum, that
composes the possible initial states with appropriate terms in h(N) (which would
also be decorated by the indices), as they also play no role in the following argument.
The only point that matters, is that the PDFs are not necessarily the same, which is
indicated by the tilde. Now using splines we can set f(N) → S(N) and f̃(N) → S̃(N),
getting the expression

σ(τ) =

∫
C

dN
2πi

τ−Nh(N)

n∑
i,j=1

3∑
k,m=0

gk,ig̃j,m
xNi x

N
j

(N + k)(N +m)
(5.29)

where n is the number of sample points, which we assume to be equal for S(N) and
S̃(N) for simplicity. The general case with different underlying grids does not add
any difficulties, only larger expressions. Now the same argument as in section 5.3
applies: the contour C has to be chosen according to the asymptotic behavior of the
integrand. Assuming that h(N) does not change this behavior, the criterion for one
single summand is given by

τ−NxNi x
N
j = exp

[
N ln

(
xixj
τ

)]
(5.30)

3Confusingly the title of [82] states to correspond to CT10. But also the standalone codes of CT12
states to correspond to [82].
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Figure 5.6: Unpolarized Drell-Yan cross section for a pp̄ collider with
√
s = 30 GeV. The numerical

code has been taken from [265]. The upper panel in this plot represents their right
panel of figure 4, except for the used PDF set. While in [265] the GRV set [255] is
used, we use the CT10 set [87] for the conventional fit and CT12 [82] for the spline
interpolation. To distinguish the two plots, we multiplied the spline based cross
section with two. The lower panel depicts the quotient of the two approaches.

which implies, that for τ < xixj the contour should approach Re(N) → −∞ while for
τ > xixj it should approach Re(N) → ∞. We call these again C− and C+. The sums
split up accordingly

σ(τ) =
∑
i,j

xixj>τ

3∑
k,m=0

gk,ig̃m,j

∫
C−

dN
2πi

h(N)
exp
[
N ln

(
xixj
τ

)]
(N + k)(N +m)

+
∑
i,j

xixj≤τ

3∑
k,m=0

gk,ig̃m,j

∫
C+

dN
2πi

h(N)
exp
[
−N ln

(
τ

xixj

)]
(N + k)(N +m)

≡ σ−(τ) + σ+(τ) (5.31)

In principle the term σ+ should vanish, as the contour of the inverse Mellin transform
has to be on the right-hand side of all poles of the integrand. This is not possible for
the resummed cross section we want to investigate, because the Landau pole induces a
branch cut along the real axis. However, it has been shown that it is valid to integrate
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on the left-hand side of the Landau pole. The procedure is known as the minimal
prescription [126, 139, 266]. Nevertheless we will ignore σ+, as it is by orders of
magnitude smaller than σ− for small boson masses M and consistent with zero for
intermediate and large M . In figure 5.6 we show the resummed Drell-Yan cross section
for a pp̄ collider running at the center of mass energy

√
s = 30 GeV [265, FIG.4, right

panel]. As mentioned before we changed the originally used PDF set [255] to a fit to the
CT10 PDFs [87]. For the spline we used CT12 [82], which was the latest set available
at the time the Fortran spline code was written. We can confirm that the calculation
with the spline agrees with the conventional approach. For M < 16 GeV they agree
on sub per mill level. The fluctuations in the lower panel are due to the error of the
integration routine. Interestingly, the stated error estimate is lower for the splines as
for the fit, which is most likely a numerical artifact. For M > 16 GeV the fluctuations
increase, as the integration becomes more unstable (also visible in the upper panel).
Nevertheless we can detect a slight trend of the fitted PDFs to produce a larger cross
section than the splines do. Because it is not possible to decide which one gives the
‘correct’ result, we want to emphasize that the fit has a limited validity range for x→ 1,
which becomes more stressed at the kinematic threshold τ → 1 (which is M →

√
s).

An additional feature of the spline interpolation is, that it might be possible to
extract more informations about the cross section at threshold. As remnant of the
minimal prescription it is known that the differential cross section is not zero at the
kinematic threshold τ = 1. It is possible that the spline will not show this remnant,
as long as one only considers the part integrated along C−. This would also be in
agreement with the observation that the spline produces smaller values for large M
(however, this is speculative because we use a slightly different set and we already
know that the PDF fit might not describe the PDFs accurate enough in this region).
Even more interesting it might be possible, that the C+ part reveals the error made
by the estimate of the minimal prescription. However, for this purpose it is necessary
to perform a very sophisticated integration, as the standard Monte Carlo integration
does not sufficiently converge to get any reliable numbers. One main problem is the
computational load that is accompanied by using the spline interpolation. We started
to address this problem in chapter 2.

Finally we will briefly study the case that the PDFs are the main source of poles
of the integrand in Mellin space. The common fit, resulting in beta functions, see
equation (5.5), includes an infinite number of poles close to the real axis with Re(N) < 0.
As mentioned before cubic splines exhibit only four poles. If h(N) itself has no poles at
all, we are able to calculate the cross section analytically. We split the result for the
Drell-Yan example into the diagonal and non-diagonal parts

σ− =
∑
i,j

xixj>τ

3∑
m=0

gm,ig̃m,j

[
∂Nh(N) exp

[
N ln

(
xixj
τ

)]]
N=−m
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+
∑
i,j

xixj>τ

3∑
k,m=0
k 6=m

gk,ig̃m,j

[
h(−k)

(xixj
τ

)−k
m− k

+
h(−m)

(xixj
τ

)−m
k −m

]

=
∑
i,j

xixj>τ

3∑
m=0

(
τ

xixj

)m
gm,ig̃m,j

[
h(−j) ln

(
xixj
τ

)
+
[
∂Nh(N)

]
N=−j

]

+
∑
i,j

xixj>τ

3∑
k,m=0
k 6=m

gk,ig̃m,j
m− k

[
h(−k)

(
τ

xixj

)k
− h(−m)

(
τ

xixj

)m]
(5.32)

If h(N) contains a finite number of poles, the computation can still be performed
analytically with additional terms from the Residuum theorem.

5.5 Numerical implementation of PDF Mellin splines
Because the calculation of a spline is a task that is equal for every possible PDF set, it
is worth writing a program that performs this task and offers an easy to use interface
for subsequent use. In this section we will kindly introduce a Fortran as well as a C++

implementation.

5.5.1 Fortran implementation
The basic functionality of the Fortran implementation is hidden inside the module
PdfSplineModule, which should by design not be of interest for the user. However, it
also contains some important ‘static’ variables

pdfSpline.f (extract)

module PdfSplineModule
! Module that contains the spline function not to use by the user
! directly and global variables
!-----------------------------------------------------------------------

implicit none
save

! maximum number of grid points
integer, parameter :: nmax = 1000

! default values if not specified by user
integer :: st_int = 0 ! natural spline
integer :: iset_int = 1 ! CT12
integer :: mmhtih_int = 0 ! MMHT central pdfs
integer :: dssih_int = 1 ! DSS hadron type: pion
integer :: dssic_int = 0 ! DSS hadron charge: average
integer :: dssio_int = 1 ! DSS order: NLO
double precision :: q2_int = 1000.d0
character(len=100) :: file_int = 'ct10n.00' ! CT12 central NLO
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! Further variables
integer :: ngrid = -1 ! number of grid points

The perhaps most important point in using the Fortran routines is the limitation to
1000 sample points, which we have chosen to be fixed, as it is tedious to allocate memory
dynamically. The chosen maximal number should be sufficient for most grids and not
too large to stress too much memory. However, if one desires another maximum, it is
sufficient to change the parameter nmax. All other values shown are the defaults, that
will be explained in the following.

All functionality that a typical user needs is provided in

pdfSplineInterface.f

! include to use the functionality of pdfSpline.f
interface

subroutine PdfSplineSet(st,iset,mmhtih,dssih,dssic,dssio,q2,
& file)

integer,intent(in),optional :: st,iset,mmhtih,dssih,dssic,
& dssio

double precision,intent(in),optional :: q2
character(len=*),intent(in),optional :: file

end subroutine PdfSplineSet
end interface
interface PdfSplineGrid

subroutine PdfSplineGrid_twoarray(xarray,narray)
integer,intent(in) :: narray(:)
double precision, intent(in) :: xarray(:)

end subroutine PdfSplineGrid_twoarray
subroutine PdfSplineGrid_simple(xmin,n)

integer,intent(in) :: n
double precision, intent(in) :: xmin

end subroutine PdfSplineGrid_simple
subroutine PdfSplineGrid_onearray(xarray)

double precision, intent(in) :: xarray(:)
end subroutine PdfSplineGrid_onearray
subroutine PdfSplineGrid_onearrayreal(xarray)

real, intent(in) :: xarray(:)
end subroutine PdfSplineGrid_onearrayreal

end interface
interface

subroutine PdfSplineGet(iparton,nout,xout,paraout)
integer,intent(in) :: iparton
integer,intent(out) :: nout
double precision,intent(out) :: xout(:), paraout(:,:)

end subroutine PdfSplineGet
end interface
interface

double complex function PdfSplineM(iparton,N)
integer,intent(in) :: iparton
double complex,intent(in) :: N

end function PdfSplineM
end interface
interface
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double precision function PdfSplineX(iparton,x)
integer,intent(in) :: iparton
double precision, intent(in) :: x

end function PdfSplineX
end interface
interface

subroutine PdfSplinePara(io)
integer, intent(in),optional :: io

end subroutine PdfSplinePara
end interface
interface

double precision function PdfSplineAlphas(q2,iord,fr2,mur,
& asmur,mc,mb,mt)

double precision, intent(in) :: q2
integer, intent(in), optional :: iord
double precision, intent(in), optional :: fr2,mur,asmur,

& mc,mb,mt
end function PdfSplineAlphas

end interface

which has to be included into a customer program to get access to the spline func-
tionality. To initialize the calculation of the parameters of a spline is is mandatory
to use the subroutine PdfSplineSet(st, iset, mmhtih, dssih, dssix, dssio,
q2, datafile). The first parameter st determines the spline type. st = 0 is the
natural spline, st = 1 a fixed spline which uses the underlying PDF interpolation
routine to determine the first derivatives (see equations (5.13)) and st = 2 is a fixed
spline which uses the grid itself to calculate the derivatives (see equations (5.14)).
The second parameter iset determines the underlying PDF set. Currently three sets
are implemented: CT12 [82] (iset = 1), MMHT14 [90] (iset = 2) and DSS07 [258]
(iset = 3), which where the up to date sets of that collaborations at the production
time of the spline code. All other parameters are passed to the actual PDF rou-
tines, the prefixes indicate to which set they apply. If a parameter does not apply
to a set, its value is indifferent. The default values where already given in the first
listing of this section. The PdfSplineGrid contains several ways to call a subrou-
tine to define the sampling points for the spline. The simplest one is to pass an
array, that contains all xi, where the last point has to be equal to one (subroutine
PdfSplineGrid(xarray)). As an alternative one can pass the number of grid points
n and the smallest point of the grid xmin (subroutine PdfSplineGrid(xmin, n)).
The sampling points will then be distributed logarithmically in the interval

[
xmin, 1

]
.

Finally one can use a mixture, passing two arrays. One defines points in x space,
the other defines the number of points sampling the PDF in the intervals defined by
the first array (subroutine PdfSplineGrid(xarray, narray)). These will again be
distributed logarithmically in the corresponding intervals. If no grid is specified before
the first call of PdfSplineSet, the program will use the grid points defined by the
PDF collaborations. The remaining functions can be called after a spline has been
calculated. The subroutine PdfSplineGet returns the number of sampling points
nout, the sampling points xout and the spline coefficients paraout, which are defined
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by gm,k/xmk (see equation (5.20)). The latter is two dimensional, the first index mapping
to m and the second to k. The function PdfSplineX(iparton, x) returns the value
of the spline of a parton at the given longitudinal momentum fraction. The variable
iparton maps to the flavours according to the function defined in equation (1.71), but
omitting the top quark. The function PdfSplineM(iparton, N) is the equivalent in
Mellin space. The subroutine PdfSplinePara(io) is a diagnostic function to print
the parameters that determine the spline and also the spline coefficients into the i/o
unit io. The argument defaults to io=-5, which is the terminal. Finally the interface
offers the function PdfSplineAlphas(q2, iord, fr2, mur, asmur, mc, mb, mt)
which selects the appropriate αs routine of the selected PDF set in PdfSplineSet. All
arguments are passed to these functions and are indifferent if the underlying set does
not use them. They are defaulted to iord=2 (which corresponds to NNLO), fr2=1.d0
(the ratio of the factorization and the renormalization scales squared), mur=1.d0 (the
renormalization scale), asmur=0.5d0 (the value of αs at the renormalization scale),
mc=1.4d0 (charm mass), mb=4.75d0 (bottom mass) and mt=1.d10 (top mass).

To extend the program to support additional PDF sets one has to add a new case into
the subroutine PdfSplineCalc (which is a member of the module PdfSplineModule)
to calculate the PDF values at the sampling points. Further one has to extend
the subroutine PdfSplineSet with the standard sampling points and possibly new
parameters. The same is true for the subroutine PdfSplinePara and function
PdfSplineAlphas.

5.5.2 C++ implementation
Because C++ allows the more sophisticated concept of object orientated programming
it is easy to implement the splines in a much more generic way as it has been done
for Fortran. We wrote two standalone classes, template<typename T> Spline and
template<typename T> MellinSpline that cover the basic functionalities of a cubic
spline and of the spline in Mellin space. The template parameter determines the floating
point type (and therefore the numerical precision). As we do throughout this thesis, we
omit the namespaces that save the global namespace from pollution in all listings. The
details of this classes do not matter in connection with the PDF splines, as we fused
their functionality into a base class, that can be used to implement various PDF sets.

PdfSplineBase.h (extract)

template<class Function, class ... Types> class PdfSplineBase
{
public:

using SplineType = interpolation::SplineType;
using value_type = typename Function::value_type;

static constexpr unsigned int coefficientsPerPoint =
interpolation::MellinSpline<value_type>::coefficientsPerPoint;↪→
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virtual ~PdfSplineBase() = default;

void set( const SplineType type );

template<class PointIt> void set( PointIt firstPoint, PointIt lastPoint );

value_type getTruePdf( const value_type& xValue ) const;

std::size_t numberPoints() const;

value_type getPointAt( const std::size_t index ) const;

value_type getMinimalPoint() const;

value_type getMaximalPoint() const;

bool isInRange( const value_type& point ) const;

SplineType getType() const;

interpolation::SplinePiece<value_type> getPiece( const std::size_t index ) const;

std::vector<value_type> getCoefficientsAt( const std::size_t index ) const;

value_type operator()( const value_type& point ) const;

template<template<typename> class Complex> Complex<value_type> operator()( const
Complex<value_type>& mellinVariable ) const;↪→

protected:
Function function_;

template<class PointIt> PdfSplineBase( PointIt firstPoint, PointIt lastPoint, const
SplineType type, Types ... args )↪→
: function_( args... )
// further initialization

void update();
};

The template requires a functor and all types that have to be passed to the constructor
of this functor. Furthermore the functor has to provide a typedef value_type that
will determine the floating point type of the underlying Spline and MellinSpline.
After construction it is possible to alter the spline with the two set functions. The
iterator PointIt has to be at least an input iterator. The function getTruePdf
provides access to the underlying functor. The member functions containing the word
Point are self-explanatory as is isInRange. The function getType return the type
of the spline. In the current state the C++ implementation contains only the two
modes SplineType::NATURAL and SplineType::FIXED. The latter one corresponds
to equations (5.14). The alternative of using equations (5.13) could be implemented
easily, if needed. The function getPiece returns a struct called SplinePiece, which
is a simple functor containing the single cubic polynomial that corresponds to the
interval specified by the index. The perhaps most important function to use the
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splines in an integration code is getCoefficientsAt which returns the coefficients
gm,k (see equation (5.20)), where the index maps to k and the returned std::vector
contains the elements specified by m. Finally the parenthesis operators calculate
the spline in longitudinal momentum space and in Mellin space. To child classes
the underlying functor is exposed, forwarding the responsibility to implement setter
functions specialized on the specific spline (as is for example the current scale, or the
considered parton). All these setter have to call update to update the spline.

Currently the following sets are implemented

• The sets CT10 [87], CT10N [87], CT10NN [82] and CT14 [88] of the CTEQ group

• The MMHT set [90]

• The DSS fragmentation sets DSS07 [258] and DSS14 [259]

We use the standalone codes of the different groups to calculate the PDFs. Because all
of them provide Fortran interfaces exclusively4, we have to access these, which makes it
a bit more complicated as strictly necessary. Hence we will shortly discuss the CTEQ
implementation as an example.

To discriminate different sets of the same group we use a simple enum

ct_settings.h

enum class CtSet {CT10, CT10N, CT10NN, CT14};

which is used as template parameter for the class that inherits from the generic base
class PdfSplineBase. The functor itself just calls the Fortran routine to retrieve the
original values. In case of the CTEQ routine we also have to initialize the routine
(which is named ‘set’ by the CTEQ collaborators, which we adapt) and finally have to
provide the value_type.

CtFunctor.h

template<CtSet ctSet> class CtFunctor
{
public:

using value_type = double;

CtFunctor( const int inputFlavour, const double inputScale, const std::string&
inputSetName )↪→
: scale_( inputScale )
, flavour_( inputFlavour )

4MMHT also provides a C++ interface. However, the provided code does not fulfill C++ standards.
For example, it pollutes the global namespace in the header file with the whole std namespace and
ignores the one definition rule for their class invariants. Although this particular issues could be
fixed easily, we dismiss this interface fearing more subtle bugs.
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{
CtFortranCodeSelector<ctSet>::set( inputSetName );

}

double operator()( const double x ) const
{

return CtFortranCodeSelector<ctSet>::call( flavour_, x, scale_ );
}

double scale_;
int flavour_;

};

The functor contains members for all variables that are needed by the CTEQ routine
to calculate the PDF function. The class CtFortranCodeSelector ensures that the
appropriate Fortran routine is called, which are hidden in an additional namespace

ct_fortran.h

namespace fortran {
extern "C"
{

void setct12_( const char tablefile[40] );
double ct12pdf_( const int* parton, const double* x, const double* q );

void setct14_( const char tablefile[40] );
double ct14pdf_( const int* parton, const double* x, const double* q );

}
} // namespace fortran

It is evident that one has to link against the precompiled Fortran routines that will be
needed.

Connecting the loose ends the child class of PdfSplineBase treats all specific setter
functions for the CTEQ routines.

CtSpline.h (extract)

template<CtSet ctSet, typename T = double> class CtSpline : public
PdfSplineBase<CtFunctor<ctSet>, int, double, std::string>↪→

{
private:

using PdfSpline = PdfSplineBase<CtFunctor<ctSet>, int, double, std::string>;

public:
using SplineType = typename PdfSpline::SplineType;

template<class PointIt> CtSpline( PointIt firstPoint, PointIt lastPoint, const
SplineType type, const std::string& setName, const PartonFlavour flavour, const T
scale );

↪→
↪→
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template<class PointIt> CtSpline( PointIt firstPoint, PointIt lastPoint, const
std::string& setName, const PartonFlavour flavour, const T scale );↪→

CtSpline( const SplineType type, const std::string& setName, const PartonFlavour
flavour, const T scale )↪→
: CtSpline( CtDefaultGrid<T, ctSet>::POINTS.begin(), CtDefaultGrid<T,

ctSet>::POINTS.end(), type, setName, flavour, scale )↪→
{}

CtSpline( const std::string& setName, const PartonFlavour flavour, const T scale );

void setDatafile( const std::string& inputSetName );

void setDefaultPoints();

void setScale( const T scale );

void setFlavour( const PartonFlavour inputFlavour );
};

These functions are obviously setDatafile (CTEQ uses a char array to determine
various subsets, including error sets), setDefaultPoints (settings the sample points
equal to the grid describing the CTEQ fit), setScale and setFlavour. All their
implementations have to call a set function of PdfSplineBase or change the func-
tion object PdfSpline::function_ in the base class and subsequently invoke the
PdfSpline::update function to recalculate the spline. Finally we want to point out
three details. First the default grid is stored in a static class CtDefaultGrid<T,
CtSet>, which is used in the constructors that do not specify the sampling points via
the iterators PointIt. Second the spline defaults to be a natural spline, as all spline
classes we wrote do.5 Third we use also here a template to choose the floating point
type. This would not be necessary, because the underlying routines only support double
precision, which is also the default. Nevertheless it is useful to use the template, as it is
easier to integrate into costumer code that can discriminate between different floating
point types.

As demonstrated in the example the extendability of the C++ implementation of PDF
splines is straightforward and should in principle be able to adapt to every imaginable
situation. Furthermore the object orientated design allows punctual improvements to
be applied easily and secure.

5.6 Conclusions
In this chapter we presented an entirely new method to describe parton distributions
functions in Mellin space, by interpolating them with cubic splines and transforming

5The alternative is the fixed spline using the underlying grid (see equations (5.14)). The version
corresponding to equations (5.13) has not been implemented. To catch it up a simple change in the
Spline class is sufficient.
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the splines, which yields a very easy functional form. We have demonstrated that
the interpolation is extremely precise and pointed out the procedure is completely
automatable in contrast to the usual technique. In fact we found for at least one PDF
set that the spline, inheriting the native grid, is even superior to the interpolation
routine distributed with the PDF set itself.

We mentioned that the computational load is likely to increase when using splines
for numerical integrations in Mellin space. The load increases with the number of
sample points used to determine the functional form of the spline. As a consequence
the only non automatic task in using splines is to adjust the number of sample points
to balance between the needs of precision and fast computation. We shortly discussed
the possibility of extending the interpolation to multiple dimensions, but without
performing subsequent calculations.

To test the spline interpolation in a realistic scenario, we chose a resummed Drell-Yan
cross section differential in the mass of the intermediate vector boson. We found a
perfect description of the cross section. Albeit paid with additional computational load,
the approach with the splines can in principle again be automated for all PDF sets,
which can such be compared in a much more satisfying way, as the PDF representatives
in Mellin space do not depend on the partly difficult fit procedure that has to be
applied with the usual method. We discussed the possibility to be able to further
analyze resummed cross sections, as the splines induce a separation of the analytical
expression to ensure the convergence of the inverse Mellin transform. In our example
this might lead, with sufficient computational power, to an approximation of the
remnant introduced by the minimal prescription, that sets the Landau pole to the
right of the contour integral of the inverse transform. Subsequently we discussed the
case, where the PDFs are the major sources of poles. Expressed by splines only a
finite number of poles occur, enabling an analytical calculation of the inverse Mellin
transform.

Finally we presented numerical implementations for Fortran and C++, that implement
the calculation of the splines for several PDF sets. In both programming languages we
provide an easy to use interface. We discussed the ability of extensions to additional
PDF sets and explained the necessary steps to perform this task.

As we pointed out in the introduction, a crucial ingredient to every calculation in
perturbative QCD are the PDFs. As the presence of the lhapdf library [157] indicates,
it is important for many researchers to exchange the used PDF set to proof results on
their reliability and/or to estimate theoretical uncertainties by the PDFs not provided in
their error sets, which is ultimately an estimate on our ignorance of the nonperturbative
part of QCD. The results and programs introduced here extend this feature to all
computations performed in Mellin space. They open the window to a fully automated
use and exchange of PDFs in computations of physical cross sections. Actually it would
be a sensible matter to interface the lhapdf library itself and, on the long run, to
integrate it into the library.

The higher computational load associated with the use of splines will most likely
become more unimportant in future thanks to the ongoing development of compu-
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tational resources. Particularly the use of graphics cards (see chapter 2) will lower
the overall computation time. This will not change the situation in principle, as the
conventional approach will most likely need always less computational time, but the
absolute difference will become tremendously smaller, making the splines to a contender,
especially because it is always possible to trade speed for precision and vise versa in a
precise and reproducible manner.
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Chapter 6

Sudakov form factor

Quot capita tot sensus.
— Indian doctor

(Asterix and the Magic Carpet)

We investigate the numerical dependence of the Sudakov form factor on the analytical
choice of the strong coupling constant by the example of small transverse momentum
resummation. The choice is necessary to solve the integrals inside the form factors. We
discuss also the closely related TMD evolution in respect to the same choice. We are able
to demonstrate a sizable dependence on this choice in both formalisms. The analysis
suggests that also all consecutive findings depend on it. To obtain reproducibility we
recommend that this subtle detail should always be mentioned, although the expressions
are equivalent in terms of the perturbative order under consideration.

6.1 Introduction
At the edges of phase space it is a common feature of perturbative QCD calculations
to encounter large logarithms. Well known examples are the systems of high mass or
high momentum parts (typically the transverse momentum) close to the kinematic
threshold or diametrically systems with a very small momentum part. In all these
regions only additional soft gluons can be produced in higher orders, which spoil the
cancellation of virtual and real singularities, resulting in large logarithmic contributions.
This particular configurations are called Sudakov regimes. As a consequence of the
large logarithms the perturbative series collapses, as contributions in higher orders are
systematically larger than those in lower orders. A lot of work has been performed to
access control over the perturbative regimes [126, 219–222, 225, 267–270]. The general
solution is to resum the perturbative series to all orders, which results in principle in a
reordering of the series such, that again the largest contributions are taken into account
to a well defined order. As one speaks of leading order (LO) and next-to-leading order
(NLO) and so on in perturbative QCD, the resummation accuracy is usually called to
be leading log (LL), next-to-leading log (NLL) and so forth. In general the result of the
resummation is an additional multiplicative factor, which is the exponentiated Sudakov
form factor.
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Chapter 6 Sudakov form factor

The details of the resummation vary tremendously between the different possible
thresholds and processes. We will pick the resummation of small transverse momenta,
as in this field an entire new formalism, the TMD formalism [62, 69, 221, 222, 225, 271],
has been invented to describe associated experimental data. The abbreviation TMD
stands for transverse momentum dependent, because the parton distribution functions
(PDFs) and/or fragmentation functions (FFs) become dependent on the transverse
momentum. It is not surprising that this formalism gives analytically the same results
as the plain resummation formalism, but interestingly it leads to a different kind of
thinking about which terms should be taken into account for a consistent calculation
in a specified order.

In the resummation community the Sudakov form factor is commonly written as

S(bT , Q
2) = −

Q2∫
b20/b

2
T

dk2T
k2T

[
A(αs(k

2
T )) ln

(
Q2

k2T

)
+B(αs(k

2
T ))

]
(6.1)

where b0 = 2 e−γE and the functions A(αs) and B(αs) are series in the strong coupling
defined by

A(αs) =

∞∑
n=1

An

(αs
π

)n
(6.2a)

B(αs) =

∞∑
n=1

Bn

(αs
π

)n
(6.2b)

The coefficients An and Bn can be calculated by solving the corresponding renormal-
ization group equation or by comparing the expanded resumed result to fixed-order
calculations. In case of small transverse momenta the first coefficients are given by [50,
272–275]

A1 = CF (6.3a)

A2 =
CF
2

[
CA

(
67

18
− π2

6

)
− 10

9
TRnf

]
(6.3b)

B1 = −3

2
CF (6.3c)

B2 = C2
F

(
− 3

16
+
π2

4
− 3ζ(3)

)
+ CFCA

(
−3155

432
+

11π2

36
+ 5ζ(3)

)
+ CFnf

(
247

216
− π2

18

)
(6.3d)

In terms of the TMD formalism A(αs) and B(αs) are expressed as anomalous dimen-
sions of the TMD PDFs γF (αs) and the Collins-Soper evolution kernel γK(αs). The
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resummation exponent is translated into the evolution of the TMDs [239]

Q∫
µb

dµ
µ

[
γF (µ, 1)− γK(µ) ln

(Q
µ

)]
=

1

2
S(bT , Q

2) (6.4)

with the anomalous dimensions in leading order

γK(µ) = αs(µ
2)
2CF
π

(6.5)

γF

(
µ,
Q2

µ2

)
= αs(µ

2)
CF
π

[
3

2
− ln

(
Q2

µ2

)]
(6.6)

and the scale
µb =

b0
bT

(6.7)

The factor one-half originates from the fact that in the considered cases the Sudakov
factor accompanies two PDFs (or FFs) while these have separated evolution factors in
the TMD scheme, each responsible for half of the Sudakov form factor.

The evolution between two scales Q2
0 and Q2 can be achieved by dividing two TMDs

written with an input at scale µb and evolved by (6.4) as defined in [276]

R(bT , Q
2, Q2

0) = exp

ln
(
Q

Q0

) µb∫
Q0

dµ
µ
γK(µ) +

Q∫
Q0

dµ
µ
γF

(
µ,
Q2

µ2

) (6.8)

This form is consequently related to the Sudakov factor of the resummation formalism
by

ln(R(bT , Q2, Q2
0)) =

1

2
[S(bT , Q

2)− S(bT , Q
2
0)] (6.9)

Regardless of the underlying formalism it is necessary to introduce a description
to avoid the Landau pole of the running coupling αs. The most popular is the b∗
prescription [222, 223, 225], which is basically a smoothened cutoff. This can be
achieved in various ways, again the perhaps most popular among these is

b∗(bT ) =
bT√

1 +
b2T
b2max

(6.10)

where the parameter bmax is responsible for the separation of the perturbative and the
nonperturbative regime. It applies to the scale µb and the lower limit of the Sudakov
integral (6.1), which is exactly µ2b . The numerical results depend strongly on bmax,
common choices are 0.5 GeV−1 [204] or 1.5 GeV−1 [205], which has a large impact on
the deduced nonperturbative parameters [205].
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In the following section we will investigate the numerical dependencies of the Sudakov
form factor on the choice of the analytical form of αs. We will discuss in detail
the different phenomenological behavior induced by the different routines for two
sensible choices of the coefficients in equation (6.2) taken into account. These reflect the
previously mentioned different preferences of the resummation and the TMD community.
Further we will examine the effect of using the difference of two Sudakov form factors
as implied by equation (6.8).

6.2 Dependence on the running coupling

In calculations that incorporate small transverse momentum resummation (or evolution
of TMDs) a numerical integration is carried out for the inverse Fourier transform as
the resummation has to be carried out in impact parameter space. Because the integral
of the Sudakov form factor is exponentiated, it is not feasible to perform also this
integration numerically, in which case the running coupling constant could in principle
be implemented by a Runge-Kutta method. But the computational load for nested
integrations is way too large. It is therefore necessary to perform the integration in the
Sudakov factor analytically. For this calculations multiple ways to parameterize the
running coupling are possible that are equivalent in terms of the perturbative order
they consider.

We will investigate two forms for the running coupling. The first is the analytical
solution of the renormalization group equation (see (1.24)) and relates the coupling
at the desired scale µ2 to the coupling at an arbitrary scale µ20, as can be found for
example in the appendix of [277] at NLO

αs,NLO(µ
2) = αs,LO(µ

2)

[
1− b1

b0
αs,LO(µ

2) ln
(
1 + b0αs(µ

2
0) ln

(
µ2

µ20

))]
(6.11)

with the LO expression

αs,LO(µ
2) =

αs(µ
2
0)

1 + b0αs(µ20) ln
(
µ2

µ20

) (6.12)

where the bi are related to the coefficients of the β function and are defined in equa-
tion (1.30). An alternative representation is computed by determining the Landau
pole Λqcd in (6.12) by the means of a very precise measured coupling at another scale,
which is typically the Z boson mass mZ . Generalizing the approach by replacing the Z
boson mass with arbitrary scales, the running coupling can be expressed as series in
ln−1(µ/Λqcd)

α
Λqcd
s,NLO(µ

2) = α
Λqcd
s,LO(µ

2)

[
1− b1

b0
α
Λqcd
s,LO(µ

2) ln
(

ln
(
µ2

Λ2
qcd

))]
(6.13)
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with
α
Λqcd
s,LO(µ

2) =
1

b0 ln
(

µ2

Λ2
qcd

) (6.14)

This form has been used for example by the CTEQ collaboration to determine their
parton distribution function sets up to version 6 [86]. In our numerical analysis we
will do the same for the final computation of αs, which has to be performed also when
using equations (6.11) and (6.12). The values of Λqcd depend on the number of active
quark flavours. In practice they are also used to smoothen the transition between two
different numbers of active flavours. We will use the numerical values from the CTEQ6
routine, which base on αs(mZ) = 0.118 [86]

Λ
nf=4
qcd =

{
215 MeV for LO
326 MeV for NLO

(6.15a)

Λ
nf=5
qcd =

{
165 MeV for LO
226 MeV for NLO

(6.15b)

where Λ
nf=4
qcd is used for all scales smaller than the bottom quark mass mb = 4.5 GeV,

Λ
nf=5
qcd for all scales larger than the bottom quark mass.1
Naturally also the analytical expressions used for the Sudakov form factor depend on

the chosen form of the coupling. We discriminate the parts of the Sudakov exponent by
the corresponding coefficient Ai or Bi and the perturbation order used for the coupling
constant, id est LO uses (6.12) or (6.14) while NLO uses (6.11) or (6.13) to solve the
integral (6.1). The analytical expressions derived by the αs expressed by the series in
ln−1(µ/Λqcd) have an additional superscript Λqcd. The analytical results are presented
in appendix G.

In the sense of resummation one speaks of leading log accuracy (LL) with the
dominant terms in the reordered perturbative series. These are given by

SLL = SLO
A1

(6.16a)

S
Λqcd
LL = S

LO,Λqcd
A1

(6.16b)

It is quite natural to use the LO αs expressions for LL, because the next order would
already include terms that are sub-leading. The next order (NLL) is constructed by
collecting two additional towers of logarithms. The Sudakov form factors in NLL are
given by

SNLL = SNLO
A1

+ SLO
B1

+ SLO
A2

(6.17a)

S
Λqcd
NLL = S

NLO,Λqcd
A1

+ S
LO,Λqcd
B1

+ S
LO,Λqcd
A2

(6.17b)

1The best value for the bottom mass is currently given in MS scheme by mb ≈ 4.18 GeV [36]. We
stay with the mass used by the CTEQ collaboration for consistency.
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Figure 6.1: Comparison of the Sudakov form factors defined in equations (6.16) and (6.17) for
three different energy scales, Q = 1 GeV, Q = 5 GeV and Q = 100 GeV. S

Λqcd
LL is

equal to SLL and therefore not shown additionally.

In this order the NLO contributions of A1 are taken into account, while for B1 and A2

only the LO terms produce the logarithms to the desired accuracy. This has already
been pointed out in [275].

In figure 6.1 we show the Sudakov form factors in LL and NLL for three different
energy scales. The left panel shows the quite low scale Q = 1 GeV, the middle panel a
scale which is a little bit larger than the bottom quark mass Q = 5 GeV and the right
panel a scale close to the mass of the Z boson Q = 100 GeV. In LL the results of the two
underlying formulas are identical SLL = S

Λqcd
LL , as should be expected, and are plotted

only once. For NLL the situation is different. Although the expressions are conformable
they are not identical. This means the choice of the analytical form of αs introduces
an ambiguity for the Sudakov form factor not only for the analytical expressions but
also for the numerical results. At Q = 1 GeV the expression defined by SNLL is larger
than the corresponding SΛqcd

NLL , while for the large scale Q = 100 GeV the situation is
vice versa. For Q = 5 GeV the two expressions cross each other: for small impact
parameter bT SNLL is larger, for large impact parameter smaller than S

Λqcd
NLL . A more

precise comparison between the two expressions is shown in figure 6.2. It illustrates
the difference of the two analytical expressions in the form it is present in a resummed
cross section. The most impressive effect can be detected for Q = 1 GeV, where the
relative difference is over 30 % for small impact parameter and still more than 15 % in
the limit of large impact parameters. For larger scales the effects are somewhat smaller,
but still not negligible. For Q = 5 GeV we even detect the largest slope with an overall
difference of almost 20 %. Finally, keeping in mind that conventionally a Gaussian in bT
space is used to parameterize the nonperturbative input, which emphasizes the small bT
region, just the largest difference will matter most. This is interestingly counteracting
the Sudakov form factor, which suppresses small impact parameters (except for large
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Figure 6.2: Ambiguity of the Sudakov exponentials at NLL corresponding to the Sudakov form
factors shown in figure 6.1.

scales).
As already mentioned earlier we have to compute αs(Q2) to obtain a numerical

result for SNLL. In this computation we used the LO expression for αs for LL and
the NLO expression for all terms contributing to NLL. Using the LO order expression
would be in clear conflict of using higher-order terms for A1. This would have a clear
impact on the results that has been shown in figures 6.1 and 6.2. For Q = 1 GeV now
SNLL would be smaller. The ambiguity would be even more dependent on the impact
parameter (roughly −30 % for small and −5 % for large bT ). For the slightly higher
scale Q = 5 GeV the situation would be similar than before, but with SNLL giving the
smaller result. For large scales Q = 100 GeV the situation would become much worse
with a ambiguity of roughly −40 % for large impact parameters. A mixed strategy
using the (N)LO expression to compute αs(Q2) for all terms that contain the (N)LO
terms to calculate the Sudakov form factor would give the least dependent expressions.
For the modest scale of Q = 5 GeV there would be hardly any difference on the chosen
form of the coupling constant. Also for the high scale Q = 100 GeV the dependence
would be rather flat, negligible for small and roughly 1 % for large bT . Only for the low
scale Q = 1 GeV the ambiguity would be larger than −5 % for small impact parameter
but becomes smaller in magnitude for large impact parameter. However, although
this result is the best in terms of least ambiguity it is also rather constructed, because
in practice it is completely unusual to use different orders of the running coupling
depending on the origin of a particular term. It is standard to use the highest order
that is incorporated in the calculation and as it is presented in figures 6.1 and 6.2.

We note that the asymptotic behavior is determined by the b∗ prescription, which
causes a convergence of the impact parameter to the value chosen for bmax. Throughout
this chapter we choose bmax = 0.5 GeV−1. The other common value bmax = 1.5 GeV−1

would not change the behavior for small impact parameters, but affect the limit the
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Figure 6.3: Same as figure 6.1 but using the Sudakov form factors defined in equations (6.18)
and (6.19). Again the leading-order terms are equal SLO = S

Λqcd
LO and only SLO is

shown.

expressions would converge to (while naturally converging later). The Sudakov form
factor would be larger for small scales, while smaller for large scales. The ambiguity
would be quite similar for small and modest scales but widely increased for large scales.

We now turn to a more sensible description in terms of TMDs. As mentioned in the
introduction the Sudakov form factor is expressed in the TMD formalism by anomalous
dimensions for the TMD PDFs and the Collins-Soper evolution kernel. As these combine
the A(αs) and B(αs) of the Sudakov form factor it is not natural to distinguish orders
by the logarithmic terms described by them. Instead it is common practice to use a
consistent order for both of the anomalous dimensions. We express these again in terms
known from the resummantion formalism to simplify comparisons. The leading-order
terms of the TMD formalism are therefore given by

SLO = SLO
A1

+ SLO
B1

(6.18a)

S
Λqcd
LO = S

LO,Λqcd
A1

+ S
LO,Λqcd
B1

(6.18b)

Again we use the leading-order expression of αs. Comparing to the leading log definitions
in equations (6.16) we add the term corresponding to B1 to include all terms that
are formally given by γF (αs) and γK(αs) in leading order. The NLO is constructed
accordingly

SNLO = SNLO
A1

+ SNLO
B1

+ SNLO
A2

+ SNLO
B2

(6.19a)

S
Λqcd
NLO = S

NLO,Λqcd
A1

+ S
NLO,Λqcd
B1

+ S
NLO,Λqcd
A2

+ S
NLO,Λqcd
B2

(6.19b)

Compared to the definitions of the NLL form factor in (6.17) we added again the term
associated with B(αs), which is B2. Further we use the NLO expressions for all terms
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Figure 6.4: Ambiguity of the Sudakov exponentials at NLO corresponding to the Sudakov form
factors shown in figure 6.3.

and not only for the terms coming with A1. Again it does not make sense in the TMD
framework to distinguish the used order for the coefficients that come with the same
order of αs. If also the terms proportional to A2 and B2 should be evaluated with the
NLO expression is questionable. However, we decided to treat all terms equally in this
respect.

In figure 6.3 we present the numerical values obtained by using equations (6.18)
and (6.19) for the scales Q = 1 GeV, Q = 5 GeV and Q = 100 GeV as before. Again
the leading-order terms are equal for both analytical treatments SLO = S

Λqcd
LO and are

plotted only once. In NLO the results seem to be also almost equal as is confirmed
in figure 6.4. For the scale Q = 5 GeV there is hardly any ambiguity between the two
analytical forms, also for Q = 100 GeV the difference is only about one percent for
large impact parameter. Only for the low scale Q = 1 GeV we can detect a measurable
difference especially for small impact parameter of roughly 10 %. The analysis according
to the choice of the final formula for the running coupling does not make sense in the
realm of TMD evolution, because the order of the encountered coefficients is always
identical to the order of the sudakov form factors. Changing the parameter bmax to
1.5 GeV−1 induces the same changes as discussed previously: low scales have a larger
form factor, large scales a smaller form factor and the ambiguity for large scales is
increased.

Interestingly the TMD like treatment has opposite effects on the form factor compared
to the resummation like treatment in terms of the changes from LO to NLO. It is a good
approximation that in every region where the NLO form factor is larger than the LO
one for resummation it is smaller for TMDs and vice versa. The same is qualitatively
true for the two analytical forms we analyze (although quantitatively very different
as discussed before). Especially for the large scale under consideration large impact
parameters are much more suppressed in the TMD like than in the resummation like
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Figure 6.5: Differences of two Sudakov form factors as defined in equation (6.20). The label X
distinguishes between the definition of the Sudakov form factor collecting certain
logarithmic contributions and the Sudakov factor equivalent to the analytical form
coming from the TMD evolution kernels.

treatment.
Finally we want to discuss the numerical consequences of the method of using the

TMD evolution kernels to write the TMDs at arbitrary scale by evolving them from
a fixed input scale, for example chosen to be Q0 = 1 GeV [276], instead of the scale
given by µb. This is achieved by dividing the two distribution functions incorporating
the evolution from µb to their scale (Q or Q0 respectively), canceling the intrinsic
distribution function evaluated at scale µb and giving an expression that evolves the
TMD between two arbitrary scales, see equation (6.9). Therefore we will analyze

∆S(Q) ≡ S(Q)− S(Q0 = 1 GeV) (6.20)

This particular way of using the Sudakov form factor has been used in resummation as
well as TMD schemes. The corresponding definiton for the TMDs is given in [276], as
it has been introduces in the previous section, see equations (6.8) and (6.9).

The results are shown in figures 6.5 and 6.6, where as always the superscript Λqcd
indicates the use of the expansion in ln−1(µ/Λqcd), whereas no superscript indicates
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Figure 6.6: Ambiguity of the difference of two Sudakov form factors ∆S as shown in figure 6.5.

the use of the solution of the renormalization group equation to solve the integrals in
the Sudakov form factor. In figure 6.5 the subscript distinguishes the different terms
that are naturally taken into account by the definitions made in (6.16), (6.17), (6.18)
and (6.19). First we can detect that the ambiguity is dominated by the terms at Q0.
Because these disagree in sign for the resummation and the TMD forms, also the
ambiguity of ∆S differs in sign. In the construction of ∆S the ambiguity is enhanced,
as it has different signs for Q0 and the other two considered scales. The only exception
is for small impact parameter and Q = 5 GeV, especially for the resummation like
Sudakov. In general the ambiguity of the resummation like form factor is much larger
than for the TMD like. In the former the ambiguity is between 10 % and 30 % with a
even large value in the limit of large impact parameter. In the latter the ambiguity is
smaller than 10 % and only at percent level for large impact parameters. For both the
ambiguity is mainly enhanced for large scales Q.

6.3 Conclusions

In this chapter we presented a detailed analysis of the Sudakov form factor in respect
of its numerical treatment. Because it is defined by an integral inside an exponential it
is numerically extremely time consuming to calculate the integral itself, where it could
be treated using an iterative determination of the strong coupling constant αs . The
only alternative is to solve the integral analytically. To perform this integration it is
necessary to choose a representation of αs. Because to a fixed order more than one
such representation exists an ambiguity is introduced. The effects of this ambiguity
should be expected to be small as all these representations are correct to their specific
order. However, this is not the case. Our analysis reveals a measurable impact of the
chosen analytical form of αs on the Sudakov form factor as soon as non-leading terms
are taken into account. Because the form factor is exponentiated this effect becomes
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even more important.
We investigated two sensible forms of the Sudakov form factor. First we took care of

taking only terms that contribute to the same ‘logarithm towers’ as is often performed
by the resummation community. Second we chose the terms according to the TMD
formalism where the Sudakov is decomposed into two integrals originating from the
TMD PDF anomalous dimension and the Collins-Soper evolution kernel, where the
order of αs stays to be the decisive parameter. Both forms are equivalent in the leading
order but lead to numerical differences depending on the analytical form of αs for
higher orders. The ambiguity introduced by this difference is larger for the resummed
expression (at NLL) than for the evolution of TMDs (at NLO), although the former
sorts the perturbative series more carefully. Finally we determined the possibility to
use a difference of two Sudakov form factors instead of one. This leads in most regions
to an enhancement of the ambiguity, especially if one of the scales is small.

Our results imply that all findings that are obtained by resummation, perhaps not
only for the small transverse momentum, are dependent on the chosen form of αs.
This is especially true for all fits that are performed to determine nonperturbative
parts that occur in this calculations, because these parts are usually parametrized
by Gaussian factors that emphasize the region of small impact parameters, which is
especially sensitive to the found ambiguity. It is even possible that the seemingly
unimportant choice of the analytical form of αs determines whether a fit converges or
not. We suggest that for the sake of reproducibility this detail should be mentioned
wherever it is used. Besides this work demonstrates that the method of using the
difference of two Sudakov form factors is even more ambiguous as it emphasizes the
disagreements of different scales. All consequences for this method follow analogously.
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Conclusions and outlook

I love it when a plan comes together.
— John ‘Hannibal’ Smith

The Standard Model is the currently the most successful theory in particle physics.
Part of it is Quantum Chromodynamics, which is concerned with the strong force
responsible for the interaction of colored particles. To describe high-energy collisions
the preferred tool is perturbative Quantum Chromodynamics. For many observables it
is sufficient to expand the perturbative series in the strong coupling constant to the first
or second order to achieve a reasonably good prediction. However, in certain regions of
the phase space the series fails to describe observations. This is due to the incomplete
cancellation of real and virtual diagram contributions at higher orders. Logarithmic
remainders are left behind which spoil the series expansion in these phase space regions.
To get a reliable theoretical prediction it is necessary to reorganize the perturbative
series in terms of the strong coupling constant and the logarithmic terms. To perform
the ‘resummation’ it is unavoidable to transform the formula of the cross section to
achieve the required factorization. The kind of transformation depends on the specific
cross section. In this thesis we treated the resummation of small transverse momenta,
which is typically achieved in impact parameter space—the Fourier transform of the
transverse momentum. Since the perturbative expansion of Quantum Chromodynamics
is only valid at high momenta but the inverse transformation technically uses all possible
momenta, it is necessary to regularize the analytical formula, expressing the need to
consider also nonperturbative effects.

In this thesis we treated several different aspects of the transverse momentum
resummation. The main goal was to further develop the ‘complex prescription’, which
bypasses the problem of finding a meaningful extension of the perturbative resummation
expression without suppressing physical content by avoiding the Landau pole in the
complex plane. With this in mind we extended a common general purpose integration
routine by completely rewriting it to be usable on a CPU as well as a GPU. The
latter allows to perform the more complicated numerical calculations induced by the
complex prescription in a reasonable amount of time. Further we investigated in a new
method to parametrize the parton distribution functions in Mellin moment space as
by the complex prescription it becomes necessary to evolve the parton distribution
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functions to a complex scale, since the analytical solution of the DGLAP evolution
equations is given in Mellin moment space. Finally we examined the numerical behavior
of the Sudakov form factor for different expressions of the running coupling, which
might play an important role for the future determination of the nonperturbative
ingredients. In fact all these investigations are made in advance of a global fit to
determine a reasonable nonperturbative input. To make the fit reachable the numerical
speed offered by the GPU is crucial, while the other topics are mainly important for
precision and reproducibility. Especially the specific form of the Sudakov form factor
can potentially determine whether a fit converges at all.

Furthermore we investigated the transverse momentum resummation of the semi
inclusive deep inelastic scattering process. For the first time we calculated also sub-
leading terms, developing techniques that can also be used for different processes.
This can serve as the first step to a more complete understanding of the transverse
momentum resummation as a whole, if it is possible to resum the found terms similar
to the leading contributions.

Finally, out of the line, we performed a global analysis for all currently available
experimental data of Drell-Yan angular distributions to a higher order than has been
done before. The results imply a very good agreement of theory with experiment,
confirming Quantum Chromodynamics and hence the Standard Model.
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Appendix A

QCD Feynman rules

The palest of ink is better than the best
memory.

— Chinese proverb

In this appendix we present the QCD Feynman rules as they follow from the Lagrangian
in equation (1.13). In the first line of the final step in (1.13) are the kinematic terms
that correspond to the propagators1 shown in figure A.1. Note that in the literature
another way to define the gauge fixing term is also common, with

ξ → 1

λ
(A.1)

which changes the gauge dependent term in the gluon propagator as
ξ − 1

ξ
→ 1− λ (A.2)

The second line of equation (1.13) consists of the quark-gluon and the ghost-gluon
interaction. The corresponding diagrams are depicted in figure A.2. Note that the
ghost-gluon interaction depends on the momentum of the ghost. Finally in the third
line of equation (1.13) the QCD feature that causes the most important difference to
quantum electrodynamics—the self interaction of the gluons due to the non-abelian
structure of QCD—is shown in figure A.3.

1As mentioned in section 1.1 we present the covariant gauges, which simplifies the gluon propagator
but needs the ghost field to compensate unphysical polarization states of the gluon.

A, i p B, j
= δAB

i(/p+m)ji
p2−m2+iη

a, µ p b, ν
= δab i

p2+iη

(
−gµν + ξ−1

ξ
pµpν

p2+iη

)

a p b
= δab i

p2+iη

Figure A.1: QCD Feynman rules for quark, gluon and ghost propagator. The quark line is solid,
the gluon line curly and the ghost is indicated by a dashed line. The momentum flow
p is always from left to right.
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A, i B, j

a, µ

= −igstaABγ
µ
ji

b

p

c

a, µ

= gsf
abcpµ

Figure A.2: QCD Feynman rules for the quark-gluon and the ghost-gluon vertex. The lines
decorations are similar to figure A.1. The momentum flow of the ghost is from the
left to the right.

a, µ

−→

b, ν

−→

c, ρ

←−

k

p

q

= gsf
abc[gµν(k − p)ρ + gνρ(p− q)µ

+ gρµ(q − k)ν
]

a, µ b, ν

c, ρ d, σ

= ig2s
[
fabefcde(gµρgνσ − gµσgνρ)

+ facefbde(gµνgρσ − gµσgνρ)

+ fadefbce(gµνgρσ − gµρgνσ)
]

Figure A.3: QCD Feynman rules for the gluon self interactions, i.e. the three and the four gluon
vertex.
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QCD splitting functions
In this appendix we present the analytical expressions of the six independent Altarelli-
Parisi splitting functions up to next-to-leading order as defined in equation (1.74). The
leading-order expressions have been calculated in [102]

P
±(0)
ns (z) = CF

[
3δ(1− z) + 2

1 + z2

(1− z)+

]
(B.1a)

P
s(0)
ns (z) = 0 (B.1b)

P
(0)
ps (z) = 0 (B.1c)

P (0)
gq (z) = 2CF

1 + (1− z)2

z
(B.1d)

P (0)
qg (z) = 4nfTR

(
z2 + (1− z)2

)
(B.1e)

P (0)
gg (z) =

11CA − 4nfTR
3

δ(1− z) + 4CA

(
z

(1− z)+
+

1− z

z
+ z(1− z)

)
(B.1f)

and the next-to-leading expressions in [104, 105, 107–113]

P
+(1)
ns (z) = 4C2

F

[
δ(1− z)

(
3

8
− π2

2
+ 6ζ(3)

)
− 1

(1− z)+

(
4 ln(z) ln(1− z) + 3 ln(z)

)
+ 2S2(z)

(
2

1 + z
− 1 + z

)
− 1

2
(1 + z) ln2(z)

+ 2(1 + z) ln(z) ln(1− z) + (2− z) ln(z)− (1− z)

]
+ 4CFCA

[
δ(1− z)

(
17

24
+
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18
π2 − 4ζ(3)

)
+

1

(1− z)+

(
4 ln2(z) +

11

3
ln(z) + 67

9
− π2

3

)
− S2(z)

(
2

1 + z
− 1 + z

)
− 1

2
(1 + z) ln2(z)− 11

6
(1 + z) ln(z)

+

(
π2

6
− 151

18

)
(1 + z) +

28

3

]
− 4CFTRnf

[
δ(1− z)

(
1

6
+

2

9
π2
)
+

4

3
(1− z)
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+

(
2

3
ln(z) + 10

9

)(
2

(1− z)+
− 1− z

)]
(B.2a)

P
−(1)
ns (z) = P

+(1)
ns (z)

− 16CF

(
CF − CA

2

)[
(1 + z) ln(z) + 2(1− z) + S2(z)

(
2

1 + z
− 1 + z

)]
(B.2b)

P
s(1)
ns (z) = 0 (B.2c)

P
(1)
ps (z) = 4CFTRnf

[
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]
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P (1)
qg (z) = 4CFTRnf
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P (1)
gg (z) = 4CFTRnf

[
−δ(1− z)− 16 + 8z +

20
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(B.2g)

A full summary is provided also in [278]. CF , CA and TR are the usual abbreviations
of the SU(3) Casimir operators. The function S2(z) is defined by

S2(z) ≡
∫ 1

1+z

z
1+z

dx
x

ln
(
1− x

x

)
(B.3)

and ζ(x) is the Riemann zeta function.
In fact most of the calculations have been performed in Mellin space [104, 105,

107–109, 113]. Subsequently it has been made much effort to the Mellin transformation
and its continuation for complex Mellin moments [279–283] (even more important at
NNLO). The implementation of the DGLAP evolution presented in section C.7 is also
performed in Mellin space. The relevant moments are defined as Mellin transform
of the splitting functions in longitudinal momentum space, see equation (1.76b). At
leading order they are given by

γ
±(0)
ns (N) = CF

[
3 +

2

N(N + 1)
− 4S1(N)

]
(B.4a)

γ
s(0)
ns (N) = 0 (B.4b)

γ
(0)
ps (N) = 0 (B.4c)

γ(0)gq (N) = 2CF

[
2

N − 1
− 2

N
+

1

N + 1

]
= 2CF

N(N + 1) + 2

N(N − 1)(N + 1)
(B.4d)

γ(0)qg (N) = 4nfTR

[
1

N
− 2

N + 1
+

2

N + 2

]
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= 4nfTR
N(N + 1) + 2

N(N + 1)(N + 2)
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while the next-to-leading-order coefficients read
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The functions Si(N), S′
i(N, η) and S̃(N, η) are defined by

S1(N) ≡
N∑
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= ψ0(N + 1) + γE (B.6a)

S2(N) ≡
N∑
m=1

1
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= −ψ1(N + 1) + ζ(2) (B.6b)
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where γE and ψm(N) are the Euler–Mascheroni constant and the polygamma function
of order m respectively.
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finael

Talk is cheap. Show me the code.
— Linus Torvalds

In this appendix we present finael. Its name is a recursive acronym in the spirit of
GNU or TikZ and stands for ‘finael is not an entire library’. This already indicates that
finael is not a classic library, as it serves multiple purposes. Its perhaps most important
part, which initially initiated the whole project, is the general purpose Monte Carlo
integration routine Vegas (for a theoretical description and performance measurements
see chapter 2), that can be executed on an ordinary CPU but also using a GPU. But
several other services are offered by finael, which we will present here, starting from
very general topics and dealing more specific parts in the subsequent sections. We will
not present every single class, but the classes that are intended for direct use or are
absolutely necessary to understand other code listings.

During the development of finael we took special care to produce modern, object
oriented and well designed C++ code. Although the initial goal was an increase of
performance, we decided us for better design, if both interests were in conflict and the
performance penalty was not overwhelming.

To prevent naming conflicts with other libraries all classes are encapsulated in the
namespace finael. Also the distinct parts are separated into further namespaces.
These indicate by the prefix ‘cu’, whether they are designed with the GPU in mind (but
work on the CPU as well). Thus namespaces lacking the prefix are for CPU use only.
In the listings as well as in the text we will omit the namespaces, if not necessary for
insight. The naming conventions are defined by: namespaces, variables and functions
are writtenLikeThis, while classes LookLikeThis. The only exception are the structs
that contain constants only, which are written exclusively in capital letters.

finael is written header-only similar to the boost library [284]. This has mainly
two reasons. First it is not heavy weight and should not have too large impact on
compilation times. Second almost all classes are templates. The code is available
online [285]. It is published under the MIT license [286].
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C.1 Common

To discriminate host (CPU) from device (GPU) code we use in all classes that are
designed for use with the GPU the definitions

cudaHostDevice.h

#ifdef __CUDACC__
#define CUDA_HOST_DEVICE __host__ __device__
#define CUDA_HOST __host__
#define CUDA_DEVICE __device__
enum class CudaHostDeviceType {HOST, DEVICE};

#else // __CUDACC__
#define CUDA_HOST_DEVICE
#define CUDA_HOST
#define CUDA_DEVICE
enum class CudaHostDeviceType {HOST};

#endif // __CUDACC__

The macros are applied to functions whether they can be executed on the host, the
device or both. The enum class CudaHostDeviceType is designated to be used as
template parameter for several classes to be assigned to the respective processing unit
type. If no GPU (and hence typically also no nvcc compiler) is available everything is
defined such, that it works smoothly with standard C++ compilers.

C.2 Tools

When working with a GPU the very first step is always to identify the GPU and
set the device. Except for the situation of a single GPU on a system with only one
user, this ensures that indeed a device is ready to execute kernels or perform memory
transfers. To simplify the procedure we offer the very simple tool DeviceSelector
with the interface

DeviceSelector.h

class DeviceSelector
{
public:

DeviceSelector() = delete;

static int setFirstAvailable();
};

Compiled with the nvcc compiler it will loop through all GPUs connected to the system
and try to occupy one of them. The return value is the index of the GPU that has been
set successfully. If no device is available it exits the program. For pure host compilers
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the function always returns zero.
To receive more basic informations about the device one may use the helper class

DeviceInfo, which collects some data of the current device and can print them into
std::cout. Its synopsis is

DeviceInfo.h

class DeviceInfo
{
public:

static constexpr unsigned int hostBlockDimDefault = 1024;
static constexpr unsigned int hostWarpSize = 32;

CUDA_HOST DeviceInfo();

CUDA_HOST void update();

CUDA_HOST unsigned int getMaxBlockDim() const;

CUDA_HOST unsigned int getWarpSize() const;

CUDA_HOST void print() const;
};

The perhaps most difficult part when handling with GPU code is proper memory
handling. For this purpose we wrote the class SmartArray, which is our work horse
for the memory management of CUDA applications. Its public interface is

SmartArray.h

template<typename T, CudaHostDeviceType hostDeviceType = CudaHostDeviceType::HOST>
class SmartArray
{
public:

using type = T;
static constexpr CudaHostDeviceType hostOrDevice = hostDeviceType;

friend class SmartArray<T, CudaHostDeviceType::HOST>;
#ifdef __CUDACC__
friend class SmartArray<T, CudaHostDeviceType::DEVICE>;
#endif // __CUDACC__

CUDA_HOST SmartArray();

CUDA_HOST explicit SmartArray( const unsigned int sizeIn );

template<class InputIter>
CUDA_HOST SmartArray( InputIter first, InputIter last );

CUDA_HOST SmartArray( const SmartArray<T, hostDeviceType>& orig );

template<CudaHostDeviceType SourceType>
CUDA_HOST SmartArray( const SmartArray<T, SourceType>& orig );
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CUDA_HOST ~SmartArray();

CUDA_HOST SmartArray<T, hostDeviceType>& operator=( SmartArray<T, hostDeviceType> orig
);↪→

template<CudaHostDeviceType SourceType>
CUDA_HOST SmartArray<T, hostDeviceType>& operator=( const SmartArray<T, SourceType>&

orig );↪→

template<class Array>
CUDA_HOST SmartArray<T, hostDeviceType>& operator=( const Array& orig );

CUDA_HOST_DEVICE T& operator[]( const unsigned int index )

CUDA_HOST_DEVICE T& at( const unsigned int index )

CUDA_HOST_DEVICE const T& operator[]( const unsigned int index ) const;

CUDA_HOST_DEVICE const T& at( const unsigned int index ) const;

CUDA_HOST T getToHost( const unsigned int index ) const;

CUDA_HOST T getToHostWithIndexCheck( const unsigned int index ) const;

CUDA_HOST void newArray( const unsigned int newSize );

template<CudaHostDeviceType SourceType, class Array>
CUDA_HOST void newAssign( const Array& orig );

CUDA_HOST const T* data() const;

CUDA_HOST_DEVICE unsigned int size() const;

CUDA_HOST unsigned int useCount() const;

void swap( SmartArray<T, hostDeviceType>& orig );
};

It is obviously a mixture of a container class and a smart pointer. In principle it shares
the basic idea of the std::shared_ptr, being a reference counting object. All initiated
objects live on the host, but manage memory on the host or device depending on their
second template argument hostDeviceType. Copy construction and assignment are
extremely cheap if both objects have the exact same type due to the reference counting
ansatz which does not perform a deep copy. A copy construction or an assignment
of two SmartArrays with different CudaHostDeviceTypes creates a completely new
object, copying the managed data from the host to the device or vice versa. To do the
same if both objects are of the same type, one can use the function newAssign. But
it is important that the template argument Array is a type that controls contiguous
memory, otherwise the behavior is undefined. The same is true for the corresponding
assignment operator and (of course) the constructor using iterators. To check the
number of objects referring to the same data, use the function useCount. The part
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that is more related to a container class manifests in typical member functions like the
subscript operators, the at or the size function. They offer access to the managed
memory on the host or device, depending on the CudaHostDeviceType. For device
arrays the member functions getToHost and getToHostWithIndexCheck copy also
single data back to the host. However, this is quite ineffective and should be used only
if absolutely necessary. The index checking functions will print a warning via printf,
because throwing an exception is not feasible on the device.

To make a full C++ feeling possible and avoid raw pointers everywhere we also needed
to write a stack object for arrays, similar to std::array, as SmartArray is a heap
object like std::vector. Albeit we decided to alter the interface a bit, being now

Array.h

template<typename T, unsigned int size>
class Array
{
public:

using value_type = T;
static constexpr unsigned int SIZE = size;

CUDA_HOST_DEVICE Array();

explicit CUDA_HOST_DEVICE Array( const T& value );

CUDA_HOST_DEVICE Array( const T (&data_in)[size] );

CUDA_HOST_DEVICE void set( const unsigned int index, const T& value );

CUDA_HOST_DEVICE void setAt( const unsigned int index, const T& value );

CUDA_HOST_DEVICE void set( const T& value );

CUDA_HOST_DEVICE void set( const T (&data_in)[size] );

CUDA_HOST_DEVICE T& operator[]( const unsigned int index );

CUDA_HOST_DEVICE T& at( const unsigned int index );

CUDA_HOST_DEVICE const T& operator[]( const unsigned int index ) const;

CUDA_HOST_DEVICE const T& at( const unsigned int index ) const;
};

The obvious difference to std::array are the functions set and setAt and the ad-
ditional constructors. They all aim for a more convenient construction and change
of all data stored in the object. The function taking only a value will assign that
value to all indices at once. The functions with pointer arguments are mainly to allow
kind of std::initializer_list like behavior. The functions taking an index as well
as a value are superfluous due to the standard access functions but are provided as
they give a more complete interface having the other set functions anyway. Similar
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to the subscript operator and the at function, which give access to the managed data,
also the set and the setAt function access the data without and with an index check
respectively.

Finally we missed also std::pair on the device, and thus defined the simple struct

Pair.h

template<typename T1, typename T2>
struct Pair
{

using first_type = T1;
using second_type = T2;

T1 first;
T2 second;

CUDA_HOST_DEVICE Pair();

CUDA_HOST_DEVICE Pair( T1 firstInput, T2 secondInput );
};

We like to mention that std::pair is sufficient to access the members (and clearly the
types) as long as no member functions are used on the device. However, this excludes
constructors and assignment operators (except the copy constructor during the kernel
call). To perform these quite desirable actions also on the device one has to use Pair.

Only for the host we provide a simple tool to measure execution times, which has
also been used for all measurements in chapter 2. The synopsis is

StopWatch.h

template<class stdChronoDuration>
class StopWatch
{
public:

using clock = std::chrono::steady_clock;

StopWatch();

~StopWatch();
};

and it works pretty simple: in the constructor the time measurement start, the destructor
stops the measurement and prints the past time into std::cout. Hence to measure the
time of a scope one simply has to initiate one instance of StopWatch with the desired
precision as template argument.
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C.3 Math

Since the CUDA API is pure C, several classes are missing that are indispensable for
physical computations. Hence finael includes some classes to meet the demands.1

The very first are complex numbers, which are not a native type in C or C++. Its
interface is

Complex.h

template<typename T>
class Complex
{
public:

using value_type = T;

CUDA_HOST_DEVICE Complex( T realIn, T imagIn );

explicit CUDA_HOST_DEVICE Complex( T realIn );

CUDA_HOST_DEVICE Complex();

CUDA_HOST_DEVICE constexpr T real() const;

CUDA_HOST_DEVICE constexpr T imag() const;

CUDA_HOST_DEVICE Complex& operator+=( const Complex& rhs );

CUDA_HOST_DEVICE Complex& operator+=( const T rhs );

CUDA_HOST_DEVICE Complex& operator-=( const Complex& rhs );

CUDA_HOST_DEVICE Complex& operator-=( const T rhs );

CUDA_HOST_DEVICE Complex& operator*=( const Complex& rhs );

CUDA_HOST_DEVICE Complex& operator*=( const T rhs );

CUDA_HOST_DEVICE Complex& operator/=( const Complex &rhs );

CUDA_HOST_DEVICE Complex& operator/=( const T rhs );

CUDA_HOST_DEVICE Complex operator-() const;

CUDA_HOST_DEVICE friend Complex operator+( Complex lhs, const T rhs);

CUDA_HOST_DEVICE friend Complex operator+( const T lhs, Complex rhs);

CUDA_HOST_DEVICE friend Complex operator-( Complex lhs, const T rhs);

CUDA_HOST_DEVICE friend Complex operator-( const T lhs, const Complex& rhs);

1We recognize that since we wrote most of the mathematical classes the thrust library [287], which is
shipped together with the CUDA runtime environment, implemented many of them very similar.
However, as we implemented them they were still missing or lacked features that we decided to be
vital. This may have changed in the meantime and in the long term it is likely that a change to
thrust will be beneficial.
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CUDA_HOST_DEVICE friend Complex operator*( Complex lhs, const T rhs);

CUDA_HOST_DEVICE friend Complex operator*( const T lhs, Complex rhs);

CUDA_HOST_DEVICE friend Complex operator/( Complex lhs, const T rhs);

CUDA_HOST_DEVICE friend Complex operator/( const T lhs, const Complex& rhs);

CUDA_HOST_DEVICE bool operator==( const Complex& rhs ) const;

CUDA_HOST_DEVICE bool operator!=( const Complex& rhs ) const;

CUDA_HOST_DEVICE T norm() const;

CUDA_HOST_DEVICE T abs() const;

CUDA_HOST_DEVICE bool isZero() const;

CUDA_HOST_DEVICE T arg() const;

CUDA_HOST_DEVICE Complex conj() const;

CUDA_HOST_DEVICE Complex exp() const;

CUDA_HOST_DEVICE Complex log() const;

CUDA_HOST_DEVICE Complex<T> pow( T exponent ) const;

CUDA_HOST_DEVICE Complex<T> pow( const Complex<T>& exponent ) const;

CUDA_HOST_DEVICE Complex<T> sin() const;

CUDA_HOST_DEVICE Complex<T> cos() const;
};

Additionally all functions have free counterparts to offer a more natural use of Complex
instances, for example log( complex ) instead of complex.log(). Note that we
define the arithmetic operators as friend functions (which are declared outside the
class) to allow implicit type conversions (see Item 46 in [288]), such that for example a
Complex<float> can be multiplied by an int without explicit conversion, which makes
long physical formulas much better manageable. To our knowledge this is currently not
possible with thrust::complex or even std::complex.

Second we offer the classes Vector and Matrix, which represent mathematical vectors
and matrices. Because the interfaces are of similar length as the one of Complex we will
omit them here and refer to the actual code [285] for brevity. They again use the trick
to define the arithmetic operators as friend functions inside the classes to allow type
conversions. Further the Vector class offers a natural scalar product by overloading
the operator*. Similar the Matrix class overloads the operator* to allow natural
matrix-matrix multiplication as well as matrix-vector and vector-matrix multiplications
with Vector. Note that both classes are stack objects in contrast to other libraries
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that are specialized for linear algebra, which use heap objects to handle very large
vectors and matrices. Hence Vector and Matrix are mainly designed to simplify the
calculations for example for the DGLAP evolution (see sections 1.5 and C.7).

To allow the computation of a DGLAP evolution several functions have to be
implemented, defined in equations (B.6), which we named

floratosFunctions.h

template<unsigned int index, template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> sFloratos( const Complex<T>& argument );

template<unsigned int index, Sign sign, template<typename> class Complex, typename T>
CUDA_HOST_DEVICE inline Complex<T> sPrimeFloratos( const Complex<T>& argument );

template<Sign sign, template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> sTildeFloratos( const Complex<T>& argument );

as at least to our knowledge the first two are defined in [113] for the first time. Still we
look out for more descriptive names and would be glad about reasonable suggestions.
The template parameter Sign is a simple enum defined by

definitions.h

enum class Sign {PLUS, MINUS};

Further we implemented several loose functions

generalFunctions.h

template<Sign sign, typename T>
CUDA_HOST_DEVICE inline T addOrSubstract( const T& value1, const T& value2 );

template<typename T, unsigned int N>
struct Pow
{

CUDA_HOST_DEVICE static constexpr T pow( const T& base );
};

template<typename T>
struct Pow<T, 1>
{

CUDA_HOST_DEVICE static constexpr T pow( const T& base );
};

template<typename T>
struct Pow<T, 0>
{

CUDA_HOST_DEVICE static constexpr T pow( const T& /* base */ );
};
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template<typename T>
CUDA_HOST_DEVICE T pow( const T& base, const unsigned int exponent);

template<typename T>
CUDA_HOST_DEVICE T pow( const T& base, const int exponent );

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE inline Complex<T> sinpi( const Complex<T>& complex );

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE inline Complex<T> cospi( const Complex<T>& complex );

From these the struct Pow is interesting for integer exponents that are known at compile
time, as it can make extensive use of optimizations, especially when the compiler flag
‘fast-math’ is used. The functions sinpi and cospi calculate the sine and cosine of pi
times their argument and use specialized functions of the CUDA API if compiled with
the nvcc compiler.

Finally we offer several functions related to the gamma function. While omitting
the gamma function itself we implemented its logarithm because it is less prone to
overflows as a functor

LogGamma.h

class LogGamma
{
public:

static constexpr int approximationLimit = 15;

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> operator()( const Complex<T>& arg ) const;

template<typename T>
CUDA_HOST_DEVICE T operator()( const T& arg ) const;

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> calcIgnoringLogBranch( const Complex<T>& arg ) const;

};

The approximationLimit defines the real part of the argument that has to be reached
to use a series expansion. For smaller real parts either a reflection formula or a
calculation by recurrence takes place, depending on the actual argument and the type
T, which limits the use of the reflection formula for large imaginary parts. Additional
to the parenthesis operators LogGamma offers also a possibly faster function which
calculates not necessarily the principal value of the logarithm. However, the speed
improvement should be negligible in most circumstances. In the very same manner we
implemented the polygamma function in a very generic way
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PolyGamma.h

template<unsigned int derivative>
class PolyGamma
{
public:

static constexpr int approximationLimit = 10;

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> operator()( const Complex<T>& argument ) const;

template<typename T>
CUDA_HOST_DEVICE T operator()( const T& argument ) const;

};

So far it is implemented for derivative ∈ {0, 1, 2}. If higher derivatives are needed
it is easily extendable as the algorithm is independent of it, but only certain details
have to be provided in the helper class PolyGammaDetailsProvider. Eventually we
implemented the Beta function again in the very same manner

Beta.h

class Beta
{
public:

template<template<typename> class Complex, typename T>
CUDA_HOST_DEVICE Complex<T> operator()( const Complex<T>& arg1, const Complex<T>& arg2

) const;↪→

template<typename T>
CUDA_HOST_DEVICE T operator()( T arg1, T arg2 ) const;

};

C.4 Interpolation

The basis of the interpolation of parton distribution functions presented in chapter 5
is a Spline class which in turn is used to define a MellinSpline class. Both can be
calculated using a natural spline (see equation (5.9)) or being fixed at the limits of its
domain (see equations (5.10)). This is controlled by

spline_settings.h

enum class SplineType {NATURAL, FIXED};
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The public interface of the spline class is given by

Spline.h

template<typename T>
class Spline
{
public:

template<class PointIt, class Functor>
Spline( PointIt firstPoint, PointIt lastPoint, const Functor& function );

template<class PointIt, class Functor>
Spline( PointIt firstPoint, PointIt lastPoint, const Functor& function, const

SplineType type );↪→

explicit Spline( const MellinSpline<T>& mellinSpline );

template<class PointIt, class Functor>
void set( PointIt firstPoint, PointIt lastPoint, const Functor& function, const

SplineType type );↪→

template<class PointIt, class Functor>
void set( PointIt firstPoint, PointIt lastPoint, const Functor& function );

template<class Functor>
void set( const Functor& function, const SplineType type );

template<class Functor>
void set( const Functor& function );

void set ( const MellinSpline<T>& mellinSpline );

std::size_t numberPoints() const;

T getMinimalPoint() const;

T getMaximalPoint() const;

T getPointAt( const std::size_t index ) const;

bool isInRange( const T& point ) const;

SplineType getType() const;

SplinePiece<T> getPiece( const std::size_t index ) const;

T operator()( const T& point ) const;
};

Although we were mostly interested in the Mellin transform of the splines, we made
Spline a fully functional functor. The member functions are self-explanatory, except
for getPiece which returns the cubic interpolation SplinePiece, which is again a
functor itself but with public data members called constant, linear, square and
cubic. Using the Spline class we define the MellinSpline with the following public
interface
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MellinSpline.h

template<typename T>
class MellinSpline
{
public:

static constexpr std::size_t coefficientsPerPoint = 4;

template<class PointIt, class Functor>
MellinSpline( PointIt firstPoint, PointIt lastPoint, const Functor& function );

template<class PointIt, class Functor>
MellinSpline( PointIt firstPoint, PointIt lastPoint, const Functor& function, const

SplineType type );↪→

explicit MellinSpline( const Spline<T>& spline );

template<class PointIt, class Functor>
void set( PointIt firstPoint, PointIt lastPoint, const Functor& function );

template<class PointIt, class Functor>
void set( PointIt firstPoint, PointIt lastPoint, const Functor& function, const

SplineType type );↪→

template<class Functor>
void set( const Functor& function, const SplineType type );

template<class Functor>
void set( const Functor& function );

void set( const Spline<T>& spline );

SplineType getType() const;

std::size_t numberPoints() const;

T getMinimalPoint() const;

T getMaximalPoint() const;

T getPointAt( const std::size_t index ) const;

std::vector<T> getCoefficientsAt( const std::size_t index ) const;

template<template<typename> class Complex>
Complex<T> operator()( const Complex<T>& mellinVariable ) const;

};

which is obviously very similar to the interface of Spline. However, the functor now
takes a complex argument. Further the getCoefficientsAt member function returns
the coefficients that define the MellinSpline at a fixed index, see equation (5.16).
Both classes are at the current state only capable of cubic splines, which may be
generalized in the future. The constant coefficientsPerPoint does reflect just this
fact. However, with these classes at hand it is trivial to transfer the needed coefficients
to the device and use the splines at explained in chapter 5.
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C.5 Pseudo random number generators

As explained in more detail in section 2.4.2 the generation of random numbers on
a computer is a delicate task. As we argued there we limit ourselves to pseudo
random number generators. In particular we implemented a generic multiplicative
linear congruential generator (MLCG) by

Mlcg.h

template<std::size_t mod, std::size_t mult>
class Mlcg
{
public:

static constexpr std::size_t modulus = mod;
static constexpr std::size_t multiplier = mult;

Mlcg( std::size_t seed, std::size_t warmUp );

explicit Mlcg( std::size_t seed );

std::size_t getRandomNumber();
};

where the constructor with the warmUp argument proceeds accordingly many steps in
the series. The member function getRandomNumber proceeds another step and returns
the respective ‘random’ integer. We did not add any function that maps the integers
into the real interval (0, 1), as it is not intended for direct use, but as component of the
PRNG intended by L’Ecuyer [154]

Lecuyer.h

template<typename T, std::size_t shuffleTableSize>
class Lecuyer
{
public:

Lecuyer();

T getRandomNumber();

private:
using Mlcg1 = Mlcg<2147483563, 40014>;
using Mlcg2 = Mlcg<2147483399, 40692>;
static constexpr std::size_t mlcgSeed = 1;
static constexpr std::size_t mlcgWarmup = 23;
static constexpr T inverseModulusMlcg1 = 1 / static_cast<T>( Mlcg1::modulus );
static constexpr std::size_t maxMlcg1 = Mlcg1::modulus - 1u;
static const T maxOutput;

};
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which combines two MLCGs. Our implementation uses a fixed seed and warm up length
for both MLCGs. Especially for single precision we guard the output by maxOutput,
which is the largest number smaller than one that is representable for the respective
precision. Additionally we added a shuffle board as intended in [148], which is fed by
the instance of Mlcg1. Note that Lecuyer is the only PRNG offered by finael that does
not need any third party software.

Further we implemented an interface for the PRNG of the cuRAND library [289]

CurandWrapper.h

template<typename T>
class CurandWrapper
{
public:
#ifdef __CUDACC__

CUDA_HOST CurandWrapper( void );

CUDA_HOST ~CurandWrapper( void );

CUDA_HOST cuTool::SmartArray<T, CudaHostDeviceType::DEVICE> getRandomNumbers( const
unsigned int numberRandomNumbers );↪→

#endif // __CUDACC__
};

which generates the random numbers directly on the device and is also only useful for
this particular situation. Currently the CurandWrapper uses the cuRAND Merseinne
Twister, which can however be changed in one line of the constructor, if intended. In
any case we have to warn about the implementation, because the intrinsic mapping of
cuRAND is on the interval (0, 1], which may be fatal in many applications that rely on
the assumption that the limits are excluded.

The most important PRNG in finael is relying on Philox [156]. Also here we had
only to write a wrapper class that uses Philox in the way we intend

PhiloxWrapper.h

template<typename T>
class PhiloxWrapper
{
public:

CUDA_HOST_DEVICE PhiloxWrapper( const unsigned int counter1 = 0xdecafbad, const
unsigned int counter2 = 0xf00dcafe, const unsigned int counter3 = 0xdeadbeef,
const unsigned int counter4 = 0xbeeff00d );

↪→
↪→

CUDA_HOST_DEVICE void setCounter( const unsigned int value, const unsigned int index
);↪→

CUDA_HOST_DEVICE void prepareForKernel();
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CUDA_HOST_DEVICE T getRandomNumber( const unsigned int value, const unsigned int index
= 0u );↪→

CUDA_HOST_DEVICE T getRandomNumber();
};

Several counters of Philox control distinct sequences of ‘random’ numbers. They can be
set by setCounter or also before calculating the next number in the getRandomNumber
function with the appropriate arguments and index ∈ {0, . . . , 3}. Note that this is
possible on the device as well as the host. However, Philox has a very specific problem
when we like to produce independent number for distinct kernel calls. As its whole
state is on the stack, it becomes copied to the device in a kernel call, which will
not alter the internal state of the host object that will then be copied to the next
kernel, producing the very same numbers. To handle this problem we offer the function
prepareForKernel, which increases a counter that cannot be accessed by setCounter.
In this way the kernels can be counted and each of them will have access to a unique
number sequence. Hence the most simple use is to call prepareForKernel before every
kernel call that uses a PhiloxWrapper instance and then use the getRandomNumber
function with two arguments to produce a number sequence for every thread by setting
the first argument to the thread index in the grid and using the default value for the
second argument.

We have to mention one noteworthiness of the way we include the current Philox
version 1.09. To compile with as many warning flags as possible we temporarily ignore
the ‘old-style-cast’ and the ‘sign-conversion’ warnings for the GNU compilers and
suppress the ‘code_is_unreachable’ diagnose of the nvcc compiler. Both issues have
been reported and we were told that they can cause no actual harm.

C.6 Vegas

Vegas is the main part of finael. It performs an iterative and adaptive Monte-Carlo
integration. The corresponding theory is presented in chapter 2. Because of its
particular importance we will split the presentation of the interface into two parts.
One for the ordinary user and one dedicated for programmers who like to exchange
components or add functionality. In both parts we will try to explain the reasons of
particular decisions in terms of the code design.

C.6.1 User guide

Before we get to the interface of Vegas, we like to present some enums that are used to
specify possible options in Vegas
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optionFlags.h

enum class PrngFlag {DEFAULT, LECUYER, CURAND, PHILOX};
enum class StrategyFlag {IMPORTANCE, FREE};
enum class ReductionFlag {CLASSIC, REFINED};
enum class VerbosityFlag {QUIET, GENTLE, VERBOSE};

The PrngFlag determines the PRNG. However, as we will see it is not possible to
choose every PRNG in every case. Therefore the value DEFAULT will select a reasonable
choice depending on other settings. The StrategyFlag will determine the adaption
strategy that is used between two iteration steps, see figure 2.5. In case of IMPORTANCE
no stratification will be applied and the adaption is performed by importance sampling.
For FREE there is always a stratification, however the actual strategy depends on the
number of samples that will be requested and may be importance sampling (for few
sample points) or stratified sampling (for many sample points). The ReductionFlag
determines the way the function values calculated at the sample points are reduced to
obtain the Monte-Carlo result and the weights for the adaption. If the flag is set to
REFINED this will only apply, if the strategy will be determined to be stratified. In all
other cases the CLASSIC reduction is used anyway. Finally the VerbosityFlag decides
how many informations will be printed to a defined output stream, which is by default
the output stream std::cout. If set QUIET Vegas will print nothing as all, if it is set
to GENTLE it will print its settings in the beginning of the integration and intermediate
results of every iteration. If Vegas is VERBOSE it will additionally print out informations
on the current increments in every iteration. Note that this will slow down Vegas
eventually, as in the current version it performs a second reduction, and is therefore not
useful for production runs, where the performance matters. This should not be a too
hard restriction, as one is typically interested in the increments only during debugging
or while exploring the integrands behavior.

Now it is time for the public interface of Vegas, which is given by

Vegas.h

template<unsigned int dim, typename T = double, CudaHostDeviceType hostOrDevice =
CudaHostDeviceType::HOST, PrngFlag prngInputFlag = PrngFlag::DEFAULT>↪→

class Vegas
{
public:

using type = T;
using Volume = VolumeType<T, dim>;
using IntegrandPoint = IntegrandPointType<T, dim>;
static constexpr PrngFlag prngFlag = PrngSelector<hostOrDevice,

prngInputFlag>::prngFlag;↪→
static constexpr unsigned int dimension = dim;
static constexpr CudaHostDeviceType hostDeviceType = hostOrDevice;

CUDA_HOST Vegas();
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template<class Functor>
CUDA_HOST Results<T> integrate( const Functor& functor );

template<class Functor>
CUDA_HOST Results<T> integrateKeepingOldGrid( const Functor& functor );

template<class Functor>
CUDA_HOST Results<T> integrateKeepingOldGridAndResults( const Functor& functor );

template<class Functor>
CUDA_HOST Results<T> integrateKeepingAllSettings( const Functor& functor );

CUDA_HOST void setNumberSamples( unsigned int numberSamples );

CUDA_HOST void setNumberIterations( unsigned int numberIterations );

CUDA_HOST void setStrategy( StrategyFlag strategy );

CUDA_HOST void setAdaptionRate( T adaptionRate );

CUDA_HOST void setReduction( ReductionFlag reduction );

CUDA_HOST void setBlockDim( unsigned int blockDim );

CUDA_HOST void setVerbosity( VerbosityFlag verbosity );

CUDA_HOST void setOutputStream( std::ostream& stream );

CUDA_HOST void setPrintPrecision( T precision );
};

To initiate an instance of Vegas one has to decide several arguments that cannot be
changed at runtime: its template parameters. The first parameter dim is the dimension
of the integrand, the second parameter is the floating point type. For both it seems to
be nonsense to change them while one wants to keep the rest of the internal state of
Vegas. Further the dimension determines the size of several arrays, such that in this
way exactly the needed amount of memory is used. The floating point type has to be
a template parameter, as we perform several specializations based on this type. The
third parameter determines whether the integration will take place on the host or the
device. We chose HOST as default value, such that a version that does not specify the
arguments explicitly will at least compile on every system. The final forth parameter
determines the PRNG. It is given to the PrngSelector, which decides depending on
the CudaHostDeviceType and the flag which PRNG will be taken. This disentangles
Vegas from the PRNG such, that only one PRNG instance will be an actual member
of Vegas and it is also not necessary to provide a functioning PRNG for every choice,
which is for example impossible in a machine without CUDA in case of the cuRAND
PRNG. The current defaults are LECUYER for the host and PHILOX for the device. The
former being chosen because it will work whether the external Philox is present or not.
For the device the benefits of Philox are so large, that we decided for it nevertheless.
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Further we want to discourage the use of CURAND, as it might hit exactly the limit of
the integration volume, which is often catastrophic. It is still provided only for testing
reasons.

All other settings of Vegas can be changed by the user at runtime by the respective
member functions

setNumberSamples: Sets the requested number of samples. Note that for a stratified
strategy (StrategyFlag::FREE) the actual number of samples will typically be a
bit smaller to accomplish the alignment of increments and bins. Then the given
number will be the upper limit of the number of samples. The default value is
104.

setNumberIterations: Sets the number of iterations that are performed for a single
integration. The default is 5.

setStrategy: Sets the requested strategy. However, the final strategy will be deter-
mined by the algorithms depicted in figure 2.5. The default value is FREE.

setAdaptionRate: Sets the variable α defined in equation (2.31). The most reasonable
region is α ∈ [1, 2]. For α = 0 the adaption is disabled. The default value is
α = 1.5.

setReduction: Sets the reduction mode. The default value is CLASSIC. The flag
REFINED will only apply if also the strategy is determined to be stratified sampling.

setBlockDim: Sets the number of threads in one block. The default value is 32, which
is the warp size of all currently available GPUs. The block dimension can influence
the performance of a GPU significantly. It is therefore recommended to test
several values to find the optimum for a given integrand. These should however
always be a multiple of the warp size. The maximum for GPUs of compute
capability of 3.0 or higher is 1024, for older GPUs it is 512.

setVerbosity: Determines the amount of diagnostic output that will be printed by
Vegas during the integration. More details have already been provided after the
listing containing the different option flags. The default value is GENTLE.

setOutputStream: Determines the output stream used by Vegas to print the diagnostic
output. The default is std::cout.

setPrintPrecision: Sets the number of digits used for floating point numbers in the
diagnostic output. The default is 5.

The remaining public member functions are designated for the actual integration.
In the original version of Lepage they were controlled by an additional argument. We
tried to make the differences explicit by the function names:

integrate will reset the internal state and perform a new integration.
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integrateKeepingOldGrid will reset the results of previous integrations, but keep the
increments. This is especially useful if one uses an initial integration with few
samples to determine increments that suit the integrand well and then perform
an integration with many samples to get the result.

integrateKeepingOldGridAndResults will additionally keep the results, which will
be used in the cumulative integral estimate to determine the final result, see
equations (2.6) as well as (2.8).

integrateKeepingAllSettings will ignore also changes to the settings made before
the call of the function except for the number of iterations.

The class Results which is returned by all these functions is a simple struct containing
the estimate, the variance and the χ2 that have been calculated

Results.h

template<typename T>
struct Results
{
public:

T integral;
T standardDeviation;
T chiSquaredPerIteration;

CUDA_HOST Results( T integralIn, T standardDeviationIn, T chiSquaredPerIterationIn );
};

The final ingredient for a successful use of the finael implementation of Vegas are
three requirements that the functor class of the integrand has to meet:

(1) It has to be functor, id est it has to overload the parenthesis operator. To use it on
the device the parenthesis operator has to be declared as being CUDA_DEVICE, or
better CUDA_HOST_DEVICE. The same is true for all functions that are subsequently
called by the parenthesis operator. The parenthesis operator has to be declared
constant.

(2) The argument of the parenthesis operator has to be IntegrandPointType, which
is in the current implementation equivalent to Array<T, dim>.

(3) It has to publicly provide the limits of the rectangular integration volume via a
variable volume, which have to be of type VolumeType.

The types necessary for the latter two points are provided in the file
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integrandTypes.h

template<typename T, unsigned int dim>
using VolumeType = cuTool::Array<cuTool::Pair<T,T>, dim>;

template<typename T, unsigned int dim>
using IntegrandPointType = cuTool::Array<T, dim>;

which is guaranteed to be included by Vegas. The types can also be deduced from
Vegas directly (see listing ‘Vegas.h’).

C.6.1.1 Example: integration of a d dimensional Gaussian

To demonstrate how to use Vegas we integrate a simple Gaussian. The respective
program could look like this:

Integrate d dimensional Gaussian

#include <iostream>

#include "pathToFinael/finael/tools/DeviceSelector.h"
#include "pathToFinael/finael/math/constants.h"
#include "pathToFinael/finael/vegas/Vegas.h"

using namespace finael;
using namespace finael::cuVegas;

template<unsigned int dim, typename T> class Gauss
{
public:

VolumeType<T, dim> volume;
using Point = IntegrandPointType<T, dim>;

CUDA_HOST Gauss()
: expectedResult( pow( cuMath::CONST<T>::PI, static_cast<T>( dim ) / 2 ) )

{
for (auto dimIdx = 0u; dimIdx < dim; ++dimIdx)
{

volume[dimIdx].first = 0;
volume[dimIdx].second = 1;

}
}

CUDA_HOST_DEVICE T operator()( const Point& x ) const
{

T result( 1 );
for (auto dimIdx = 0u; dimIdx < dim; ++dimIdx)
{

T den = 1/( 1 - x[dimIdx] );
T t = x[dimIdx]*den;
result *= 2 * exp( - (t * t) ) * den * den;

}
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return result / expectedResult;
}

private:
const T expectedResult;

};

int main()
{

finael::cuTool::DeviceSelector::setFirstAvailable();
using floatType = double;
constexpr auto dim = 2u;
constexpr CudaHostDeviceType deviceType = CudaHostDeviceType::HOST;

Gauss<dim, floatType> gauss;
Vegas<dim, floatType, deviceType, PrngFlag::PHILOX> vegas;

vegas.setNumberSamples( 10000000u );
vegas.setReduction( ReductionFlag::REFINED );
vegas.setBlockDim( 512u );

auto results = vegas.integrate( gauss );
std::cout << "Estimate = " << results.integral << " +/- " << results.standardDeviation

<< std::endl;↪→
}

We include the DeviceSelector just in case we liked to use a GPU. Further we include
some mathematical constants including π, because we want to normalize the integration
to its known result, which is πd/2 as we will use the symmetry of the Gaussian to reduce
the integration volume. Finally we include Vegas itself. Then we define the functor
we like to integrate: Gauss. It declares the volume of the integration publicly and fills
its data in the constructor on the host. The parenthesis operator can be executed
on the host as well as on the device and is declared constant. Its argument type is
IntegrandPointType of the respective type and dimensionality. The argument is taken
by reference to increase speed for dimensions larger than one. In the integrand the
volume is stretched from (0, 1)d to (0,∞)d, applying the respective Jacobian to the result
and the Gaussian function value is calculated. The first line in main sets the device
if a GPU is available. The following three lines set the floating type, dimensionality
and whether the integration has to be executed on the host or the device, respectively.
Then instances gauss and vegas are created and some of the settings of the latter are
changed. Finally the integration is performed by vegas.integrate( gauss ) and the
results are printed to the screen via std::cout.

Note that all members of Gauss are also transferred to the device, as long as they
are on the stack, here expectedResult. If a large amount of memory is necessary we
recommend to use the SmartArray, see section C.2, to allocate heap memory or global
memory for host or device, respectively. A plain std::vector will surely work on the
host, but fail on the device.
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C.6.2 Programmers guide

We tried to write all code in such a style that it should be readable and easily extendable
for every C++ programmer. However, we like to explain one particular component,
which is explicitly designed to allow extensions in a native way: the PRNG. It consists
of three classes. The first is the PrngSelector, which simply works by template
specialization, mapping the input flag to the flag that will be used by Vegas internally.
This flag can be used to feed the PrngTypeSetter, which then in turn offers the actual
types needed

PrngTypeSetter.h

template<PrngFlag prng>
class PrngTypeSetter {};

template<>
class PrngTypeSetter<PrngFlag::LECUYER>
{
private:

static constexpr std::size_t shuffleBoardSize = 32;
public:

template<typename T>
using PrngType = prng::Lecuyer<T,shuffleBoardSize>;

template<unsigned int dim, typename T, CudaHostDeviceType hostDeviceType>
using KernelPrngType = KernelLecuyer<dim, T, shuffleBoardSize, hostDeviceType>;

};

template<>
class PrngTypeSetter<PrngFlag::CURAND>
{
public:

template<typename T>
using PrngType = prng::CurandWrapper<T>;

template<unsigned int dim, typename T, CudaHostDeviceType hostDeviceType>
using KernelPrngType = KernelCurand<dim, T, hostDeviceType>;

};

template<>
class PrngTypeSetter<PrngFlag::PHILOX>
{
public:

template<typename T>
using PrngType = bool; // not relevant, philox has complete functionality already in

VegasKernelPhilox↪→

template<unsigned int dim, typename T, CudaHostDeviceType hostDeviceType>
using KernelPrngType = KernelPhilox<dim, T, hostDeviceType>;

};

The client is the third class
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Prng.h

template<unsigned int dim, typename T, CudaHostDeviceType hostDeviceType, PrngFlag
prngFlag>↪→

class Prng
{
public:

typename PrngTypeSetter<prngFlag>::template KernelPrngType<dim, T, hostDeviceType>
kernelPrng;↪→

CUDA_HOST void prepareForIntegration( const unsigned int numberSamples )
{

kernelPrng.prepareForIntegration( prng, numberSamples );
}

private:
typename PrngTypeSetter<prngFlag>::template PrngType<T> prng;

};

where we can see the purpose of the two types defined in PrngTypeSetter. kernelPrng
is the actual provider of the ‘random’ number sequence. It will be passed to the kernel
calculating the samples. The second class of type PrngType can support the kernelPrng
in a function that is performed before every iteration step. As we see for Philox the
respective type can be set to a pure dummy type, if it is not needed. For Lecuyer it
is the actual PRNG, while the kernelPrng is an array that stores the numbers and
returns them if requested. As an example we present the KernelPhilox

KernelPhilox.h

template<unsigned int dim, typename T, CudaHostDeviceType hostDeviceType>
class KernelPhilox
{
public:

CUDA_HOST void prepareForIntegration( const bool, const unsigned int /* numberSamples
*/ )↪→

{
philox.prepareForKernel();

}

CUDA_HOST_DEVICE T getRandomNumber( const unsigned int index )
{

return philox.getRandomNumber( index );
}

private:
prng::PhiloxWrapper<T> philox;

};

where we can identify the necessary handling as explained in section C.5.
This means to add a new RNG is quite simple:

(1) Add a flag in the options.
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(2) Modify the PrngSelector if and only if the default RNG has to be changed.

(3) Add a specialization of PrngTypeSetter that defines the types that are used for
the new RNG.

(4) Write at least a class for the kernelPrng that respects its implicit interface used
in Prng. If necessary also a supporter class, using the PrngType.

C.7 QCD
finael has two distinct parts that are concerned about QCD. The first one is the
interpolation of PDFs in terms of cubic splines. This part is for the host only and
extensively presented and discussed in chapter 5. The second part is dedicated to be
used on the host as well as on the device, allowing perturbative QCD calculations on
the GPU. It is still in an early stage of development, however we will highlight some
key features that are already implemented while indicating also the points that should
be improved in the future.

Currently one implementation of the strong coupling constant is present, which is
the simple series using the Landau pole as parameter.

AlphaS.h

template<unsigned short numberFlavours, PQcdOrder order, typename T>
class AlphaS
{
public:

using ScaleType = T;
static constexpr unsigned short NUMBERFLAVOURS = numberFlavours;
static constexpr PQcdOrder ORDER = order;

CUDA_HOST_DEVICE T operator()( T scale ) const;
};

We are also still set to use a fixed flavour scheme only. As we will argue in a moment
this is sufficient for the first project we are planning. It is apparent that we use again
enum classes to specify possible options

definitions.h

enum class PartonFlavour {G, U, UBAR, D, DBAR, S, SBAR, C, CBAR, B, BBAR, T, TBAR};
enum class FlavourMode {ONE, TWO, THREE, FOUR, FIVE, SIX};
enum class Hadron {PION, KAON, PROTON, ALL};
enum class PQcdOrder {LO, NLO};

The very idea of the project is to find a reasonable alternative to the so called
b∗ prescription, which is used to control the Sudakov form factor for large impact
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parameters. The b∗ prescription is a smooth cutoff, which leaves the scene with the
problematic choice to decide which values of the impact parameter should still be
perturbative and which are considered to be nonperturbative. A proposed alternative
is the so called contour prescription [290] and has been applied in phenomenological
studies for Drell-Yan [291] and SIDIS [237]. It suggests to avoid the Landau pole by
making the impact parameter complex. The charm of the contour prescription is due
to the fact that its results do not depend on any parameters, because the integrand
are typically holomorphic. Still nonperturbative physics has to be taken into account,
which typically is done by multiplying an additional Gaussian distribution, whose width
has to be determined by comparison to data. While the width is strongly dependent
on the cutoff parameter of the b∗ prescription [64, 204, 205], the contour prescription
does not contain such an ambiguity. Recently it has been discovered that the original
contour prescription does produce unphysical results for the Sivers function, but could
be fixed by the price of a restriction to the complex contour [9]. However, to perform a
fit to deduce the nonperturbative gaussian parameter using the contour prescription
it is necessary to evolve PDFs to a complex scale. The evolution has to take place in
Mellin space, as only in Mellin space we have a closed analytical form for the evolution,
see section 1.5. Hence we implemented the DGLAP evolution such, that the type of
the scale can be freely chosen, including to be complex. The two key classes are the
container of the PDFs

PartonDistribution.h

template<unsigned short numFlavours, typename DistType, typename ScaleType>
class PartonDistribution
{
public:

static constexpr unsigned short NUMBERFLAVOURS = numFlavours;
using value_type = DistType;
using scale_type = ScaleType;
using Singlet = cuMath::Vector<2, value_type>;
using NonSingletNonValence = cuMath::Vector<numFlavours - 1, value_type>;

CUDA_HOST_DEVICE PartonDistribution( const cuTool::Array<value_type, 2*numFlavours +
1>& inputData, const scale_type& inputScale );↪→

template<PartonFlavour flavour>
CUDA_HOST_DEVICE value_type get() const;

CUDA_HOST_DEVICE scale_type getScale() const;

CUDA_HOST_DEVICE void evolve( const EvolutionKernelContainer<value_type>&
evolutionKernel, const scale_type& newScale );↪→

};

which manages the linear combinations of the distinct parton flavours. It can be evolved
by handling the struct EvolutionKernelContainer to it, which is exactly what is done
by the member function evolve of
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DglapEvolution.h

template<class AlphaS, typename ScalarType>
class DglapEvolution
{
public:

using ScaleType = typename AlphaS::ScaleType;
static constexpr unsigned short NUMBERFLAVOURS = AlphaS::NUMBERFLAVOURS;
static constexpr PQcdOrder ORDER = AlphaS::ORDER;

template<class Complex>
CUDA_HOST_DEVICE void evolve( PartonDistribution<NUMBERFLAVOURS, Complex, ScaleType>&

dist, const ScaleType& newScale, const Complex& mellinMoment ) const;↪→
};

The evolution is driven by the template parameter AlphaS and hence is sufficient generic
to be used for also for other versions of the running coupling constant. It is currently
also limited to a fixed number of flavours, because the evolution to a complex scale does
not allow a sensible change of the number of flavours anyway. It does provide evolution
in leading and next-to-leading order using the truncated solution, see again section 1.5.
It is also using a rich inner structure which should allow for an easy extension to a
scheme with a variable number of flavours.

C.8 Tests and Debugging

We have to admit that the tests of finael is its weakest point in terms of proper software
development and a lot has to be done to cover finael as a whole. We use the Boost
testing library [284]. The following parts are covered with tests, that can help for future
improvements and developments

(1) Most of the math classes are tested extensively. Reference values have been
computed with Mathematica.

(2) The interpolation classes have been tested against a few simple examples that
have been checked by hand.

(3) The stack Array and Pair are tested throughout.

(4) All QCD classes have been tested. As reference we took an legacy Fortran
code performing the DGLAP evolution that has been modified to be capable to
calculate in double precision. This code has been widely used for many years and
is said to be trustworthy.

All other classes have been written with extreme care. Especially Vegas and its
components has been checked at several stages against the original implementation of
Lepage, however we did not deduce expressive tests, as it turns out to be quite difficult
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due to the exposed meaning of the used PRNGs. Nevertheless this should be done in
the future.

To simplify debugging on the device a macro is used, which is only active if the nvcc
compiler defines __CUDACC_DEBUG__. It is placed after every interaction with the device
(memory allocations, copies, freeing memory and kernel calls). It stops asynchronous
execution of the device and the host code to correctly assign CUDA errors and will
print errors of the CUDA environment via printf before exiting the whole program.
Due to the macro nature it is then possible to track down the exact action that did
fail, which hopefully simplifies debugging to a large degree.
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Details to calculations in chapter 4

In this chapter we provide details and calculations that have been omitted in chapter 4.
In section D.1 we clarify some issues concerned with the particular phase space we
choose. In section D.2 we illuminate the calculations with the involved correlators, how
to generate them and how to integrate out all but the collinear degree of freedom. In
section D.3 we present the computation of the partonic cross sections. In section D.4
the most important part of the calculations is presented in detail: the expansion of
the delta distribution. The final section D.5 comments on the regularization of the
transverse momentum distribution.

D.1 Phase space identities

In this section we mainly show the transformation from the generic phase space in four
dimensions dR4 given in equation (4.12) to the description used in [237]. The result
has been reported in equation (4.13). For this purpose we explicitly give the momenta
of the final state particles in terms of the variables chosen in [237]

l2,z =
1

2

√
Q2 (D.1a)

|l2,T | = xS

√
1

Q2
− 1

xS
(D.1b)

Ph,z =
zf
2

1√
Q2

(
q2T −Q2

)
(D.1c)

|Ph,T | = zf

√
q2T (D.1d)

where we used cylinder coordinates. We recognize that the z component of the lepton
momentum is positive by its definition. This gives us an additional factor of 2 by
rewriting the negative part in terms of the positive. Second we use that nothing will
depend on the azimuthal angle of the measured hadron φh, which we integrate out

∫
d3l2 = 2

∞∫
0

dl2,z

∞∫
0

d|l2,T | |l2,T |
2π∫
0

dφ (D.2a)

203



Appendix D Details to calculations in chapter 4

∫
d3Ph = 2π

∞∫
−∞

dPh,z

∞∫
0

d|Ph,T | |Ph,T | (D.2b)

Now the Jacobian is given by

∂
{
l2,z, |l2,T |, Ph,z, |Ph,T |

}
∂
{
x,Q2, z, q2T

} =
(Q2 + q2T )zS

16Q3qT

cosh(ψ)
sinh(ψ)

(D.3)

The final ingredients to find equation (4.13) are the Møller flux factor 4P · l1 = 2S and
the energies of the final state particles E2Eh = z cosh(ψ)(Q2 + q2T )/4.

D.2 Heading for correlator definitions

In this section a few identities which lead to the definitions of the various correlators
we encounter in the main chapter 4 will be shown that have been used without explicit
mentioning there.

We start with the calculation in equation (4.14), where the invariant amplitude
Mqq in figure 4.1 is calculated. First it is implicitly used that the matrix element
containing the full final and initial state factorizes. Then we recognize that the states
are eigenstates of the momentum operator, which is used to shift the argument of the
field operators∫

ddη eip·η 〈PX |ψBj (η) |P 〉 =
∫

ddη eip·η 〈PX | eip̂·η ψBj (0) e−ip̂·η |P 〉

=

∫
ddη ei(p+PX−P )·η 〈PX |ψBj (0)|P 〉

= 〈PX |ψBj (0)|P 〉 (2π)dδd(p− (P − PX)) (D.4)

The delta distribution is then used to eliminate the p integral. Exactly the same is
done for the matrix element of the fragmenting quark.

Now consider the differential cross section in equation (4.15). Omitting the phase
space of the final state gluons it is given by

dσqq
dRd

∼
∫
X,Y

∑
(2π)dδd

(
P + l1 − PX − l2 − Ph − PY −

n∑
m=0

gm

)
× 〈Ph, PY |ψ̄Ai (0)|0〉HAB

ij 〈PX |ψBj (0)|P 〉
× 〈P |ψ̄Ck (0)|PX〉 (γ0H†γ0)CDkl 〈0|ψDl (0)|Ph, PY 〉 (D.5)

where we use the shorthand notation defined in equation (4.18) for the phase spaces
of the unobserved remnants. To simplify the expression and introduce the correlators
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as defined in equations (4.16) and (4.17) we rewrite the matrix element 〈PX |ψBj (0)|P 〉
again by using the momentum operator

〈PX |ψBj (0)|P 〉 δd
(
P + l1 − PX − l2 − Ph − PY −

n∑
m=0

gm

)
=

∫
ddp
(2π)d

(2π)dδd(p− (P − PX)) 〈PX |ψBj (0)|P 〉

× δd
(
p+ l1 − l2 − Ph − PY −

n∑
m=0

gm

)

=

∫
ddp
(2π)d

∫
ddη eiη·(p−(P−PX)) 〈PX |ψBj (0)|P 〉 δd

(
p+ l1 − l2 − Ph − PY −

n∑
m=0

gm

)

=

∫
ddp

∫
ddη
(2π)d

eiη·p 〈PX |ψBj (η)|P 〉 δd
(
p+ l1 − l2 − Ph − PY −

n∑
m=0

gm

)
(D.6)

The very same calculation is performed for the matrix element 〈0|ψdl (0)|Ph, PY 〉

〈0|ψDl (0)|Ph, PY 〉 δd
(
p+ l1 − l2 − Ph − PY −

n∑
m=0

gm

)

=

∫
ddph

∫
ddηh
(2π)d

eiηh·ph 〈0|ψDl (ηh)|Ph, PY 〉 δd
(
p+ l1 − l2 − ph −

n∑
m=0

gm

)
(D.7)

and we can write the differential cross section as

dσqq
dRd

∼
∫

ddp
∫

ddph (2π)dδd
(
p− ph + l1 − l2 −

n∑
m=0

gm

)
HAB
ij (γ0H†γ0)CDkl

×
∫
X

∑ ∫
ddη
(2π)d

eiη·p 〈P |ψ̄Ck (0)|PX〉 〈PX |ψBj (η)|P 〉

×
∫
Y

∑ ∫
ddηh
(2π)d

eiηh·ph 〈0|ψDl (ηh)|Ph, PY 〉 〈Ph, PY |ψ̄Ai (0)|0〉 (D.8)

At this point we identify the unit operator∫
X

∑
|PX〉 〈PX | = 1 (D.9)

Note that this is not possible for the Y remnant, because the state is not complete—
the measured hadron h is missing. Further we use that in the matrix elements only
color-diagonal terms can contribute

〈. . . |ψAψB| . . .〉 = δAB

Nc
〈. . . |ψCψC | . . .〉 (D.10)
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Otherwise it would be impossible to form a colorless hadron state in the complex
conjugated part of the diagrams. Now we can identify the correlators defined in
equations (4.16) and (4.17) and finally find

dσqq
dRd

∼
∫

ddp
∫

ddph (2π)dδd
(
p− ph + l1 − l2 −

n∑
m=0

gm

)
× 1

Nc
HAB
ij (γ0H†γ0)BAkl Φqjk(p, P )∆

q
li(ph, Ph) (D.11)

which is identical to equation (4.15).
The last step is the integration of the correlators, which is possible once the collinear

expansion has been applied for all other parts of the cross section. Writing the
momentum integral explicitly in its components∫

ddp =
∫

d(p · n−)
∫

d(p · n+)
∫

dd−2~p⊥ (D.12)

only the correlator depends on (p · n+) = p− and ~p⊥∫
dp−

∫
dd−2~p⊥Φ

q
ij(p, P )

=

∫
dp−

∫
dd−2~p⊥

∫
ddη
(2π)d

ei(p+η−+p−η+−~p⊥·~η⊥) 〈P |ψ̄Aj (0)ψAi (η)|P 〉

=

∫
ddη
(2π)d

(2π)d−1δ(η+)δ
d−2(~η⊥) eip+η− 〈P |ψ̄Aj (0)ψAi (η)|P 〉

=

∫
dη−
2π

eip+η− 〈P |ψ̄Aj (0)ψAi (η−n−)|P 〉

=

∫
dη
2π

eiξ(P ·n−)η 〈P |ψ̄Aj (0)ψAi (ηn−)|P 〉 (D.13)

Again the very same calculation is performed for the fragmentations correlation function∫
d(ph ·m)

∫
dd−2~ph⊥∆q

ij(ph, Ph)

=

∫
dη
2π

ei 1
ζ
(Ph·m)η 〈0|ψAi (ηm)|Ph, PY 〉 〈Ph, PY |ψ̄Aj (0)|0〉 (D.14)

After inclusion of the Wilson lines we find the final definitions of the collinear correlation
functions in equations (4.20).

Note that the remaining momentum integrals are rewritten in terms of the momentum
fractions ξ and ζ defined in equations (4.19)

P ·n−∫
0

d(p · n−) =
Q√
2x

1∫
0

dξ (D.15a)
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∞∫
Ph·m

d(ph ·m) =
zQ√
2

1∫
0

dζ
ζ2

(D.15b)

For the gluon correlators very similar steps are necessary. We start with the gluon
fragmentation correlator, which is used in section 4.4. In order to perform the calculation
in equation (4.40) the matrix element creating a quark is treated as before but the
matrix element where a gluon creates the final hadronic state needs some special
attention. In order to find a gauge invariant expression we insert a multiplicative one
and perform an integration by parts, assuming the fields to vanish at the edges of
space-time ∫

ddηh e−iph·ηh 〈PY , Ph|Gaµ(ηh)|0〉

=
1

ph ·m

∫
ddηhmν

(
i∂νηh e−iηh·ph

)
〈PY , Ph|Gaµ(ηh)|0〉

=
−i

ph ·m

∫
ddηh e−iph·ηh 〈PY , Ph|

[
(m · ∂)Gaµ

]
(ηh)|0〉 (D.16)

The field
[
(m · ∂)Gaµ

]
is the physical field that has to be present in the correlator, in

particular it is the field strength tensor in axial gauge m ·Ga = 0

(m · ∂)Gaµ = mν
[
∂νG

a
µ − ∂µG

a
ν + gsf

abcGbνG
c
µ

]
= mνGaνµ (D.17)

where gs is the strong coupling parameter in the QCD Lagrangian. Because the field
strength tensor is gauge invariant also the correlator is gauge invariant. We are therefore
free to choose any gauge in the following calculations. Note that the choice of the
direction mµ is arbitrary, but is the only component that will survive the collinear
expansion and is therefore our choice from the beginning. After the manipulation
shown above the correlator can easily be adjusted by use of the momentum operator
similar to equation (D.4) yielding the result in equation (4.40).

The calculation to find the differential cross section in equation (4.41) is completely
analogous as for the qq channel. The only difference is the used formula to state that
the matrix element is color diagonal

〈|
[
(m · ∂)Gaµ

][
(m · ∂)Gbµ

]
|〉 = δab

N2
c − 1

(D.18)

because the adjoint instead of the fundamental representation is used. The integration
of the non-collinear degrees of freedom is as before.

Now we turn towards the gluon PDF correlator which is used in section 4.5. The
calculation in equation (4.55) is the same as before. The only difference is that the
relevant direction is given by p+ = p · n− instead of ph ·m. Accordingly during the
calculation we use the G+ = 0 gauge until we find again a gauge invariant expression,
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namely the field strength tensor as before∫
ddη eip·η 〈PX |Gaµ(η)|P 〉 =

i
p+

∫
ddη eip·η 〈PX |

[
∂+Gaµ

]
(η)|P 〉 (D.19)

Again the momentum operator is used to shift the correlator and find the last line in
equation (4.55). The calculation to obtain equation (4.56) can be performed with the
steps we already presented for the other channels.

D.3 Partonic cross sections

In this section we will calculate the partonic cross sections of the SIDIS process up to
next-to-leading order explicitly. In order to do so, we will use the tracer package [292]
to evaluate Dirac traces. For completeness we collect here the necessary scalar products
that has to be given to the package

p · ph = ξ
z

ζ
(P · q) = ξ

x

z

ζ

Q2

2
(D.20a)

p · q = ξ

x

Q2

2
(D.20b)

ph · q =
1

2

z

ζ
(q2T −Q2) (D.20c)

l1 · p =
ξ

x

Q2

4
(cosh(ψ) + 1) (D.20d)

l1 · ph =
z

ζ

1

4

[
cosh(ψ)

(
Q2 + q2T

)
+
(
q2T −Q2

)
− 2qTQ sinh(ψ) cos(φ)

]
(D.20e)

l2 · p = x(l1 − q) · P =
ξ

x

Q2

4
(cosh(ψ)− 1) (D.20f)

l2 · ph =
z

ζ

1

4

[
cosh(ψ)

(
Q2 + q2T

)
−
(
q2T −Q2

)
− 2qTQ sinh(ψ) cos(φ)

]
(D.20g)

l1 · l2 = −l1 · q = l2 · q =
Q2

2
(D.20h)

D.3.1 Quark PDF and quark FF—the qq channel

For this configuration we have to consider two distinct cases: virtual diagrams including
the leading-order diagram with no gluon in the final state n = 0 and real diagrams
with (at next-to-leading order) one gluon in the final state n = 1.

D.3.1.1 Virtual diagrams

We start with the virtual diagrams, containing also the leading order α0
s. The invariant

amplitude of the partonic process is shown in figure D.1. It means we consider the
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l(l1) l(l2)

γ(q)

q(ξP )

q(Ph/ζ)

+ +

+ + +
+ 1

2

Figure D.1: Partonic invariant amplitude of SIDIS process with a quark in the initial state and a
hadronizing quark in the final state. The momenta are denoted in the first diagram
only, but are identical in all others. The cross symbols indicate the renormalization
counter terms for the vertex and the quark propagator.

summand with n = 0 in equation (4.22)

dσn=0
qq

dRd
=

1

2

1∫
0

dξ
ξ

1∫
0

dζ
ζ

1

ζ
fq(ξ)Dq(ζ)

× (2π)dδd
(
l1 − l2 + ξP − 1

ζ
Ph

)
1

Nc
tr
(
H/pγ

0H†γ0/ph
)

(D.21)

where we used the collinear expansion via

nµ+ =

√
2

Q

x

ξ
pµ (D.22a)

mµ =

√
2

Q

ζ

z
pµh (D.22b)

to replace the light-cone variables with the appropriate particle momenta. In the next
step we decompose the delta distribution

δd
(
l1 − l2 + ξP − 1

ζ
Ph

)
=

2

Q2

ζ2x

z
δ(ξ − x)δ(ζ − z)δ(d−2)

qT cos(φh)
qT sin(φh)

...

 (D.23)
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Note that we used the angular φh that is ignored throughout this calculation otherwise
(even in the definition of the kinematics, which implied φh = 0). Only in this point it
is more descriptive, because it shows us, that the distribution will set qT = 0, which
we already used for the computation of the ‘+’ direction of the distribution. The
transverse delta distribution shows us that the origin will be picked out, which justifies
the arbitrary choice of φh in the rest of the calculation a posteriori. Finally we can
rewrite the transverse distribution by

1
!
=

∫
dd−2qT δ

(d−2)

qT cos(φh)
qT sin(φh)

...


=

∫
dqT qd−3

T δ(qT )

∫
dΩd−2

=

∫
dqT qd−3

T δ(qT )
2π1−ε

Γ(1− ε)
(D.24)

where ε is the regulating parameter that specifies the dimension d = 4− 2ε. The above
equation means in a distributional sense

δ(d−2)

qT cos(φh)
qT sin(φh)

...

 = δ(qT )q
2ε−1
T

Γ(1− ε)

2π1−ε
(D.25)

Now we can use non-standard analysis by writing 2qT δ(q
2
T ) = δ(qT ). Putting everything

together we find

dσn=0
qq

dRd
=

(2π)4−2εΓ(1− ε)

π1−ε
q2εT
zQ2

δ(q2T )

1∫
0

dξ
1∫

0

dζ fq(ξ)Dq(ζ)δ(ξ − x)δ(ζ − z)

× 1

Nc
tr
(
H/pγ

0H†γ0/ph
)

(D.26)

where we already used ξ = x to simplify the expression. Now we have to calculate the
trace including the hard part depicted in figure D.1. We will call the loop momenta g
which will always run counter clockwise. Note also the factor one-half in the second
row of the figure, which originates from the square root in the definition of the
renormalization factor of the quark fields Zψq . Using the Feynman rules we find

ūAi (ph)H
AB
ij uBj (p)

= ū(l2)(−ieγµ)u(l1)
(

−igµν
q2 + iη

)
× ūA(ph)

[
(−ieeqγν)δab
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+

∫
ddg
(2π)d

(−igsµεγρtaAC)
i(/ph − /g)

(ph − g)2 + iη
(−ieeqγν)

×
i(/p− /g)

(p− g)2 + iη
(−igsµεγσtbCB)

−iδabgρσ
g2 + iη

+ (−ieeqγν)
(
−CFαs

4π

1

ε

(4π)ε

Γ(1− ε)

)
δAB

+
1

2

∫
ddg
(2π)d

(−ieeqγν)
i/p

p2 + iη
(−igsµεγρtaAC)

×
i(/p− /g)

(p− g)2 + iη
(−igsµεγσtbCB)

−iδabgρσ
g2 + iη

+
1

2

∫
ddg
(2π)d

(−igsµεγρtaAC)
i(/ph − /g)

(ph − g)2 + iη
(−igsµεγσtbCB)

×
i/ph

p2h + iη
(−ieeqγν)

−iδabgρσ
g2 + iη

+
1

2

(
−iCFαs

4π

1

ε

(4π)ε

Γ(1− ε)
/ph

) i/ph
p2h + iη

(−ieeqγν)δAB

+
1

2
(−ieeqγν)

i/p
p2 + iη

(
−iCFαs

4π

1

ε

(4π)ε

Γ(1− ε)
/p

)
δAB

]
uB(p)

=
4παeqδAB

Q2
ū(l2)γ

µu(l1)

× ūA(ph)

[
−iγµ − 4παsCF

× µ2ε
∫

ddg
(2π)d

{
γρ(/ph − /g)γµ(/p− /g)γρ[

(ph − g)2 + iη
][
(p− g)2 + iη

][
g2 + iη

]
+

1

2

γµ/pγ
ρ(/p− /g)γρ[

p2 + iη
][
(p− g)2 + iη

][
g2 + iη

]
+

1

2

γρ(/ph − /g)γρ/phγµ[
(ph − g)2 + iη

][
p2h + iη

][
g2 + iη

]}]uB(p) (D.27)

In the first step we wrote down all terms corresponding to the single diagrams in
figure D.1, reading from top to bottom and from left to right. On the right-hand side
of the equation we used matrix notation for the Dirac space, suppressing the indices,
while keeping them explicit in color space. u(k) denotes a Dirac spinor with momentum
k, where we suppress the spin argument because we consider unpolarized particles
only. We keep this in mind and will sum over outgoing and average over incoming spin
states. eq is the fraction of the elementary charge e of the involved quark flavour and η
regularized the propagators. We notice that all counter terms cancel each other, which
means that occurring ultraviolet poles have to cancel too. We denoted the parameter
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giving the offset of four dimensions for ultraviolet poles as always with ε > 0. For
infrared poles we will have to shift the dimension into the different direction. In that
case we change the sign of ε and denote this with ε̃ ≡ −ε > 0. By this manner we
can assure that no spurious cancellation between ultraviolet and infrared poles occurs.
Before we take the trace we will calculate the loop integrals, which we define by

I(1)qq,µ ≡ µ2ε
∫

ddg
(2π)d

γρ(/ph − /g)γµ(/p− /g)γρ[
(ph − g)2 + iη

][
(p− g)2 + iη

][
g2 + iη

] (D.28a)

I(2)qq,µ ≡ µ2ε

2

∫
ddg
(2π)d

γµ/pγ
ρ(/p− /g)γρ[

p2 + iη
][
(p− g)2 + iη

][
g2 + iη

] (D.28b)

I(3)qq,µ ≡ µ2ε

2

∫
ddg
(2π)d

γρ(/ph − /g)γρ/phγµ[
(ph − g)2 + iη

][
p2h + iη

][
g2 + iη

] (D.28c)

We start with solving I(1)qq,µ by using two Feynman parameters x and y

I(1)qq,µ = 2µ2ε
1∫

0

dx
1−x∫
0

dy
∫

ddg
(2π)d

γρ(/ph − /g)γµ(/p− /g)γρ[(
g − (xph + yp)

)2 − 2xy(p · ph) + iη
]3 (D.29)

Now we shift the loop momentum by defining r = g − (yp + xph) and use the Dirac
algebra in d dimensions, in particular γργνγµγσγρ = −2γσγµγν + (4− d)γνγµγσ to find

I(1)qq,µ = 4µ2ε
1∫

0

dx
1−x∫
0

dy
∫

ddr
(2π)d

1[
r2 − 2xy(p · ph) + iη

]3
×
{
−(1− ε)/rγµ/r + (1− ε)

[
x(1− x)/phγµ/ph + y(1− y)/pγµ/p

]
+ /phγµ/p

[
ε(1− x)(1− y)− xy

]
+ /pγµ/ph

[
εxy − (1− x)(1− y)

]}
(D.30)

Luckily it is not necessary to calculate all of the terms, because we already know that
they are accomplished by two Dirac spinors. Using the Dirac equation the expression
simplifies to

ū(ph)I
(1)
qq,µu(p) = 4µ2ε

1∫
0

dx
1−x∫
0

dy
∫

ddr
(2π)d

1[
r2 − 2xy(p · ph) + iη

]3
× ū(ph)

{
−(1− ε)/rγµ/r + /pγµ/ph

[
εxy − (1− x)(1− y)

]}
u(p) (D.31)

where we ignore the color indices of the quark spinors for the moment, as the color
state is irrelevant in this discussion. We can split up the second structure by

/pγµ/ph = 2/php
µ − 2(p · ph)γµ + 2pµh/p− /phγ

µ
/p (D.32)
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and using again the Dirac equation, we are left with only two integrals

I(1a)qq,µ ≡ −4(1− ε)µ2ε
1∫

0

dx
1−x∫
0

dy
∫

ddr
(2π)d

/rγµ/r[
r2 − 2xy(p · ph) + iη

]3 (D.33a)

I(1b)qq,µ ≡ −8µ2ε(p · ph)γµ

1∫
0

dx
1−x∫
0

dy
∫

ddr
(2π)d

[
εxy − (1− x)(1− y)

][
r2 − 2xy(p · ph) + iη

]3 (D.33b)

To solve the first of them, we write

I(1a)qq,µ = −4(1− ε)µ2εγργµγ
σ

1∫
0

dx
1−x∫
0

dy I(1a)ρσ (x, y) (D.34)

with

I(1a)ρσ (x, y) =

∫
ddr
(2π)d

rρrσ[
r2 − 2xy(p · ph) + iη

]3 = gρσI
(1a)(x, y) (D.35)

where the last step lists all possible Lorentz structures. Contracting the equation with
gρσ and splitting up the integrand yields

I(1a)(x, y) =
1

d

∫
ddr
(2π)d

r2[
r2 − 2xy(p · ph) + iη

]3
=

1

d

∫
ddr
(2π)d

[
1[

r2 − 2xy(p · ph) + iη
]2 +

2xy(p · ph)[
r2 − 2xy(p · ph) + iη

]3
]

(D.36)

To solve the integrals we perform a Wick rotation into the Euclidean space, denoted
with a subscript E, and use spheric coordinates

I(1a)(x, y) =
i
d

∫
ddrE
(2π)d

[
1[

r2 + 2xy(p · ph)− iη
]2 +

2xy(p · ph)[
r2 + 2xy(p · ph)− iη

]3
]

=
i
d

∫
dΩd

×
∞∫
0

d|rE |
(2π)d

[
|rE |d−1[

|rE |2 + 2xy(p · ph)− iη
]2 − 2xy(p · ph)|rE |d−1[

|rE |2 + 2xy(p · ph)− iη
]3
]

(D.37)

We may now drop the regulator η and substitute

|rE | =
√

2xy(p · ph)
√

τ

1− τ
(D.38)
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to solve the integral by using the definition of the Beta function

I(1a)(x, y) =
i
d

2π2−ε

Γ(2− ε)

1

(2π)4−2ε
(2xy(p · ph))−ε

1

2

[
Γ(ε)Γ(2− ε)

Γ(2)
− Γ(1 + ε)Γ(2− ε)

Γ(3)

]
(D.39)

Inserting into I(1a)qq,µ and using γργµγρ = −2(1− ε)γµ gives

I(1a)qq,µ = 4iγµ
(1− ε)2

2− ε
µ2ε

1

(4π)2−ε

[
Γ(ε)

Γ(2)
− Γ(1 + ε)

Γ(3)

] 1∫
0

dx
1−x∫
0

dy (2xy(p · ph))−ε

=
2iγµ
(4π)2

(
4πµ2

2(p · ph)

)ε
(1− ε)2Γ(ε)

1∫
0

dx
1−x∫
0

dy (xy)−ε

=
2iγµ
(4π)2

(
4πµ2

2(p · ph)

)ε
(1− ε)Γ(ε)

1∫
0

dxx−ε(1− x)1−ε

=
iγµ

(4π)2

(
4πµ2

2(p · ph)

)ε 1− ε

1− 2ε

Γ(ε)Γ2(1− ε)

Γ(1− 2ε)
(D.40)

where we used again the definition of the Beta function to express the final integral in
terms of Gamma functions. To solve I(1b)qq,µ we note that the r integral is equal to the
second term in I(1a)(x, y) up to a prefactor. We read off the result

I(1b)qq,µ = − 2iγµ
(4π)2

(
4πµ2

2(p · ph)

)ε
Γ(1 + ε)

×
1∫

0

dx
1−x∫
0

dy
[
(1− x)(1− y)− εxy

]
(xy)−1−ε (D.41)

To solve the y integral we have to choose ε < 0 indicating an infrared pole. As described
before we will denote this with ε̃ = −ε. Finally we use again the definition of the Beta
function

I(1b)qq,µ = − 2iγµ
(4π)2

(
4πµ2

2(p · ph)

)−ε̃
Γ(1− ε̃)

×
1∫

0

dxx−1+ε̃(1− x)1+ε̃
(

1

ε̃(1 + ε̃)
+ x

)

= − iγµ
(4π)2

(
4πµ2

2(p · ph)

)−ε̃Γ(1− ε̃)Γ2(1 + ε̃)

Γ(1 + 2ε̃)

2 + ε̃2

ε̃2(1 + 2ε̃)
(D.42)
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Our final result for I(1)qq,µ is therefore

I(1)qq,µ = − iγµ
(4π)2

[(
4πµ2

2(p · ph)

)−ε̃Γ(1− ε̃)Γ2(1 + ε̃)

Γ(1 + 2ε̃)

2 + ε̃2

ε̃2(1 + 2ε̃)

−
(

4πµ2

2(p · ph)

)ε 1− ε

1− 2ε

Γ(ε)Γ2(1− ε)

Γ(1− 2ε)

]
(D.43)

We continue with solving I(2)qq,µ by using γργνγρ = (2− d)γν , introducing a Feynman
parameter x to simplify the second and third factor in the denominator and shifting
the loop momentum by defining r = g − p(1− x)

I(2)qq,µ = µ2ε
2− d

2
[
p2 + iη

] ∫ ddg
(2π)d

1∫
0

dx
γµ(p

2 − /p/g)[(
g − p(1− x)

)2
+ iη

]2
= µ2ε

2− d

2
[
p2 + iη

] 1∫
0

dx
∫

ddr
(2π)d

γµ(xp
2 − /p/r)

(r2 + iη)2
(D.44)

The second term in the numerator is antisymmetric under r → −r and is consequently
zero. For the rest we perform again a Wick rotation into the Euclidean space and use
spheric coordinates finding

I(2)qq,µ = iγµ
(2− d)µ2ε

2

∫
ddrE
(2π)d

1

(r2E − iη)2

1∫
0

dxx

= iγµ
(2− d)µ2ε

4(2π)d

∞∫
0

d|rE |
1

|rE |1+2ε

∫
dΩd

= iγµ
(2− d)µ2ε

4(2π)d
2πd/2

Γ
(
d
2

) ∞∫
0

dy
y1+2ε

(D.45)

The integral I(3)qq,µ is completely analogous and gives the same result, which means

I(2)qq,µ + I(3)qq,µ =
−iγµ
(4π)2

2
(
4πµ2

)ε
Γ(1− ε)

∞∫
0

dy
y1+2ε

(D.46)

The integral which is left is sometimes set directly to zero, because it is scaleless [62].
But this mingles ultraviolet and infrared poles, because it is UV as well as IR divergent.
We prefer to keep track of the types of the singularities. Therefore we introduce the
arbitrary number λ which separates the two regimes. It will cancel as soon as we
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develop the expressions in terms of ε. This means our final result for the two integrals
is

I(2)qq,µ + I(3)qq,µ =
−iγµ
(4π)2

2
(
4πµ2

)ε
Γ(1− ε)

 λ∫
0

dy
y1+2ε

+

∞∫
λ

dy
y1+2ε


=

−iγµ
(4π)2

[
1

ε̃

(
4πµ2

λ2

)−ε̃ 1

Γ(1 + ε̃)
+

1

ε

(
4πµ2

λ2

)ε 1

Γ(1− ε)

]
(D.47)

Now we can put all terms together and plug the results into equation (D.27)

ūAi (ph)H
AB
ij uBj (p)

= −4πiαeqδAB
Q2

ū(l2)γ
µu(l1)ū

A(ph)γµu
B(p)

×

[
1− αsCF

4π

×

{
1

ε̃2

(
4πµ2

2(p · ph)

)−ε̃Γ(1− ε̃)Γ2(1 + ε̃)

Γ(1 + 2ε̃)

2 + ε̃2

1 + 2ε̃
+

1

ε̃

(
4πµ2

λ2

)−ε̃ 1

Γ(1 + ε̃)

− 1

ε

(
4πµ2

2(p · ph)

)ε 1− ε

1− 2ε

Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
+

1

ε

(
4πµ2

λ2

)ε 1

Γ(1− ε)

}]
(D.48)

At this point we take the Taylor series for ε and partially also for ε̃. For the latter we
taylor only the trivial factors and the terms involving the parameter λ, because we aim
to achieve the standard way to present the result

ūAi (ph)H
AB
ij uBj (p) = −4πiαeqδAB

Q2
ū(l2)γ

µu(l1)ū
A(ph)γµu

B(p)

×

[
1− αsCF

4π

×

{(
4πµ2

2(p · ph)

)−ε̃Γ(1− ε̃)Γ2(1 + ε̃)

Γ(1 + 2ε̃)

[
2

ε̃2
− 4

ε̃
+ 9 +O(ε̃)

]
+

1

ε̃
+ γE + ln

(
4πµ2

λ2

)
+O(ε̃)

− 1

ε
− 1 + γE − ln

(
4πµ2

2(p · ph)

)
+O(ε)

+
1

ε
− γE − ln

(
4πµ2

λ2

)
+O(ε)

}]
(D.49)
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where γE is the Euler–Mascheroni constant. Obviously all ultraviolet divergences cancel
as expected, as does the parameter λ. To simplify the remaining terms, we use the
expansion(

4πµ2

2(p · ph)

)−ε̃Γ2(1 + ε̃)Γ(1− ε̃)

Γ(1 + 2ε̃)

[
1

ε̃
− 1

]
=

1

ε̃
− 1+ γE − ln

(
4πµ2

2(p · ph)

)
+O(ε̃) (D.50)

and replace ε̃ again with ε = −ε̃

ūAi (ph)H
AB
ij uBj (p) = −4πiαeqδAB

Q2
ū(l2)γ

µu(l1)ū
A(ph)γµu

B(p)

×

[
1− αsCF

4π

(
4πµ2

2(p · ph)

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

]]
(D.51)

The result means, that the NLO contributions of the virtual diagrams are a trivial
factor in terms of the Dirac and color structure, which should be expected, because the
virtual diagrams do not change the ‘interface’ of the diagrams. This means the trace
in equation (D.26) is given by (implicitly averaging over incoming and summing over
outgoing spin states, which adds a factor one-half)

1

Nc
tr
(
H/pγ

0H†γ0/ph
)
=

(4π)2α2e2q
2Q4

tr
(
/l2γ

µ/l1γ
ν
)

tr
(
γµ/pγν/ph

)
×

[
1− αsCF

4π

(
4πµ2

2(p · ph)

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

]]
(D.52)

For the traces we use the tracer package [292] with the scalar products defined in
equations (D.20)

1

Nc
tr
(
H/pγ

0H†γ0/ph
)
= 2(4π)2α2e2q

ξz

xζ

(
1− 2ε−

q2T
Q2

+
Q2 + q2T
Q2

cosh2(ψ)

− 2
qT
Q

cos(φ) cosh(ψ) sinh(ψ)

)

×

[
1− αsCF

2π

(
4πµ2

2(p · ph)

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

]]
(D.53)

Sorting in terms of the structure functions Ak defined in equations (4.24) and inserting
into equation (D.26) gives the result reported in (4.23).
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l(l1) l(l2)

γ(q)

q(ξP )

q(Ph/ζ)

g(g)

+

l(l1) l(l2)

γ(q)

q(ξP )

q(Ph/ζ)

g(g)

Figure D.2: Partonic invariant amplitude of SIDIS process with a quark in the initial state. The
final state consists of a hadronizing quark and an unobserved gluon.

D.3.1.2 Real diagrams

We turn to the partonic diagrams containing one real gluon emission, as shown in
figure D.2, which means that we evaluate the summand with n = 1 in equation (4.22)

dσn=1
qq

dRd
=
∑
λ,A

∫
ddg

(2π)d−1
δ((g)2)Θ(g0)

1∫
0

dξ
1∫

0

dζ
ζ
fq(ξ)Dq(ζ)

Q2

4

z

xζ2

× (2π)dδd
(
l1 − l2 + ξP − 1

ζ
Ph − g

)
1

Nc
tr
(
H/n+γ

0H†γ0 /m
)

(D.54)

We use the d dimensional delta distribution to evaluate the phase space integral of the
gluon

dσn=1
qq

dRd
=
πQ2

2Nc

z

x

1∫
0

dξ
1∫

0

dζ
ζ

1

ζ2
fq(ξ)Dq(ζ)δ

((
q + ξP − 1

ζ
Ph

)2
)

×Θ

(
q0 + ξP 0 − 1

ζ
P 0
h

)∑
λ,A

tr
(
H/n+γ

0H†γ0 /m
)

(D.55)

Then we rewrite the remaining delta distribution in terms of our specific reference
system (see section 4.2)

δ

((
q + ξP − 1

ζ
Ph

)2)
=

ζ

zQ2
δ

((
1− ζ

z

)(
1− ξ

x

)
−
q2T
Q2

)
(D.56)

and the Heaviside function

Θ

(
q0 + ξP 0 − 1

ζ
P 0
h

)
= Θ

(
ξ

x
− z

ζ
− z

ζ

q2T
Q2

)
(D.57)

We can now argue on the limits of the ξ and the ζ integrals. By the means of the delta
distribution it has to be ξ > x and ζ > z or ξ < x and ζ < z. The Heaviside function
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restricts us to the first combination, namely ξ > x and ζ > z. Using the collinear
expansion as in equations (D.22) we find

dσn=1
qq

dRd
=

π

Q2

1

z

1∫
x

dξ
ξ

1∫
z

dζ
ζ
fq(ξ)Dq(ζ)δ

((
1− ζ

z

)(
1− ξ

x

)
−
q2T
Q2

)
×
∑
λ,A

1

Nc
tr
(
H/pγ

0H†γ0/ph
)

(D.58)

Finally we have to calculate H shown in figure D.2. With the standard Feynman rules
in d = 4− 2ε dimensions and using Feynman gauge we find

ūAi (ph)H
AB
ij uBj (p)

= ū(l2)
(
−ieγµ

)
u(l1)

(
−igµν
q2 + iη

)
× ūA(ph)

[
(−ieeqγν)

i(/ph − /q)

(ph − q)2 + iη
(−igsµεγρtaAB)ε∗ρ(p− ph + q, λ)

+ (−igsµεγρtaAB)ε∗ρ(p− ph + q, λ)
i(/p+ /q)

(p+ q)2 + iη
(−ieeqγν)

]
uB(p)

= −ie
2eqgsµ

ε

Q2
taABū(l2)γ

µu(l1)

× ūA(ph)

[
γµ(/ph − /q)/ε

∗(p− ph + q, λ)

(ph − q)2 + iη
+

/ε∗(p− ph + q, λ)(/p+ /q)γµ

(p+ q)2 + iη

]
uB(p)

(D.59)

As before we suppress the spin argument of the Dirac spinors u. εµ is the polarization
vector of the final state gluon. We suppress Dirac indices on the right-hand side of
the equation again for brevity. Then the trace is given by (implicitly averaging over
incoming and summing over outgoing spin states)

∑
λ,A

1

Nc
tr
(
H/pγ

0H†γ0/ph
)

= −
e4e2qg

2
sµ

2εCF

2Q4
tr
(
/l2γ

µ/l1γ
ν
)

×

[
tr
(
γµ(/ph − /q)γρ/pγρ(/ph − /q)γν/ph

)
(ph − q)4

+
tr
(
γµ(/ph − /q)γρ/pγν(/p+ /q)γρ/ph

)[
(ph − q)2 + iη

][
(p+ q)2 − iη

]
+

tr
(
γρ(/p+ /q)γµ/pγρ(/ph − /q)γν/ph

)[
(p+ q)2 + iη

][
(ph − q)2 − iη

] +
tr
(
γρ(/p+ /q)γµ/pγν(/p+ /q)γρ/ph

)
(p+ q)4

]
(D.60)
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l(l1) l(l2)

γ(q)

q(ξP )

q(pq)

g(Ph/ζ)

+

l(l1) l(l2)

γ(q)

q(ξP )

q(pq)

g(Ph/ζ)

Figure D.3: Partonic invariant amplitude of SIDIS process with a quark in the initial state. The
final state consists of a hadronizing gluon and an unobserved quark.

Here the color trace has been performed already and we used Feynman gauge by writing
the polarization sum ∑

λ

ε∗µ(p, λ)εν(p, λ) = −gµν (D.61)

Now using the tracer package [292] with the scalar product given in equations (D.20),
sorting the result in terms of the structure functions defined in equations (4.24) and
replacing q2T in the denominator by means of the overall delta distribution if possible
yields the result given in equation (4.27).

D.3.2 Quark PDF and gluon FF—the gq channel

We continue with the channel including an incoming quark and an hadronizing gluon.
The partonic invariant amplitude is shown in figure D.3. The figure is apparently
similar to figure D.2 despite of the outgoing momenta, which imply that this time the
gluon will hadronize into a measured hadron, while the quark will be unobserved. But
due to the different nature of the gluon, this has a quite deep impact on H which reads
now

Ha,µ
i,Au

A
i (p) = ū(l2)(−ieγρ)u(l1)

(
−igρσ
q2 + iη

)
× ūB(q + p− ph)

[
(−ieeqγσ)

i(/p− /ph)

(p− ph)2 + iη
(−igsµεγµtaBA)

+ (−igsµεγµtaBA)
i(/q + /p)

(q + p)2 + iη
(−ieeqγσ)

]
uA(p)

= − ie2eqgsµε

Q2
taBAū(l2)γσu(l1)

× ūB(q + p− ph)

[
γσ(/p− /ph)γ

µ

(p− ph)2 + iη
+
γµ(/q + /p)γσ

(q + p)2 + iη

]
uA(p) (D.62)
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l(l1) l(l2)

γ(q)

q(Ph/ζ)

q̄(pq̄)

g(ξP )

+

l(l1) l(l2)

γ(q)

q̄(pq̄)

q(Ph/ζ)

g(ξP )

Figure D.4: Partonic invariant amplitude of SIDIS process with a gluon in the initial state. The
final state consists of a hadronizing quark and an unobserved antiquark.

where we already replaced the placeholder variable pq = p+ q− ph by the means of the
overall delta distribution and suppressed the Dirac indices on the right-hand side for
brevity. This means the trace in equation (4.46) can be written as

−gµν
Nc

tr
(
Hµ

/pγ
0H†,ν) = −

e4e2qg
2
sµ

2εCF

2Q4
tr
(
/l2γσ/l1γρ

)
×

[
tr
(
(/q + /p− /ph)γ

σ(/p− /ph)γ
µ/pγµ(/p− /ph)γ

ρ
)

(p− ph)4

+
tr
(
(/q + /p− /ph)γ

σ(/p− /ph)γ
µ/pγρ(/q + /p)γµ

)
(p− ph)2(q + p)2

+
tr
(
(/q + /p− /ph)γ

µ(/q + /p)γσ/pγµ(/p− /ph)γ
ρ
)

(q + p)2(p− ph)2

+
tr
(
(/q + /p− /ph)γ

µ(/q + /p)γσ/pγρ(/q + /p)γµ
)

(q + p)4

]
(D.63)

where, as always, we implicitly summed over outgoing and averaged over incoming spin
states. The expression is again calculated with tracer [292] and the scalar products
given in equations (D.20). The result is then sorted in terms of the structure functions
Ak defined in (4.24) and the overall delta distributions is used to replace factors of q2T
in denominators if possible, which results in the hadronic differential cross section in
equation (4.47).
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D.3.3 Gluon PDF and quark FF—the qg channel
We conclude this section with the channel including a gluon PDF and a quark FF. The
partonic invariant amplitude is shown in figure D.4. The analytical expression reads

ūAi (ph)H
a,µ
i,A = ū(l2)(−ieγρ)u(l1)

(
−igρσ
q2 + iη

)
× ūAi (ph)

[
(−ieeqγσ)

i(/ph − /q)

(ph − q)2 + iη
(−igsµεγµtaAB)

+ (−igsµεγµtaAB)
i(/ph − /p)

(ph − p)2 + iη
(−ieeqγσ)

]
vB(p− ph + q)

= − ie2eqgsµε

Q2
taABū(l2)γσu(l1)

× ūAi (ph)

[
γσ(/ph − /q)γµ

(ph − q)2 + iη
+
γµ(/ph − /p)γσ

(ph − p)2 + iη

]
vB(p− ph + q) (D.64)

Like always we suppressed Dirac indices on the right-hand side of the equation for
brevity. Further we replaced the placeholder variable pq̄ in figure D.4 by the means of
the overall delta distribution pq̄ = p− ph + q. Inserting the expression in the trace of
equation (4.60) yields

−gµν
N2
c − 1

tr
(
HµH†,νγ0/ph

)
= −

e4e2qg
2
sµ

2εTR

2Q4
tr
(
/l2γσ/l1γρ

)
×

[
tr
(
/phγ

σ(/ph − /q)γµ(/p− /ph + /q)γµ(/ph − /q)γρ
)

(ph − q)4

+
tr
(
/phγ

σ(/ph − /q)γµ(/p− /ph + /q)γρ(/ph − /p)γµ
)

(ph − q)2(ph − p)2

+
tr
(
/phγ

µ(/ph − /p)γσ(/p− /ph + /q)γµ(/ph − /q)γρ
)

(ph − p)2(ph − q)2

+
tr
(
/phγ

µ(/ph/p)γ
σ(/p− /ph + /q)γρ(/ph − /p)γµ

)
(ph − p)4

]
(D.65)

where we summed over all outgoing and averaged over all incoming spin states. The
color trace combined with the overall color prefactor gives in contrast to the other
channels the Casimir operator of the fundamental representation

tr
(
tata

)
N2
c − 1

= TR (D.66)

The Dirac traces are again calculated by using tracer [292] and the scalar products
given in equations (D.20). Sorting the result in terms of the structure functions Ak

defined in equations (4.24) and replacing q2T in the denominator by means of the overall
delta distribution yields the expression reported in equation (4.61).

222



D.4 Delta distribution expansion

D.4 Delta distribution expansion

In this section we will systematically expand the delta distribution that we encounter
in our calculation, see equations (4.27), (4.47) and (4.61). The leading order in terms
of small qT has been used for years [164, 237], but to our knowledge it has never been
expanded to higher orders. In our particular case this is necessary to gather all terms
that diverge for small transverse momentum.

We perform the calculation in terms of the q2T differential SIDIS process, where in our
particular frame qT characterizes the transverse momentum of the measured hadron.
Compared to equations (4.27), (4.47) and (4.61) we change the delta distribution in
terms of

δ

((
1− ξ

x

)(
1− ζ

z

)
−
q2T
Q2

)
= xzδ

(
(ξ − x)(ζ − z)−

q2T
Λ2

)
(D.67)

with the abbreviation Λ2 = Q2/(xz), which does not depend on qT . Further we notice
that the integral limits are by means of the delta distribution (compare also to [237,
245, 246])

1∫
x

dξ
1∫
z

dζ →
1∫

ξmin

dξ
1∫

ζmin

dζ (D.68)

with

ξmin = ξ∗(1) (D.69a)
ζmin = ζ∗(1) (D.69b)

and

ξ∗(ζ) = x

(
1 +

z

ζ − z

q2T
Q2

)
= x+

1

ζ − z

q2T
Λ2

(D.70a)

ζ∗(ξ) = z

(
1 +

x

ξ − x

q2T
Q2

)
= z +

1

ξ − x

q2T
Λ2

(D.70b)

For the following calculation we use an arbitrary test function f(ξ, ζ) and consider
the integral

I ≡
1∫

ξmin

dξ
1∫

ζmin

dζ f(ξ, ζ)δ

(
(ξ − x)(ζ − z)−

q2T
Λ2

)
(D.71)

In principle one could split up the integral, but because it is symmetric under x↔ z
and f(ξ, ζ) ↔ f(ζ, ξ) we perform the calculation antisymmetric and make the result
symmetric later on.
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First we use the delta distribution to get rid of one integration, then we take the
taylor series to expand the test function at q2T /Λ2 = 0

I =

1∫
ξmin

dξ
ξ − x

f(ξ, ζ∗(ξ)) =
∞∑
n=0

In
n!

(
q2T
Λ2

)n

where we defined the coefficients

In ≡
1∫

ξmin

dξ
(ξ − x)n+1

∂nf(ξ, z)

∂ζn
(D.72)

The partial derivative is concerned to the second argument of the function f(ξ, ζ) and
evaluated at ζ = z. We handle In by applying n times integration by parts to reduce
the power of the denominator

In =
I
(1)
n

n!
−

n∑
k=1

(k − 1)!

n!

[
(ξ − x)−k

∂2n−kf(ξ, z)

∂ξn−k∂ζn

]1
ξmin

(D.73)

with the definition

I(1)n =

1∫
ξmin

dξ
ξ − x

∂2nf(ξ, z)

∂ξn∂ζn
(D.74)

By inserting a zero

I(1)n =
∂2nf(x, z)

∂ξn∂ζn

1∫
ξmin

dξ
ξ − x

+

1∫
ξmin

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]
(D.75)

we can easily integrate the first summand. For the second summand we split up the
integral at x. Then we approximate the integral from ξmin to x by evaluating at the
upper limit and multiplying with the volume of the integral

I(1)n =
∂2nf(x, z)

∂ξn∂ζn
ln
(

1− x

ξmin − x

)
+

1∫
x

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

+

x∫
ξmin

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

≈ ∂2nf(x, z)

∂ξn∂ζn
ln
(
(1− x)(1− z)

Λ2

q2T

)
+

1∫
x

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

224



D.4 Delta distribution expansion

+ (x− ξmin) lim
ξ→x

1

ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

=
∂2nf(x, z)

∂ξn∂ζn
ln
(
(1− x)(1− z)

Λ2

q2T

)
+

1∫
x

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

− 1

1− z

q2T
Λ2

∂2n+1f(x, z)

∂ξn+1∂ζn
(D.76)

Note that this approximation is the only non-trivial during the whole calculation. While
all other steps are easily extendable to produce arbitrary orders in terms of q2T it would
be necessary to find a reasonable approximation for the integral that supports higher
orders and can be used in the further steps.

We can now collect all terms we found to far and extend the primitive integral in
equation (D.73). For the expression at ξmin we apply a Taylor series for the function
f(ξmin, z) at q2T /Λ2 = 0

I ≈
∞∑
n=0

1

(n!)2

(
q2T
Λ2

)n

×

[
∂2nf(x, z)

∂ξn∂ζn
ln
(
(1− x)(1− z)

Λ2

q2T

)
+

1∫
x

dξ
ξ − x

[
∂2nf(ξ, z)

∂ξn∂ζn
− ∂2nf(x, z)

∂ξn∂ζn

]

− 1

1− z

q2T
Λ2

∂2n+1f(x, z)

∂ξn+1∂ζn
−

n∑
k=1

(k − 1)!(1− x)−k
∂2n−kf(1, z)

∂ξn−k∂ζn

+
n∑
k=1

(k − 1)!

(
(1− z)

Λ2

q2T

)k ∞∑
i=0

1

i!

(
(1− z)

Λ2

q2T

)−i∂2n−k+if(x, z)

∂ξn−k+i∂ζn

]
(D.77)

At this point we are able to identify all terms that contribute up to q2T /Λ
2. It is

even possible to identify most terms that contribute to higher orders. But as already
mentioned we might miss some terms due to the approximation in the previous step.
We explain the identification that includes the triple sum, which is the most difficult.
No term with n = 0 is valid, because the k sum gives zero. At O(1) and for n ≥ 1 the
only term that contributes at that order is with k = n and i = 0. At order q2T /Λ2 we
have two non-zero contributions. The first one with k = n and i = 1 and the second
one with k = n− 1 (which implies n ≥ 2) and i = 0. The resulting two sums have the
similar structure in terms of x and z and can be unified easily

I ≈ f(x, z) ln
(
(1− x)(1− z)

Λ2

q2T

)
+

1∫
x

dξ
ξ − x

[
f(ξ, z)− f(x, z)

]
+

∞∑
n=1

(1− z)n

n · n!
∂nf(x, z)

∂ζn
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+
q2T
Λ2

[
∂2f(x, z)

∂ξ∂ζ
ln
(
(1− x)(1− z)

Λ2

q2T

)
+

1∫
x

dξ
ξ − x

[
∂2f(ξ, z)

∂ξ∂ζ
− ∂2f(x, z)

∂ξ∂ζ

]

− 1

1− z

∂f(x, z)

∂ξ
− 1

1− x

∂f(1, z)

∂ζ

+
∂2f(x, z)

∂ξ∂ζ
+

∞∑
n=2

(1− z)n−1

(n− 1) · n!
∂n+1f(x, z)

∂ξ∂ζn

]
(D.78)

The final task is to symmetresize the result. The O(1) terms can be modified by
rewriting the sum via

∞∑
n=1

(1− z)n

n · n!
∂nf(x, z)

∂ζn
=

1∫
z

dζ
ζ − z

∞∑
n=1

(ζ − z)n

n!

∂nf(x, z)

∂ζn

=

1∫
z

dζ
ζ − z

[
f(x, ζ)− f(x, z)

]
(D.79)

where we identified the taylor series of f(ζ, x) in the second step. The same strategy
applies to the sum that is left at O(q2T /Λ

2)

∞∑
n=2

(1− z)n−1

(n− 1) · n!
∂n+1f(x, z)

∂ξ∂ζn
=

∂

∂ξ

1∫
z

dζ
(ζ − z)2

[
f(x, ζ)− f(x, z)− (ζ − z)

∂f(x, z)

∂ξ∂ζ

]

=

1∫
z

dζ
(ζ − z)2

[
∂f(x, ζ)

∂ξ
− ∂f(x, z)

∂ξ
− (ζ − z)

∂2f(x, z)

∂ξ∂ζ

]
(D.80)

The ξ integral can be manipulated such, that the symmetry becomes manifest. Note
that our shorthand notation for the derivatives evaluated at a given value gets at its
limit in the first step, where we introduce a term ∂ζf(x, z) that does not depend on ξ.
To mark this explicit we denote this particular term by g(z) ≡ f(x, z) and release the
notation once no ambiguity is left

1∫
x

dξ
ξ − x

[
∂2f(ξ, z)

∂ξ∂ζ
− ∂2f(x, z)

∂ξ∂ζ

]

=

1∫
x

dξ
ξ − x

[
∂

∂ξ

(
∂f(ξ, z)

∂ζ
− ∂g(z)

∂ζ

)
− ∂2f(x, z)

∂ξ∂ζ

]

=

[
1

ξ − x

(
∂f(ξ, z)

∂ζ
− ∂g(z)

∂ζ

)]1
x
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+

1∫
x

dξ
(ξ − x)2

[
∂f(ξ, z)

∂ζ
− ∂g(z)

∂ζ
− (ξ − x)

∂2f(x, z)

∂ξ∂ζ

]

=
1

1− x

(
∂f(1, z)

∂ζ
− ∂f(x, z)

∂ζ

)
− ∂2f(x, z)

∂ξ∂ζ

+

1∫
x

dξ
(ξ − x)2

[
∂f(ξ, z)

∂ζ
− ∂f(x, z)

∂ζ
− (ξ − x)

∂2f(x, z)

∂ξ∂ζ

]
(D.81)

This means our symmetric result is given by

I = f(x, z) ln
(
Λ2

q2T

)
+

1∫
x

dξ f(ξ, z)

(ξ − x)+
+

1∫
z

dζ f(x, ζ)

(ζ − z)+

+
q2T
Λ2

[
∂2f(x, z)

∂ξ∂ζ
ln
(
Λ2

q2T

)
+

1∫
x

dξ
(ξ − x)2+

∂f(ξ, z)

∂ζ
+

1∫
z

dζ
(ζ − z)2+

∂f(x, ζ)

∂ξ

]

+O
(
q4T
Λ4

)
(D.82)

where we defined the generalized plus distribution
1∫
a

dy
(y − a)m+

f(y) ≡
1∫
a

dy
(y − a)m

(
f(y)−

m−1∑
k=0

f (k)(a)

k!
(y − a)k

)

+
f (m−1)(a)

(m− 1)!
ln(1− a)−

m−2∑
k=0

m− k − 1

k!

f (k)(a)

(1− a)m−k−1
(D.83)

In a distributional sense the result reads

δ

(
(ξ − x)(ζ − z)−

q2T
Λ2

)

= δ(ξ − x)δ(ζ − z) ln
(
Λ2

q2T

)
+
δ(ξ − x)

(ζ − z)+
+
δ(ζ − z)

(ξ − x)+

+
q2T
Λ2

[
δ(ξ − x)δ(ζ − z)∂ξ∂ζ ln

(
Λ2

q2T

)
+
δ(ξ − x)

(ζ − z)2+
∂ξ +

δ(ζ − z)

(ξ − x)2+
∂ζ

]
+O

(
q4T
Λ4

)
(D.84)

With the analogous calculation as in equation (D.81) we can reduce the plus dis-
tribution with m = 2 into more convenient delta and plus distributions with m = 1
by

1∫
a

dy
(y − a)2+

f(y) =

1∫
a

dy
(y − a)2

(
f(y)− f(a)− f ′(a)(y − a)

)
+ f ′(a) ln(1− a)− f(a)

1− a
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=

[
−f(y)− f(a)

y − a

]1
a

+

1∫
a

dy
y − a

(
f ′(y)− f ′(a)

)
+ f ′(a) ln(1− a)− f(a)

1− a

= f ′(a)− f(1)

1− a
+

1∫
a

dy
(y − a)+

f(y) (D.85)

or in a distributional sense
1

(y − a)2+
= δ(y − a)∂y −

δ(1− y)

1− a
+

1

(y − a)+
∂y (D.86)

D.5 Regularization of transverse momentum distribution
In this section we will provide some details to the regularization procedure of the q2T
differential SIDIS cross section for q2T = 0.

The most demanding case is the channel including quark PDFs and FFs, as it is the
only one that includes divergent terms from virtual contributions in next-to-leading
order. Our starting point will be equation (4.23), which includes the leading order
and the virtual contributions to the next-to-leading order, and equation (4.30), which
describes the next-to-leading-order contributions coming from real gluon emissions.
First we recognize that only terms ∼ q−2

T can contribute to the regularization, which
excludes immediately all terms that originate from the higher-order expansion of the
delta distribution which has been carried out in section D.4. Second we notice that all
terms that come with the structure functions A3 and A4 do not include any singularities
in terms of ε poles. Consequently only terms proportional to the structure functions
A1 and A2 have to be regularized. Finally we divide the partonic cross sections that
are of interest into singular and finite parts by defining

σ̂n=1,sing
qq,1,0 ≡ 2CF

Q2

q2T

(
1 +

ξζ

xz

)
(D.87a)

σ̂n=1,sing
qq,1,1 ≡ −2CF

Q2

q2T

(
1 +

ζ

z
+
ξ

x
− 4

[
x

ξ
+
z

ζ

]
+ 5

xz

ξζ

)
(D.87b)

σ̂n=1,sing
qq,2,1 ≡ 2CF

Q2

q2T

(
ξζ

xz
− 3

xz

ξζ
+ 4

[
x

ξ
+
z

ζ

]
− 4

)
(D.87c)

σ̂n=1,sing
qq,2,2 ≡ 2CF

Q2

q2T

(
ξζ

xz
− xz

ξζ
− 2

[
ζ

z
+
ξ

x

]
+ 4

)
(D.87d)

and
σ̂n=1,fin
qq,i,j ≡ σ̂n=1

qq,i,j − σ̂n=1,sing
qq,i,j (D.88)
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For the regularization procedure we follow closely [224] by using the distributional
identities

1

(q2T )
1+ε

=
1

(q2T )+
+ δ(q2T )

(
−1

ε
+ ln(Q2

T )

)
+O(ε) (D.89a)

ln(q2T )
(q2T )

1+ε
=

(
ln(q2T )
q2T

)
+

+ δ(q2T )

(
− 1

ε2
+

1

2
ln2(Q2

T )

)
+O(ε) (D.89b)

where the plus distribution is defined in equation 4.32. Using this identities we can
easily rewrite the singular terms

dσsing
qq

dRd
=

dσn=0
qq

dRd
+ (4π)4

α2αs
2zQ4

Γ(1− ε)

(
q2T
4π

)ε 1∫
x

dξ
1∫
z

dζ

×

[
δ(ξ − x)δ(ζ − z) ln

(
Q2

xzq2T

)
+
δ(ξ − x)

(ζ − z)+
+
δ(ζ − z)

(ξ − x)+

]

× 1

Γ(1− ε)

(
4πµ2

q2T

)εxz
ξζ
e2qfq(ξ)Dq(ζ)

[
A1σ̂

n=1,sing
qq,1 +A2σ̂

n=1,sing
qq,2

]
= Γ(1− ε)

(
q2T
4π

)ε 2π(4π)4α2

zQ2

×

[
δ(q2T )(A1 + εA2)e

2
qfq(x)Dq(z)

×

(
1− αsCF

2π

(
4πµ2

Q2

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

])

+
αsCF
2π

1∫
x

dξ
1∫
z

dζ

×

(
δ(ξ − x)δ(ζ − z) ln

(
Q2

xzq2T

)
+
δ(ξ − x)

(ζ − z)+
+
δ(ζ − z)

(ξ − x)+

)

× 1

Γ(1− ε)

(
4πµ2

q2T

)εxz
ξζ

e2qfq(ξ)Dq(ζ)

2CFQ2

[
A1σ̂

n=1,sing
qq,1 +A2σ̂

n=1,sing
qq,2

]]

= Γ(1− ε)

(
q2T
4π

)ε 2π(4π)4α2

zQ2
(A1 + εA2)e

2
q

×

[
δ(q2T )fq(x)Dq(z)

×

(
1− αsCF

2π

(
4πµ2

Q2

)εΓ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

[
2

ε2
+

3

ε
+ 8

])
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+
(4πµ2)ε

Γ(1− ε)

αsCF
2π

fq(x)Dq(z)

(
δ(q2T )

[
2

ε2
− ln2(Q2

T )

]
− 2

(
ln(q2T )
q2T

)
+

)

+
(4πµ2)ε

Γ(1− ε)

αs
2π

{
fq(x)

[
Pqq ⊗Dq(z)

]
+Dq(z)

[
fq(x)⊗ Pqq

]
+ CF fq(x)Dq(z)

[
2 ln(Q2)− 3

]}
×

(
δ(q2T )

[
−1

ε
+ ln(Q2

T )

])

+ CF δ(q
2
T )

(
Dq(z)

1∫
x

dξ
ξ
fq(ξ)

ξ − x

ξ
+ fq(x)

1∫
z

dζ
ζ
Dq(ζ)

ζ − z

ζ

)]
(D.90)

where we used the convolutions defined in equations (4.31) and the leading-order
splitting function Pqq, which is defined by the equations (B.1), (1.87b) and (1.76b).
Further the plus distribution has been modified to accommodate the terms ∼ ln(x) and
∼ ln(z) and is defined in equation (4.34). Note that we omitted already some terms
of order O(ε) to shorten the expression. By similar reasoning we introduced terms
of order O(ε) to factor out the structure functions. This concerns especially the last
line coming with structure function A2. Note that for the whole expression the term
σ̂n=1,sing
qq,2,2 does not contribute at all, because it is zero for ξ = x and ζ = z.
To complete the regularization procedure we finally have to renormalize the PDFs

and FFs via

f ren
q (x) = fq(x)−

αs
2π

(
1

ε
− γE + ln(4π)

)([
fq(x)⊗ Pqq

]
+
[
fg(x)⊗ Pqg

])
(D.91a)

Dren
q (z) = Dq(z)−

αs
2π

(
1

ε
− γE + ln(4π)

)([
Pqq ⊗Dq(z)

]
+
[
Pgq ⊗Dg(z)

])
(D.91b)

which is in the MS scheme. We will immediately drop the index ‘ren’ for brevity and
replace the product of both functions by

fq(x)Dq(z) → fq(x)Dq(z)

+
αs
2π

(
1

ε
− γE + ln(4π)

)(
fq(x)

[
Pqq ⊗Dq(z)

]
+Dq(z)

[
fq(x)⊗ Pqq

]
+ fq(x)

[
Pgq ⊗Dg(z)

]
+Dq(z)

[
fg(x)⊗ Pqg

])
+O(α2

s) (D.92)

Now we may expand the final expression in equation (D.90), where we use only the
renormalization terms including Pqq. The other terms will be needed for the other
channels. As expected all poles cancel and we can move from d to 4 dimensions by
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setting ε = 0. Some reorganization very similar to the calculation in [224], including
the usage of

ln(Q2)

(q2T )+
−
(

ln(q2T )
q2T

)
+

=

 ln
(
Q2

q2T

)
q2T


+

(D.93)

gives all δ(q2T ) and all distribution parts for the divergent terms in the final results for
a single flavour q given in equations (4.36), (4.51) and (4.64). The additional divergent
terms and all finite terms are easily obtained by the terms that has not been considered
yet. These are namely

(1) the finite parts σ̂n=1,fin
qq,1,j and σ̂n=1,fin

qq,2,j and the terms accompanying the structure
functions A3 and A4 combined with the leading-order expansion of the delta
distribution

(2) All terms originating from the next-to-leading-order terms of the delta distribution
expansion. The terms ∼ δ(1−ζ) and ∼ δ(1−ξ) give no finite contribution, because
the PDFs as well as the FFs vanish at their threshold fq(1) = Dq(1) = 0.

The regularization for the other channels is tremendously easier because they do not
encounter virtual diagrams. Also the real diagrams to not contribute any 1/ε2 poles,
because the possible sources (terms with ln(q2T )/q

2+2ε
T ) vanish by means of a delta

distribution. For the gq channel it is due setting ζ = z while all terms in the qg channel
vanish for ξ = x. The only poles that appear are canceled by the renormalization of
the PDF and FF in equation (D.92).
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Mellin transform
The Mellin transform is an integral transform closely related to the Fourier transform.
It is named after the Finnish mathematician Hjalmar Mellin. The transform is defined
by

f(N) = Mf (N) =

1∫
0

dxxN−1f(x) (E.1)

f(N) is called the Mellin moment of the function f(x). Sometimes it is denoted fN to
distinguish the appearance from f(x). The relation to the Fourier transform F is given
by Mf (N) = Ff◦exp(iN), where the upper limit of the Mellin transform is infinity
instead of one. For every use case in this thesis the integrand has the domain

[
0, 1
]

and we can therefore use 1 as upper limit. The inverse transformation is defined by an
line integral in the complex plane, see figure E.1

f(x) = M−1
f (x) =

∫
CN

dN
2πi

x−Nf(N) (E.2)

where the contour CN is usually chosen to be a straight line parallel to the imaginary
axis

CN :
(
−∞,∞

)
→ C
t 7→ c+ it (E.3)

where c ∈ R+. It has been shown that the inverse transformation exists only, if the
following premises are met (0 < a < c < b)

(1) The transformation (E.1) converges absolutely and f(N) is analytic in the set{
N ∈ C | a < Re

(
N
)
< b
}

.

(2) f(N) → 0 continuous for N = c+ it→ c± i∞.

(3) f(x) is a partwise continuous function.
If these are met, it is easy to show that the inverse transformation behaves as expected
by closing the contour as indicated in figure E.1

f(M) =

1∫
0

dxxM−1

∫
CN

dN
2πi

x−Nf(N)
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Re(N)

Im(N)

CN

M

Figure E.1: Illustration of the inverse Mellin transform in equation (E.2) with the contour draws
in red. The straight line represents the initial definition. The closing arc encloses the
point M in the calculation (E.4). All other possible poles of the integrand are on the
left-hand side of the contour.

=

∫
CN

dN
2πi

f(N)

M −N

= (−1)Res

[
− f(N)

N −M

]
N=M

= f(M) (E.4)

where we induced by the solution of the x integral, that for Im(N) = Im(N) the real
parts have to fulfill Re(N) < Re(M), which means that the contour has to pass M on
the left-hand side. This results in one Term in the use of the Residuum theorem. All
possible other poles of the integrand are passed on the right-hand side and do therefore
not contribute.

The key point why the Mellin transform is useful, is its property to convert convolu-
tions into products

Mf⊗g(N) =

1∫
0

dxxN−1

1∫
x

dy
y
f(y)g

(
x

y

)

=

1∫
0

dxxN−1

1∫
0

dy
1∫

0

dz f(y)g(z)δ(x− yz)
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=

1∫
0

dy yN−1f(y)

1∫
0

dz zN−1g(z)

= Mf (N)Mg(N) (E.5)

The most famous uses of these property is the analytical solution of the DGLAP
equations (see section 1.5) and for resummation of threshold logarithms (see section 1.6),
which also exponentiate in Mellin space.
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Appendix F

Doolittle decomposition

The doolittle decomposition is a linear algebra method to decompose a matrix into two
triangle matrices. It is also known as LU decomposition, as one of the matrices is a
lower triangular matrix (L) and the other an upper triangular matrix (U). It is usually
applied to solve linear equation systems, as the two result systems with the triangular
matrices are solved easily.

Let A be an invertible matrix with rank n with the elements aij . The L matrix is a
composition of Frobenius matrices Lm defined by the column m, which is applied to
the result of the m− 1 previous Frobenius matrices multiplied with A.

lim = −
a
(n−1)
im

a
(n−1)
mm

(F.1)

The upper index indicates that the elements in A alter every step. The procedure
eliminates all entries in the lower half of A, transforming it into the upper triangle
matrix U . In the meanwhile the product of the inverse matrices form the lower triangle
matrix L.

A = (Ln−1 · . . . · L1)
−1(Ln−1 · . . . · L1 ·A) ≡ L · U (F.2)

The inverse of a Frobenius matrix is again a Frobenius matrix, where the elements lim
change their sign. The algorithm requires a non-zero diagonal, which can be achieved
in every step by exchanging rows.

A linear equation system Ax = y can therefore decomposed into two systems. The
first step is to solve Lz = y, the second step consists of solving the system Ux = z.
Both steps are exceptionally easy because both are triangle systems. The first is solved
by

zi =
yi

(L)ii
−


0 i = 1
i−1∑
j=1

(L)ij
(L)ii

zj i ∈
{
2, . . . , n

} (F.3)

the second by

xi =
zi

(U)ii
−


0 i = n
n∑

j=i+1

(U)ij
(U)ii

xj i ∈
{
1, . . . , n− 1

} (F.4)
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Numerically the first system can be solved along with the decomposition, because the
linear equation system requires in every iteration only input that is already generated
by the decomposition at the same iteration.

In chapter 5 we use the Doolittle composition for the linear equation system that
determines the coefficients of cubic splines. This specific system embodies some
simplifications. First the system is diagonal dominant, which implies that for the
decomposition a row exchange is never needed. Second the only non-zero entries are
on the diagonal and the two minor diagonals. This induces also the L (U) matrices
to have only non-zero values in the diagonal and the lower (upper) minor diagonal.
This greatly simplifies the numerical implementation of the decomposition as well as
solving the resulting equation systems, because the sums over all non-diagonal elements
collapse.
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Appendix G

Analytical expressions of Sudakov form
factor

In chapter 6 we discuss the numerical behavior of the Sudakov form factor depending
on the underlying analytical form of the strong coupling constant αs. The analytical
expressions that are needed for this discussion are provided here. We define the
quantities computed with equations (6.11) and (6.12), which are the analytical solutions
of the renormalization group equation of the running coupling by specifying the
corresponding coefficients Ai and Bi defined in equation (6.2). Further we indicate the
order of the formula used for αs. The results are

SLO
A1

(bT , Q
2) = −A1

π

Q2∫
µ2b

dk2T
k2T

αs,LO(k
2
T ) ln

(
Q2

k2T

)

=
A1

π

1

b0

[ ln
(
L
)

αs(Q2)b0
+ ln

(
Q2

µ2b

)]
(G.1a)

SNLO
A1

(bT , Q
2) = SLO

A1
(bT , Q

2) +
A1

π

b1
b30

[
1

2
ln2(L) +

1 + ln(L)
L

− 1

]
(G.1b)

SLO
B1

(bT , Q
2) =

B1

π

1

b0
ln(L) (G.1c)

SNLO
B1

(bT , Q
2) = SLO

B1
(bT , Q

2)− B1

π

b1
b20

αs(Q
2)

L

[
L− 1− ln(L)

]
(G.1d)

SLO
A2

(bT , Q
2) =

A2

π2
1

b20

1

L

[
L− 1− L ln(L)

]
(G.1e)

SNLO
A2

(bT , Q
2) = SLO

A2
(bT , Q

2) +
A2

π2
b1αs(Q

2)

108b40L
3

×
[
(1− L)

{
54b0(1− 3L)L+ αs(Q

2)b1(19L(1 + L)− 8)
}

+ 6 ln(L)
{
18b0(1− 2L)L+ b1αs(Q

2)[9L− 4 + (9L− 6) ln(L)]
}]

(G.1f)

SLO
B2

(bT , Q
2) =

B2

π2
α2
s(Q

2)

L
ln
(
µ2b
Q2

)
(G.1g)
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SNLO
B2

(bT , Q
2) = SLO

B2
(bT , Q

2) +
B2

π2
b1α

2
s(Q

2)

54b30L
3

×
[
27b0L(1− L2)− 4b1αs(Q

2)(1− L3)

− 6 ln(L)
{
b1αs(Q

2)(2 + 3 ln(L))− 9b0L
}]

(G.1h)

where we introduced the abbreviation

L ≡ 1 + αs(Q
2)b0 ln

(
µ2b
Q2

)
(G.2)

The identical calculation can also be performed using the expansion of αs in terms
of ln−1(µ/Λqcd), defined in equations (6.13) and (6.14) for NLO and LO respectively.
We discriminate these formulas for the Sudakov factor with an additional superscript
Λqcd. They are given by

S
LO,Λqcd
A1

(bT , Q
2) =

A1

π

1

b0

[
ln
(
Q2

µ2b

)
+ LΛ(Q

2) ln

(
LΛ(µ

2
b)

LΛ(Q2)

)]
(G.3a)

S
NLO,Λqcd
A1

(bT , Q
2) = S

LO,Λqcd
A1

(bT , Q
2) +

A1

π

b1
b30

×
[
LΛ(Q

2)

LΛ(µ2b)

(
1 + ln(LΛ(µ

2
b))
)
− (1 + ln(LΛ(Q

2)))

+
ln2(LΛ(µ

2
b))− ln2(LΛ(Q

2))

2

]
(G.3b)

S
LO,Λqcd
B1

(bT , Q
2) =

B1

π

1

b0
ln
(
LΛ(µ

2
b)

LΛ(Q2)

)
(G.3c)

S
NLO,Λqcd
B1

(bT , Q
2) = S

LO,Λqcd
B1

(bT , Q
2) +

B1

π

b1
b30

[
1 + ln(LΛ(µ

2
b))

LΛ(µ2b)
− 1 + ln(LΛ(Q

2))

LΛ(Q2)

]
S

LO,Λqcd
A2

(bT , Q
2) =

A2

π2
1

b20

[
ln
(
LΛ(Q

2)

LΛ(µ2b)

)
− 1

LΛ(µ2b)
ln
(
Q2

µ2b

)]
(G.3d)

S
NLO,Λqcd
A2

(bT , Q
2) = S

LO,Λqcd
A2

(bT , Q
2) +

A2

π2
b1

108b60L
3
Λ(µ

2
b)L

2
Λ(Q

2)

×
[
6LΛ(µ

2
b)
{
L2
Λ(Q

2) ln(LΛ(µ
2
b))
(
5b1 − 18b20LΛ(µ

2
b)
)

+ 3b1L
2
Λ(Q

2) ln2(LΛ(µ
2
b))

+ L2
Λ(µ

2
b) ln(LΛ(Q

2))

×
(
18b20LΛ(Q

2)− 5b1 − 3b1 ln(LΛ(Q
2))
)}

+ ln
(
Q2

µ2b

){
54b20LΛ(µ

2
b)LΛ(Q

2)(LΛ(Q
2)− 3LΛ(µ

2
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+ b1(19LΛ(µ
2
b)(LΛ(µ

2
b) + LΛ(Q

2))− 8L2
Λ(Q

2))

− 12L2
Λ(Q

2) ln(LΛ(µ
2
b))

×
(
2b1 − 9b20LΛ(µ

2
b) + 3b1 ln(LΛ(µ

2
b))
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S
LO,Λqcd
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2) =

B2

π2
1

b20
(L−1
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