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INTERPOLATING SEQUENCES FOR WEIGHTED SPACES OF ANALYTIC
FUNCTIONS ON THE UNIT BALL OF A HILBERT SPACE

OSCAR BLASCO*, PABLO GALINDO!, MIKAEL LINDSTROM**, AND ALEJANDRO MIRALLES?

ABSTRACT. We show that an interpolating sequence for the weighted Banach space of analytic
functions on the unit ball of a Hilbert space is hyperbolically separated. In the case of the
so-called standard weights, a sufficient condition for a sequence to be linear interpolating is
given in terms of Carleson type measures. Other conditions to be linearly interpolating are
provided as well. Our results apply to the space of Bloch functions of such unit ball.

1. INTRODUCTION AND PRELIMINARIES

Throughout the paper E stands for a complex Hilbert space of arbitrary dimension and
Bg = {x € E : ||z|| < 1} for its open unit ball. Let v : By — (0,00) be a weight, that is, a
continuous positive function. The weighted space of analytic functions

HX(Bg):={f: Bg — C: f is analytic and || f||, = sup v(x)|f(z)| < oo}
Z‘GBE
is a Banach space when endowed with the || - ||, norm. Here we are mostly interested in the
standard weights v,(z) = (1 — [|z]|))* ;& > 0. When a@ = 0 we get the infinite dimensional
generalization H*(Bg) of the Hardy algebra H* of the unit disc. Nevertheless, some of our
results hold true for more general weights.

An analytic function f : Bg — C is said to belong to the Bloch space B(Bg) if sup,¢p, (1 —
|z|*)|Vf(z)]| < oo or, equivalently, if sup,ep, (1 — [|z|*)|Rf(z)| < co, where Rf(x) is the

radial derivative of f at z, Rf(z) = (z, Vf(x)). Both suprema define equivalent Banach space
norms - modulo the constant functions- in B(Bg). We will use both the norms

£ llss) = 1£(0)] + sup (1 — [lz|*)[|V f(z)||

x€BR

and

£ IrBe) = £(O)] + sup (1 — ||l=[|*)|Rf(x)]-

r€EBE
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We shall deal also with the following generalization: for « > 0, it is said that f € B*(Bg)
whenever sup,cp (1 — [|z]|*)*|Rf(z)| < oo and we write

[ f e (5 = [F(O)] + Sup (1= [l=[I*)*|Rf (x)I.

The space of Bloch functions on the unit ball of a Hilbert space was introduced and studied
in [3] and its generalization B*(Bpg) has been considered in [17] and [30]. If F = C, we get
the classical Bloch-type spaces denoted by B“. We shall use the notation B*(Bg) := {f €

B*(Bg) : f(0) =0} and H°*(Bg)o :={f € HX(Bg) : f(0) =0}.
The aim of this article is to study interpolating sequences for these spaces. We will say that
(wp) C Bg is interpolating for H®(Bg) if the mapping

(1.1) S HX(Bg) — s defined by Sf = (v(w,) f(w,))

is onto. As usual we write ||(«,)|| = sup,, || for any bounded sequence of complex numbers.
A sequence (w,) C Bg \ {0} is said to be interpolating (for the radial derivative) for the
Bloch space BY(Bg), if the mapping

S : B*(Bg) — Lo defined by S(f) = (1 — [lwa]|?)* Rf (w,))

is onto. Notice that 0 cannot be included into the interpolating sequence since Rf(0) = 0.

In case S has a linear right inverse, we say that (w,) is a linear interpolating sequence.

For a given interpolating sequence (w,), any constant M > 0 such that whenever a € /.,
there exists f with S(f) = a and ||f|] < M||a||« is called an interpolation constant. Such
constants exist by the Open Mapping Theorem.

There are in the mathematical literature several meanings for the expression ”interpolating
sequence” for B that do not take into account the derivative of the function. See [5] and [29]
for details on different types of interpolation for B. For further information on interpolating
sequences on spaces of analytic functions we refer to [26].

After the celebrated result by L. Carleson which characterizes interpolating sequences for
the space H> (see [14]) also interpolating sequences for the spaces H;° were characterized
by K. Seip in [25]. In connection with Hankel operators, K. R. M. Attele in [1] studied in
connection with Hankel operators interpolating sequences for the derivatives in the Bloch space
B. Such sequences were used by K. Madigan and A. Matheson [18] as a tool for the study of
compactness of some composition operators. The study of interpolating sequences for Banach
spaces of analytic functions on B,,, the open unit ball of the Euclidean space C", was initiated
by B. Berndtsson in [2] for H*°(B,) and by X. Massaneda in [19] for H°(B,,) with a > 0. They
found some necessary and sufficient conditions for a sequence to be interpolating in those spaces.
Interpolating sequences in the n-ball for the so-called fractional derivatives were investigated
in [7]. The existence of interpolating sequences for a given Banach function space shows an
abundance of elements in the space and it has turned to be very useful in the study of weighted
composition operators. The study of interpolating sequences for H>(Bg) was initiated in [11]
and [12] (see also [22]).

In this paper we prove that being hyperbolically separated is also a necessary condition for
a sequence to be interpolating in B*(Bg) or in H°(Bg) for quite general weights. In Section 3
we provide some explicit and enlightening examples of interpolating sequences. We also show
that if the sequence is interpolating for H>(Bg), then it is linear interpolating for B*(Bg) as
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well as for H;°(Bg). By using a suitable extension of the notion of Carleson measure, we obtain
a sufficient condition for a sequence to be linear interpolating in H3°(Bg) (Theorem 5.7). This
result extends to H3°(Bg) and B*(Bg) the previously known results (see [1] and [18]) in the
unit disc stating that a sufficiently separated sequence is interpolating. In Section 7 we present
a number of results concerning B(Bpg) that are extension of the classical ones.

For background on analytic functions on subsets of Hilbert or more general Banach spaces,
we refer to [20]. We will use, frequently without further notice, the following consequence of
Montel’s theorem ([20, Proposition 9.16]).

Lemma 1.1. If F,,, € H(Bg), the series ) F,, is pointwise convergent and the series has
uniformly bounded partial sums on compact subsets of Bg, then it defines an analytic function.

A crucial tool in the study of analytic functions on the unit ball of a Hilbert space is the
homogeneity of the ball. Specifically, the existence of the M&bius transforms ¢, : B — Bg for
each a € Bg defined by

$a(2) = (5.Qa + FPu)(ma(2))

where s, = /1 — ||a]|?, m, : Bg — Bg is the analytic function
a—z
Ma(¥) = 1—(x,a)
and P, = Wa@a where u®v(z) = (z,u)v and @, = Id— P, are the orthogonal projection on

the one dimensional subspace generated by a and on its orthogonal complement respectively.
We recall that ¢, o ¢, (z) = x and ¢,(a) = 0.

The pseudo-hyperbolic metric on Bg is defined by pg(z,y) := ||¢:(y)||. In case £ = C, we
write p instead of pc. The pseudo-hyperbolic disc given by {y € Bg : pr(z,y) < R} is denoted
by D(z, R). We recall some facts to be used later (see [16] p. 99) Let 2 € Bg and R € (0,1).
Then

(=l = llyl*)

1.2 2 = 21— Bg.
(1.2) pe(@,Y)" = [lea(y)l] - wgp  VEDBr
and

1 - R2 2 2 2
(1.3) (I—=1zf]") <1 —lylI" < (1—==[|*), ye Dz, R).

4 1— R?
We shall write B,, for the unit ball of C" and denote by v, the normalized measure in B,
for n > 1. It is well known that for n = 1 the pseudo-hyperbolic disc D(z, R) becomes an

Euclidean disc while in the case n > 2 it is not an Euclidean disc (unless z = 0) but an ellipsoid
(see [24, pages 29,30]) and the value v, (D(z, R)) is
1— ]z
1 — R?|z|?
A sequence (w,) C Bg is said to be hyperbolically r—separated for r > 0 if pg(w,, w,,) >
r for n # m. We say that the sequence is hyperbolically separated if it is hyperbolically

r—separated for some r > 0. We will say that the sequence (w,) satisfies the Carleson’s
condition if [],,, ., pp(wn, wy,) > 6 for some § and for all m € N.

2n ntl
va(D(2, R)) = R ( ) . 2eB,0<R<1.
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2. CARLESON MEASURES ON THE UNIT BALL Bpg

Forany £ € E, ||£]| =1 and 0 < h < 1 we shall denote by S(&, h) the Carleson window given
by
S h)={y € Bp:|1—(y.§)| < 2h}.
We write S(§,h) = Bg for h > 1.

Definition 2.1. Let 1 be a finite Borel measure on By and § > 0. We say that 7 is a S-Carleson
measure whenever there exists C' > 0 such that

(2.1) n(S(&,h)) < CHP,  forall |€]| =1,and all 0 < h < 1.

We Wl“ite ||’]’]H5 — Sup”£“:170<h<1 H(Sf(L%h)) .

Lemma 2.2. Let n be a finite Borel measure on By and B > 0. Define for a >0
1 11— [lz]* \e
(. f) = sup | ( )" dn(w) € [0,00].
! jeti<t (L= [[#]12)? Jp, M1 = (w, )]

(1) If I(or, B) < o0 for some o > 0, then n is a B-Carleson measure.
(i) If n is a B-Carleson measure, then I, (a, f) < oo for any o > [5.
Furthermore, for a > [ one has

20 _ 28 .
L0, 8) < linlls < 2°3°T, (e, ).

Proof. (i) Let 0 < h < 1 and £ € Bg with ||| = 1 and set x = (1 — h)§. Hence h =1 — ||z||
and for y € S(&, h) we have

11— (y,z)| = |1 = (y,&) + h{y, &) < 3h < 3(1 — [|=]?).

(2.2)

Therefore
n(SER) = / dn(y)
S(&,h)

LTl e
< 3 /BE<|1—<y,x>|) ()
< 30, )1 2]?)° < 3L, (a, )20,

(ii) Let o > . For each x € Bg, x # 0, we write { = H_zH Note that if y ¢ S(&, h) and
h > %, then

1=y, z) > 1— (v, y,v =8|
> 2h—H”§—H—x Iyl
> 2h—(1—|z|)

Define Fy = S(&,1 — ||z||*) and
By, = S(&,25(1 = [|l=[1*) \ S(& 271 (1 — [|=[*))-
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Now for k > 1, y € Ej and selecting h = 2871(1 — ||2]|?) in the above estimate, we obtain
that

1= (y,2)] > 2" (1 = [l2]*) = (1 = [lz]}) = 2" (1 — [|z]]*).
Select M € N so that 2M=1(1 — ||z[|?) < 1 < 2M(1 — ||z||?). Hence

(L=l , (1),
/BE 1w,y 1) /];k|1—<w,x>rad”( )

Mz =

b
Il

0

M
< 2%(S(E,1 = [|=]*) + Y 27 (S (€, 261 — [l]?)
k=1
< 2%|lnlls(1 = flz]l*) 22'“
22“H77H/3
= L ey
This completes the proof and give the stated estimates. U

Recall that for z € B, the evaluation map 0, is given by 0,(f) = f(z) for f € H(Bg).

Definition 2.3. Given (w,)>?, C Bg and v > 0 we define

[e.9]

(2.3) M) = (1= wall?)60,.

n=1

In particular 1, (,,)(Bg) < oo if and only if >~ (1 — [Jw,|?)” < oco.
The following characterization is a direct consequence of Lemma 2.2 together with (1.2).

Lemma 2.4. Let (wy,)2, C Bg and a > 3 > 0. Then for each v > 0 the measure 1, (w,) is a
B-Carleson measure if and only if there exists C > 0 such that

(2.4) D (1= pla, wa))** (1 = wy |7 < C(1 = |l2]|*)*~*, z € Bg.
neN

In particular, the following are equivalent:
(i) Mg, (wy) 5 a B-Carleson measure.

B—a/2
.. o 1—||wnl|?
(it) Iy, (., (0 B) = supj 1 pen(l = pe(@, wn)?) /2<—1J|\\_x|||i ) < oo

_ (1= [lwn[2)? (1=||]2)*~#
(113) Ing (1 (@ B) = SUD|g <1 D ey H |1_<g,;,wn>|aH < 0.

We consider the following notation introduced in [19] for B,. For p,q > 0 and (w;) C Bp,
we denote

(1- ||wk|| (1 — [lwy[1*)
K({w]}7p7 = Supz ’l,Uk W >|p+q] :
J

Corollary 2.5. Let v, > 0 and (w;) C Bg . If ng ;) is a 3-Carleson measure then
({w]} ’75) n5<w)(ﬂ‘|‘%5)<00-
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Remark 2.6. It was shown in [19, Lemma 1.4] that for £ = (C", || - ||2) one has that ng ;) is a
B-Carleson measure for § > n if and only if K({z;},7,) < oo for any 0 < v < .

Let us now relate the notion of "hyperbolic separation” with -Carleson measures. Combin-
ing Remark 2.6 and [19, Lemma 1.5] it was shown that any hyperbolically separated sequence
(2;) C B, satisfies that ng(.,) is a $-Carleson measure for § > n. We shall give an alternative
proof of such a result using the following well known estimate (see [28, Lemma 2.24])

e @ w)Pdv, (w), =
(25) P < Gy [, @), 2B,

for any 0 < r < 1, 0 < p < oo and any holomorphic function f in B,.

Proposition 2.7. Let n € N and let (z;) C B, be a hyperbolically separated sequence, then
Ng,(z;) 15 a B-Carleson measure for any 3 > n.

Proof. Assume that pcn(zj, 2;) > 2R for j # k. Hence D(z;, R) are pairwise disjoint sets in B,,.
Let us show that (z;) satisfies (iii) in Lemma 2.4 for any § > n and any a > . Let z € B,,.
Applying (2.5) to the function m for the point z; € D(z;, R) together with (1.3), we

have

(L= 1% = |2)" 2yt (= fup)ymt
Z ’1_ <Zjaz>|a = CR(l | | ) Z/D(zj,R) |1— <w,z>\a d n( )

o U)2 B—n—1
= caa -l [ L2lED)

UjD(Zj7R) |1 - <w7Z>|a

jEN jeN

dv, (w).

Now use the well-known fact (see [24, Page 18]) that for ¢ > 0 and ¢ > —1

[ islutyane _c

o L= (w, 2)|rttere = (1 —[2]?)

Inourcase f—n—1=t>—-1and c=a— [ > 0, so we get the estimate

(1 2P (1 — |o)o?
) T I

JEN
U

Remark 2.8. For the unit ball of infinite dimensional Hilbert spaces the fact that a sequence is
hyperbolically separated does not imply that 7g (,,) is a S-Carleson measure for any 8 > 0. It
suffices to use w; = 3e; which satisfies that pp(w;, wy) = 4 for k # j and 3, (1—[lw;|*)’ = oo
for any 5 > 0.

Invoking now Proposition 2.7, Lemma 2.4 and the fact p(||z]], ||y||) < pr(z,y) for any z,y €
Bpg we obtain the following result.

Corollary 2.9. Let (w;) C Bg such that (||w,||) C D is a hyperbolically separated sequence.
Then ng,w;) s a B-Carleson measure for any 3> 1.
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3. EXAMPLES OF INTERPOLATING SEQUENCES

Let us start by pointing out that in the case of infinite dimensional Hilbert spaces we can
find interpolating sequences for H°(Bg) and in B*(Bg) whose interpolating functions are
polynomials.

Proposition 3.1. Let (e,) C E be an orthonormal sequence and let u be a bounded radial
weight on . Then for each (z,) C D such that

(3.1) (inf |z,|) (inf u(|2,])) > 0
the sequence (wy,) = (znen) is linear interpolating for H>°(Bg), where v(z) = u(]|z]]).
Specifically, for any bounded sequence (ay) C C and any degree d > 2, there is a polyno-

mial Py € P(E) such that S(P;) = (), where P(E) stands for the set of d-homogeneous
polynomials defined on Bg and S is the map defined in (1.1).

Proof. Consider the d-homogeneous polynomial

Pu(w) =3 o (e

Clearly P, is well-defined since (Zd&’ZUnJ € ly and Y. |{z,e,)|? < ||z[|%. Note that

u([lz)1Pa(@)] < Cll(an) o for C = sup,ep u(2)- (infy [2])~(infn u(]z,])) ™ and v(w,) Pa(w,) =
oy, for any n € N. O

Proposition 3.2. Let (e,) C E be an orthonormal sequence and o > 0. Then for each (z,) C D
such that

(3.2) 0 < inf|z,| <sup|z,| <1
the sequence (wy,) = (znen) is linear interpolating for B*(Bg).

Specifically, for any bounded sequence (ay.) C C and any degree d > 2, there is a polynomial
Py € P(4E) such that S(Py) = ().

Proof. We argue similarly to Proposition 3.1 using now

_ - Qi d
=2 g e e

Clearly Q)4 is well-defined since f5 C ¢4 and (
dQq4(x) one obtains for each ||z|| <1

W) € Uy due to (3.2). Since RQq(x) =

(1~ )| RQulc ||Zw L ite, el < Cltan sl

On the other hand (1 — ||w,||*)*RQq4(w,) = a,, for any n € N. O

Let us give another procedure to generate interpolating sequences where the interpolating
functions are explicitly given.
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Proposition 3.3. Let a > 0 and (z,) C D such that inf,, |z,| > 0. For any orthonormal
sequence (e,) C E, denote w, = z,e, € Bg for n € N. Then the sequence (w,) is a linear
interpolating sequence for Hy*(Bg) and B*(Bg).

Proof. Let (a,) be a bounded sequence and define
O (z,e,)
f(l’) - Z 2 > a’
— 2 (1= Zp(z, 65))

The convergence of the series is guaranteed by Bessel’s inequality, while the analyticity of f
follows from Lemma 1.1. Obviously one has f(w,) = T 2py and also

[z, en)]* (1= [lz]*)® M)l o
(1= ll=l*)*If (@)] < l(cw)ll < (L [l=l)* (2415
Z |2 ? (1— [{z, en)]) inf, |22
This shows that f € Hi°(Bg) and that it interpolates () at the points (wy,).
Now we turn to the case of BY(Bg). We define for each bounded sequence («,,) the functions

)= G (- R ), ez

and

ian1+\zn| log( 1 )
2]2n[d S 2z, e

To verify that g,, « # 1, 1s Well defined consider f,(t) = (1-M)'" =1 for0<t<1land A €D

and notice that |fo(1) — fo(0)] < fo |fL(t)]dt < (‘1 ‘Oj\|||’\| An analogous argument works as well
for g1, by considering fi (¢ ) log(1 — At).
Since |2%(z, e,)?| < ||z||? < 1, we get that
y - 1—af [Z3(z,en)’] _ |1 —of [(z,en)]”
1_ 52 n21a_1’<| n\Ts En s €n 1
e | ([ e
and
y |Za (@, €n)’| (2, ea)[?
log(1 — 2%(x, en>2)‘ < L < :
| T— |20, o] < 1= [l
Therefore by Bessel’s inequality,
(z,en)] 207 1| (ow)| 2
[9a(@)] < 2°7H|(0w) | < . ]I,
Z ||90|| |Zn|"L (1 = [[[[*)* inf, |z, |*

and the analyticity of g, follows again using Lemma 1.1.
Recall that if H(xz) = h({z,&)) for a given holomorphic function % in the unit disc then
RH(z) = h'({x,£))(z,&). Hence

=, 1+|zn|) (r,e,)?
2 (- Rle?

Rgo(z

n=1
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Now we obtain

[z, en)l® _ oo lllem)ll o
1— Rga(z)| < 2%(a, <2
(1 = 2l Rga(@)] < 2% (0 H§j 2l < oSl
Finally since (1 — [Jw,]|*)*Rga(w,) = a, for all n € N, the proof is complete. O

Also we can rely in the results in one variable to produce examples. Recall that sequences
(z) € D\ {0} which are interpolating for any of the spaces we are dealing with in the unit disc
satisfy that inf, |z,| > 0. Notice that (z,) is interpolating for B* if and only if the mapping
T:g€B* = ((1—|2a]*)(2n)) € L is onto.

Proposition 3.4. Let o > 0, £ € E with ||€]| = 1 and (z,) C D. Denote w,, = z,§ € Bg for
n € N. Then (w,) is an interpolating sequence for B*(Bg) if and only if (z,) is an interpolating
sequence for B*.

Proof. Assume that (w,) is an interpolating sequence for B*(Bg). Let (ay,), € ls and find
[ € B*(Bg) with (1 — ||w,||*)*Rf(w,) = a, for all n € N. Denote p(z) = f(z£). Since
Rp(z) = z¢/(2) = Rf(2€) one has that ¢ € B* and we are done since

(1- ’ZHP)&Z?%SO/(Z?%) =(1- HwnHQ)aRf<wn) =a,, neN

Assume now that (z,) is an interpolating sequence for B*. Let (ay,), € l~ and find ¢ € B
with (1 — |2,?)%2,¢'(2,) = «, for all n € N. Denote f(z) = ¢((z,£)). Since Rf(z) =
¢'((x,€))(x, &) one has that f € B*(Bg) and that it interpolates (a,) since

(1= llwnl*)*Rf (wn) = (1 = |2a]*)*20¢' (20) = @, n€N.
U

The analogue to Proposition 3.4 for finite dimensional Hilbert spaces corresponds to the
following procedure. Let L : C* — E be an isometric linear embedding and let P : E — C", be
the orthogonal projection onto L(C™). Then for any f € H(Bg), and any sequence (z,,) C C",
one has

(L = ILCn) ) RUNL(2m)) = (1 = [lzall*)* R(f © L) (2m).
So we get the following result by also taking into account for ¢ € H(B,) its composition
f=goP e H(Bg).

Remark 3.5. Let (w,,) C Bg and denote by Ey = span{w,, : m € N}. If dim(Ey) = n, consider
(zm) C C" and L : C* — E, the isometry such that w,, = L(z,,). Then (z,,) is interpolating
for B*(B,,) if and only if (w,,) is interpolating for B*(Bg).

4. NECESSARY CONDITIONS

In all the known cases (see [2, 25, 19, 1]) a necessary condition for a sequence (z,) to be inter-
polating for certain spaces defined in the unit disc D or the unit ball B,, is to be hyperbolically
separated. To extend this result to the case H°(Bpg) we shall need a couple of lemmas.

The first one is a Schwarz lemma type consequence of inequality (2.1) in [6] applied to the
function w € Bg — f(rw).
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Lemma 4.1. Let 0 <r <1 and f : rBg — C be a bounded analytic function. Then

[l =y
max{r — [lz|[,r — ly|[}

[f(@) = f(y)l <20 fllr5e

for all x,y € rBg,

where || f||:p; = SUP ||| <r | f(w)].
The second one and its proof are a suitable version of Lemma 14 in [9)].

Lemma 4.2. Let v be a weight and F : [0,1) — RT be a continuous non decreasing function
such that

(1) U8 < Flputo), oy € B
If fe H°(Bg) and 0 < r <1 then

W

F(r
ru(z)

~—

(4.2) [f(z) = fly)] < [fllope(z,y),  for pp(z,y) <

N3

The standard weights vy, for a > 0, satisfy the assumption with F(r) = (&) :

Proof. Consider g = f o, and observe that ¢ is an analytic bounded function on rBg. Indeed,
from (4.1) we have

1Sl [l

Hence sup, <, [9(2)| < %F(r)

_ e

F<pE(x’ SOQ:(Z») v(z)

F([lz[])-

|
Now applying Lemma 4.1 to g, we conclude that for ||, (y)|| < r/2 we have

1f(x) = fW)] = 19(0a(y)) — g(p(x))]
2||fH“F(r) ()l

IN

v(z) = e ()
4F (r)
< .
< A ls(ry
For the final statement, notice that
A= [lz)A = llyl*) _ st =lyl* _ 1=yl
v (1 —[[=]])? L—flzf] = 1=l
Hence
V() 4 a
13 S
(43) va(y) ~ \ = ph(z,y)

g

Theorem 4.3. Let v be a weight satisfying (4.1) for some F. Any interpolating sequence (wy,)
for H*(Bg) is hyperbolically separated. Further, we have inf,{||w,]| : w, # 0} > 0.
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Proof. Let M > 1 be an interpolation constant for (w,). For each n € N there exists f, €
H®(Bg) such that || fullo < M and v(wy,) fu(wy,) = 0 for m # n € N and v(w,) fn(w,) = 1.
Fix 0 < r < 1. For n,m € N such that pg(w,,w,,) < r/2, using (4.2) we have

sy = Ml =~ fun) <

ro(wy,) pi(Wn; Wn)-

N
n,m € N we have pg(w,, w,) > min{r/2, 4F(’;)M} = 1F0yar Where the last equality follows since

MF(r) > MF(0) > M > 1. Hence it is hyperbolically R-separated for R = sup,., ., TR0V

Since for n # m, R < pp(wy, wy) < pe(w,,0) + pp(0,wy,) = [|w,|| + ||wy]|, no subsequence
of (|Jw,]|) can converge to 0. Hence inf,{||w,|| : w, # 0} > 0. O

In particular if pg(w,, w,) < /2, then pg(w,, w,) > Thus we obtain that for any

Corollary 4.4. Any interpolating sequence for H°(Bg), o > 0, is hyperbolically separated.

Ezample 4.5. Notice that in the one-dimensional case any interpolating sequence (z,) C D
for B satisfies |z,|] — 1 when n — oo since it is hyperbolically separated. However, in the
infinite dimensional case, there are examples of sequences (w;,) satisfying sup,,cy [|wn| < 1 and
interpolating for H>°(Bg) and B*(Bg), for instance take z, = r for any fixed 0 < r < 1 in
Propositions 3.1 and 3.2.

Now we verify the stability of interpolating sequences under the action of the automorphisms
of B E-

Lemma 4.6. Let ¢ : B — Bg be a holomorphic mapping. Then for x € Bg,

L= lle@I? 1 1=l
Tl =2 T+ eI

Proof. Recall (see [8, page 48]) that for any analytic self map ~ of the unit disc, 11'71(;")‘ >

L_rmg;} for all z € D. Then if x # 0, we apply this inequality to v(z) = (go(zui—”),go(x)) to
obtain
L= eCpap) @D 1 [(p(0), (@) o 1= e (0)]
1= 7] ~ 14 [((0), ()] T 1+ [0
so for z = ||z||, we obtain
L—lle@* o 1=lle@I* 1 1= [lv(0)l
L=zl = 200 =[lzl) — 2 1+[leOl
The estimate is obvious for z = 0. ]

Proposition 4.7. Let v be a weight on Bg such that for every automorphism ¢ : B — Bpg
there exists C' > 0

(4.4) Cu(p(z)) > v(z), =€ Bg.

If (wy,) is an interpolating sequence for H*(Bg), then (¢(w,)) is also an interpolating sequence.
The analogous statement holds for HX (Bg)o if ¢(0) = 0. The standard weights v, satisfy (4.4).
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Proof. Notice that for x € Bg and f € H(Bg) one has |f(p(z))] < v‘(g‘(lg)) < C'szk This
gives foyp € HX(Bg).
Now, given («,) € (. also the sequence ( (U(E”")))an) is bounded. Hence there is f € HX(Bg)

such that v(w,) f(w,) = (“%E(w 7yan for all n € N. Equivalently

v(p(wa))f o @™ (p(wn)) = o, nEN,

that shows that (¢(w,)) is interpolating for H*(Bg) since f o ¢! € HX(Bg).
In order to check that v, satisfies (4.4), just use Lemma 4.6. The remaining statement follows
after realizing that now f o € H°(Bg)o if f(0) =0. O

Remark 4.8. In the above Proposition 4.7 and the case of B(Bg), the assumption ¢(0) = 0
cannot be avoided. Suppose that the automorphism ¢ transforms interpolating sequences into
interpolating sequences. Consider a = ¢~1(0). If @ # 0, then we may choose in the subspace
{a}* an orthonormal sequence (e,). Then as in Proposition 3.2, {a, |la]le, : n=1,...} is an
interpolating sequence for B(Bg). However, the sequence {¢(a), o(||alle,) : n=1,...} is not
interpolating since it contains the null vector. Therefore, 0 = ¢(0).

5. SUFFICIENT CONDITIONS
We begin with a result concerning linear interpolation.

Proposition 5.1. Let (w,) C Bg be a linear interpolating sequence for H;°(Bg), a > 0. Then
(wy,) is also linear interpolating for HSZ(BE) for any B > a. If, further, all w, # 0, then it is
linear interpolating for HSZ(B £)o-

Proof. Since (wy,) is a linear interpolating sequence for H;°(Bg), the corresponding mapping
S has a linear right inverse T. Put F,, = T'(en,) € Hi°(Bg), where (en,)m is the sequence of
canonical unit vectors in /.. Then we have that the sequence (Ua(wn)Fm(wn))n = ¢, and
Vo (2) Y00 | Fp(x)| < ||T|| for all z € Bg.

(1—]z]|*)

Put v =  — a > 0. For each z € B we can select ¢,(y) = W It follows that

9z € H2(Bg) since vy(y)|g.(y)| < (1(1 ”ﬁi”))v((ll 'ﬂi”wﬁ < 47 and it verifies that g.(7) = ( 7-
Define now the operator @ : lo — HJ(Bg) according to D ((an)) () = Yoo” | WnGuw, (2) Fp().

It is a well defined and bounded operator since

Z |G, (2) Fn(2)vp(z) < [[(an)| Z | Fn (@) |00 (@) | 9w, ||, < T () 147

Further, @((an))(wk)vg(wk) = .
To obtain values in H5(Bp)o, we can choose the functions A, (y) = %gwn((y) instead of
Guw,» since |[wy|| > r for some r > 0 if all w, # 0. O

It is known that if (w,) C Bpg is interpolating for H>(Bg) it is also a linear interpolating
sequence (see [21] or [13]). Therefore, we obtain from Proposition 5.1 the following corollary.

Corollary 5.2. If (w,) C Bg is an interpolating sequence for H*(Bg), then it is linear
interpolating for H (Bg) for any o > 0.
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In [11] and [22] it was proved that a sufficient condition for a sequence (w,,) to be interpolating
for H*(Bg) is to satisfy the Carleson’s condition. Hence, we obtain

Corollary 5.3. Let (w,) C Bg. If there exists 6 > 0 such that
I retwm, w,) > 6
m#n

for all n € N, then (wy,) is linear interpolating for H (Bg).

From Corollary 5.3, we deduce, bearing in mind [12] or p(||z]|, [|y||) < pe(z,y), that a sequence

(w,) C Bg which grows exponentially to the unit sphere, that is, Llwaail ¢ for some

1—||wn
¢ < 1, is linear interpolating for H;°(Bg). In addition, a sequence (wl) ”C Bp, such that
lim,, o ||wy|| = 1 has a subsequence which is linear interpolating for H°(Bg).

In the case E' = C all interpolating sequences in H,? (D) were completely characterized by K.
Seip in [25]. Concerning interpolating sequences for H;°(B,,), let us recall the following results
due to X. Massaneda.

Theorem 5.4. ([19, Theorems 1 and 2]). Let a > 0 and (z;) C B,,.

(i) If (z;) is interpolating for H(By,), then it satisfies that K({z;}, o, ) < oo for any > «
with B >n .

(it) If there exists f > max{n,a} with K({z;},a,8) < 1, then (z;) is interpolating for
HE(B,).

When replacing B,, by the open unit ball Bz of an infinite dimensional Hilbert space E, the
assumptions in both statements above cannot be anymore fulfilled. Actually Proposition 3.1
shows that interpolating sequences in Hy°(Bg) may have K ({w;}, a, 5) = oo for all > 0.

We now shall see that some of the previously known results can be extended to the infinite
dimensional case under the additional assumption of 7, ,) being a y-Carleson measure for
some 7.

Proposition 5.5. Let a > 0. If (w,) C Bg is an interpolating sequence for H (Bg), such
that 1y, (w,) is a y-Carleson measure for some vy, then it is linear interpolating for H;’;(BE) for
8> a.

Proof. Let (Fy) C H(Bg) and M > 0 such that Fj(w,) = T Teoe and | Fillo, < M
for all n,k € N. Put gi(y) = %. Then Fj - gv € H;(Bp) and the operator

®: log — H(Bp) defined by ®((an))(y) = Yont ) @ngn(y)Fu(y) is a well defined and bounded

operator since

N N 2o (1= [lwal )7 (1 = [lyl*)"
Y langa @) Fa@)los(y) < ()l D 1Fa)](1 = [yll) L=, wp) P
n=1 n=1
< Ml[(en)ly, () (B +7 = a,7).
where I,, . (8+ 7 — a,) is finite because 7, () is a y-Carleson measure (Lemma 2.2). To

conclude observe that @ ((cy,))(wi) = O

=L
Corollary 5.6. ([19, Corollary 1.6]) Let a@ > 0. Any interpolating sequence for H3*(B,) is
linear interpolating for Hp: (B,,) for 5> a.
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Proof. 1t follows by appealing to Theorem 4.3, Proposition 2.7 and choosing v = n + « in
Proposition 5.5. U

We now give other sufficient conditions for a sequence to be interpolating in this setting that
is inspired by the above results and [18, Proposition 1]

Theorem 5.7. Let o > 0 and (wy,) C Bg such that ng ) is a 3-Carleson measure for some
8> 0.

(1) If (wy,) is hyperbolically R-separated for some R > 0 satisfying

20/ — 1

(1= R0 guy)ls < —ar5—

then it is linear interpolating for Hy°(Bg).
(it) If K({w,}, a, B) < 1, then (wy) is linear interpolating for H°(Bg).

Proof. For any 8+ a > € > 8 and from Lemma 2.4 we obtain

(1 - ||wn||2) —€/2
<
n=1 (1 — ||wm||2) —e/2 — Ima (w, )( B) < +00.

Define the operators S : H°(Bg) — lo given by

SO = (1= lwalP)fwn))
and ¢ : (o — H°(Bg) given by

(5.1) sup Z(l — pE(wm,wn)Q)E/2

m

0 = o

for (o) € s and & € Bp, where p = oo+ 5 — €¢/2. Of course S is a bounded linear operator
with [|S]| < 1.

Since f < 2p — o and 7g,(4,,) is a Carleson measure, Lemma 2.4 (iii) for = 0, yields that
>0 (1= JJw,||*)*~* < co. This guarantees that the series defining ®((«,))(z) is uniformly
convergent in rBg for any 0 < r < 1 and hence it defines an analytic function on Bg.

Moreover

() (@)] < ll(a ||Z|1_”w"”>;j.

or equivalently, since €/2 < p,

(1= [2]2)°1®((en)) (2)] < % S = (e wn)P (1~ [

)] S0 = w021 — 2P

= [ o) 2=
< @)y, (6 B).

Hence @ is well defined and bounded. We aim to prove that ||I/d — S o ®|| < 1, thus S o ® will
be invertible, hence S has ® o (S o ®)~! as right linear inverse.
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Consider now the composition operator,

(SOCI))((an>> ( 1 _ ’me Z ||wn|| )21)04)

U)m, wn>)2p m

and

(Id—SOq))((Oln)): ((1— | wm[|?)* Z an - “;5 Hw) :>a>m
n=1,n#m e

We look at the m component of (Id — S o ®)((a,)).

(L fwg )

(5.2) y(Id—Socb)((an))) < )= w2 11— (wp,, w,) 27

m
n=1n#m

< (an) 1K ({wn}, a,2p — a).
Further,
(1 — Jlwnl?)P~
(1 = [Jwn ?)r=

K({w,},o,2p—a«) = sup Z (1 — pp(wpn,, w,)?)?

meN

n=1,n#m
S SUPN(l - pE(wmawn)Q)OH_B_eK({wj}ae_ /Baﬂ)
n,me

From this it follows that
[Hd = So®| <Iy, (&f) sup (1= pp(wm,wn) <L, (681 - R+,

n,meN
From (2.2) and picking € < 8 + «/2 we obtain
95+8
Ly (6 8) (1 = R?)*HP=e < (1 — RQ)O‘/QHUB,(W)Hﬁm-
Since infgcccgia/2 1_2(1[3_6) = 1_21_a/2 and by choosing R such that
25+8

we conclude that ||Id — S o ®|| < 1 and therefore (i) is proved.
For (i7), we get from (5.2) that

[1d—So®| < K({wn}, 0,0 428 —€),

for all § < e < 8+ a. By choosing € =  + «, the assumption gives that ||[Id — S o ®|| < 1 as
wanted. U

(1 - R2)a/2||nﬁ,(wj)”ﬁ <1

Corollary 5.8. Let a > 0. If (z;) C B, is hyperbolically R-separated for R close enough to 1,
then it is linear interpolating for H°(B,,)

Proof. According to Proposition 2.7, ng ) is #-Carleson measure for any 8 > n. Then we
apply (i) in Theorem 5.7. O

Similarly to the above corollary, we deduce the next result using Corollary 2.9 instead of
Proposition 2.7.
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Corollary 5.9. Let a > 0 and (wy) C Bg. If the sequence (||wgl|) is hyperbolically R-separated
for R close enough to 1, then (wy) is linear interpolating for H:°(Bg).

6. INTERPOLATING SEQUENCES FOR RADIAL DERIVATIVES IN BLOCH-TYPE SPACES
Our previous results apply to the Bloch-type spaces by means of the following theorem.

Theorem 6.1. Let a > 0. The radial derivative mapping
f € BQ(BE)O — Rf € Hq?z(BE)O
1s an onto isometric 1somorphism.

Proof. Notice that for every m-homogeneous polynomial P : E — C we have RP(z) = mP(z).
Next for any analytic function f : By — C with Taylor series f(x) = > >°_ Py (x), its radial

m=0

derivative Rf(z) = Y . RPy(z) = > °_ mP,,(z), defines an analytic function on Bp. If
moreover, f € B*(Bg), then clearly Rf € HX(Bg)o and || f||go(g) = | Rf|va, if f(0) =
To show that the mapping is onto, let g € H°(Bg)o with Taylor series g(z) = Y 0~ Qm(z).

Define
:/ Ztm LQum(x)dt, = € Bg.

The integral exists since the integrand functlon is a continuous one and G(0) = 0. Since for
every given x € Br and chosen 1 < A such that ||Az| < 1, the series

1
Z/ £ Q) = Z!Qm o) [ 5 Z!Qm )|

turns to be convergent, it follows that

3 /0 Q@)=Y Onl2)

Hence G is analytic and for its radial derivative RG(z) = >"°_, Qm(z) = g(z). O

Corollary 6.2. Let a > 0. The sequence (w,) C Bg \ {0} is interpolating for B*(Bg) if and
only if it is interpolating for H° (Bg)o.

G(z) =

tm— 1

Hence the analogous results to Corollary 4.4, Corollary 5.2 and Theorem 5.7 hold for the
Bloch-type spaces. Let us state those results in this setting.

Theorem 6.3. Let (w,) C Bg \ {0}.
(1) If (wy,) is interpolating for H*®(Bg), then it is also linear interpolating for B*(Bg).

(i3) If (wy) is interpolating for B*(Bg), then it is hyperbolically R-separated for some R > 0.
(¢id) If Y07 (1 — [Jwn]]?)?0w, is a 2-Carleson measure and (wy,) is hyperbolically R-separated
for some R > \/1 - (&)Q/Q, then it is linear interpolating for B*(Bg).

22720y, (wp) 2

We are interested in producing sequences which are interpolating for B but not for H*°. Recall
that a Blaschke sequence (z,) C D is a sequence which satisfies > ;- (1 — |z;]) < oo. It is well-
known that if a sequence satisfies the Carleson’s condition, then it is a Blaschke sequence. On
the other hand, Proposition 2.7 for the case £ = C yields that Y > (1 —|2,]?)?d., is 2-Carleson
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for any hyperbolically separated sequence (z,). We will show the existence of a sequence which
is hyperbolically R—separated for R close enough to 1 which is not a Blaschke sequence. We
will adapt the example in [10] to give an example of such a sequence.

Proposition 6.4. Consider k an even number, k > 2 and circles C,, centered at O and radius
2mij

=1- = for any n > 1. In each circle C,, we take z,; = rpev=" for any 0 < j < k"1,
For any k 2 2, the sequence created in this way is hyperbolically Ry—separated for some Ry so
close to 1 as we want. Moreover, the sequence is not a Blaschke sequence.

Proof. Take z,w in the sequence. Then there are two possibilites. If z and w are in different
circles C,, and C,,, m > n, then

Ty — Tn, km — k" k-1 k-1
= > >
1—rpr, E"+kr—1" k741" kE+1

p(z,w) = p(|2], [wl) =
where last inequality is clear since function Z— +1 is increasing for x > 0 and ™" > k.

Now suppose that |z| = |w| = r,. Since p is invariant for automorphisms, in particular,
2mij
for rotatlons we consider, without loss of generality, that z = r, and w = r,ex T for some

1 <j < ® = since we take by symmetry the semicircle {z € C,, : 0 < arg z < 7r} Then,
2mig

Tn |1 —er T 27y, sin 4 1
p(z,w) = — = =

2mig 1 ‘
‘1 —rher T \/(1 —72)2 492 sin® L g Y

. T
27y, sin T

Bearing in mind that sina > %oz for any 0 < o < 7 and j > 1, we have that

1 1 1
p(z,w) > > =

2 — 2 2
(A—rZ)kn—t (A—rZ)kn—t 2kn—1
e (e o (e ()

Hence, for any two terms of the sequence z,w we have that

E—1 1

k+1’ 2
2kn 1
e ()
This expression tends clearly to 1 when k — oo as we wanted. Let (z, ;) be the sequence that
we have constructed. It is clear that it is not a Blaschke sequence since

p(z,w) > min

co kn1-1 [e9) 00 o0
n— n— 1
DD Al =YK A=) = YT =Y =
n=1 j=0 k=1 k=1 k=1
The proof is now complete. U

Corollary 6.5. There are sequences (zx) which are interpolating for the Bloch space B but not
interpolating for H*. This is also valid for the Bloch space B(Bg) and H*(Bg).
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Proof. The first statement is true by Proposition 6.4. The other one follows just by considering
the sequence (z,£) where (z,) is the sequence defined in Proposition 6.4 and £ € E such that
I€Il = 1. If (2,€) were interpolating for H*°(Bg), then (z,) would be interpolating for H> and
it is well-known that an interpolating sequence for H* satisfies the Carleson’s condition and,
in particular, it is a Blaschke sequence. U

7. SOME BANACH SPACE PROPERTIES OF THE BLOCH SPACE

By By(Bg) we denote the subspace {f € B(Bg) : limy,_1(1 — ||z]|*)|Rf(z)| = 0}. One can
check that if f € B(Bg) and 0 < r < 1, the function f,.(z) := f(rz) defines an element in

Lemma 7.1. For every f € B(Bg), the net {f.}o<r<1 converges to f uniformly on balls of
radius less than 1.

Proof. Firstly we remark that f is bounded on any ball of radius ¢ < 1, because according
to Theorem 3.1 in [4], |f(x) — f(0)] < M log }f“i” < Mlog %2 for some constant M > 0,
independent of x.

Fix 0 < s <1 and pick 1 > 0 > s and apply Lemma 4.1 to get

|[fr(@) = f(@)| = [f(re) = f(2)] < 2[|fllone

for any x € Bg, ||z|| < s, which shows that lim,_,; f.(z) = f(z) uniformly on sBg. O

|re — z|] 1—7r
e 1«9 -
o — ||JZ|| — ”fHUBEO_ — 3

The next result is an extension of [27, Theorem 3.9].
Proposition 7.2. For all f € B(Bg), the following estimates hold
tim sup(1 — [[2]2)|Rf ()] < d(f, Bo(Bp)) < 2limsup(1 — |lo|P)| Rf ()],

]| =1~ llzfl—=1~

where d(f, Bo(Bg)) = mf{|f — gllrcsy) : 9 € Bo(Bi)}.

Proof. Since f, € By(Bg), we have d(f, Bo(Bg)) < ||f — frllrBr)-

Put L := limsup, ;- (1 = ||z]|*)|Rf(x)]. We seek for an 0 < r < 1 such that || f — f.|lr(zg)
is close enough to the upper estimate. Let € > 0, then there is s < 1 such that supHx||>S,(1 —
lz||))|Rf(z)] < L+ ¢ for all s > s.

Notice that Rf,.(x) = Rf(rx). Thus for ||z|| > s,

1—s?
(1= [l=])|Rfr(2)] < T2z — lra)|*)| Rf (ra)].
Since the function n(r) = % has limit 1 when » — 1, we find 71 < 1 such that for r > 7,
% < 1+ ¢. And we may choose r; such that also for o := % one has rio > s, so that if

|z|| > o, then ||rz|| > s for all r > r;. Therefore
sup (1 — ||z|*)|Rf-(z)| < (1 +¢&)(L +¢) for r > ry.

=l =0
According to Lemma 4.10 in [4],
1

() (=PRI =~ [ Fenlen g e Be
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which gives the estimate

(1= [l=lP)|R(f = £) ()] < LL

- 27

(f = ) (alEw)|dle.

It turns out that the set {¢.(&x) : ||z|| < o,|¢] = 1} lies in a ball of radius less than 1 because
the [0, 1[-valued function

)

=gl
is a continuous one of the variables ||z|| and & on the compact set [0, o] x .S;. Now we use Lemma
7.1 to find ro < 1, 79 > 71, such that for r > 7o, sup ;<121 |(f = /) (¢a(&2))] < e, and hence,
SUp|| <o (1 — lzlI)|R(f — fr)(x)| < & for r > rq. Finally for r > ro,

\f = frllrBr) <
ma ( sup (1= [l [R(f = £) (@), sup (L=« IR @)+ sup (1= 2R @) <

max (¢, L +e+ (1 +¢)(L +¢)).

By letting ¢ — 0, we deduce that d(f, By(Bg)) < 2limsup ;- (1 — [|z[|)|Rf ()]
The estimate d(f, Bo(Bg)) > limsupy, ;- (1 — [[z[*)|Rf(x)| is a routine verification. O

Proposition 7.3. The Bloch space B(Bg) is the dual of
*B(Bg) :={l € B(Bg)" : 1 is To-continuous on bounded sets},
where 19 denotes the compact-open topology.

Proof. The closed unit ball (Ug (s, ||-||8(8s)) of B(Bg) is To-bounded, since the norm-topology
of B(Bg) is finer than the 7p-topology. Now Montel’s theorem ([20, Proposition 9.16]) gives
that Upp,) is To-relatively compact. If {f,} is a net in Up(p,), we conclude that there is a
subnet {f.,} such that f,, — f € H(Bg) with respect to the 7o-topology. For x € Bg choose
s > 0 such that ||z||4+s < 1. Then for any y € E with ||y|| = 1, we have by the Cauchy integral
formula that

- 1 fa,; (@ + Ay) 1 flz+ Ay) =

(Y, Vfa, (1)) = prol) N S dA — Crol) N d\ = (y,V f(z)).

From this we obtain that

O+ (L= [l [y, V()] < Y| fo, s, < 1.

Thus f € Uppy), i.e. Ugsy) is To-closed and therefore also 7o-compact. Then *B(Bg) is a
Banach space which is a predual of B(Bg). In fact, by the Dixmier-Ng theorem [23], J :
B(Bg) — (*B(Bg))*, J(f)l .= U(f), f € B(Bg), | € *B(Bg), is an isometric isomorphism. [

Proposition 7.4. The space By(Bg) is weak™® dense in B(Bg).

Proof. Taking into account that || f,||rs) < ||f|l=r(Bs), the result follows immediately from
Lemma 7.1. g
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Remark 7.5. The dual space E* is isomorphic to a complemented subspace of B(Bg). Indeed,
the projection mapping f € B(Bg) > f/(0) € E* is continuous since ||f'(0)| = [|[V£(0)] <
| fll5(Br)- While on the other hand, the embedding y € E* ++ u € B(Bg) is also continuous
because for every z € Bp, p/(x) = p, 50 sup,cp,, (1 = |z[I*) [V (@)l = sup,ep, (1= [J2]*) ]| <
||lge||. Finally, 7o ¢ = id.

Remark 7.6. Therefore since F is reflexive, neither B(Bg) nor By(Bg) can have the Dunford-
Pettis property. This in sharp contrast to the classical case (F = C) where B is isomorphic to
loo.

We close this section with an application of the above results to interpolating sequences.

Proposition 7.7. Let (w,) C Bg \ {0} be a cy-linear interpolating sequence for B(Bg), that
is, suppose that there is a linear operator T : ¢ — B(Bg) such that S oT = id.,. Then (wy) is
linear interpolating for B(Bg).

Proof. Let (en,)m the sequence of canonical unit vectors in f. The sequence of functions
T(e,) = fn defines a weakly Cauchy series ) f, in B(Bg) and ) |u(f,)| < ||T||||u] for
all w € B(Bg)*. Hence, for each sequence (a,) € { the series ), f, is a weakly Cauchy
series in B(Bg) and -, |u(anfn)l < [ T|[[ulll|(enm)l|. Thus 32, anfy is a w(B(Bg)," B(Bg))
Cauchy series lying in the ball in B(Bg) of radius ||T'||, which is w(B(Bg)," B(Bg)) compact.
Hence ), anfu € B(Bp) and || 32, o fullr(sg) < [ITHI(an)]-

Define T : (o, — B(Bg) according to T((ozn)) = >, &y fy. Now using (7.1) and recalling
that the series also converges for the 7yo-topology, we get that

(1= [lwel®)R(T (@) (wr) = Y (L — [lwel*)R(fa) (wr) = e

Thus (S o T) = Id,_, as wanted. O
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