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RESUMO/ABSTRACT 

 
Operational Asset Replacement Strategy 

A Real Options Approach 
 

This article analyses the problem of replacement by investigating the optimal 
moment of investment replacement in a given tax environment with a given 
depreciation policy. An operation and maintenance cost minimization model, 
based on the definition of equivalent annual cost, is applied to a real options 
paradigm. The developed methodology allows for an innovative evaluation of 
the flexibility of replacement process analysis. A new two- factor evaluation 
function is introduced to quantify decisions of asset replacement under a unique 
cycle environment. This study improves upon previous findings in the literature 
as it accounts for autonomous salvage value processes. Based on partial 
differential equations, this model achieves a general analytical solution and 
particular numerical solution. The results differ significantly from those observed 
in one-factor models by showing evidence of over-evaluation in optimal levels of 
replacement, and by confirming suspicions that different types of uncertainties 
produce non-monotonous effects on the optimal replacement level. The 
scientific contribution of this study lies in new and stronger approaches to 
equivalent annual cost literature, supplying an algorithm for operation and 
maintenance cost minimization that is conditioned by autonomous salvage 
value. This study also contributes to the real options literature by developing of 
a two-factor model with Brownian processes applied to asset replacement. 
 
JEL classifications: D81, D92, H25 
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Operational Asset Replacement Strategy  

A Real Options Approach 

 

Abstract: This article analyses the problem of replacement by investigating the 

optimal moment of investment replacement in a given tax environment with a 

given depreciation policy. An operation and maintenance cost minimization 

model, based on the definition of equivalent annual cost, is applied to a real 

options paradigm. The developed methodology allows for an innovative 

evaluation of the flexibility of replacement process analysis. A new two- factor 

evaluation function is introduced to quantify decisions of asset replacement 

under a unique cycle environment. This study improves upon previous findings 

in the literature as it accounts for autonomous salvage value processes. Based on 

partial differential equations, this model achieves a general analytical solution 

and particular numerical solution. The results differ significantly from those 

observed in one-factor models by showing evidence of over-evaluation in 

optimal levels of replacement, and by confirming suspicions that different types 

of uncertainties produce non-monotonous effects on the optimal replacement 

level. The scientific contribution of this study lies in new and stronger 

approaches to equivalent annual cost literature, supplying an algorithm for 

operation and maintenance cost minimization that is conditioned by autonomous 

salvage value. This study also contributes to the real options literature by 

developing of a two-factor model with Brownian processes applied to asset 

replacement. 

JEL classifications: D81, D92, H25 

Keywords: Replacement, Real Options, Uncertainty, Equivalent Annual Cost, 

First Passage Time. 
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1. Introduction 

 

The traditional analysis for the selection of the optimal replacement level 

employs the minimum Equivalent Annual Cost (EAC) determination. This 

methodology implies the calculation of a cost series for current and alternative 

assets. The method may also consider a depreciation tax shelter, a cost of 

postponing replacement to the next year and a asset replacement. Assuming an 

infinite time horizon, the replacement cycle will correspond to the minimum 

cost. Among other assumptions, the traditional methodology also assumes a 

similar Operation and Maintenance Cost (OMC) structure for future replacement 

assets, a known salvage value, and certainty in tax policy. One of the major 

problems of the replacement decision evaluation method is not considering 

uncertainty, implicitly or explicitly.  

To address these problems, Rust (1985) suggests that a greater OMC value 

indicates higher asset deterioration. Rust (1985) described the OMC evolution as 

an arithmetic Brownian motion with constant drift and constant volatility. Ye 

(1990) continues this analysis of the replacement problem by considering OMC 

as an Itô process. This approach implies that OMC returns to an initial state each 

time a replacement occurs. Ye’s (1990) article influences the Mauer and Ott (1995) 

model through the introduction of a geometric Brownian motion (GBM) to 

modulate OMC. Ye (1990) also assumes a physical deterioration that increases 

stochastically.  

2. A Two-factor Replacement Model 

 

This paper considers that salvage value is as uncertain as its OMC; when 

asset replacement occurs, the salvage value can be different than previous 

estimates. The modulation of salvage value with a geometric Brownian motion 



 
   

   3

(GBM) will produce a different relationship between OMC ( )C  and salvage 

value ( )S , from which a new optimal replacement level results. Our model 

considers a firm operating at a fixed level of output with two geometric 

Brownian motions, one for C  and another for S :  

 

 C C CdC Cdt Cdzα σ= + , (1) 

 

 S S SdS Sdt Sdzα σ= + , (2) 

 

with instantaneous drifts 0, 0C Sα α≥ ≤  and instantaneous volatilities 

0, 0C Sσ σ≥ ≥ . This model also assumes two stochastic equivalent assets for 

which the initial OMC 0NC ≥  and the initial salvage value 0NS >  evolve 

according to equations (1) and (2). This section examines how the modification of 

the salvage value framework affects the optimal replacement level. Other 

assumptions of this model are (1) that there is a single asset at a given time, and 

(2) that production does not expand or contract. 

Therefore, when OMC reaches a certain level, the current asset sale occurs 

and is replaced by another stochastically equivalent asset. So, one has a cost 

minimization problem to determine the optimal replacement level using a two-

factor model. With fr  being the risk free rate, ( ),tV C t  corresponds to the 

expected discounted OMC: 

 

 ( ) ( ) ( )( )
0

, min 1 f

t

r ta
t tC

V C t E C t e dtτ τδ ϑ
∞

− 
= − − 

 
∫ .  (3) 

 

From the previous expression, the cost flow results from subtracting after-tax 

OMC ( )1tC τ−  from the tax shield ( )a tτδ ϑ . By hypothesis, tC  corresponds to 
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OMC as described in (3),τ  is the tax rate, aδ  corresponds to the depreciation rate 

and ( )tϑ  indicates the book value given by: 

 

 ( ) ( )1
att P e δϑ ϕ −= − ,  (4) 

 

where P  is the acquisition price and ϕ  is the investment tax credit rate. One can 

see from (3) that there is a functional dependence of ( ).V  on both tC  and t .. As 

we have two variables ( ),tC t , problem simplification justifies the adoption of an 

infinite horizon time framework, relaxing ( ).V  from the dependence of t .  

Assuming the distribution of risks associated with OMC by financial assets 

and using the contingent claims approach, the exchange option ( ),Exc C S  must 

satisfy the following equation (Merton, 1973): 

 

( ) ( ) ( )2 2 2 21
2

2 CC C CS C S CS SS S f C C f S S fExc C Exc CS Exc S r Exc C r Exc S r Excσ σ σ ρ σ δ δ+ + + − + − =

 (5) 

 

with the risk-adjusted drift rate of cost *
C f Crα δ= − , the risk-adjusted drift rate of 

salvage value *
S f Srα δ= − , and the risk-free rate of interest fr . The convenience 

yields of each stochastic variable are represented by Cδ  and Sδ .  

From equation (5) and according to Appendix A, the general solution is 

derived from: 

 

 ( )

2

1 2,

a

S

S

C

k

b c

S
Exc C S k C k C

C

α

ω ω
σ
σ

 
   = +  
 
 

,  (6) 
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where ak , bk , and ck  are constants, and 1w  and 2w  represent the roots of a 

quadratic equation derived in Appendix A and given by (29). 

To determine the solution to the replacement problem, one must calculate 

the three constants ik  and the replacement critical level ( )* *,C S . In order to 

achieve this, equation (6) must satisfy five boundary conditions.  

The right to acquire an asset at the exercise price of selling the other asset 

describes a long position on an exchange option. The same exchange option can 

be seen as the right to sell an asset at the exercise price of buying the other asset. 

In order to determine ( )* *,C S , the following boundary conditions should be 

applied. The first one implies its satisfaction by ( )* *,Exc C S  upon the 

replacement level. 

 

 ( ) ( ) ( )* * * * *, ,Exc C S V C C S= − Ω ,  (7) 

 

where 

 

 ( ) ( ) ( )
( )

( )* * *
*

* 2

11
1

1
2

a
N

f C
f C C

C P
V C C C

r r

ξ
ξδ τ ϕτ

α α ξ ξσ

−
 

   −−= −    −    − − −
 

,  (8) 

and 

 

 ( ) ( ) ( ) ( )( )* * * * *, 1NC S V C P S S Cϕ τ ϑ Ω = + − − − −
 

⌢

. (9) 

 

At the critical level ( )* *,C S , the exchange option value ( )* *,Exc C S  must 

equal the difference between the expected discounted value of after-tax OMC 

and the total alternative cost value ( )* *,C SΩ . The value ( )* *,C SΩ  reflects the 
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sum of the expected discounted value of after-tax OMC in the instant after 

replacement, with the net acquisition price of a alternative asset ( )1P ϕ−  minus 

the after tax salvage value (salvage value *S  minus capital gains tax 

( )( )* *S Cτ ϑ−
⌢

). 

Equations (10) and (11) must ensure that the smooth past condition is 

satisfied (Dixit and Pindyck, 1994). In conjunction with other conditions, the 

presented boundary conditions permit the determination of three constants, 

which exist in (6). Therefore, the value function in equation (6) must satisfy the 

following equations: 

 

 ( ) ( ) ( )* * * * *, ,C C CE C S V C C S= − Ω , (10) 

 ( ) ( ) ( )* * * * *, ,S S SE C S V C C S= − Ω , (11) 

 

Condition (12) describes the function’s ( ),Exc C S  behavior when the OMC 

approaches the minimal allowed value NC . Thus, when C  assumes values next 

to NC , the probability of C  grows until *C  is very low, significantly diminishing 

the probability of asset replacement. As such, the value of the exchange option 

( ),Exc C S  will tend towards zero: 

 

 ( )lim , 0
NC C

Exc C S
−>

= , (12) 

 

When OMC becomes very high relative to the savage value S , the increase 

in value of the exchange option should equal the savings gained between the 

OMC of the current asset and the OMC of the alternative asset:  

 

( ) ( )C C NV C V C− , 
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resulting in the following condition:  

 

 ( ) ( ) ( )lim ,C C C N
C

Exc C S V C V C
−>∞

= − . (13) 

 

When *C  goes up, the savage value must go down to make the replacement 

economically viable. As time goes by, the OMC must go up in order to justify the 

capital cost originating from asset replacement.  

As a base to our solution, the numerical case belonging to Mauer and Ott 

(1995) will be revisited, corrected, and prepared for this model.  

3. Description of the numerical case  

 

Before continuing with our solution through modeling, the numerical case, 

which was specifically designed to test critical asset replacement solutions, 

should be described. Because the results of this numerical case are going to serve 

as a comparison for the new model, all previous parameter values, with the 

exception of Cα , have been accepted. Relative to Cα , we initially consider a 

growth rate 0.15=Cα  and a volatility 0.10=Cσ . As the value of Cα  is greater 

than the discount rate 0.07=fr , by Gordon’s Model, one considers 0.06=Cα .  

 

Table 1: Set of parameters and values of the numerical case 

Parameter Symbol Value 

Risk-free interest rate  
fr  0.07 

Cost drift  
Cα  0.06 

Volatility of cost  
Cσ  0.10 

Salvage value drift 
CS

 
-0.06 
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Volatility of salvage value 
CS

 
0.10 

Market risk price η  0.4 

Minimal cost 
NC  1 

Acquisition price  P  10 

Investment tax credit rate  ϕ  0 

Tax rate τ  0.30 

Depreciation rate aδ  0.50 

 

Mun (2003) presents a case with 0.10=Cα  and 0.35=Cσ  where 3.5=C Cσ α . 

For 0.06=Cα , one obtains 1.66=C Cσ α , which is a satisfactory 50% of Mun’s 

(2003) previous ratio. 

To make the risk adjustment, we use the Shape ratio as the risk price. 

Bernstein and Damodaran (1998) and Hull (1993) describe this concept as the 

premium demanded by the market to compensate for each unit of risk. Taking 

the total risk premium to equal m C Cmη σ ρ , the adjusted growth rate value *
Cα  will 

be: 

 

 *
C C m C Cmα α η σ ρ= − . (14) 

 

We estimate the market risk price to be 0.40=mη , which is based on the use 

of a market index return rate as an evaluation pattern. Therefore, the market risk 

price is calculated as the ratio between the market risk premium m frµ −  and the 

market standard deviation mσ : 

 

 m f
m

m

rµ
η

σ
−

= . (15) 
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According to Ibbotson Associates (2006), the market risk premium for this 

case is ( ) 0.08− =m frµ and volatility is 0.2=mσ . These values result in a market 

risk price of 0.40=mη . The lack of correlation between the OMC and the 

systematic factor of evaluation, which produces an adjusted growth rate *
Cα  with 

an annual value of 0.06, is assumed. Concerning new asset characteristics, an 

acquisition price 10=P  and OMC initial value 1NC =
 is also assumed. Thus, 

( )NV C  corresponds to the after-tax value of the cost to replace an infinite 

sequence of stochastic assets. In respect to tax parameters, the numerical case 

includes a credit investment rate, whose value represents the possibility of 

reinvestment of the amount resulting from an asset sale, and the case also defines 

an initial value 0ϕ = , a tax rate 0.30=τ , and a depreciation rate aδ =0.50. The 

depreciation method follows a negative exponential function. In discrete terms, 

exponential amortization corresponds to a regimen similar to the one described 

in Table 2. 

 

Table 2: Description of the depreciation rate for annual periods 

Period 1 2 3 4 5

Depreciation Rate 39.35% 23.87% 14.47% 8.78% 5.33% 

 

4. Characteristics of the solution 

 

The OMC critical level is endogenous and results from equation (6) in 

conjunction with the applied boundary conditions defined in the previous 

section. The numerical simulation obtained from the present model produced 

critical value results in Table 3.  
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Table 3: Numerical solution for a two-factor function1 

Mod. C* S* E[T*] V(C*) V(CN)

0 2,736 2,924 6,700 23,960 22,835

1 2,264 3,534 13,202 23,032 15,507

2 1,137 5,999 1,085 82,184 78,325  

 

From Table 3, a substantial critical level modification is possible. This could 

be due to the introduction of decreasing dynamics for salvage value S  that could 

motivate an anticipation of asset replacement. A more detailed observation 

highlights an even larger variation in the replacement period, which results from 

the application of the critical level to a first passage time distribution. These 

results seem to confirm the intuition that the introduction of a two-factor 

function would induce strong variations in the cost replacement critical level, 

confirming some weaknesses in the previous model. These indications lead us to 

conduct a comparative analysis based on behavioral standards and also to 

conduct an analysis of the impact of variations of each parameter in the 

determination of the optimal replacement policy. 

5. Sensitivity analysis 

 

This section examines the impact of changes in parameter values on the 

replacement model by analyzing replacement boundary values and the optimal 

replacement periods for different states of nature. In this way, one can defines a 

set of panels to isolate the effect of varying each parameter and verify the critical 

level sensitivity associated with parameter value variations.  

The analysis begins with observation of the impact of varying parameters 

constituting the salvage value S , described in equation (2). Table 4 shows the 

critical level and critical period updates resulting from the variation of drift rate 

Sα . 

                                                 
1 E[T*]: Conditional expected first passage time 
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Table 4: Effect of increasing the cost growth rate 

ααααs C* S* E[T*] V(C*) V(CN)

-0.09 1.079 6.501 0.940 90.290 83.254

-0.06 1.137 5.999 1.085 82.184 78.325

-0.03 1.157 5.218 1.328 83.189 78.325  

 

Elevating Sα  results in two positive effects resulting from changing these 

parameter: 1) an increase in the critical OMC, and 2) reduction in the exercise 

period. The intuitive explanation for this effect resides in the more distant 

intersection point associated from a flatter slope. The effect of changing Sσ  

(shown in Table 5 at 0.05 intervals) will depend on its relative position to Cσ . If 

C Sσ σ> , the critical level should go down and if C Sσ σ≤  the critical level should 

go up. 

Table 5: Effect of changing the standard deviation of salvage value 

σs C* S* E[T*] V(C*) V(CN)

0.05 1.125 6.568 0.940 81.599 78.325

0.10 1.137 5.999 1.085 82.184 78.325

0.15 1.192 5.623 1.192 85.104 78.325  

 

From Table 5, one can verify an ascent of *C  coincident with *E T   . As 

expected, the introduction of Sσ  does not significantly modify the function of the 

replacement model but induces a lower replacement critical level. Table 5 also 

shows that the simple consideration of Sσ  results in a 10.7% decrease in a new 

critical *C  compared to the adjusted numerical case. The reason for this behavior 

seems to be in the evidence that less volatile markets create fewer investment 

opportunities based on economic savings from asset replacement. 

As Dobbs (2002) and Dixit (1989) suggest, volatility in variation intervenes 

with the value of the asset exchange option. In this case, the exchange option 

becomes influenced not only by Cσ  but also by Sσ , whose increase provokes a 
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delay in the moment that the asset exchange option is chosen. Uncertainty in S  

produces a new optimal boundary where Sσ  and Cσ  work against each other. 

An increase in Sσ can induce the decision to replace by increasing the possibility 

of a future price decline, while an increase in Cσ  induces a choice to keep the 

asset because future OMC are expected to descend. Thus, delay or advancement 

of the optimal replacement moment will depend on the combined effect of these 

two volatilities (Brach, 2002). 

The next table shows the two-factor function panel with the effect from 

varying the acquisition price P . In the previous tests, the varying P  upwards 

led to an increase in *C , establishing a higher level for exercising the replacement 

option. This panel establishes positive and negative variations about the 

acquisition price using a standard level of 10P = , which results in the following: 

 

Table 6: Effect of changing the acquisition price 

P C* S* E[T*] V(C*) V(CN)

5 1.014 5.077 0.355 78.466 76.660

10 1.137 5.999 1.085 82.184 78.325

15 1.328 5.166 3.578 93.908 82.487  

 

Table 6 shows the effect of varying the acquisition price in terms of the 

critical replacement level and an increase in the discount OMC from growth in 

the acquisition price P . This critical level behavior results from the decline in the 

attractiveness of the alternative asset resulting from an increase in the cost of the 

new asset. 

In the Adkins (2005) replacement model, where the value of critical revenue 

is the basis for model functionality, incremental increases in the investment cost 

has the effect of making the asset less attractive for the purposes of exchange. 

Consequently, because the critical revenue value is a decreasing function of 

investment cost, the decision to exercise asset replacement will be delayed for 
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lower levels of the exchange option. This analysis seems to contradict Keles and 

Hartman (2004), who relate the impact of variation in acquisition price to the 

critical decision of asset replacement. A possible explanation for the conclusions 

of Keles and Hartman (2004) is the budgetary restriction in their replacement 

model. Another parameter that influences the alternative cost ( ),C SΩ  is the tax 

credit ϕ , which, when increased, produces a reduction of *C  as a result of the 

reduction of ( )1P ϕ−  and the increased attractiveness of a new and improved 

asset cost. 

 

Table 7: Effect of changing the tax credit rate 

φ C* S* E[T*] V(C*) V(CN)

0.00 1.137 5.999 1.085 82.184 78.325

0.05 1.112 6.302 0.791 80.852 77.908

0.10 1.089 6.402 0.548 79.695 77.492  

 

Table 7 suggests that an increase in tax credits act as an incentive for asset 

exchange, which further suggests two other effects. The first effect is the 

reduction of the net acquisition price. The second effect is the corresponding 

decrease in the asset salvage value (from the change in the depreciation base). In 

functional terms, the increase in ϕ  corresponds to negative variation in the 

acquisition price P , which is a similar effect to the one previously discussed in 

the analysis of the acquisition price. 

The tax credit rate ϕ , the tax rate τ , and the depreciation rate aδ  constitute 

the tax vector. While variation in ϕ  effects the level of the acquisition price and 

the depreciation base, the change in τ  is reflected not only in the tax savings 

value given by C  but also in taxation resulting from ( )( )* *S Cτ ϑ−
⌢

. 

The growth of tax rateτ suggests an increase in the critical level for asset 

exchange, and consequently, an increase in the critical period. This results from 
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the fact that incremental increases in the tax rate also increase the taxes charged 

to capital gains received from reduction of the net salvage value. In this situation, 

the new asset becomes less attractive, and maintenance of the current asset is 

favored by the ( )1C τ−  reduction and by the increased contribution of 

depreciation cost Cδ  to the reduction in total costs. 

 

Table 8: Effect of changing the tax rate  

ττττ C* S* E[T*] V(C*) V(CN)

0.10 1.030 6.454 0.078 94.807 92.775

0.30 1.137 5.999 1.085 82.184 78.325

0.50 1.386 5.998 4.333 70.033 63.874  

 

Table 8 shows an increase in *C  increase resulting from tax rate τ  growth. 

This scenario is an outcome of lower cost flows and lower current values and 

results from the OMC and net revenue  increase.   

In the two-factor model, the behavior of *C  with changes in the depreciation 

rate depends on two effects. The effect of tax savings, defining the depreciation 

rate as:  

 

 ( )1

a

Z
a

N

C
C P

C

δ

δ δ ϕ
−

 
= −  

 
, (16) 

 

and the effect of converting this cost into a perpetuity through the opportunity 

cost: 

 

 * 21
1

2

a a a

f C Cr r
Z Z Zδ
δ δ δα σ

      
= − − − − − −      

      
. (17) 

Table 9 does not indicate any consistent effect of increasing the depreciation 

rate aδ .  
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Table 9: Effect of depreciation rate variation 

δδδδa C* S* E[T*] V(C*) V(CN)

0.25 1.011 6.175 0.011 50.734 48.949

0.50 1.137 5.999 1.085 82.184 78.325

0.75 1.078 6.225 0.434 76.531 73.014  

 
As Table 9 shows, when the depreciation rate increases, the critical level 

oscillates around a reference value. Thus, while increases in the depreciation rate 

up until 0.5 provokes critical level growth, increases in the depreciation rate 

above 0.5 causes a reduction in the critical level. In the two-factor model, there 

are various effects. OMC moves away from its initial value, tax savings are 

reduced and it modifies the opportunity cost used to discount the net tax 

depreciation cost. 

When 0.50aδ <  there is an incentive to delay replacement because tax 

savings prevail due to reduction in the net replacement cost and the potential 

increase in capital gains. When 0.50aδ ≥ , the increase in the depreciation rate 

contributes to the erosion of the asset’s taxable base, which motivates 

replacement. These considerations of critical level behavior as a function of the 

depreciation rate can be compared to Dixit and Pindyck (1994). According to 

these authors, inclusion of depreciation diminishes the investment opportunity 

of the project. The analogy to the replacement problem is the reduction in the 

incentive to replace the asset. 

6. Conclusion 

 

This article presented a new methodology for approaching the optimal asset 

replacement problem in terms of assets with a fixed tax regimen applied to one-

cycle cases. It demonstrates how it is possible to evaluate OMC using a two-

model factor. This model incorporates the flexibility of choosing the appropriate 

salvage value to make an optimal replacement decision. Thus, one analyzes the 
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replacement decision in a one-cycle environment where salvage value S  is 

decreasing and follows a GBM.  

Thus, a new formula for OMC evaluation has been developed and one do 

provided some outcomes from numerical simulations applied to the numerical 

case. Besides, with this different dynamics of salvage value S , one can collect 

evidence concerning anticipation of the asset replacement decision. This evidence 

confirms the significant influence of S  in the evaluation of OMC. The next step is 

extending the analysis carried out in this work to a multi-cycle environment. 

 

Appendix A.  

 

This section uses the Method of Characteristics to find a new system of 

coordinates and reduce the differential equation to its canonical form. This 

reduction allows the application of the Method of Separation of Variables 

(Weinberger, 1995). This application will result in a closed solution on which 

boundary conditions are applied. Following Polyanin (2001), one begins with a 

general form of a second order partial differential equation:  

 

 2xx xy yy x yaExc bExc cExc dExc eExc fExc g+ + + + + = , (18) 

 

where , , , , , ,a b c d e f g  are coefficients of the equation classified as parabolic in the 

cases where 2 0b ac− = . Thus, it is possible to reduce equation  (5) to its canonical 

form through the introduction of a new system of coordinates ( ),θ η : 

 

 ( ), , , ,Exc Exc Exc Excθθ θ ηφ θ η= , (19) 

 

Using equation , we obtain the values for the coefficients of expression (5) 
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 2 21

2 Ca Cσ= , 
1

2 C S CSb CSσ σ ρ= , e 2 21

2 Sc Sσ= , (20) 

 

from which one obtains the following determinant:  

 

 ( )2 2 2 2 2 21
1

4 C S CSb ac C Sσ σ ρ− = − .  

 

Admitting that equation (18) is classified as parabolic, we need to change system 

coordinates, ( ) ( ), ,C S θ η− > , it will be necessary to solve the following equation: 

  

 0S
C S

C

S

C

ση η
σ

+ = ,  

 

where C C

ηη ∂=
∂
 e S S

ηη ∂=
∂
 . The solution is:  

 

 S

C

dS b S

dC a C

σ
σ

= = ,  

 

rearranging, one obtains: 

 

S

C

dS dC

S C

σ
σ

= , 

 

( ) ( ) 0
S

C

ln S ln C S
σ
σ

= + , 
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from which results: 

 

 ( ) 0,
S

C

S
C S S

C
σ
σ

η = = . (21) 

 

For θ , one chooses a function that intercepts the lines of constants, such as: 

 

 ( ),C S Cθ = . (22) 

 

Differentiating the expressions (21) and (22): 

 

 ( )
1

,
S

C

S
C

C

S
C S

C
σ
σ

ση
σ

+
= − , 

  

 ( ),
S

C
S C S C

σ
ση

−
= ,  

 

 ( ), 1C C Sθ = ,  

 

  ( ), 0S C Sθ = ,  

 

for C C

θθ ∂=
∂

 and S S

θθ ∂=
∂

. Assuming ( ) ( ), ,Exc C S v θ η= , one calculates:  

 

 
1S

C

S
C

C

S
Exc v v

C

θ ησ
σ

σ

σ
+

= − ,  
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S

C
SExc C v

σ
σ

η

−
= ,  

 

 
2 2

2
1 2

2

2
S S

C C

S S
CC

C C

S S
Exc v v v

C C

θθ θη ηησ σ
σ σ

σ σ

σ σ
+ +

= − + ,  

 

 
2

1
S

C

SSExc v

C

ηησ
σ

= ,  

 

 
2

1

1
S S

C C

S
CS

C

S
Exc v v

C C

θη ηησ σ
σ σ

σ

σ
+

= − . 

 

Just before making the substitution in equation (5) we simplify the following 

expression:  

 

 ( )22 2 2 21 1 1

2 2 2CC C CS C S SS S C C S SExc C Exc CS Exc S Exc C Exc Sσ σ σ σ σ σ+ + = + . (23) 

 

Substituting the new coordinate ξ  and η in the last equation: 

 

 2 21

2 C

C S
f S C

C

v r v v vθθ η θ
α σσ θ α η α θ

σ
 

= − − − 
 

. (24) 

 

To find a general solution, Abell and Braselton (1997) suggest the 

transformation q θ=  and r η= , producing the function ( ) ( ), ,v v q rθ η = . The 

solution will result from the product of two functions, each one depending only 

on one independent variable. This process is typically called the Method of 
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Separation of Variables (Weinberger, 1995) and serves to convert a partial 

differential equation into an ordinary differential equation. Thus, considering: 

 

 '
dQ

Q
dq

=  e '
dR

R
dr

= , 

 

and  

 

( ) ( ) ( ),v q r Q q R r= . 

 

Differentiating ( ).v , one obtains:  

 

 'qv v Q Rθ = = , 

 'rv v QRη = = , 

 ''qqv v Q Rθθ = = . 

  

Applying these expressions to (24), one transformation produces:  

 

 2 '' ' ' 0fq Q R qQ R rQR r QRξξ ξ ηΠ + Π + Π − = . (25) 

 

with  

 21

2 C
ξξ σΠ = ,  

  

C
ξ αΠ = , 

  

 C S
S

C

η α σα
σ

Π = − , 
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where fr  corresponds to the risk-free rate of interest. Splitting equation (25) into 

two separate equations, one a function of R  and another a function of Q . 

  

 
2

2' '' 'f f
a

r R q Q qQ r Q
k

R Q

ξξ ξ
η Π + Π −

−Π = = − ,  

 

where ak  is a constant. Thus, the previous expression allows us to obtain the 

following differential equations:  

 

 2 ' 0a fk R r R η− Π = , (26) 

 

and  

 

 ( )2 2'' ' 0f aq Q qQ Q r kξξ ξΠ + Π − − =  (27) 

 
To find the expression for R , one manipulates (26):    

  

 
2
akdR dr

R rη=
Π

, 

  

 ( ) ( )
2

1
ak

ln R ln r kη= +
Π

, 

  

 ( ) ( )
2
ak

rR r k r ηΠ=  
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where rk  is a constant. Proceeding in similar way for Q , one verifies the 

presence of a Cauchi-Euler equation for which the following general solution 

exists:  

 

 ( ) 1 2
1 2Q q k q k qϖ ϖ= + , (28) 

 

where 

  

( )
( ) ( )

( ) ( )
( )

2 2 * 2 2** 2
2

2 2 2 2 2

1,2

2 2 288 21
16

2 2

2

a f C a f CCC C
a f

a f a f C a f a f C

C

k r k r
k r

k r k r k r k r

α σαα σ
σ σ

ϖ
σ

 − − − ± − − + + − − − − − − 
 = . (29) 

 

Consequently, the expression ( ) ( ) ( ),v q r Q q R r=  takes the following form: 

 

 ( ) ( ) ( ) ( )
2

1 2
1 2,

ak

rv q r Q q R r k q k q k r
ηϖ ϖ Π= = + , 

  

 ( )
2 2

1 2
1 2,

a a

S S

k k

r rv q r k k q r k k q rα αϖ ϖ
 
 = +
 
 

, 

  

 ( )
2 2

1 2
1 2,

a a

S S

k k

r rv q r k k q r k k q rα αϖ ϖ= + , 

 

 ( )
2 2

1 2,
a a

S S

k k

A Bv q r k q r k q rα αϖ ϖ= + . (30) 

 

Replacing q  and r  by the corresponding terms in C  and S , one achieves 

the general solution  (6). 
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