
1

Multimodal Probabilistic Latent Semantic

Analysis for Sentinel-1 and Sentinel-2 Image

Fusion

Ruben Fernandez-Beltran, Juan M. Haut, Student Member, IEEE, Mercedes E.

Paoletti, Student Member, IEEE, Javier Plaza, Senior Member, IEEE, Antonio

Plaza, Fellow, IEEE, and Filiberto Pla

Abstract

Probabilistic topic models have recently shown a great potential in the remote sensing image

fusion field, which is particularly helpful in land cover categorization tasks. This letter first studies the

application of probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation (LDA)

to remote sensing synthetic aperture radar (SAR) and multi-spectral imaging (MSI) unsupervised land

cover categorization. Then, a novel pLSA-based image fusion approach is presented which pursues to

uncover multi-modal feature patterns from SAR and MSI data in order to effectively fuse and categorize

Sentinel-1 and Sentinel-2 remotely sensed data. Experiments conducted over two different datasets reveal

the advantages of the proposed approach for unsupervised land cover categorization tasks.
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I. INTRODUCTION

The recent on-line availability of Sentinel’s operational products provides widespread op-

portunities to combine complementary information acquired by different sensors in order to

conduct inter-disciplinary research in many European Union (EU) policy-relevant application

domains, such as land, marine and atmosphere monitoring, climate change and security services.

Within the context of the Copernicus programme, Sentinel-1 (S1) [1] and Sentinel-2 (S2) [2]

missions exhibit a special synergy because their corresponding data products represent the Earth’s

surface in a fundamentally complementary way, using synthetic aperture radar (SAR) and high-

resolution multi-spectral imaging (MSI). On the one hand, the S2 MSI instrument passively

measures electromagnetic radiation that captures useful information on chemical properties of

surfaces, such as nitrogen, carbon or moisture. On the other hand, the S1 SAR sensor actively

emits electromagnetic radiation to measure the returning signal and, consequently, the scattering

characteristics of the objects in the scene. Whereas MSI images are easy to interpret for the human

visual system, their quality and availability can be strongly affected by adverse atmospheric

conditions, which motivates the constant development of new techniques specifically designed

for remote sensing [3]. In addition, SAR images can capture information through fog, smoke,

rain and clouds. However, their data applicability highly depends on the backscattering properties

of the target surface, as well as on the presence of speckle. As a result, the complementary nature

of both S1 and S2 instruments provides an excellent scenario to overcome the limitations of each

individual sensor by means of an information fusion approach.

In the literature, different techniques have been successfully applied to fuse SAR and MSI

data at three different integration levels [4]: decision level, pixel level and feature level. In the

decision level approach, a separate predictor is initially estimated for each individual sensor and

eventually a fused output is generated by combining all these independent results. It is the case of

the work presented in [5] where Waske et al. introduce a decision-based fusion model based on

two independent aggregation levels. In particular, SAR and MSI data are initially pre-classified

using a support vector machine (SVM) and then an additional classifier is applied over these

results to provide a global prediction using both SAR and MSI information.

Despite the effectiveness of the decision-based approach to combine data from different

sources, the resulting performance for SAR and MSI data may become rather limited because the

different modalities are independently analyzed and the fusion step eventually occurs as a post-
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classification process, which may be difficult to design. In this regard, pixel-based fusion methods

pursue to directly combine several image pixels to derive a new fused image which contains

enhanced spatial-spectral information. For example, the work presented by Sukawattanavijit et al.

in [6] makes use of a principal component analysis decomposition approach for fusing multiple

image modalities at a pixel level, and finally the data is labeled using a genetic algorithm together

with an SVM classifier. Nonetheless, the general pixel-level fusion approach has shown to be

not entirely suitable for SAR imagery because of the speckle noise typically present in this sort

of images and its high computational cost when dealing with large amounts of data.

Regarding the feature-based fusion level, these kinds of methods try to overcome some of the

aforementioned limitations by combining attributes extracted from several sources in order to

generate a data representation involving features of multiple sensors. That is, features extracted

from SAR images can provide discriminatory object information to reduce some of the optical

uncertainty which may occur in MSI imagery. For instance, the work presented in [7] by Zhang

et al. studies multiple kinds of features to effectively fuse remotely sensed optical and SAR

data. Specifically, this work considers four different optical features based on the gray-level

co-occurrence matrix approach and polarimetric-based features extracted from SAR images.

Notwithstanding the effectiveness showed by all the aforementioned approaches under specific

conditions, an alternative fusion research line has recently attracted the attention of the remote

sensing research community. This approach takes advantage of the generative framework pro-

vided by probabilistic topic models [8]. In general, topic models represent a kind of generative

statistical models which provide methods to express data as probability distributions according

to their hidden semantic patterns instead of their low level observable features. As a result, these

kinds of models show a growing potential in remote sensing fusion tasks because they allow

managing different data sources at a higher abstraction level. For instance, Zhong et al. propose

in [9] a multi-feature fusion strategy which concatenates three complementary kinds of features,

i.e. spectral, texture and structural features, using topic models’ characterizations to conduct

remote sensing scene classification. However, this fusion scheme is still constrained by the use

of topic models with a single modality because the remote sensing data fusion problem logically

has a multi-modal nature.

Indeed, it was not until recently that a multi-modal topic model was successfully applied to fuse

SAR and MSI data. Specifically, Bahmanyar et al. presented in [10] a multi-sensor land-cover

classification technique using a visual bag-of-words (vBoW) characterization scheme together
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with a multi-modal variant of the Latent Dirichlet Allocation (LDA) model [11] which makes

use of two different vocabularies to jointly represent SAR and MSI data modalities. Despite

the potential of this recent LDA-based fusion approach to outperform individual single modality

data, LDA is not the only type of topic model available in the literature and analyzing the effect

of using different kinds of probabilistic topic models for fusing SAR and MSI remotely sensed

data still remains an open-ended issue.

With the aforementioned considerations in mind, the contribution of this letter is focused

on a two-fold target. On the one hand, we study the application of the two main topic model

families, i.e. the probabilistic Latent Semantic Analysis (pLSA) [12] and Latent Dirichlet Al-

location (LDA) [11] models, within the remote sensing SAR and MSI unsupervised land cover

categorization field. On the other hand, we introduce a novel pLSA-based fusion approach

which pursues to uncover multi-modal feature patterns from SAR and MSI data in order to

effectively fuse Sentinel-1 and Sentinel-2 remote sensing imagery. The experimental part of the

work conducted over two different datasets reveals the advantages of the proposed approach for

unsupervised land cover categorization tasks.

II. BACKGROUND ON TOPIC MODELS

Broadly speaking, topic models can be categorized within the families of two reference models,

pLSA [12] and LDA [11]. Specifically, pLSA defines a semi-generative data model by introducing

a latent context variable associated to the different word polysemy occurrences. The pLSA

generative process is made as follows: (1) Select a document d with probability p(d); (2) Pick a

latent class z with probability p(z|d); (3) Generate a word w with probability p(w|z). However,

this generative process is usually called ill-defined because documents set topic mixtures and

simultaneously topics generate documents, thus there is not a natural way to infer previously

unseen documents [8]. Additionally, the number of pLSA parameters grows linearly with the

number of training documents which makes this model particularly memory demanding and

susceptible to over-fitting [13].

In order to overcome pLSA limitations, Blei et al. proposed the LDA model as a more general

framework. In particular, LDA represents documents as a multinomial of topic mixtures generated

by a Dirichlet prior which is able to predict new documents. Although LDA potentially overcomes

pLSA limitations by means of using two Dirichlet distributions, one to model documents Dir(α)

and another to model topics Dir(β), the α and β hyper-parameters have to be estimated during
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the topic extraction process which logically adds an extra computational time and makes LDA

performance highly sensitive to the quality of this initial estimation. In practice, α and β

are estimated by iterating over the document collection which results in LDA requiring dense

distributions to obtain a good hyper-parameter estimation [14]. In fact, LDA authors stand in

[15] that pLSA is able to obtain a topic structure more correlated to the human judgment than

LDA, even though the perplexity metric may suggest the opposite.

All these facts make that pLSA-based models are usually preferred when few information

is available according to the complexity of the data [16]. In the particular case of remotely

sensed imagery, the high complexity of the visual patterns extracted from both SAR and MSI

image domains generally makes that the amount of information available for a specific area of

interest is rather limited to perform an effective unsupervised land cover categorization. As a

result, pLSA-based fusion models may take advantage of considering the document collection

as model parameters to uncover a more descriptive semantic patterns than LDA with less data.

Precisely, this is the reason why the fusion method presented in this work is based on pLSA.

III. MULTIMODAL PLSA FOR IMAGE FUSION

This section describes the three steps of the multi-modal pLSA-based SAR and MSI fusion

scheme presented in this work (see Fig. 1): (i) image characterization, (ii) multimodal pLSA-

based image fusion and (iii) land cover categorization.

Fig. 1. Overview of the proposed fusion framework. In the image fusion step, we can observe the MpLSA graphical description,

where d,z,wS and wM represent the document, topic, SAR and MSI word random variables. Besides, Φ and Θ represent the

p(z|d) and p(wS , wM |z) model parameters, respectively.

A. Image characterization

As image characterization scheme, we make use of the visual-bag-of-words (vBoW) approach

[17] which includes a three-step procedure. First, SAR and MSI co-aligned data products are
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tiled into 32× 32 image patches which define topic model documents (d). Second, the k-means

clustering algorithm [18] is globally applied over each image modality to build the corresponding

SAR and MSI visual vocabularies. More specifically, we use vectorized 3 × 3 image patches

with one-pixel overlapping as local primitive features and a total number of 50 clusters which

represent the observable words for each modality, i.e. wS for SAR and wM for MSI. Finally,

the local primitive features (vectorized 3× 3 image patches) within each topic model document

(a 32× 32 image patch) are encoded in a single histogram of visual words by accumulating the

number of local features into their closest clusters. Note that we use this straightforward feature

description method for the sake of simplicity, however other characterization approaches could

be used instead. From this first image characterization step, we eventually generate a collection

of M documents D = {d1, d2, ..., dM} characterized in both SAR and MSI visual vocabularies,

i.e. dk = {n(wi
S, w

j
M , dk)}∀i, j ∈ {1, 2, ..., 50} where n(wi

S, w
j
M , dk) represents the number of

times the SAR visual word wi
S and the MSI term wj

M co-occur within the document dk.

B. Multimodal pLSA-based image fusion

Based on the asymmetric pLSA formulation [12], we define a multimodal extension, called

MpLSA, which is specially designed to fuse SAR and MSI data according to the aforementioned

image characterization scheme. In particular, we extend pLSA by adding two diverging random

variables to manage SAR and MSI modalities (see Fig. 1), that is, wS to represent SAR visual

words and wM to express the MSI vocabulary.

In this work, MpSLA parameters, i.e. Φ := p(z|d) (topic-document conditional probability

distribution) and Θ := p(wS, wM |z) (multi-modal word-topic distribution), are estimated by

maximizing the complete log-likelihood function using the Expectation-Maximization (EM)

algorithm which works in two stages: (i) E-step, where the expected value of the likelihood

is computed given the current estimation of the parameters (Eq. (1)) and (ii) M-step, where

the new optimal values of the parameters are calculated according to the current setting of the

hidden variables (Eqs. (2)-(3)).

p(z|wS, wM , d) =
p(wS, wM |z)p(z|d)∑
z

p(wS, wM |z)p(z|d)
(1)
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Fig. 2. Qualitative assessment of the unsupervised land cover categorization results for Munich and Berlin datasets.

p(wS, wM |z) =

∑
d

n(wS, wM , d)p(d)p(z|wS, wM , d)∑
wS ,wM

∑
d

n(wS, wM , d)p(d)p(z|wS, wM , d)
(2)

p(z|d) =

∑
w

n(wS, wM , d)p(z|wS, wM , d)∑
z

∑
wS ,wM

n(wS, wM , d)p(z|wS, wM , d)
(3)

As convergence conditions for the MpLSA model, we use a 10−6 stability threshold in the

difference of the log-likelihood between two consecutive iterations or a maximum number of

1000 EM iterations. Finally, we note that the Φ parameter provides the fused representation of

the input data which jointly models SAR and MSI features, and the Θ parameter contains the

semantic hidden patterns of the multi-modal data.

C. Land cover categorization

Once the corresponding SAR and MSI data products have been fused according to the MpLSA

model, we assume that each one of the K uncovered topics represents a land cover category. That

is, the Θ parameter of MpLSA defines the semantic patters that we use to provide an Earth surface

categorization based on the ground-truth information. In particular, each document is categorized

according to the dominant topic, i.e. the highest probability value in Φ (arg maxk p(zk|d)).
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TABLE I

QUANTITATIVE ASSESSMENT OF THE UNSUPERVISED LAND COVER CATEGORIZATION RESULTS FOR MUNICH AND BERLIN

DATASETS.

CATEGORY

MUNICH BERLIN

SENTINEL-1 (SAR) SENTINEL-2 (MSI) FUSION (SAR+MSI) SENTINEL-1 (SAR) SENTINEL-2 (MSI) FUSION (SAR+MSI)

LDA pLSA LDA pLSA MMLDA MpLSA LDA pLSA LDA pLSA MMLDA MpLSA

PR
E

C
IS

IO
N

Agriculture 78.49±0.17 80.81±0.03 83.98±0.12 84.54±0.16 84.56±0.03 84.69±0.09 94.38±0.04 87.66±0.03 74.57±0.62 81.61±7.37 87.5±0.6 90.64±0.07

Forest 62.13±0.41 58.14±0.17 87.54±0.3 87.37±0.22 85.05±0.23 85.95±0.15 48.99±0.14 51.58±0.24 89.68±4.79 90.88±5.52 86.31±0.79 89.09±0.26

Building 93.07±0.13 94.48±0.4 47.31±0.33 48.66±0.09 54.08±0.01 74.51±0.39 26.75±0.95 77.4±0.23 71.07±3.39 67.04±7.85 75.02±0.14 86.0±0.19

Water 94.74±0.08 94.55±0.03 89.38±13.21 96.19±0.31 96.06±0.0 96.0±0.08 39.31±0.62 23.78±0.04 0.01±0.0 10.77±8.82 0.01±0.0 31.61±0.22

AVG 82.11±0.13 81.99±0.15 77.05±5.61 79.19±0.08 79.94±0.09 85.29±0.13 52.36±0.37 60.11±0.1 58.83±1.96 62.58±1.2 62.21±0.32 74.34±0.07

R
E

C
A

L
L

Agriculture 79.75±0.37 75.02±0.07 57.59±1.26 60.45±0.17 67.89±0.1 83.97±0.34 51.19±0.77 66.15±0.05 53.12±0.73 57.48±3.82 53.48±0.34 77.95±0.1

Forest 84.33±0.26 87.43±0.07 89.87±0.36 90.15±0.15 89.6±0.02 89.99±0.1 94.03±0.13 96.56±0.02 74.67±0.37 70.18±7.98 89.57±0.53 92.27±0.11

Building 32.94±0.72 27.83±0.9 77.74±0.46 77.39±0.25 73.36±0.37 70.35±0.07 17.95±0.41 15.31±0.72 69.77±2.77 80.67±1.43 72.82±1.76 82.9±0.25

Water 87.74±0.06 87.78±0.11 93.28±0.49 93.07±0.49 92.31±0.04 92.39±0.04 82.97±0.25 82.58±0.15 0.08±0.03 58.66±47.88 0.07±0.0 92.69±0.14

AVG 71.19±0.24 69.52±0.36 79.62±0.36 80.26±0.13 80.79±0.14 84.18±0.12 61.53±0.24 65.15±0.28 49.41±1.07 66.75±18.97 53.98±0.66 86.45±0.06

F-
SC

O
R

E

Agriculture 79.11±0.1 77.81±0.04 68.32±0.92 70.49±0.07 75.32±0.07 84.33±0.13 66.37±0.63 75.4±0.04 62.04±0.7 67.43±5.03 66.38±0.31 83.82±0.05

Forest 71.54±0.18 69.83±0.1 88.69±0.08 88.74±0.08 87.27±0.11 87.93±0.03 64.42±0.09 67.24±0.2 81.43±2.16 78.7±4.44 87.9±0.17 90.65±0.09

Building 48.65±0.77 42.99±1.03 58.82±0.2 59.75±0.13 62.26±0.13 72.37±0.15 21.48±0.59 25.56±1.02 70.41±2.98 72.9±4.08 73.89±0.94 84.42±0.09

Water 91.11±0.03 91.04±0.06 90.72±7.76 94.6±0.11 94.15±0.02 94.16±0.06 53.34±0.54 36.93±0.05 0.02±0.01 18.2±14.88 0.02±0.0 47.14±0.24

AVG 72.6±0.29 70.42±0.42 76.64±3.2 78.4±0.02 79.75±0.04 84.7±0.05 51.4±0.22 51.28±0.4 53.48±1.17 59.31±4.5 57.05±0.36 76.51±0.07

IV. EXPERIMENTS

A. Datasets

Two different Sentinel-1 (SAR) and Sentinel-2 (MSI) data products have been selected for

the experiments:

1) Munich [10] includes a coupled Sentinel-1B (Level-1 ground-range-detected) and Sentinel-

2A (Level-1C reflectance) data products of the City of Munich (Germany), acquired

on September 29 and 30, 2016, respectively. They cover the Earth surface between the

(48.33°N, 11.06°E) upper left coordinates and (47.77°N, 11.78°E) lower right coordinates.

In the case of Sentinel-2, the B2, B3, B4 and B8 bands have been considered for the

experiments because these bands have the highest spatial resolution, i.e. 10-m, and they

also represent the blue, red, green and infra-red channels. Besides, Sentinel-1 data, which

was initially acquired at 10.13-m spatial resolution, has been accordingly re-sampled to

10-m in order to obtain a final common size of 5596× 6031 pixels.

2) Berlin [10] contains two Sentinel-1B and Sentinel-2A data products from Berlin (Ger-

many), captured on May 26 and 27, 2017, respectively, which cover the area between the

(52.78°N, 12.45°E) upper left coordinates and (52.26°N, 13.67°E) lower right coordinates.
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Again, both Sentinel-1 and Sentinel-2 data products have been processed following the

aforementioned procedure in order to obtain a final size 8149× 5957.

Both datasets have been downloaded from the German Earth Observation Center website (http:

//goo.gl/ma9dUt) where ground-truth land-cover information (’Agriculture’, ’Building’, ’Forest’

and ’Water’) is also available for assessment purposes. Thus, the number of topics (K) has been

fixed to 4.

B. Results

Table I presents the quantitative evaluation of the unsupervised land cover categorization results

for tested datasets in terms of precision, recall and f-score metrics. Specifically, ground truth

image categories are shown in rows and Sentinel-1, Sentinel-2 and fusion results are provided

in columns. It should be also noted that each table cell contains the average percentage and the

corresponding standard deviation obtained after five runs of the indicated topic models. Also,

Fig. 2 provides a qualitative assessment of the results by reporting the corresponding unsupervised

land cover categorization maps.

One of the first noticeable points that can be observed when comparing LDA and pLSA

land cover categorization effectiveness over S1 and S2 data is that, in the case of the Munich

dataset, pLSA obtains a better land cover categorization result than LDA when considering MSI

imagery. However, LDA seems to be more effective to deal with SAR data. In the case of

Berlin, pLSA consistently provides a better metric result than LDA for both SAR and MSI data.

These quantitative results are also supported by the corresponding land cover categorization maps

presented in Fig. 2, where pLSA shows a particularly relevant visual performance improvement

over LDA for the Berlin MSI data. Even though both Munich and Berlin datasets logically

have a similar nature, it is possible to observe that pLSA is able to work better with the higher

complexity of the Berlin dataset and especially with MSI data. Note that some categories in

the Berlin image are significantly unbalanced, which indicates that pLSA can take advantage of

using the document collection as model parameters whereas LDA’s Dirichlet hyper-parameter

estimation may become rather inaccurate in this case. In fact, this is the reason why LDA

performance drops dramatically in Berlin’s ’Water’ category.

Regarding the considered SAR and MSI multi-modal data fusion schemes, both MMLDA and

MpLSA models generally provide a remarkable quantitative metric improvement with respect to
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their corresponding single-modal LDA and pLSA counterparts. Even though the general multi-

modal data fusion scheme logically helps to overcome each individual sensor limitations, the

proposed MpLSA-based fusion model has proved to obtain an important advantage with respect

to MMLDA for unsupervised land cover categorization tasks. According to the results reported in

Table I, MpLSA provides average precision, recall and f-score improvements of 8.74, 17.93 and

12.20 percentage units, on average, over the two considered datasets. Additionally, Fig. 2 shows

that MpLSA obtains the most similar results to the corresponding ground-truth information.

In general, the SAR and MSI data fusion problem raises the challenge of simultaneously

managing two different data modalities, which eventually leads to the need of dealing with

more complex data. From the generative perspective of topic models, the MMLDA-based fusion

approach needs to estimate the α and β Dirichlet hyper-parameters from the document collection.

However, the multi-modal estimation of these parameters may become rather inaccurate because

the number of documents is constrained to the size of the interest area. In other words, the

higher complexity of the multi-modal SAR/MSI data makes that MMLDA may require more

documents, i.e. a bigger region of interest, to estimate the Dirichlet hyper-parameters in fair

conditions with respect to the single-modality case. Nonetheless, the proposed MpLSA fusion

scheme takes advantage of using input documents as model parameters because the whole

document distribution is considered in the model’s posterior computation, which allows MpLSA

to uncover more descriptive multi-modal patterns than MMLDA, despite the fact that the number

of documents remains fixed.

V. CONCLUSIONS AND FUTURE LINES

This letter presents a multi-modal pLSA-based SAR and MSI data fusion framework in order to

effectively perform unsupervised land cover categorization. Our experiments, conducted using

two coupled Sentinel-1 (SAR) and Sentinel-2 (MSI) data products, reveal that the presented

model provides a competitive advantage with respect to the multi-modal LDA-based fusion

scheme in terms of both quantitative and qualitative results. The main conclusion that arises

from this work is the MpLSA potential to fuse SAR and MSI data belonging to limited areas of

interest where the amount of information may be rather constrained. In addition, single-modal

pLSA has also shown to outperform LDA when dealing with under-complete data. Future work

will be aimed at extending the proposed model to deep fusion architectures.
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