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Abstract— Exergames are exercise-oriented games that offer 

opportunities to increase motivation for exercising and 

improving health benefits. However, Exergames need to be 

adaptive and provide accurate feedback for physiologically 

correct exercising, sustaining motivation and for better 

personalized experiences. To investigate the role of physiological 

computing in those aspects, we employed a repeated measures 

design exploring changes in physiological responses caused by the 

gaming and exercising components of an Exergame intervention. 

Seventeen older adults (64.5±6.4 years) interacted with a 

videogame in two modes (Control, Exergaming) in different 

difficulty levels. Electrocardiography, Electrodermal and 

Kinematic data were gathered synchronously with game data. 

Findings show that Exercise intensities and heart rate changes 

were largely modulated by game difficulty, and positive feedback 

was more likely to produce arousal responses during Exergaming 

than negative feedback. A heart rate-variability analysis revealed 

strong influences of the interaction mode showing that 

Exergaming has potential to enhance cardiac regulation. Our 

results bring new insights on the usefulness of 

psychophysiological methods to sustain exercising motivation and 

personalizing gameplay to the individual needs of users in 

Exergaming experiences. 

Keywords— Game user research; exergaming; 

psychophysiology; older adults; physiological computing, positive 

reinforcement; EDA; ECG. 

I.  INTRODUCTION  

Psychophysiological methods are becoming popular in 

games user research not only as a passive recording tool to 

assess affective player experience [1], emotions [2] and 

cognition [3], but also as a way to create new adaptation 

strategies and input channels for interaction [4]. While 

conventional game metrics such as self-reports, surveys and 

user observation provide insights on the experience of players, 

they can miss emotional responses [5]. These can be apparent 

responses but also non-apparent such as body posture, facial 

expression or psychophysiological changes. The latter ones 

are not visible to the naked eye and require specific 

biomedical equipment to measure signals such as 

electrocardiography (ECG), electromyography (EMG), 

electroencephalography (EEG) or electrodermal activity 

(EDA) [5]. There are three main advantages in using 

physiological metrics in game user research: i) they are more 

objective and direct compared to conventional methods 

because they are language independent and do not rely on 

memory; ii) they can be covertly assessed continuously, 

without interfering with the interaction and thus providing a 

high level of temporal precision (useful to detect event related 

responses) [2]; and iii) can detect unconscious emotional and 

attentional responses [6]. 

 

Exergames are exercise-oriented games that aim at 

wrapping physical activities into computer gaming [7]. 

Exergames can address general fitness for healthy individuals 

as well as age and/or health specific needs [8]. For this reason, 

Exergame design requires a precise understanding of the 

physiological mechanisms of exercise and target population in 

order to guarantee safety and clear short and long-term health 

benefits. Traditional approaches to evaluate Exergames 

include observations of codified human movements during 

interactions [9], automatic recognition of body movements 

through motion capture technologies [10], specific assessment 

scales such as the Borg’s perceived exertion scale [11], 

behavioral logs to record activities of users when interacting 

[12], think aloud protocols [13] and physiological 

measurements. The particular case of usability in Exergames 

for elderly care and rehabilitation is generally limited to 

qualitative studies focusing on users’ perception towards 

systems and controllers [14].  

The use of physiological sensors to measure exertion is not 

new [15]. The analysis of multiple body changes that, to some 

extent, reflect user’s behavioral states emerged as a powerful 
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tool for quantitative game user research. In this case, the 

regulation of emotions is assessed by measuring the activity of 

sympathetic (fight and flight reactions) and parasympathetic 

(rest and digest reactions) nervous systems [4]. Hence, 

developing a better understanding of the psychophysiological 

responses to Exergaming can be an important element to 

improve the assessment of users’ behavior during gameplay 

and boost the efficacy of Exergame-based interventions. In 

particular, physiological-adaptation approaches through 

“close-loop” systems, the so called biocybernetic loops, can be 

used for adapting videogame dynamics/events in response to 

the player’s physiological responses [16]. These novel 

strategies have the potential to enhance user experience as 

well as fitness and therapy benefits [17]. However, one major 

limitation in field studies that use psychophysiological signals 

is their sensitivity to artifacts [5], with most signals being 

strongly affected by both voluntary and involuntary 

movements [18]. Hence, the potential of these signals in an 

Exergaming context and their real-world usage is still an open 

challenge. 

We were interested in exploring the user’s physiological and 

behavioral responses to positive and negative game events, 

and to game difficulty in an Exergame. This paper reports a 

controlled study with a group of active older-adults in which 

physiological signals are analyzed to evaluate the Exergame 

experience. With this study we aim at contributing to the 

identification of strategies for an effective use of physiological 

signals in Exergame interventions by addressing the following 

research question: How are exercise intensity, arousal and 

cardiorespiratory responses related in a controlled Exergame 

experience? We hypothesize that specific physiological 

responses can be systematically triggered by the manipulation 

of specific game parameters. Hence, our study provides 

insights on how psychophysiological methods can be used in 

Exergames to sustain exercising motivation, to provide 

physiologically driven exercise adaptation, and to personalize 

gameplay to the individual needs of users [8]. 

II. RELATED WORK 

The dual flow model is a framework that integrates 
psychophysiological responses in Exergaming in two different 
dimensions of the exercise: attractiveness and effectiveness 
[19]. Attractiveness can be modelled by the well-known flow 
model from Csikszentmihalyi by means of balancing user’s 
skills with perceived challenge [20]. The second dimension, 
effectiveness, relates to the physiological responses to exercise 
in order to adjust the intensity of the exercise with the actual 
user fitness [19].   Several studies reported on the use of 
physiological measurements during Exergaming. Some authors 
have focused on quantifying behavior using a set of domain 
specific features [21], allowing the comparison of 
physiological changes induced by Exergaming in different 
populations [22]. For instance, Graves et al. [23] found that 
energy expenditure (EE) and heart rate (HR) during 
commercial Exergame (Wii Fit) activities were higher than 
during conventional handheld videogames; but lower than 
during treadmill exercise in adolescents, young and older 
adults. Other studies with commercial Exergames exploring EE 

and HR responses as biomarkers showed that the use of skill-
based protocols (training until attaining a goal) increased both 
physical exertion and game proficiency [24]. McGuire et al. 
[25] showed that physiological responses (HR, EE and 
ventilation) are greater during multiplayer Exergame 
experiences than during single play modes. Other studies 
revealed that heart responses to Exergames can be larger than 
those elicited by conventional physical exercises. An 
experiment comparing brisk walk on a treadmill with 
Exergame practice in healthy adults showed significantly 
higher HR values and higher enjoyment levels during 
Exergame [26]. EDA has also been widely used as a measure 
of arousal in game user research [2] and for monitoring 
sympathetic modulation during exercise [27]. One study 
analyzed EDA responses for fatigue detection during 
Exergaming and identified that the basal skin conductance 
decreased with fatigue [28]. 

Exergaming in users with special needs has also been 
addressed. For instance, a study was carried out with 
participants with spinal cord injury to investigate whether 
Exergaming satisfied guideline-based intensity standards for 
exercise [29]. The authors concluded that intensity responses to 
Exergaming were sufficient to promote cardiorespiratory 
fitness in this population, as assessed by HR and oxygen 
uptake (VO2). Some researchers have considered the use of 
physiological measurements for developing physiologically 
modulated Exergames. Generally, these Exergames are 
partially controlled by the cardiac signals using the concept of 
a target HR, a specific age-based pulse rate range to be 
maintained during the exercise to ensure optimal 
cardiovascular function [30]. Some of the adaptation rules are 
based in HR thresholds defined by a specific target HR which 
can be approximated from the age and sex of the subject [31]. 
Several adaptive cycling Exergames have been developed 
where factors such as safety (falls and tumbles), game 
mechanics mapping and the effectiveness of pedaling to 
increase exertion levels are considered [32]. For instance 
Ketcheson and colleagues [33] created HR power-ups, a game 
mechanism used to encourage users to meet the ACSM 
recommendations for aerobic exercise prescription [34]. Using 
in-game rewards when the target HR was reached, they 
created 3 different cycling videogames and carried out a test 
with 20 healthy young participants including a control 
condition (without HR power-ups). Results revealed that HR 
power-ups successfully increased the level of user’s exertion 
during the experience spending more than 88 % of the 
interaction time at or above the target HR, consistent with 
ACSM recommendations [30]. Furthermore in [35] authors 
used neurophysiological measurements from EEG signals to 
influence user’s Exergame performance during the interaction 
by disturbing the environment and input controller. In a 
different EEG study, the authors explored players’ ability to 
successfully manage interference and allocation of attentional 
resources during regular exercise, videogames and Exergaming 
[3].  

The literature suggests that physiological signals such as 
HR and EDA can contribute to the understanding of the effects 
of both exercise and game user experience. However, there is 
still a lack of understanding on how physiologically modulated 



Exergames can induce the desired effects in users. For this 
reason, here we present an experiment conducted to study how 
physiological responses (measured by ECG and EDA signals) 
and activity levels (measured through kinematic analysis) relate 
to Exergame dynamics. More concretely, we explore the 
influence of game difficulty and game events in the 
psychophysiological states of elderly users in a within-subjects 
experiment with an Exergaming condition and a Control 
condition. To do that, we carried out an experiment using a 
custom made Exergame, allowing the synchronous recording 
of users’ behavior and responses with the game parameters, 
aiming to perform a causality analysis.  In this research we also 
address the problem of movement induced artifacts in EDA 
and ECG signals. We finalize the paper discussing the 
implications of this work in game user research for 
Exergaming. 

III. METHODS 

A. Videogame 

1) Design: the used videogame, called Exerpong, is an 

adaptation of the classic 2D Pong in which the player controls 

a virtual paddle to bounce a ball. Two different interaction 

modes are available: Exergaming and Control (with a 

conventional joystick). Exerpong was developed using the 

Unity 3D game engine (Unity Technologies, San Francisco, 

USA). The RehabNet Control Panel (Reh@Panel) software 

[36] is used to interface a depth sensor with Unity 3D. 

Through calibration, the user’s waist position is mapped to 

control a virtual paddle. Three different difficulty levels were 

implemented (easy, medium and hard) based on the 

modification of the velocity of the ball, size of the ball, and 

the size of the paddle. No scores were provided to avoid 

influencing long-term perception of success or failure. Game 

events were unequivocally labelled as missed balls or ball 

interceptions. Audiovisual stimuli (red and green visual 

feedback and positive and failure sounds) were used during 

gameplay to provide feedback on performance.  

2) Experimental Setup: a white PVC surface (2.5 m x 3.0 

m) was used to project the Exerpong game on the floor in 

front of the participants (Figure 1). The projection had a 

resolution of 1280x720 pixels and the perspective was 

corrected to the surface using a mapping application. 

 

 
Figure 1. Diagram depicting the Exerpong setup consisting of a Kinect sensor, 
a projected environment and a wearable physiological kit. The user stands in 

front of the projection and controls a virtual paddle.  

We used the fighting stick EX2 for Xbox360 to enable the 

control of the virtual paddle with a joystick in the Control 

condition. Users sat in a chair in front of the floor 

perpendicular to the paddle-movement axis, and controlled the 

joystick using their right hand. A Kinect v1 sensor (Microsoft, 

Microsoft, Washington, USA) enabled the control of the 

virtual paddle through body motion in the Exergaming 

condition. EDA and ECG signals were recorded through a 

Bluetooth connection using the BioSignal Plux toolkit (Plux 

Wireless Biosignals, Lisboa, Portugal), a wearable body-

sensing platform. EDA signal was recorded using two 

Ag/AgCl electrodes attached to the middle phalanges of the 

middle and index fingers of the participant’s left hand. ECG 

signals were recorded using a surface mount triode dry 

electrode with standard 2 cm spacing of silver chloride 

electrodes placed on the V2 pre-cordial derivation. Conductive 

gel to facilitate signal recording was used in some participants 

when necessary. 

B. Physiological Signal Processing 

1) EDA signal processing and feature extraction: to 

eliminate high-frequency noise, an 8th order low-pass filter 

with a cut-off frequency of 15 Hz was applied. To filter 

spurious spikes produced by physical movements we used a 

5th order median filter. EDA data from different users were 

normalized as a percentage of their minimum and maximum 

values to allow for comparison. Phasic EDA responses or 

Galvanic Skin Responses (GSR) - noticeable episodes of 

sudden increases of skin conductance caused by arousal [37] - 

were assumed to begin between 1 and 4 seconds following 

stimulus onset [38]. GSRs were extracted synchronous with 

the Exerpong game events to study their relationship (Figure 

2). An event specific GSR index was computed as follows: 

      

           𝐺𝑆𝑅𝑖𝑛𝑑𝑒𝑥 (𝑥) =  
𝐺𝑆𝑅𝑥

𝐺𝑆𝑅𝑠
∗ 100%        (1) 

 
Where x can be either BI (ball interceptions) or MB 

(missed balls) events and the index computes the % of x 

specific GSRs out of the total of GSRs detected. This 

percentage quantifies the responsiveness of each user to each 

type of game events. 

2) ECG signal processing and feature extraction: baseline 

wandering, an amplitude shifting phenomena, due to gross 

movements but also to tiny movements such as respiration 

[39], was filtered and analyzed using the PhysioLab toolbox, a 

multivariate physiological softwware tool [40].  

3) Some EMG noise in the ECG signal was unavoidable 

and could not be filtered. To extract HR information, the ECG 

waveform was analyzed and detection of the R-peaks was 

carried out. Different detection parameters were used in 

PhysioLab for resting, Exergaming and Control conditions. 

4)  Results of R-peak detection were manually reviewed 

and corrected when necessary.  

5) In the temporal domain, HR and HR variability (HRV) 

parameters were extracted. HRV analysis assesses the 



regulation of cardiac activity by analyzing beat-to-beat 

dynamics (RR intervals) [41].  

6) The SDNN (standard deviation of normal RR intervals) 

and RMSSD (square root of the mean squared differences of 

successive RR intervals) parameters - which have been 

reported as good biomarkers of parasympathetic regulation 

[42] - were computed. In addition, several cardio-respiratory 

fitness parameters derived from ECG were computed. First, 

the maximum HR (HRmax) - which provides information about 

the highest HR an individual can safely achieve - was 

computed using Tanaka’s formula [31]. Second, the maximum 

oxygen uptake (VO2max) - which reflects the functional 

capacity of the cardio respiratory system [30] - was estimated 

using the HR during resting (HRrest) and HRmax. Finally 

Energy Expenditure (EE) (KJ*min-1) - which refers to the 

amount of energy that a person uses to be physically active - 

was computed from HR data using the prediction equation 

developed by Keytel et al. [43]. EE was subsequently 

converted to Metabolic Equivalents (METs) dividing it by the 

equivalent amount of oxygen used by the body during resting 

(1 MET = 3.5 ml O2 * Kg-1 * min-1 )[30]. 

7) Kinematic signal processing and feature extraction: 

given 3D user tracking information from the Kinect sensor, we 

computed the kinetic energy (KE) of each joint as the norm of 

their velocity vector. The body kinetic energy was 

approximated as the weighted sum of each joints’ KE, as 

follows: 

𝐾𝐸(𝑓) =  
1

2
∑ 𝑚𝑖𝑣𝑖

2𝑛
𝑖=1                      (2) 

 

where 𝑚𝑖 indicates the mass of the i-th joint. We used a 

mathematical approximation assuming a uniform distribution 

of each tracked joint, that is  𝑚𝑖 was the self-reported mass of 

each individual divided for the number of joints (17 using 

Kinect V1).  

C. Questionnaires 

The Subjective Units of Distress Scale (SUDS) was used 

as a subjective measure of the level of distress, fear, anxiety or 

discomfort on a scale of 0-10. The usability of Exerpong in the 

two interaction modes was assessed with the System Usability 

Scale (SUS) [44]. SUS provides a quantification of usability 

through information on users’ interaction. The SUS has been 

used already in Exergaming [45].  

D. Participants 

Seventeen community-dwelling older adults (14 women, 3 

men, ages 64.5 ± 6.4 years, height 1.57 ± 0.67 m, mass 69.1 ± 

12.2 Kg.) were recruited at a local senior sports facility. Senior 

fitness tests scores in balance-8 Foot Up and Go (M=4.6 ± 

SD=0.6), cardiorespiratory - 2 minutes Step Test (M=97 ± 

SD=18) and musculoskeletal - 30 second Chair Stand Test 

(M=18 ± SD=2) were used to characterize the functional 

fitness level of users. All participants were right handed, had 

no recent upper/lower limb injuries, were able to stand up 

without any help and had no neurological disorders that 

prevented the understanding of the experiment. 58.8% of the 

participants had no past experience with computer games. All 

participants gave their informed consent prior to participation. 

E. Protocol  

Participants were invited to play Exerpong in its two 

configurations, Exergaming and Control, in the same session 

and day (Figure 3). Each game block (easy, medium, and 

hard) was programmed to increment the difficulty every 30 

seconds. Each game block lasted for 3 minutes. Before the 

start of the experiment, participants were instructed on the use 

of the different interaction modes. Participants were required 

to keep silence during gameplay and be seated and calm for 5 

minutes between conditions to allow physiological signals to 

return to a resting state. The order of conditions was 

randomized such that half of the participants started with the 

Control condition and half with the Exergaming one. Each 

condition lasted approximately 30 minutes (including setup, 

instructions, resting, gameplay and questionnaires). The SUDS 

scale was projected on the floor and answers automatically 

collected after each game block during the resting periods. 

The SUS was gathered through semi-structured interviews 

after each experimental condition. 

F. Data Collection 

Physiological and kinematic information was recorded 

synchronously with Exerpong data. Exerpong data and events 

were stored at a sampling frequency of 30 Hz for post-

processing. Physiological data was acquired at a 1000 Hz 

    
Figure 2. Example EDA signal processing of one participant. GSRs are detected and matched with ball interceptions and missed balls. 



sampling rate and the kinematic data was captured using the 

Kinect v1 provided spatial coordinates (X-horizontal, Y-

vertical and Z-depth) of 17 body points. Data were stored in 

CSV  files and processed using Matlab v2012a. EDA data sets 

of four participants were discarded due to high noise, non-

removable artifacts and data corruption. 

G. Statistical Analysis 

The two principal components of a Principal Components 

Analysis (PCA) were used to identify colinearities and 

redundancy in the parameters extracted from EDA and ECG 

signals. Two parameters were selected from EDA 

[GSRIndex(BI) and GSRIndex(MB)] and three parameters from 

ECG (HR, SDNN and METs).  

The normality of all distributions was assessed using a 

Kolmogorov-Smirnov test. When data were non-normal, non-

parametric tests were used. A two-way repeated measures 

ANOVA was used to compare experimental conditions and 

difficulties. Differences between difficulty levels were 

assessed by evaluating contrasts. Main and interaction effects 

were also explored. For kinematic and game performance 

data, a non-parametric analysis using Friedman test was used 

to assess the effect across conditions. Furthermore, a 

Wilcoxon signed-rank test was used for pairwise comparisons 

for the main effect of difficulty. All statistical tests were 

performed using SPSS (21.0, IBM Corp, Armonk, NY) and 

the significance level was set to 5% (p < 0.05). The PCA 

analysis was carried out in Matlab. 

IV. RESULTS 

A. Is game performance better during Exergaming or 

Control? 

Game performance was defined considering the number of 

ball interceptions and missed balls. Participants showed higher 

performance in the Exergaming condition (ball interception, 

M=61.8, SD=5.69, missed balls, M=55.0, SD=6.4) as 

compared to the Control condition (ball interception, M=52.1, 

SD=5.1, missed balls M=59.8, SD=6.6). A Friedman test 

revealed that there was a significant difference in game 

performance depending on which condition was used, χ2 (1) = 

12.75, p < .05. User’s performance decreased considerably in 

the hard difficulty level by increasing the number of missed 

balls in the two conditions. A Wilcoxon test revealed 

significant performance differences for easy-to-medium and 

easy-to-hard difficulties, T = 124, r = -2.25, T = 119, r = -2.01, 

respectively.  

B. Is electrodermal activity modulated by game interface or 

events and difficulties? 

GSR_Indexes for ball interceptions and missed balls, for 

the two conditions and three difficulty levels, were computed. 

There was a significant main effect of condition for the 

GSRIndex(BI), F (1.0, 12.0) = 8.84. Users were more responsive 

to ball interceptions during Exergaming than during 

conventional interaction for easy (Control: M=36.6, SD=22.0, 

Exergaming: M=44.6, SD=27.9) and medium (Control: 

M=34.5, SD=17.7, Exergaming: M=56.4, SD=18.4) 

difficulties. No significant differences for game difficulty 

were found for GSRIndex(BI). Instead, GSRIndex(MB) differed 

across the main effect of the type difficulty, F (2.0, 24.0) = 

60.0, but not for the main effect of condition. Pairwise 

comparisons identified significant differences among all 

difficulty level comparisons: easy-medium (p = 0.001), 

medium-hard (p ≤ 0.05) and easy-hard (p ≤ 0.05). 

C. Are electrocardiography and exercise levels modulated by 

game interface, difficulty and game events? 

HR response to the game, computed as the average HR 

during the experimental condition minus HRrest), for Control 

and Exergaming and difficulty levels are shown in figure 4. A 

higher HR during Exergaming condition, and a modulation 

with the difficulty level was identified. There was a significant 

main effect of the type of condition on participant’s HR,         

F (1.0, 16.0) = 92.7.  

 
Figure 4. Boxplot of HR responses (HR – HRrest) by difficulty and condition.  

 

 
Figure 3. Experimental Procedure. The procedure is the same for both experimental conditions (Exergaming and Control). The SUDS: Subjective Units 

of Distress Scale, SUS: System Usability Scale 



The interaction effect between the type of condition and 

the type of difficulty used, F (1.0, 16.0) = 5.69 was also 

significant indicating that the condition had different effects 

on user’s HRs depending on the difficulty. Furthermore, a post 

hoc test using Bonferroni correction revealed that HR values 

for easy compared with medium difficulty levels were 

significantly different, F (1.0, 16.0) = 5.6. The remaining 

comparisons revealed no significant differences. 

An analysis of HRV revealed a significant main effect of 

the type of condition used for the intervention on the user’s 

SDNN values, F (1.0, 16.0) = 5.9. SDNN values for 

Exergaming (M=84.1, SD=56.1) were higher compared to 

Control (M=52.7, SD=44.9). There was no significant effect 

of the difficulty level over the SDNN values for the 

experiment. 

 
Figure 5. Metabolic Equivalents (MET) exerted during Exergaming for easy, 

medium and hard difficulties. 

 

Data showed that the METs during Exergaming were 

significantly affected by the difficulty level, F (1.25, 1.0) = 

5.09, p< .05, although pairwise comparisons indicated no 

significant differences between difficulty levels: easy 

(M=6.05, SD=1.34), medium (M=6.38, SD=1.36), and hard 

(M=6.98, SD=1.99). The computed METs reveal that the 

Exergaming condition induces moderate physical activity 

levels (5.0 <METs<6.99 [30]) regardless of its difficulty level 

(Figure 5). 

D. Is user’s movement intensity affected by game difficulty 

during Exergaming? 

The influence of game difficulty over movement intensity, 

measured as the KE, during the Exergame condition is shown 

in figure 6. 

 
Figure 6. Boxplot of Kinetic energy for each difficulty level during 

Exergaming condition.  

 

A Friedman test revealed that the difficulty level had a 

significant influence over KE, χ2 (2) = 12.87, p < .05.  KE 

values were: M=1361, SD=959 in easy, M=1866, SD=1045 in 

medium and M=2766, SD=1381 in hard. A Wilcoxon test 

revealed significant pairwise differences in KE for easy-to-

hard and medium-to-hard difficulties T = 118, r = -2.5,T = 

128, r = -3.1, respectively. 

E. Questionnaires  

The usability of the videogame was rated as good (defined 

as SUS > 71.4 [46]) in both Control (M=78.2, SD = 14.7) and 

Exergaming (M=84.7, SD = 14,7). A Wilcoxon signed-rank 

test showed that the 5-point difference in favor of Exergaming 

was not significant. Subjects’ ratings on distress as assessed 

by the SUDS was low for both Control (M=2.38, SD = 2.24) 

and Exergaming (M=2.33, SD = 2.34), and not significantly 

different. However, a Friedman test revealed that the difficulty 

level had a significant effect on the SUDS score: Control: 

χ2(2) = 15.5 , p < .05 and Exergaming χ2(2) = 19.8, p < .05. 

V. DISCUSSION 

A. Exergaming and skill-based protocols 

In our experiment, users started from a beginner difficulty 

level and progressed gradually to higher levels of difficulty. 

This approach allows the development of a sense of 

competency and mastery and it is aligned with past reported 

Exergaming experiments [47]. Our data reveals that the 

different difficulty settings had a different impact over game 

performance for Exergaming and Control conditions. More 

concretely, enhanced user performance was identified for the 

Exergaming condition. Moreover, the use of Exergames with 

simple game mechanics (such as the Exerpong) facilitates to 

carry out a causality analysis via matching physiological 

responses with specific and non-simultaneous game events.  

B. Rewards, punishments and skin conductance responses 

Our EDA analysis revealed higher arousal levels during 

Exergaming than control, showing a strong effect of positive 

feedback in GSRs [GSRIndex(BI)]. This finding is consistent 

with higher engagement levels and the reported increased 

performance. Some of the GSRs classified as BI (positive or 

rewarding) might come from misclassification of anticipatory 

responses due to the higher occurrence of events registered for 

the higher difficulty levels, and the higher level of attention 

required to perform the task. Movement artefacts could have 

also induced a false GSRs. However, movement artefacts 

would appear in both BI and MB, and therefore would have 

influenced also the computation of GSRIndex(MB). Then, if this 

were the case, a balanced effect would be expected in 

Exergaming and Control condition, and this was not the case. 

From the game designer perspective, higher number of 

GSRs can be interpreted as a positive finding because the 

elicitation of arousal responses is known to have a positive 

effect in sustaining motivation [21]. Further, some GSRs 

during the Exergaming condition could have been produced 

by normal sweating during physical training: However, this 



would not be sufficient to explain the effect of difficulty in 

GSRIndex(MB). In fact, it seems like exercise affects the tonic 

phase of EDA signals more than the phasic phase [37]. 

C. HR modulations and HRV analysis in Exergaming 

interventions 

To attain good levels of cardiorespiratory fitness, adults 

are recommended to exercise at an intensity of 60% of HRmax 

[30]. This can be reached by extending exercise practice 

(which could lead boredom), but also providing personalized 

dynamic difficulty approaches to encourage people to reach 

healthy and safe fitness goals during Exergaming experiences. 

Our analysis of the ECG data confirms that exercise levels and 

game parameters modulate cardiorespiratory responses. First, 

HR increased in response to increased difficulty levels in the 

Exergaming condition. Second, the HRV analysis elucidated 

significant effects for condition and not for difficulty. Thus, 

our results indicate that parasympathetic activity is modulated 

mainly by the game interface rather than difficulty. Lower 

values of SDNN may indicate low stress regulation, and may 

be linked with poor exercise performance [48]. Hence, the 

higher SDNN values measured during Exergaming show that 

exercise-related activities can improve the parasympathetic 

modulation in older adults. This modulation due to 

Exergaming can produce benefits such as reducing the sense 

of stress [48], strengthening the immune system, reducing 

blood pressure, enhance exercise recovery and lift the mood 

[41]. Including HRV assessment in Exergaming programs 

could improve exercise prescription, as it has been shown that 

HRV measurements are beneficial in exercise training 

prescription in moderately active men and women [48].  

D. Physical activity assessed through Kinect and 

electrocardiography 

EE results show that the intensity of physical activity was 

modulated by difficulty levels of Exerpong in the Exergaming 

condition. The METs analysis revealed that moderate physical 

activity levels, adequate for an older population, can be 

achieved through simple Exergames starting at very easy 

difficulties. From the KE quantification, we reported that users 

were more active during the hard difficulty compared to easy 

and medium. Consequently, we show that physical activity 

levels can be intentionally modulated by changing game 

parameters to reach specific fitness goals. Piana and 

colleagues [21] found that high KE mean/variances were 

associated with happiness while sadness was associated with 

low KE mean values but high variances. In addition, we 

observed that users with high competitive skills challenged 

themselves to be able to have high scores during the higher 

difficulty condition despite the fact that the game was 

designed to push them to the frustration.  

E. Self-reported distress  

In game user research it is important to complement 

psychophysiological measurements with subjective 

methodologies such as questionnaires or structured surveys 

[2]. Subjective data from the usability questionnaire shows 

that both interfaces were relatively easy and comfortable to 

use by the elderly, providing a good level of confidence and 

supporting the feasibility of implementing this technology in 

senior sport facilities. Besides, the distress questionnaire 

revealed low stress levels during both conditions, although 

modulated by game difficulty. This finding is consistent with 

the stress levels found with the analysis of the physiological 

responses.  

VI. CONCLUSIONS 

This paper describes an attempt to systematically study 

how physiological responses can be modulated through in-

game parameters in an Exergaming experience. This work 

intends to improve the personalization of Exergames through 

physiologically-responsive strategies that could boost the 

health benefits produced in scenarios such as the promotion of 

active aging, rehabilitation and fitness. In this study, exercise 

intensities were strongly modulated by game difficulty levels, 

suggesting the feasibility of the dynamic adaptation of game 

parameters by analyzing user’s physiological responses. 

Furthermore, EDA analysis revealed that positive feedback 

was better at producing arousal responses. Hence, game 

designers can capitalize on this feature to create more 

affective-responsive games. Game difficulty also modified HR 

responses and a HRV analysis demonstrated that the interface 

(handheld or motion) had the strongest influence in the 

modulation of beat-to-beat heart’s behavior. These findings 

contribute towards a body of evidence to use 

psychophysiological methods to improve Exergaming 

adaptability.  

VII. FUTURE WORK 

In the future, we will implement and evaluate multiple 

adaptive rules for the Exerpong game based on the detection 

of psychophysiological states and the biomarkers identified in 

this paper. These rules will be implemented by computational 

models that will estimate the state of the user (e.g. fatigue, 

mental workload, distress) through descriptors such as SDNN 

or GSRs indexes [4]. These close-loop strategies will be 

evaluated in terms of enjoyment and fitness criteria, 

comparing several adaptive rules instead of use the classical 

conventional-novel approach as described in [16].   
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