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ABSTRACT 

Background: Human papillomavirus (HPV) is a known risk factor for oropharyngeal cancer 

(OPSCC), and over the past few decades OPSCC has increased drastically due to an HPV 

epidemic. The oropharynx contains different sub-sites, where sub-sites rich in lymphoid 

tissue, such as the tonsils and the tongue base, are suggested to be more prone to harbor 

an HPV infection, and cancer of these sub-sites is more often HPV-positive (HPV+). 

Interestingly, patients with an HPV+ tonsillar or base of tongue cancer (TSCC or BOTSCC) 

generally have a better survival compared to patients with corresponding HPV-negative 

(HPV-) tumors. However, HPV does not have the same prognostic value in the other 

OPSCCs, and has been suggested to differ even depending on the histology of normal 

tissue surrounding TSCC. Moreover, we have previously shown that low levels of HLA class 

I (which presents antigens to the immune system) in HPV+ TSCC and BOTSCC was 

associated with a good prognosis, whereas the opposite was shown in HPV- tumors. Since 

current treatment often leads to severe side effects, de-escalation trials for patients with a 

predicted excellent prognosis would be an attractive alternative. Therefore, there is a 

need to understand the differences between OPSCC sub-sites, and find biomarkers that 

together with HPV status would identify patients that could benefit of de-escalated or 

targeted therapy. 

Aims: To identify new prognostic markers in OPSCC and to study the importance of sub-

dividing OPSCC. To study expression of proteins involved in antigen processing and 

presentation, in HPV+ and HPV- OPSCC, and how expression is affected by irradiation. 

Results: In paper I and II, the expression of the antigen processing machinery (APM) 

components were evaluated both in the nucleus and in the cytoplasm. We showed that 

LMP10 and LMP7 had prognostic value in both HPV+ and HPV- TSCC and BOTSCC. We also 

found that APM components TAP2, LMP2, LMP7, and LMP10 were commonly suppressed 

in both HPV+ and HPV- TSCC and BOTSCC, and that LMP2 and LMP7 expression was 

correlated to HLA class I expression. In paper III, we found that radiotherapy had the 

ability to increase cell surface HLA class I expression in some HPV+ head and neck cancer 

cell lines, without an observed change at the transcriptional level. Our results from paper 

IV, show that HPV was significantly more prevalent in TSCC and BOTSCC as compared to 

the other oropharyngeal sub-sites. As described in paper V, the histology adjacent to TSCC 

varies and can be divided into TSCC, where normal tonsil-like adjacent tissue is present 

(specified TSCC (STSCC)), and absent (non-specified TSCC (NSTSCC)). We show that HPV is 

significantly more common in STSCC compared to NSTSCC. HPV+ STSCC patients have a 

better clinical outcome compared to HPV+ NSTSCC patients. However, no differences in 

clinical outcome was observed in patients with HPV- STSCC and NSTSCC. 

Conclusions: This thesis provides increased understanding of differences between HPV+ 

and HPV- status in the context of OPSCC sub-sites. In addition, we have identified several 

prognostic biomarkers that together with HPV status and OPSCC sub-site, can contribute 

to improved personalized medicine for patients with OPSCC.    
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1 INTRODUCTION 

1.1 INFECTIONS IN CANCER 

Cancer is one of the most common causes of death in 

humans, with about 14 million new cancer cases, and 8 

million cancer-related deaths in year 2012 alone [1]. Overall, 

about 16% of all cancers are associated with infections by 

viruses, bacteria or parasites, where however this can vary 

10-fold depending on geographical region and infectious 

agent [1–3]. In general, this fraction is higher in low-income 

countries and can often affect a younger population 

compared to in high-income countries [1–3].  

The majority of all cancers caused by pathogens are due to 

viral infections. Human papillomaviruses (HPV) are a major 

culprit responsible for > 550 000 cases per year and known to 

cause cervical cancer and other anogenital cancers such as 

cancer of the penis, vulva, vagina, and anus, as well as cancer 

of the head and neck region. Other important human viruses 

related to cancer development are hepatitis B and C virus 

that can cause liver cancer, Epstein-Barr virus (EBV) that can 

cause e.g. lymphomas and nasopharyngeal carcinomas [4–7]. 

Human T-lymphotropic virus-1 (HTLV-1) associated to adult T-

cell leukemia, Kaposi sarcoma herpesvirus (KSHV) causative 

of Kaposi’s sarcoma, and Merkel cell polyomavirus (MCV) 

which is associated to Merkel cell carcinoma, are other 

cancer related infectious agents that are not as common as 

the afore mentioned ones [4–7].  

Figure 1. Proportions of common cancers caused by infections, in total 
numbers and percentages assumed to be caused by infections, based 
on global data from 2008. Adapted from the Cancer Atlas. Copyright © 
2014 The American Cancer Society, Inc. All rights reserved [5, 8]. 
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Infection driven cancers can also be due to bacterial infections, where e.g. Helicobacter 

pylori, is known to cause nearly 90% of all stomach cancer, or parasite infections, such as 

e.g. Schistosoma haematobium that is associated to bladder cancer [1, 5]. In figure 1 the 

most common cancers caused by infectious agents, according to data from De Martel et 

al., as adapted from the American Cancer Society and Cancer Atlas, are presented [5, 8].                                                  

Of notice is that viral carcinogenesis is a side effect of the induction of cell proliferation by 

many viruses. In order to increase viral production, viruses often have proteins that induce 

cells to go from a resting to a proliferative state [9]. This induction of cell proliferation can 

together with mutations in cellular genes lead to cancer. However, this only occurs in a 

small minority of infected cells. A frequent misperception is that viruses cause cancer due 

to increased transmission and viral burden, this is however not true. Only a minimal 

proportion of infected humans actually develop tumors, and those that do rarely serve as 

a source of transmission. Transmission of most of these, often very common viruses, is 

asymptomatic or associated with mild symptoms, although exceptions exist, and most 

infections do not lead to neoplasia [9, 10].  

Very broadly, this thesis will focus on human papillomaviruses and their role in head and 

neck cancer.  

1.2 THE EMERGENCE OF TUMOR VIROLOGY AND HPV DISCOVERY  

As early as in 1842 an Italian physician named Rigoni-Stern published a paper where he 

had studied the death certificates of women from Verona during the period 1760-1839 

and noticed that women that had been married, widowed or prostitutes had a much 

higher incidence of cervical cancer compared to women that had been virgins or nuns. 

Hence, he concluded that the cancer was related to sexual contact [11].  

Moreover, in the early 20th century the scientist Payton Rous performed the famous 

groundbreaking experiment with hens leading to the discovery of a transmissible avian 

tumor virus. From a hen with a spindle-cell sarcoma, Rous retrieved the tumor, grinded 

and filtered it thoroughly through a Berkefeldt filter that would hinder both cells and 

bacteria to pass through. He thereafter injected the cell-free filtrate into a second hen, 

which later also developed a similar chest tumor, suggesting that something small enough 
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to pass the filter (i.e. a virus) would be the cause of tumor growth. In 1966, Peyton Rous 

was awarded the Nobel Prize in physiology and medicine, for his discoveries. This was 

however not the first tumor virus detected, Ellerman and Bang from Denmark, just before 

Rous, discovered that a filterable extract could transmit leukemia between chickens. 

However, this discovery received little attention because leukemia was not recognized as 

a neoplastic disease until many years later [12].  

When it comes to human tumor viruses, the first one to be associated with tumor 

development was Epstein-Barr virus (EBV) named after Michael Anthony Epstein and 

Yvonne Barr, the discoverers of the virus in 1964. The virus was isolated from Burkitt’s 

lymphoma tumor cell lines [13]. Twenty years later, in 1984, finally the death certificate 

study by Rigoni-Stern was confirmed by Harald zur Hausen and colleagues, by identifying 

sexually transmitted high-risk HPVs in a high number of cervical cancer cases, indeed 

suggesting that HPV is associated to cervical cancer. This finding was rewarded with the 

Nobel Prize in medicine and physiology in 2008 [11, 14]. Today a total of seven human 

tumor viruses have been identified, together with a number of tumor viruses identified in 

other species, and some of these viruses have been shown to cause several different 

cancer types [7]. Most relevant for this thesis is that the International Agency for Research 

on Cancer (IARC) in 2007 acknowledged HPV type 16 (HPV16) as a risk factor for 

carcinogenesis of the cervix, vulva (basaloid and warty tumors), vagina, penis (basaloid 

and warty tumors), anus, oral cavity and oropharynx [4]. The latter was partly based on 

e.g. studies by the Dalianis group, which were first to show specific associations between 

tonsillar and base of tongue cancer and HPV [15, 16], as well as e.g. studies by Gillison et 

al., showing a correlation between HPV and oropharyngeal cancer [17].    

1.3 HUMAN PAPILLOMAVIRUS 

1.3.1 Introduction 

Human papillomaviruses (HPVs) are small circular double stranded DNA viruses, 

encapsulated in a non-enveloped icosahedral capsid, that belong to the Papillomaviridae 

family [18]. There are many different HPV types, and so far, more than 200 types have 

been identified, and this number is still increasing. HPVs are divided into low-risk and high-

risk types. The low-risk HPVs do not induce cancer, although some of them have the ability 
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to produce genital warts or skin warts. There are 13 high-risk HPV types (16, 18, 31, 33, 35, 

39, 45, 51, 52, 56, 58, 59, and 68), which have the ability to cause cancer, and some that 

potentially are high-risk HPV-types, where however more evidence is needed to prove 

causation. HPV16 is the most common type causing the majority of all HPV related cancers 

[4]. HPVs are very common pathogens and most people are infected at some point in their 

life and clear their infections without any symptoms arising. However if a high-risk HPV 

infection persists over a longer time period there is a risk that the interference of the virus 

with the host cells may lead to cancer development [19, 20]. 

1.3.2 Classification 

HPVs are divided into five major genera: alpha-papillomavirus, beta-papillomavirus, 

gamma-papillomavirus, mu-papillomavirus and nu-papillomavirus.  

 

Figure 2. Phylogenic tree containing the sequence of 118 different papillomavirus types. The 
colored clusters are the different HPV genera and the numbers at the ends of each branch identify 
each HPV type, and c-numbers refer to candidate HPV types. Remaining abbreviations refer to 
animal papillomavirus types. Adapted from Elsevier: Virology, de Villiers et al., 2004 [21]. 
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HPV classification is based on the nucleotide sequence of the open reading frame (ORF) 

coding for the L1 capsid protein [20, 21]. Between different genera less than 60% of the L1 

region sequence is the same. Within the same genus there are different species that share 

between 60%-70% nucleotide identity. Furthermore, within a species the HPVs are divided 

into types, where they share between 71-89% nucleotide identity, while if having above 

89% nucleotide identity, two assumed different HPV types would instead be classified as 

belonging to the same type [20, 21]. New HPV types are given a unique number after the 

genome has been sequenced and studied, and they are then registered with the 

International HPV Reference Center, which, is since 2012 situated at the Karolinska 

Institute in Sweden, after previously having been established in Germany [20].  

The different genera present with various behaviors and are associated with different 

diseases, affecting either mucosal or cutaneous epithelia. The alpha-papillomaviruses are 

known to cause both cutaneous and mucosal lesions in humans and primates and both 

high-risk and low-risk HPV types fall into this genus. Notably, HPV16, the most common 

cancer associated HPV type, is an alpha-papillomavirus. The beta-papillomaviruses can 

cause cutaneous lesions in humans, yet mainly exist in a latent form in the general 

population and can become symptomatic during immune suppression. Gamma-, mu-, and 

nu-papillomavirus genera also cause cutaneous lesions in humans [21]. Presented in figure 

2, as adapted from de Villiers et al. [21], is a phylogenic tree of 118 different 

papillomavirus types, where also papillomavirus genera that infect other species are 

illustrated. All types that infect humans are presented with a number, whereas remaining 

types are known to infect other animals. 

1.3.3 The genome and viral life cycle of HPV 

1.3.3.1 The HPV genome 

The HPV genome is built up by double-stranded circular DNA of roughly 8000 base-pairs 

and consists of an early and a late region as well as a long non-coding control region. The 

early region contains six proteins (E1, E2, E4, E5, E6 and E7), which are mainly involved in 

various functions of the viral life cycle, and the late region coding for two proteins (L1 and 

L2), which are structural proteins coding for the major capsid (L1) and the minor capsid 

(L2) [4]. An illustration of the viral genome of HPV16, and a model of the viral particle, are 

presented in figure 3A and 3B, respectively. 
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Figure 3. A) Viral genome of HPV16. B) Illustration of the HPV viral particle. 

1.3.3.2 The viral life cycle 

The viral life cycle is assumed to start when the virus, via a microlesion in the skin or 

mucosa gets access to and infects the basal layer of epithelial cells. Exactly how the virus 

enters the cell is not entirely known. Experimental models suggest however, that the two 

capsid proteins L1 and L2 access the basal lamina, and there interact with heparin 

sulphate proteoglycans, and possibly also laminin, resulting in a structural change in the 

viral capsid, facilitating binding to a secondary receptor on basal keratinocytes [22]. This is 

then followed by viral internalization and subsequent transport of the viral genome into 

the host nucleus. In the nucleus viral DNA can be found in an episomal form (non-

integrated), which is most common during infections without cancer, or in an integrated 

form (integrated into the host genome), which is mainly associated to HPV induced cancer 

[23]. Studies also suggest that it is during wound healing, i.e. active cell division, that the 

virus genome actually is able to get incorporated into the cell nucleus. Once the virion is 

internalized it undergoes endosomal transport and uncoating. Thereafter the viral life 

cycle is tightly linked to the maturation of the infected keratinocytes [22, 24].  

During the establishment of the infection, the initial viral DNA replication in the host cell 

starts and will increase the number of viral DNA copies to 10-100 copies per cell [25]. 

During the maintenance phase the viral copy number is controlled and remains stable 

around 10-100 copies per cell, both during cellular differentiation and proliferation. 
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Finally, in the differentiated epithelium, the viral genome will be amplified to around 1000 

copies per cell, these are then encapsulated by L1 and L2 prior to shedding of the viral 

particles from the cell [25, 26]. The viral life cycle of HPV16 is displayed in figure 4, as 

adapted from Doorbar et al. [22].    

 

Figure 4. The viral life cycle of high-risk HPV16 and the different phases of viral protein expression. 
Adapted from Doorbar et al. [22]. 

1.3.3.3 E1 and E2 viral proteins 

E1 and E2 are the two most important viral proteins during early infection and are 

involved in initial replication for establishing an infection, followed by controlling the 

infection during the maintenance phase [27]. E2 has one DNA-binding and one protein-

binding domain connected by a flexible hinge region and can form a homodimer that can 

bind to four sites of the long control region (LCR). Three of these sites are located next to 

the origin of replication and are necessary for E1-activated viral replication. E2 binds to E1 

and together they form a dimer that binds to the viral origin of replication, and thereby 

the host cell’s DNA replication machinery is recruited [27, 28].  

1.3.3.4 E6 and E7 viral proteins 
 

The HPV genome has the ability to remain episomal in the cells, or become integrated into 

the host genome, the latter most often being a random event that sometimes can lead to 

the loss or disruption of viral genes needed for transcription [22]. Among these, E2 is the 

most important viral gene encoding a transcription factor, which is the key regulator and 

inhibitor of E6/E7 abundance [28]. E6 and E7 together are in high-risk HPV types regarded 
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as oncogenes. They are important for abrogating normal cell cycle control and pushing the 

cells to proliferate through the binding of E6 to p53 and the binding of E7 to 

retinoblastoma protein (pRb) [29]. The role of E6 and E7 in cell transformation and 

carcinogenesis is described in more detail below in section 1.3.5. In e.g. cervical cancer the 

majority of cancer cases show HPV integration into the host chromosome, where the viral 

integration site often lies within the E1 and E2 genes. Loss of functional E6/E7 regulation 

by E2 leads to a persistent expression at a high level of these genes and is also the reason 

for accumulation of genetic errors that eventually may lead to the development of cancer 

[22]. In head and neck cancer, integration of HPV and disruption of regulatory E1 and E2 

genes has also been reported, however different studies show different numbers on how 

common this event is in the sub-sites of this cancer type [26, 30].  

1.3.3.5 E4 viral protein 
     

E4 is a late protein expressed from the early region of the genome and is expressed at high 

levels forming several E4-derived proteins. E4 has the ability to associate to and disrupt 

the cytoplasmic keratin network, however the biological importance of this function is yet 

to be determined. Nonetheless, several studies suggest that E4 is involved in viral release 

and that it could be involved in cell cycle arrest, and thereby virion amplification success 

[31, 32].   

1.3.3.6 E5 viral protein 

E5 is suggested to indirectly contribute to genome amplification by changing the cellular 

environment. E5 is a transmembrane protein containing a cytoplasmic C-terminus, and is 

assumed to be able to form pores, to interfere with apoptosis, as well as the intracellular 

trafficking of endocytic vesicles [22, 33]. E5 has also been suggested to be an oncoprotein, 

and its role in carcinogenesis is discussed in more detail in section 1.3.5.3 below.  

1.3.4 Transmission 

The transmission route of HPV depends on the tropism of the specific HPV type. 

Transmission of cutaneous HPV infections, e.g. HPV1, mainly occurs through skin-to-skin 

contact, or through skin to surface contact. Cervical infections and other anogenital 

infections are mainly transmitted through sexual intercourse, or other mucosa-to-mucosa 



 

 9 

contact. Oral infections have not been studied to such a great extent, but are also 

assumed to be transmitted through sexual contact, and possibly also through kissing [34, 

35].  

All transmissions have in common that the virus enters through epithelium microlesions 

and infects the underlying receptive basal cells [36]. The risk of acquiring an anogenital or 

oral infection is closely related to sexual activity and increases with e.g. high numbers of 

sexual partners and early sexual debut. Although use of barrier methods, such as 

condoms, will protect from infection to some extent, protection is not guaranteed since 

the virus can still be transmitted through contact with non-preserved infected areas.  

A few studies also found vertical transmission from mother to child. This has been 

suggested to occur by prenatal transmission during pregnancy, or perinatal transmission 

during or immediately after birth through contact with the infected cells of the cervix and 

vagina [37, 38]. Pre-conceptual transmission during or immediately after fertilization of an 

oocyte, where HPV can be transmitted via sperms has also been suggested [39].  

1.3.5 Carcinogenesis 

The E6 and E7 proteins are the main proteins involved in cellular transformation and 

carcinogenesis caused by high-risk HPVs. These proteins have been extensively studied, 

mainly in cervical cancer, and many studies have shown that the severity of cervical 

lesions is correlated to the frequency of HPV integration, where a high number of 

integrations are suggested to lead to high-grade dysplastic lesions [29]. E6 and E7 are 

involved in deregulating a number of fundamental cellular events such as the cell cycle, 

apoptosis, senesces, DNA repair, and differentiation, leading to an accumulation of DNA 

damage and eventually cancer development. These processes will be described in more 

detail in following sections and in figure 5. If the immune system successfully eliminates 

the HPV-infected cells, despite the transforming properties of E6 and E7, there will not be 

enough time for accumulation of chromosomal abnormalities sufficient to cause a 

malignancy, and therefore most HPV-infections do not actually lead to tumor formation 

[29, 40]. Immunosuppressed individuals consequently have a higher risk of contracting 

HPV associated lesions (e.g. warts) and cancers [41]. 
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Figure 5. High-risk HPV oncogenes E6 and E7 and their involvement in carcinogenesis. 

1.3.5.1 Viral protein E6 in carcinogenesis and its interaction with p53 

E6 contributes to carcinogenesis by a very well-established mechanism, using the ability to 

cause degradation of the tumor suppressor protein p53 by the ubiquitin pathway [29, 42]. 

p53 is referred to as the guardian of the genome due to its important role in regulating the 

expression of genes encoding regulators of the DNA repair machinery, cell cycle, and 

apoptosis [43]. During cellular stress, p53 will trigger cell cycle arrest to allow time for DNA 

damage repair, or will trigger apoptosis in case the damage is too great, in order to ensure 

the integrity of the genome. Hence, E6 interference with p53 leads to uncontrolled 

proliferation of cells [29, 42]. In addition, in some high-risk, and to a lesser extent in some 

low-risk HPV types E6 is able to directly inhibit the expression of p53 regulated genes, such 

as the transcriptional co-activators CREB binding protein (CBP) and p300 [29]. Moreover, 

E6 and E6 associated protein (E6AP) interaction is involved in other HPV related events, 

such as transcriptional activation of the hTERT (human telomerase reverse transcriptase) 

gene, which encodes the catalytic subunit of the telomerase complex (figure 5) [29, 44]. 
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1.3.5.2 Viral protein E7 in carcinogenesis and its interaction with pRb and introduction 
of p16INK4a 

The E7 protein has the ability to bind the tumor suppressor retinoblastoma protein (pRb) 

and its related proteins p130 and p107, which are proteins involved in cell cycle control 

[29, 45]. The function of pRb is to negatively regulate the proteins of the E2F family (E2F1-

3), thereby keeping the cells in a quiescent state during the G0/G1 phase of the cell cycle. 

Binding of high-risk HPV E7 protein with pRb will lead to the degradation of pRb, which in 

turn will lead to an activation of E2F-regulated transcription. E2F1-3 regulate cyclin A and 

cyclin E, which are the positive regulatory subunits of cyclin-dependent kinase (CDK) 

complexes, and the accumulation of cyclins will lead to the activation of CDKs and cell 

cycle progression (figure 5). It has also been shown that E7 can directly bind some CDK 

inhibitors, leading to the disruption of their inhibitory function on the cell cycle [29, 45]. 

As an indirect effect of E7 interference with pRb, the tumor suppressor p16Ink4A (p16) is 

upregulated. This is common in most HPV positive tumors, and therefore overexpression 

of p16 is often used as a surrogate marker for HPV infection. p16 normally functions as an 

inhibitor of the cdk4/6-cyclin D complex and is expressed in order to control cell 

replication and promote G1 growth arrest. When pRb is degraded due to E7 binding, p16 

becomes upregulated and overexpressed, but will still not succeed in promoting growth 

arrest [46, 47]. It has also been suggested that p16 in HPV positive cells can be 

upregulated via another pathway independent of pRb interactions, since e.g. HPV16 E7 

has also been shown to induce histone demethylase KDM6B (lysine demethylase 6B), 

which in turn leads to upregulation of p16 [48].  

Of importance for this thesis, is that E7 has been proposed to have immune modulating 

functions. Expression of E7 has been associated to downregulation of major 

histocompatibility complex (MHC) class I expression, leading to a decrease in peptide 

presentation and cytotoxic killing. This is considered as a mechanism of immune escape 

[49, 50]. 
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1.3.5.3 Viral protein E5 in carcinogenesis and its role in regulating molecules of the 
major histocompatibility complex 

E5 in high-risk HPVs is suggested to be an oncoprotein due to its capabilities of interfering 

with classical MHC molecules. Thereby stopping them from occurring on the cell surface, 

and compromising the presentation of viral peptides of the infected cell [22]. It has been 

suggested to downregulate MHC class I (human leukocyte antigen (HLA) class I, in 

humans) by accumulation of MHC class I in the Golgi apparatus [51, 52]. The accumulation 

of MHC class I may be due to a lack of acidification in the Golgi apparatus and/or due to 

direct interactions between E5 and the heavy chain of HLA class I [51–53]. This would 

prevent MHC class I from translocating to the cell surface, leading to immune escape by 

avoiding clearance by e.g. T cells. Another study reported that E5 may have the ability to 

downregulate MHC class II in keratinocytes that have been treated with interferon gamma 

(IFN-γ) [54]. Finally, HPV E5 has also been shown to be capable of modulating epidermal 

growth factor receptor (EGFR) expression [55, 56]. 

1.3.6 HPV prevalence in the general population 

Many HPV types are very common viruses, and as already mentioned, most infections do 

not actually lead to cancer. HPV has, depending on type, the ability to infect both mucosal 

and cutaneous cells of different parts of the body, however the following section will focus 

only on oral and cervical infections of the general population.  

In a meta-analysis by Tam et al., the authors presented oral HPV infection data from sixty-

six different studies, mainly from European and North American cohorts, yet remaining 

continents were also represented [57]. The overall oral HPV prevalence for all included 

HPV types was 7.7% and for high-risk HPV16 1.4%, and the incidence was 4.38 cases per 

1000 person-months for all HPVs and 0.92 cases per 1000 person-months for HPV16. The 

authors also report that the oral HPV prevalence was higher in men (9.3%) compared to 

women (5.5%) and that the prevalence varied depending on geographical region. This 

meta-analysis excluded all studies, where only study subjects <18 year of age were 

included, however it did not report HPV prevalence differences per age group [57].  

Similarly, in a study of oral HPV prevalence in the civilian US population with a majority of 

non-vaccinated individuals, Gillison et al. demonstrate an oral HPV prevalence of 6.9% in 
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men and women aged 14-69 years [58]. Interestingly, they also show a bi-modal pattern 

with two oral HPV prevalence peaks in mainly two different age groups. The first peak, 

was 7.3%, in individuals 30-34 years of age, and the second peak, was 11.4%, in individuals 

60-64 years of age. Moreover, they show that oral HPV prevalence was lower in females 

compared to males, with 3.6% vs. 10.1% respectively [58].  

Several studies performed by the Dalianis group report on oral HPV prevalence in youth (a 

population where HPV infections are very common) before and after the introduction of 

vaccination and catch-up vaccination against HPV in young girls and women [59–61]. 

Youth ranging between the ages of 15-23, visiting a youth clinic in Stockholm between 

2009-2011, had an even higher oral HPV prevalence compared to the meta-analysis by 

Tam et al. just described, with a prevalence of 9.3%, with a similar prevalence in both 

males and females [59]. These study subjects had not yet been vaccinated against HPV 

and the risk of having an oral HPV infection was significantly higher if also presenting with 

a genital HPV infection [59]. In two follow up studies, including study subjects visiting the 

same youth clinic between 2013-2015, a great reduction in oral HPV prevalence was 

observed with now only 1.5% being HPV infected. Here 71% of the study subjects reported 

being catch-up vaccinated for HPV, yet not necessarily before sexual debut [60, 61].  

The three last mentioned studies performed on subjects from a youth clinic in Stockholm, 

also presented cervical HPV infection data [59–61]. Cervical infection was much more 

common in this group of patients, compared to oral infection, and 74.1% of all girls/young 

women presented with a cervical HPV infection in the pre-vaccination study [59]. In the 

follow-up studies (2013-2015) cervical HPV infections were common both in the HPV 

catch-up vaccinated group (64.6%), and the non-vaccinated group (74.5%) [61]. However, 

the HPV catch-up vaccinated group showed significantly lower numbers of the two high-

risk HPV types included in the vaccines compared to the non-vaccinated group [61]. 

HPV16 prevalence in the pre-vaccination study (2009-2011) was 35%, in the non-

vaccinated group as compared to 5% in the HPV catch-up vaccinated group (2013-2015) 

and 18% among those that were not vaccinated during the same period [59–61]. The 

latter drop was likely due to herd immunity. A similar trend was observed for HPV18 

prevalence, with 10% in the pre-vaccination study; as compared to 1% in the HPV catch-up 

vaccinated group and 4% in the non-vaccinated group during the later period. Whereas 
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prevalence of the HPV types not included in the vaccines have not changed much between 

the different time periods. This suggests that HPV catch-up vaccination has already had an 

effect on HPV prevalence among young people in Stockholm, both among the vaccinated 

population as well as, to a lesser extent, on the non-vaccinated population due to herd 

immunity [59–61].  

In a meta-analysis studying worldwide HPV prevalence among women with normal 

cervical cytology, Bruni et al. in 2010, present that worldwide prevalence was 11.7% [62]. 

This study included studies published between 1995 and 2009, and hence the prevalence 

may have changed a bit since then. In this study Sub-Saharan Africa (24.0%), Eastern 

Europe (21.4%), and Latin America (16.1%) presented with the highest prevalence, 

whereas Western Asia (1.7%), Northern America (4.8%), and Southern Asia (7.1%) had the 

lowest prevalence. The prevalence for northern Europe was in this study 10%, which is 

quite a bit lower than that presented at the youth clinic from Stockholm. On the other 

hand, this meta-analysis showed a clear difference in regard to HPV prevalence in 

different age groups, where cervical HPV prevalence by far was highest in the youngest 

age group (<25 years) with a prevalence of 24%, and the least prevalent group was women 

45-54 years of age (4.2%) [62].  

As noted from the above, there is quite a large difference in HPV prevalence between the 

cervical and oral sites. The fact that HPV prevalence, and also the number of HPV copies is 

lower in the oral site as compared to the cervical site, could very much be due to that 0.5-

1.5 liters of saliva are produced in the oral cavity per day [63]. 

It is important to follow the HPV prevalence of especially the oral and genital sites, in 

order to understand the possible future cancer burden and how the implementation of 

HPV vaccination will affect HPV prevalence in the population. In section 1.3.8.1 

vaccination against HPV will be discussed in more detail.  

1.3.7 HPV associated diseases  

HPV has been associated with several different diseases, where cancer is the most severe 

outcome. In the following section the most common known HPV related diseases will be 

mentioned, but since head and neck cancer, or more specifically oropharyngeal cancer, is 
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a main part of this thesis this topic deserves its own chapter and will be mainly focused on 

in chapter 1.4.  

1.3.7.1 Cervical cancer 

Cervical cancer has been well established to be caused by HPV, and >99% of all cases have 

been associated to HPV infection, although other factors may have contributed to cancer 

formation [64, 65]. The most common HPV types associated to cervical cancer are HPV16, 

accounting for about half of all cervical cancer cases in Europe and the US, with HPV18, 31 

and 45 accounting for another 25-30% of cervical cancer cases [65]. Cervical cancer is the 

fourth most common cancer in women and reports estimate 570,000 new cervical cancer 

cases in 2018, which is 6.6% of all female cancers. Moreover, 90% of all deaths due to 

cervical cancer occur in low and middle income countries, meaning that education, early 

diagnosis, prevention, effective screening methods and treatment need to be further 

improved or implemented in these countries in order to reduce the number of deaths 

[66]. Ultimately HPV vaccination will presumably prevent the vast majority of cervical 

cancer, but most likely it will take a long time before vaccination coverage in all areas will 

be high enough to protect women in the most vulnerable areas. This will also to a high 

degree depend on the attitudes towards HPV vaccination in the general population in 

different countries.  

1.3.7.2 Other anogenital cancers  

Not all genital cancers caused by HPV are limited to the cervix, other anogenital cancers 

include cancer of the vulva, vagina, anus and penis. In a report from 2017 by Martel et al. 

[6], the world-wide numbers of HPV related cancers from 2012 were presented, and 8,500 

new vulvar, 12,000 vaginal, 35,000 anal (half occurring in men) and 13,000 penile cancer 

cases were assumed to be caused by HPV. The percentage of HPV related cancers is 

estimated to be 25% for vulvar, 78% for vaginal, 88% for anal, and 50% for penile cancer 

[6]. The most common HPV type in both vulvar, vaginal, anal and penile cancer is HPV16 

[67–69]. Although there are screening methods for cervical cancer, there are no 

implemented screening methods for the other anogenital sites mentioned in this section 

[70, 71].  
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1.3.7.3 Head and neck cancers 

Head and neck cancers are a group of cancers that affect the following sites: the 

oropharynx, the oral cavity, the hypopharynx, the larynx, the epipharynx, the salivary 

glands, the lips and the nasal and sinus cavities, and therefore include a very diverse group 

of cancers [72].  

It has been suggested that head and neck cancer can be divided into three genetic 

subgroups: tumors that contain transcriptionally active HPV, tumors that are HPV-negative 

(HPV-) and have numerous copy number alterations (CNA)-high, and tumors that are HPV- 

but CNA-silent [73]. The HPV related tumors have been suggested to divide further into 

two distinct sub-groups: HPV-KRT and HPV-IMU. What characterizes these sub-groups is 

that, HPV-KRT has an increased expression of genes in keratinocyte differentiation, and in 

the oxidation-reduction process. HPV-IMU instead has a strong immune response, and 

mesenchymal differentiation [74]. Many cancer genes and pathways are likely involved in 

the progression of HPV- CNA-high tumors, where likely smoking is the main risk factor. 

Lastly, the CNA-silent group of tumors still have active p53 and pRb, as opposed to the 

previously described groups. However, the etiology of CNA-silent tumors remains unclear, 

yet aging is hypothesized to be a risk factor [73].  

The incidence of head and neck cancer is more than 650 000 new cases each year, with a 

mortality rate of about 400 000 cases each year, making it a quite common cancer type 

with a poor prognosis [1, 75]. The main risk factors for head and neck cancers are smoking 

and excessive alcohol consumption, however in 2007, the International Agency for Cancer 

Research (IACR) announced that HPV also is a strong risk factor for some head and neck 

cancers. The by far most common HPV type associated to head and neck cancer, is HPV16, 

and some other observed HPV types are e.g. HPV31, 33, 35, 56, 58, 18 [76, 77]. HPV driven 

cancers within the head and neck region, are mainly found in the oropharynx, and more 

specifically in the tonsils and the base of tongue, where in Sweden about 70% are HPV 

positive (HPV+) [78, 79]. Nasopharyngeal cancers (NPC) are known to be associated with 

Epstein-Barr virus infection [7]. However, NPC, has also been linked to high-risk HPV 

infection, where similarly to OPSCCs, HPV related NPCs most frequently present with 

nonkeratinizing histology [80, 81].   
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Worldwide HPV related head and neck cancers are estimated to 38,000 new cases per 

year, of which 29,000 (76%) are oropharyngeal cancers [6]. More details about 

oropharyngeal, tonsillar, and base of tongue cancer are found in chapter 1.4. 

1.3.7.4 Warts 

Warts are benign lesions that occur in the skin and mucosa and are caused by HPV 

infection. Although these lesions are benign, they can be uncomfortable and may need 

medical attention [82]. External genital warts (condyloma acuminata) are extremely 

common and are estimated to affect 500,000 to 1,000,000 individuals in the United States 

alone, each year. This means that approximately 1% of all sexually active individuals 

present with genital warts some time during their life time [82]. Non-genital warts 

(verrucas) are also extremely common, and affect the epithelial cells of mainly hands and 

feet, and are most frequently observed in children and teenagers [83]. The most common 

HPV types associated to genital warts are the low-risk types HPV6 and 11, causing about 

90% of all genital warts. Warts are mainly treated by elimination of the growth, rather 

than treatment of the underlying infection, which unfortunately often results in 

recurrence within a few months [82].   

1.3.7.5 Recurrent respiratory papillomatosis 

Recurrent respiratory papillomatosis (RRP), is a rare disease, characterized by benign 

lesions that form along the upper aerodigestive tract [84]. As with genital warts, HPV6 and 

11 are the most common types involved in this disease. RRP is a very unpredictable 

disease, where it at times presents with only mild symptoms or spontaneous remission, 

but also can present an aggressive disease with pulmonary spread, needing frequent 

surgical procedures in order to prevent airway obstruction [85]. Donne et al. show in a 

publication from 2016 that 1.42 per 100,000 individuals in the UK are affected by RRP, 

which is similar to the Armstrong et al. report (1.8 per 100,000 adults) back in 1995 [86, 

87]. Armstrong et al. however also report a higher incidence among children (4.3 per 

100,000), which often present with more severe RRP symptoms compared to adults [87].  
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1.3.8 Prevention of HPV related diseases 

1.3.8.1 HPV vaccines 

Since 2006, prophylactic vaccination against HPV has been available in Sweden, as well as 

in the US. Back then, the two available vaccines were Gardasil (Merck & Co.) [88], which 

was approved by the European Medicines Agency (EMA) and Food and Drug 

Administration (FDA) in 2006, and Cervarix (GlaxoSmithKline) [89], approved by EMA in 

2007 and by the FDA in 2009. More recently, Gardasil9 (Merck & Co.) [90], was approved 

in 2014 by the FDA, and in 2015 by EMA. All three vaccines are made up of synthetically 

manufactured virus-like particles (VLPs) of the L1 epitope, yet differ in antigenic load, and 

adjuvant load and efficacy [88–90]. Cervarix is a bivalent vaccine offering protection 

against high-risk HPV types 16 and 18 [89], the most common HPV types found in cervical 

cancer, as does the quadrivalent vaccine Gardasil [88], which in addition protects against 

low-risk HPV types 6 and 11, the most common HPV types causing anogenital warts. 

Gardasil9, which is a nine-valent vaccine, protects against the following five HPV types: 

HPV31, 33, 45, 52, and 58, in addition to the four in Gardasil [90]. All three vaccines are 

suggested to be administered from 9 up to 25-26 years of age, and can be used in both 

girls and boys, although Cervarix is marketed for girls only [88–91].  

In Sweden, HPV vaccination of 10-12 year old girls was introduced into the general 

vaccination program in 2010, and in 2012 HPV vaccination was administered through the 

school based vaccination program and as catch-up vaccination for women up to 20-26 

years of age [92]. Today worldwide, over 80 countries have introduced HPV vaccination of 

girls in their general vaccination programs. Not surprisingly, these countries are mainly 

upper-middle income countries, and countries with the highest cervical cancer burdens 

unfortunately have not started with HPV vaccination programs [92, 93]. Several countries 

including Australia, Argentina, Austria, Canada, Denmark, and USA are examples that have 

also included/will include boys in their vaccination programs [92]. This will contribute to 

the prevention of HPV spreading, and decrease in cervical cancers, as well as other HPV-

caused diseases including those that also affect men. The Public Health Agency of Sweden, 

has recommended the vaccination of boys, however so far unfortunately no decision has 

been made by the government to proceed accordingly [92].  
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Gardasil and Cervarix provide protection against HPV HPV16 and 18 infections, and in 

countries with at least a 50% vaccination coverage of females, HPV16 and 18 have 

decreased by around 68% between the pre- and post-vaccination periods [93, 94]. In some 

countries, unfortunately the uptake has gone down because of reduced confidence in the 

safety of these vaccines [95]. In a recent review the authors have summarized the safety 

profile of 109 HPV safety studies, of which 15 were population-based studies, including in 

total over 2.5 million vaccinated individuals from six different countries [95]. All the 

studies presented an acceptable safety profile, where the injection site reactions were 

slightly more common with Gardasil9, as compared to Gardasil. They conclude that the 

benefits overweigh the risks from HPV vaccination [95]. Some of the more common side 

effects are injection-site swelling, injection-site pain, injection-site erythema and 

headache [88–90]. 

It takes many years from infection with HPV until actual cancer development occurs, 

therefore, so far it has not been possible to conduct efficacy studies with regard to the 

prevention of cancer. However, studies have shown reductions in precancerous lesions, 

providing reliable evidence for a likely reduction in cancer as well [96]. Whether HPV 

vaccines protect against oropharyngeal cancers is not clear, and since these cancers rarely 

present with precancerous lesions, there is so far no other way of measuring efficacy 

except for looking at oral infection rates. As mentioned in section 1.3.6, in two studies by 

Grün et al., oral HPV16 and 18 infections have been reduced after introduction of HPV 

vaccines [60, 61]. A larger study performed on 2,627 men and women 18-33 years of age, 

confirmed these results by showing an estimated 88.2% reduction in oral HPV prevalence 

of HPV16/18/6/11 in the vaccinated compared to the non-vaccinated groups [97]. These 

findings, suggest that the vaccine will also protect against HPV-related cancers of the oral 

cavity. 

1.3.8.2 Screening  

Screening programs for detection of pre-cancerous lesions in the cervix are well 

established and have reduced the cancer burden significantly [98]. Even though there now 

are vaccination programs implemented in many countries, it is still important to continue 

the screenings, because not all cancer-causing HPV types are covered by vaccination, and 

a large proportion of the population has not been vaccinated.  
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Commonly two screening methods have been used, conventional (pap-smears) and liquid-

based cytology, where the latter is more common nowadays. Cells are obtained from the 

neck of the cervix and either spread out on a glass slide (conventional) or added into a 

small glass vial of preservative liquid (liquid-based) [98, 99]. This is an effective method, 

yet unfortunately has a high-risk of false positives. To compensate for this, HPV testing has 

been more and more implemented for detection of 13 high-risk HPV types. The sensitivity 

is much greater, however, there is a slight decrease in specificity. Moreover, HPV testing 

should only be used in women over 30 years of age, since the younger population have a 

high prevalence of transient HPV infections, yet a low prevalence of underlying high-grade 

lesions, which would lead to unnecessary treatments. Co-testing with both Pap-smear and 

HPV testing is most effective and has mainly been implemented in screening of women 

from 30 years of age. Younger females are in general offered Pap smears every 3rd year 

[98, 99].  

There are no screening programs in place for HPV related cancers outside of the cervix 

uteri. However, there is ongoing research for early detection of head and neck cancers 

through the detection of early circulating antibodies towards HPV. A study by Kreimer et 

al. showed that 34.8% of patients were HPV16 E6 seropositive on average 6 years before 

diagnosis of an oropharyngeal cancer [100]. Moreover, screening of oral HPV infections 

may not be useful, since the detection signals for HPV in the oral cavity can be quite low, 

likely due to saliva production [101]. It has however, been shown that patients with HPV+ 

tonsillar and base of tongue cancer, often have much higher oral HPV signals [102].  

1.3.9 HPV detection methods 

There are several different ways of determining whether a sample is HPV positive (HPV+) 

or not. In this section, both direct methods (detection of viral DNA or RNA) and indirect 

methods (detection of serum antibodies against HPV, or proteins affected by the HPV 

infection) will be presented. Notably, the sample material to be analyzed plays an 

important role in what detection method is most optimal. Common types of sample 

materials for HPV testing are e.g. fresh, fresh frozen, or paraffin embedded tissues [103].  
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1.3.9.1 Detection of viral DNA or RNA 

This is a direct method of HPV detection, where different polymerase chain reactions 

(PCRs) can be applied in order to detect viral HPV DNA or RNA. Most often this is applied 

in a way where the PCR product is visualized in order to determined HPV positivity. Most 

often so called general primers are used for the PCR reaction, which means that these 

primers ligate with highly conserved regions of the HPV genome, consequently being able 

to bind many different types of HPVs having this region in common [104]. Two common 

primer pairs are GP5+/GP6+ and MY09/MY11 that ligate with the L1 region [105, 106]. 

CPI/CDIIG is another primer pair that instead binds to the E1 region [107]. A drawback 

with these general primers is that they, due to mismatches in the primer sequence, 

amplify some HPV types better, whereas other types require a lot of viral copies to be 

detected. A way to overcome this is to use a combination of primers with some sequence 

variation, or a combination of different general primers (broad-spectrum GP5+/6+) as 

described by Schmitt et al. [108]. In the Luminex method used in some studies included in 

this thesis and described below, and in more detail in section 3.2.2, both a combination of 

broad-spectrum GP5+/GP6+ primers and several specific primers were used. 

Following DNA amplification there are different ways of visualizing the possible HPV DNA 

product, and earlier this was often done by gel electrophoresis [46]. Fortunately today 

there are more efficient techniques and one technique, is a semi-quantitative probe-based 

method, utilizing Luminex technologies on a Magpix instrument, which will be described in 

more detail in section 3.2.2 [109, 110].  

In order to ensure an active HPV infection, instead of DNA, often RNA from E6 and E7 is 

measured by e.g. hybrid capture or by cDNA synthesis followed by PCR amplification 

[110]. 

In situ hybridization is also a commonly used method, where a biotinylated probe 

hybridizes to the viral DNA, and the signal is then amplified for detection. The presence 

and location of the viral DNA can thereafter be evaluated by light microscopy [111].  
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1.3.9.2 Detection of p16INK4aoverexpression 

As previously described above p16INK4a (p16) overexpression is a result of the viral protein 

E7 interference and degradation of pRb, thus p16 expression often is used as a surrogate 

marker for HPV [46, 47]. By immunohistochemistry (IHC) using an antibody against p16, its 

overexpression can easily be determined. In general, it is very simple to determine p16-

positivity, since the tumor in most cases is either 100% stained for p16, or not stained at 

all. In the literature, when using p16 overexpression as a surrogate marker, an arbitrary 

value of >70% stained tumor is considered as p16 positive, as well as HPV+, in 

oropharyngeal cancer [112]. Since IHC and the evaluation of p16 is a very simple, cost-

effective and a clinically friendly method, it is a popular way of determining HPV positivity. 

This method has however some downsides in regard to specificity for HPV driven tumors, 

when used without supporting methods [113, 114]. This will be discussed more in section 

1.4.3.2. On the other hand, p16 overexpression combined with the presence of HPV DNA 

has been accepted as a robust way of determining HPV positivity [115]. 

1.3.9.3 Detection of serum antibodies against HPV 

Serology is an indirect way of determining possible HPV infection. Here antibodies against 

the viral capsid proteins L1 or L2, or the oncoproteins E6 or E7 commonly are tested for. 

This method does however not provide tissue specificity and does not indicate whether 

the subject has an ongoing or previous infection [116]. However, as mentioned above, it 

has been shown that many patients with HPV+ oropharyngeal cancer, present antibody 

responses against e.g. HPV16, more than a decade before the presentation of their 

oropharyngeal cancers [100] 

1.4 OROPHARYNGEAL CANCER 

Oropharyngeal squamous cell carcinomas (OPSCC) make up about 25% of head and neck 

cancers in Sweden [72]. Between 2008 and 2012, 1620 new OPSCC cases were reported, 

making up about 325 new cases per year [72]. A common first symptom for OPSCC is the 

discovery of a lump on the neck, often when diagnosed at a late stage. Other common 

symptoms are e.g. trouble swallowing, sore throat, and pain [117]. Risk factors for 

developing OPSCC are smoking or excessive alcohol consumption. Since 2007, HPV has 

also been acknowledged as a main risk factor for these tumors [4].  



 

 23 

1.4.1 Anatomy and histology of the oropharynx 

The oropharynx is located in the middle part of the pharynx behind the oral cavity and is 

covered by squamous cell epithelium. The anatomical sub-sites of the oropharynx are 1) 

the tonsils 2) the base of tongue, 3) the pharyngeal walls, and 4) the soft palate, including 

the uvula. Roughly the oropharynx can be divided into two categories: the 

“lymphoepithelial” sites including the tonsils and base of tongue, and the “non-

lymphoepithelial” sites including the pharyngeal walls and soft palate. The location and 

anatomy of the oropharynx is illustrated in figure 6. 

The pharyngeal walls and soft palate contain non-keratinized stratified squamous 

epithelium, with a supportive underlying lamina propria as well as muscular layer. The 

tonsils (palatine tonsils, lingual tonsils, adenoid tonsils, tubal tonsils and tonsillar pillars) 

and base of tongue together form a ring-like structure that often is referred to as the 

Waldeyer’s ring, a region rich in lymphoid tissue [35, 118, 119]. Moreover, this region is 

also characterized by that its reticulated epithelium invaginates and merges with the 

underlying lymphoid tissue thereby forming crypts, which especially is observed in the 

tonsils, containing up to 30 crypts per tonsil, creating a large surface area [35]. The luminal 

surface of the crypts is fairly thin, allowing the lymphocytes to be very close to the lumen, 

and since the reticulated epithelium in some places lacks a basement membrane, this 

would allow increased lymphocyte infiltration and immune function. 

 

Figure 6. Anatomical schematics of A) the pharynx B) the oropharynx. 
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The tonsils and base of tongue are commonly referred to as containing 

“lymphoepithelium”, because some areas are very densely infiltrated by lymphocytes and 

dendritic cells, making the epithelial layer barely distinguishable, as described above [35, 

118, 119]. However, microscopically there is also some significant histological variability 

within these sites. Instead of “lymphoepithelium”, some areas have a well-defined basal 

layer that separates the non-crypted epithelium from the connective tissue, which is 

similar to what is observed at the other OPSCC sites outside the tonsils and the tongue 

base. Moreover, the lymphoid nodules in the “lymphoepithelial” sites often present with 

germinal centers that consist of a lighter colored central area of proliferating B cells, and a 

denser area of resting B and T cells around the periphery [35, 118, 119]. Histological 

images of the “lymphoepithelial” and “non-lymphoepithelial” sites are shown in figure 7.  

 

Figure 7. Histology of A) “lymphoepithelial” tissue with a) a barely visible basal cell layer, b) 
reticulated epithelium rich in infiltrating lymphocytes c) germinal centers, and d) invaginating 
crypts. B) “non-lymphoepithelial” tissue with a) a clearly visible basal cell layer, b) lamina propria 
with connective tissue containing c) vessels and d) lymphocyte aggregates.     
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1.4.2 Classification and tumor staging  

As described in the previous section, there are different sub-sites of the oropharynx, and 

cancers arising from these sub-sites will be classified accordingly, following the 

International Classification of Diseases (ICD) system. Today the 10th revision of the ICD 

system is used (ICD-10), although the 11th edition was very recently released in June 2018 

[120]. Table 1 describes the different cancers sites and corresponding ICD codes included 

in oropharyngeal cancer [121, 122]  

Oropharyngeal cancers and most other cancers are graded according to the TNM 

Classification of Malignant tumors staging system, where T describes the anatomic extent 

of the tumor, N describes possible spread to regional lymph nodes, and M describes 

whether there is a distant metastasis [121]. Depending on what TNM classification a 

tumor has, its tumor stage can be determined. Tumor stages can range from 0 to IV, 

where stage 0 is when the cancer is still contained in situ, stages I and II when the cancer 

still is located in the organ of origin, stage III when the tumor has started to spread to 

regional nodes, and finally stage IV is in general when a distant metastasis has occurred 

[121]. However, most tumor types have their own TNM classification and staging 

guidelines. 

Table 1. ICD-codes and sub-sites included in cancer of the oropharynx. 
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Previously, following the 7th edition of the American Joint Committee on Cancer (AJCC) 

cancer staging manual, all OPSCCs were staged the same, but recently AJCC released the 

8th edition, which for the first time took HPV status into account when determining the 

tumor stage [121, 123]. More specifically, the new staging system is based on p16 data, 

where p16-negative (p16-) OPSCCs are graded differently from p16-positive (p16+) 

OPSCCs. The main reason for this revision, was that HPV driven tumors in general have a 

very good prognosis, but very often present with regional lymph node metastasis, which 

following the previous staging system placed them in a high stage, although having a good 

prognosis. On the other hand, patients with non-HPV related tumors with a high stage 

often had a poor prognosis creating a large variability in prognosis within the same stages. 

Differences between the 7th and 8th edition of the Union of International Cancer Control 

(UICC) staging system (comparable to AJCCs cancer staging manual) for OPSCC are 

presented in table 2, as adapted from Taberna et al. [124]. The new TNM classification and 

staging system for p16+ and p16- OPSCC, according to AJCCs 8th edition, are presented in 

table 3 [122]. 

Table 2. Main differences between the 7th and 8th edition of UICCs TNM classification. 
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Table 3. New TNM classification and pathological stage for p16+ and p16- OPSCC according to 
AJCCs 8th classification manual. 

 

The new staging system has however been criticized due to basing HPV-positivity solely on 

p16 overexpression. In a study by Nauta et al., the new staging system was evaluated on a 

Dutch cohort, that indeed showed that the new staging system had a better predictive 

prognostic power compared to the old system in patients with p16+ OPSCC [125]. 

However, the same study also presented a subgroup of patients with p16+, yet HPV DNA-

negative tumors, which had a worse overall survival. With the new staging system these 

patients would be given a false prognostic prediction, highlighting the importance of 

testing for both HPV DNA and p16 expression [125]. This issue will be discussed further in 

Paper IV. Others also show that the differentiation between stages in regard to survival, 

within the group of p16+ OPSCC patients, was not always significant [126, 127].   

1.4.3 HPV in oropharyngeal cancer  

Two of the most common OPSCCs are tonsillar and base of tongue squamous cell 

carcinomas (TSCC and BOTSCC) making up around 80% of all OPSCC. These are also the 

oropharyngeal sub-sites mainly associated to HPV infections, suggesting that HPV 

preferentially infects the “lymphoepithelial” parts of the oropharynx over the “non-

lymphoepithelial” sites [72, 128]. OPSCC is also a male dominated disease, where around 

70% or more of all OPSCC patients are male. Notably, HPV+ OPSCC, or mainly HPV+ TSCC 

and BOTSCC, differ both in clinical and biological aspects as compared to their 
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corresponding HPV
-
 counterparts [129–132]. The median age of OPSCC patients is 62 years 

in Sweden, however patients with HPV+ tumors are in general younger than those with 

HPV- tumors [72]. Moreover, patients with HPV+ TSCC and BOTSCC have a considerably 

better prognosis compared to patients with corresponding HPV- cancer, with an >80% 3-

year disease specific survival (DSS) compared to a 40-50% 3-year DSS for the 

corresponding HPV- groups [15, 101, 132].  

There are also some differences in the genetic profiles between HPV+ and HPV- head and 

neck squamous cell carcinomas (HNSCC) and OPSCC. Frequently affected pathways in 

HPV+ cancer include RTK/RAS/PI(3)K signaling (e.g. PIK3CA, and FGFR3), differentiation 

(e.g. NOTCH1 and TP63), and cell death (e.g. TRAF3) [133, 134]. In HPV- tumors instead loss 

of functioning TP53, and inactivation of CDKN2A (p16 encoding gene) are common 

mutations affecting the p53/pRb pathways. In a study by Smeets et al. genomes of HPV16+ 

and HPV- HNSCCs were compared in order to determine what different carcinogenic 

pathways are involved in the development of these tumors [135]. Here they present an 

integrated genetic progression model, including the proposed genetic events caused by 

HPV, and the genetic alterations driving tumor growth in HNSCC not caused by HPV. The 

model shows that, early common pre-cancer events leading to p53/MDM2 pathway 

inactivation are in HPV+ tumors caused by E6, and in HPV- tumors due to TP53 mutation 

(17p loss). Secondary events lead to p16/CDK/pRb pathway inactivation, in HPV+ tumors 

caused by E7 and in HPV- due to p16 inactivation (9p loss) or 3p loss. Late events, which is 

suggested to be when actual tumor formation starts, include the gain of 18q in HPV+ 

tumors and the loss of 18q and 5q, and gain of 11q13 in HPV- tumors, as well as several 

common alterations. At this stage it is difficult to determine what pathways are involved 

[135]. In table 4, the main differences between HPV+ and HPV- HNSCC, which are similar in 

OPSCC, are presented, as adapted from a review by Leemans et al. [136]. 
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Table 4. Different clinical and biological characteristics of HPV- and HPV+ HNSCC. Adapted from 
Springer Nature: Nature Reviews Cancer, Leemans et al., 2011 [136].  

Feature HPV-negative HNSCC HPV-positive HNSCC Refs 

Incidence Decreasing Increasing  [78, 137] 

Etiology Smoking, alcohol abuse Oral sex  [138] 

Age Above 60 years Under 60 years  [137] 

Field cancerization Yes Unknown  [139, 140] 

TP53 mutations Frequent Infrequent  [135, 141, 142] 

Predilection site None Oropharynx  [17, 143] 

Prognosis Poor Favorable  [144, 145] 

1.4.3.1 Epidemiology 

Worldwide around 30% of oropharyngeal cancers are caused by HPV, which comprises 

29,000 new HPV related oropharyngeal cancers per year [6].  

The incidence TSCC and BOTSCC has risen drastically over the past few decades in Sweden, 

and this rise has been proposed to be due to an increased amount of HPV infections in the 

oropharynx [78]. At the same time there has been a drop in HPV- OPSCCs, which most 

likely is due to a decrease in smoking among the Swedish population. More specifically 

there was a 7-fold increase in HPV+ TSCC from the 1970s to 2000s in Stockholm, Sweden 

[78]. However, data from 2000-2012 suggested that the incidence of HPV+ TSCC had 

reached a plateau in Stockholm. The incidence of HPV+ BOTSCC had also increased in 

Stockholm, with a 2-fold increase, but here the incidence did not seem to have reached a 

plateau [79, 132]. More recent unpublished data from 2013-2016, however suggests that 

the incidence of both TSCC and BOTSCC is still increasing, but at a slightly slower pace than 

before, and HPV prevalence has remained stable at around 70% [78]. From year 2000 to 

2016 the incidence of TSCC and BOTSCC in Sweden has doubled from around 150 cases 

per year to around 350 cases per year. That the incidence of TSCC and BOTSCC is 

increasing is not unique for Sweden, but is observed also throughout North America, other 

parts of Europe, and Australia [146]. 

One theory as to why the incidence of HPV+ TSCC and BOTSCC reached a temporary 

plateau in Sweden was that sexual behavior during the HIV epidemic became more 

restricted. Using the incidence of sexually transmitted Chlamydia infection, as a marker for 
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sexual activity, a decrease of Chlamydia infections was noted in the Stockholm region 

between 1990 and 1995, during the intensification of the HIV epidemic [147]. This would 

be in accordance with a 20 to 30-year lag period between HPV infection and development 

of TSCC and BOTSCC. This lag period is however yet to be established.  

1.4.3.2 HPV positivity in oropharyngeal cancer 

As already mentioned, there are several different ways of determining whether a sample 

is HPV+ or not, and differences in the methods used result in various definitions of HPV-

positivity [115]. Throughout the literature there are many different definitions for HPV-

positivity and with a variety of HPV types included in the assays, this makes it 

unfortunately difficult to compare different studies resulting in that important details can 

be missed when using HPV as a prognostic marker [148].  

Presently, HPV E6 and E7 mRNA detection in fresh frozen material, is assumed to be the 

most reliable method for determining an HPV driven cancer [115]. Unfortunately, fresh 

frozen material is not that commonly collected from tumor biopsies. Instead mostly 

formalin fixed and paraffin embedded (FFPE) tumor material is analyzed, since it is taken 

routinely for pathological evaluation and also tested for p16 expression by 

immunohistochemical (IHC) staining of an FFPE tumor section. Overexpression of p16 in 

OPSCC indicates in most, but not all, cases that the sample is HPV+. A study by Rietbergen 

et al. showed that patients with a p16+/HPV DNA- OPSCC had significantly poorer survival 

than patients with a p16+/HPV DNA+ tumor [113]. Also, a second study by Rietbergen et al. 

showed that p16+/HPV DNA- OPSCC tumors presented with genetic patterns comparable 

to HPV DNA- OPSCC tumors [114]. These studies highlight the importance of additional 

HPV DNA testing when determining HPV positivity in OPSCC. Notably, also around 10-15% 

of non HPV-driven head and neck cancers present with p16 overexpression [149, 150]. 

Similarly, one also needs to be careful when only testing tumors for HPV DNA. Finding HPV 

DNA in the tumor does not prove that this cancer is HPV-driven. HPV can for example be 

present, but transcription may be absent or so low that it is below detection level. 

Moreover, carcinogenesis may have started before infection by HPV has taken place.  

p16 overexpression in combination with presence of HPV DNA has been shown to be 

almost as sensitive as testing fresh frozen material for HPV E6/E7 mRNA expression [115]. 
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This combination has therefore been accepted as an accurate measurement for an active 

HPV infection, making it more reliable to work with FFPE material and not needing to rely 

on fresh or fresh frozen samples in order to test for HPV E6/E7 mRNA overexpression. 

It is of great importance to be sure that a tumor is driven by an active HPV infection, so 

that patients are not falsely categorized as having an HPV driven tumor [115, 125]. This is 

especially important when planning for de-intensifying therapy for patients that have a 

high probability for survival, or for targeting therapy for patients with a poor prognosis.  

1.4.4 Treatment  

In Sweden the main curative treatment modality for OPSCC is radiotherapy, but treatment 

varies in different geographical regions [72]. Depending on the location of the tumor, 

radiotherapy can in some cases be boosted by a high radiation dose limited to a small area 

by brachytherapy. Concomitant chemotherapy with cisplatin together with radiotherapy is 

considered in patients with tumor stage III-IV (according to AJCCs 7th edition) and 

radiotherapy together with targeted EGFR-inhibitor (cetuximab) has also been 

administered [72]. Since many OPSCC tumors are of a high stage, a harsher treatment with 

radiation together with chemotherapy or EGFR-inhibitors is very common [72].  

One common side effects for patients treated for OPSCC with radiotherapy is mucositis 

that can lead to pain, difficulties to swallow, and can lead to nutritional issues [72]. 

Moreover, dysfunctional salivary glands leading to a dry mouth, is another common side 

effect, while osteonecrosis is a rare and later occurring side effect. In addition, surgery can 

lead to adverse effects such as nerve damage, pain, lymphedema, and cosmetic issues 

[72]. Therefore, due to the fact that patients with HPV+ TSCC and BOTSCC have a 

considerably better prognosis compared to patients with HPV- TSCC and BOTSCC, a 

possible de-escalation of treatment has been suggested for patients with HPV+ tumors in 

the future. In order to start treatment de-escalation, biomarkers are needed to identify 

which patients would benefit from a milder treatment, since not all patients with HPV+ 

tumors have a good prognosis [101, 151]. Potential biomarkers will be discussed in section 

1.6. 
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Surgery is mainly performed on patients with small tumors of the uvula or soft palate. 

Sometime surgery also can be performed on small tumors of tonsils and base of tongue, 

this is however more uncommon since in most cases these tumors also present with 

regional lymph node metastasis. Moreover, the surgery of the base of tongue, location 

wise, is very difficult to perform with significant risks for morbidity, making surgery a fairly 

uncommon choice [72]. However, in some Scandinavian clinics, e.g. in Sweden, Finland, 

Denmark and Norway, Transoral robotic surgery (TORS) with its pros and cons has been 

introduced [152, 153].  

There are also ongoing clinical trials, testing checkpoint inhibitors such as programmed 

cell death protein 1 (PD-1), PD-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) inhibitors, especially in patients with recurrent and/or metastatic 

disease [154]. The function of these inhibitors is to increase immune activation in the 

tumor in order to aid in tumor clearance.  

1.5 SOME IMMUNOLOGICAL COMPONENTS  

The immune system is very fascinating and complex, and can roughly be described as 

having two main lines of defense against foreign pathogens. Innate immunity is 

considered the first line of defense, which is very fast yet unspecific. Innate immunity 

means that this defense mechanism always is present in healthy individuals, and is 

comprised of e.g. epithelial barriers, dendritic cells, NK-cells, complement, and phagocytes 

[155]. The second line of defense is called adaptive immunity, which takes some time to 

get started, however is highly specific and effective [155]. Adaptive immunity is stimulated 

by foreign microbes, and adapts to the type of microbial invaders that are present. 

Common cell types belonging to the adaptive immunity are B-cells that have the ability to 

produce antibodies, and T cells that are effective in killing of infected cells [155]. The 

following sections will cover a few immunological aspects important for the work 

presented in this thesis. For more details on the immune system see [155].  
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1.5.1 Human leukocyte antigen class I and the antigen processing 
machinery 

Human leukocyte antigen (HLA) class I and the antigen processing machinery (APM) are 

important components in making the intracellular pathogens, such as viruses, as well as 

normal host cell proteins, visible to immune cells, especially to those of the adaptive 

immune system, for further details see also [155, 156].  

HLA class I molecules are present on all human nucleated cells, however are expressed in 

different amounts depending on what cell type they are present on [155, 156]. For 

example, on muscle cells the expression levels are very low, whereas on lymphocytes the 

expression level is very high [155, 156]. The main function of HLA class I molecules is to 

present foreign protein fragments from cytosolic and nuclear origin on the cell surface, to 

cytotoxic T-cells that have the ability to recognize and destroy the cell containing foreign 

antigens [155–157]. 

HLA class I molecules consist of a transmembrane α chain, that is noncovalently bound to 

a soluble protein β2-microglobulin (β2M). At the amino-terminal end of the α chain, a 

peptide-binding cleft is found, which is where peptides roughly the size of 8-11 amino 

acids are bound and presented to cytotoxic T-lymphocytes [156–158]. The mechanisms 

that lead up to antigen presentation start by proteasome degradation of all ubiquitin-

tagged proteins into small peptides from 3-22 amino acids long, and in turn these can be 

further degraded by peptidases in order to recycle the amino acids. However, a fraction of 

the peptides released by the proteasome will be taken to the endoplasmic reticulum (ER) 

by transporter-associated proteins (TAP) for further processing. Here the peptides will be 

trimmed into a length that fit the HLA class I machinery well, and thereafter the peptide-

HLA complex is finally translocated to the cell surface for possible recognition by cytotoxic 

CD8+ T-lymphocytes, as illustrated in figure 8 [156–158].  

The function of the proteasome is to degrade foreign and self-proteins for presentation of 

peptides on HLA molecules as well as the recycling of amino acids. Immune cells or cells 

that have been stimulated by pro-inflammatory cytokines express larger amounts of 

immunoproteasomes, which is a specific type of proteasome [159, 160]. Upon cytokine 

stimulation three catalytic/proteolytic subunits of the ordinary proteasome are exchanged 
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by alternative subunits called large multifunctional protease 2 (LMP2), LMP7 and LMP10 

and these thereby form the immunoproteasome instead of the constitutive proteasome 

(figure 8). Immunoproteasomes are responsible for degrading foreign proteins, such as 

viral and tumor antigens, rather than self-proteins [159, 160]. The immunoproteasome is 

mainly found in cells of the lymphoid organs, such as the lymph nodes and thymus. Here, 

these subunits present with peptidases more specific for processing proteins into peptides 

suitable for HLA class I presentation [159]. However, after IFN-γ stimulation due to e.g. a 

viral infection, the immunoproteasome also is found in other non-immune related cell 

types [160]. Although the known functions of the immunoproteasome are executed in the 

cytoplasm, studies (including Papers I and II) report nuclear localization as well [161–165]. 

 

Figure 8. Interferon-gamma induced antigen processing via the immunoproteasome followed by 
HLA class I presentation to CD8+ T cells.  
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1.5.2 Tumor immune surveillance and tumor immune escape  

The concept of tumor immune surveillance implies that the immune system can recognize 

and eliminate tumor cells [166]. Today there are many reports supporting this concept, 

e.g. some show that tumor T cell infiltration of different neoplasias often correlates with a 

favorable clinical outcome, suggesting that the tumor is kept in check by the immune 

system [167]. This has also been observed in OPSCC (described below in 1.6.2.1). 

Moreover, other reports have shown that individuals with high cytotoxic activity of their 

peripheral blood lymphocytes have a decreased risk of developing cancer [168]. 

Moreover, a lower cytotoxic activity has been linked to an increased risk of developing 

cancer [169]. Finally, it is also well recognized that immunosuppressed patients have an 

increased risk of developing malignant neoplasia – not only virus associated neoplasia 

[170].   

As a tumor progresses there is a step-wise process leading to an equilibrium between 

immune-mediated tumor cell killing and novel mutations, and when this balance is 

disordered due to e.g. immune escape, this will allow for further tumor progression. 

Therefore, avoiding immune destruction of the tumor is now recognized as a hallmark of 

cancer development [171]. Roughly, ways to escape the immune system can be 

categorized as e.g. having the ability to induce immunosuppression, which is a process 

where the tumor itself, or the immune cells recruited to the tumor, creates a suppressive 

milieu [172]. The tumor may also lack susceptibility, which is a process where the tumor 

develops strategies to resist the cytotoxic mechanisms employed by T-cells and NK-cells. 

Moreover, lack of recognition, is also a known mechanism, which is when the tumor 

downregulates e.g. APM components and HLA molecules. Since this is a topic of this 

thesis, this will be discussed more in detail below [172]. 

1.5.3 Human leukocyte antigen class I and the antigen processing 
machinery in cancer  

In HPV driven tumors, several papers have demonstrated that HPV has the ability to 

suppress HLA class I expression, and thereby assist HPV infected tumor cells to evade 

immune surveillance. HPV genes E5 and E7 are suggested to be involved in suppression of 

HLA class I expression [51–54, 173]. A study by Li Wei et al. showed that HaCaT cells 

transfected with HPV16 E7 reduced HLA class I expression by 50% compared to that in 
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non-transfected cells. Simultaneously they observed a 40% decrease in TAP1 expression, 

suggesting that E7 interacts with TAP1, and thereby inhibits its function [49]. Furthermore, 

a study by Myriam Gruener et al. showed that E5 had the ability to downregulate HLA 

class I expression, and they also proposed that E5 specifically targeted calnexin, a 

chaperone involved in HLA class I maturation and cell surface transportation, [174]. 

Moreover, in the same study they showed that in cells expressing calnexin, HLA class I 

expression was downregulated upon E5 cell transfection, whereas in calnexin deficient 

cells HLA class I surface expression did not change [174]. 

Suppression of HLA class I expression is however also a mechanism by which tumors non-

related to viral infection, escape immune surveillance [175]. Some of the mechanisms by 

which HLA class I expression is suppressed include defects in β2M synthesis, the loss 

of/mutations of genes encoding HLA class I heavy chains, abnormalities in components of 

the antigen processing machinery, or defective HLA class I regulatory mechanisms [176]. 

Furthermore, epigenetic changes have been found to affect changes in HLA antigen 

expression, components of the antigen processing machinery, and tumor antigen 

expression in tumor cells [176]. In several cancer types, including head and neck cancers, 

abnormalities in expression of immunoproteasome components LMP2, LMP7 and LMP10 

have been described, which in turn leads to decreased number of presentable peptides, 

and reduction in HLA class I expression, i.e. immune evasion [177, 178]. Single nucleotide 

polymorphisms in LMP2 and LMP7 have been shown to be associated with a decreased 

overall survival in cervical cancer. Defective transcription factors, e.g. interferon response 

factor 1 (IRF1) and signal transducer and activator of transcription (STAT1), have been 

associated to loss of LMP2 upregulation [177, 178]. 

There is increasing evidence that ionizing radiation (IR) has altering effects on the immune 

system, on the one hand dampening local immune responses due to clearance of 

lymphocytes from the affected area, on the other hand increasing T cell priming in 

draining lymphoid tissues [179, 180]. An increase in HLA class I expression has also been 

observed in e.g. multiple myeloma and renal cell carcinoma cell lines after irradiation 

[181]. Furthermore, it has been shown that cell surface HLA class I expression can be 

increased after transferring cell media from radiotherapy treated human breast cancer 

cells to non-treated cells, suggesting that the increase is due to secreted soluble factors, 
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such as immune stimulatory cytokines [182]. In the same study the authors also described 

interferon beta (IFN-β) as the mediating factor that had induced surface HLA class I 

expression. In a study by Reits et al. the authors showed, that radiotherapy had the ability 

to increase the intracellular peptide pool, which led to a subsequent upregulation of major 

histocompatibility complex (MHC) class I [183]. In paper III of this thesis, HLA class I 

expression in HPV+ and HPV- head and neck cancer cell lines was evaluated after radiation 

therapy. 

1.6 PROGNOSTIC BIOMARKERS  

There are several precise definitions of biomarkers in the literature, however most 

definitions are very similar. The National Institutes of Health Biomarkers Definitions Group 

defined a biomarker as “a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention.” [184] 

 In our group, we have focused on finding prognostic biomarkers for patients with HPV+ 

and HPV- TSCC and BOTSCC that can be utilized before oncological treatment. The reason 

for separating HPV+ from HPV- TSCC and BOTSCC is due to that HPV itself is a biomarker 

for a better survival in the patients with HPV+ TSCC and BOTSCC as compared to the 

corresponding HPV- tumors, with 80% vs. 40-50% 5-year survival rate respectively [15, 101, 

132]. Besides, the biological behavior of these tumor entities differs vastly, as described 

above. In addition, the expression of specific proteins may be related to the presence of 

HPV in the cell. Since HPV+ TSCC and BOTSCC have a better prognosis all proteins related 

to HPV will thus also be related to clinical outcome. 

Furthermore, the impact of the presence of HPV depending on OPSCC subsite location and 

prognosis, has been studied in more detail in papers IV and V. Indicating the importance of 

the TSCC and BOTSCC sites, as well as the specific nature of TSCC. 

1.6.1 Biomarkers in head and neck cancer 

There are several biomarkers identified in head and neck cancer. In addition to HPV being 

a good prognostic marker in especially in TSCC and BOTSCC, high levels of plasma EBV DNA 
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in nasopharyngeal cancer patients has also been reported as a poor prognostic factor 

[185, 186]. Imaging, with 18F-fluorodeoxyglucose positron emission tomography (FDG-

PET), can be used to study glucose metabolism, and a high uptake has been associated 

with cell viability and proliferation [187]. The quantitative parameter known as maximum 

standardized uptake value (SUVmax), is considered as a biomarker for head and neck 

cancers, and a high value is suggested to indicate an increased risk of progression, 

recurrence and poor survival [187]. Cancer-gene-targeted sequencing of head and neck 

cancers has shown that the loss of function in tumor-suppressor genes is more common 

than the gain of functions leading to oncogenes [188].  Furthermore, there are a handful 

of oncogenes important in head and neck cancer, that are immediately targetable with 

agents in clinical development, such as FGFR, EGFR, MET, CCND1, and PIK3CA [188].  

1.6.2 Immune related biomarkers  

1.6.2.1 T cells in oropharyngeal cancer  

Common biomarkers that have been studied and established in several cancer types are 

the presence of CD4+ and CD8+ tumor infiltrating lymphocytes (TILs). Where a high number 

of TILs in general is favorable, due to increased tumor clearance by an active immune 

system [189–192]. In one of the studies not included in this thesis, we studied TILs as 

potential biomarkers in TSCC and BOTSCC and found that patients with a high CD8+ TIL 

count in HPV+ tumors, have a better 3-year overall and disease-free survival compared to 

patients with absent/low CD8+ TIL counts. A similar trend was shown for the HPV- patient 

group, which however was not statistically significant. Furthermore, no prognostic value 

could be identified for CD4+ TIL counts in this study [192]. 

Regulatory T cells (Tregs) are immune cells with the ability to suppress the immune 

system. This is necessary to keep the immune system in balance and avoid autoimmunity 

[155]. A common mechanism for tumors to escape immune surveillance is the recruitment 

of Tregs. Forkhead box P3 (FoxP3) is a transcription factor expressed by Tregs, to which 

antibodies can bind in order to identify Tregs in for example tumors. The amount of tumor 

cells positive for FoxP3 has been used for predicting prognosis, invasiveness, and 

metastatic ability [193]. In a previous study by Näsman et al., the presence of FoxP3 and 

CD8 in TSCC was studied and found that a high ratio of CD8+ to FoxP3+ cells, meaning that 

FoxP3+ cells were in a great minority when compared to CD8+ cells, was correlated to a 
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better survival in both HPV+ and HPV- tumors [194]. FoxP3 alone could however not 

predict prognosis, suggesting that CD8+ was the more important prognostic factor [194]. 

In a meta-analysis it was shown that in most included tumor sites, a high number of Tregs 

was associated to a poorer survival, whereas in some tumor sites, including head and neck 

cancers, a high Treg count was associated to better survival. These data suggest that the 

prognostic value of FoxP3 remains controversial [195].  

1.6.2.2 HLA class I in oropharyngeal cancer 

Another immunological biomarker that has been studied in several different cancers is 

HLA class I expression. Studies have, in many types of tumors, shown a downregulation of 

HLA class I, which is a way of immune evasion. In for example ovarian-, rectal-, and head 

neck cancer it has been shown that a low HLA class I expression relates to a poor 

prognosis [196–198]. Another study by Meissner et al., showed a tendency for head and 

neck cancer patients with low HLA class I expression in their tumors to have a decreased 

survival compared to those with tumors with normal HLA class I expression [199]. 

However, HPV status was not considered and the patient material was obtained from a 

mix of primary tumors and relapses [199]. Nevertheless, in a study performed earlier by 

Näsman et al. the absence of HLA class I expression was found to be a good prognostic 

marker for patients with HPV+ TSCC [200]. This finding was interpreted to be due to high 

HPV activity, and more specifically possibly due to the downregulation of HLA class I 

expression by HPV E5 and E7. Not surprisingly, the opposite was true for patients with 

HPV- TSCC, where low HLA class I expression was correlated to a poor prognosis, which is 

in line with what has been shown in studies on other cancer types [201].  

1.6.2.3 Antigen processing machinery components in oropharyngeal cancer  

The study by Meissner et al. cited above, also showed that APM components LMP2, LMP7 

and TAP1 often were downregulated or lost in cancer cell lines derived from head and 

neck cancer patients [199]. Moreover, LMP2, LMP7, and TAP2 had a significant prognostic 

value in that decreased expression in either of these markers presented with a poorer 

survival than in patients with normal expression levels [199]. In paper I the potential of 

LMP10 as a biomarker will be discussed, and in paper II potential biomarkers TAP1, TAP2, 

LMP2, and LMP7 were evaluated in HPV+ and HPV- TSCC and BOTSCC.   
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2 AIMS 

• To investigate antigen processing machinary components LMP2, LMP7, LMP10, 

TAP1, and TAP2 in correlation to HLA class I expression, and as potential prognostic 

biomarkers in HPV+ and HPV- tonsillar and base of tongue cancer (Papers I and II). 

 

• To study the effects of radiation therapy on HLA class I expression, cell cycle, and 

apoptosis in HPV+ and HPV- base of tongue and mobile tongue cancer cell lines, 

and the relation between HPV E5/E7 mRNA expression and HLA class I expression 

in the HPV+ cell lines (Paper III). 

 

• To perform a systematic review and meta-analysis of the litterature in order to 

study the role of HPV per oropharyngeal cancer sub-site, and to investigate the 

importance of HPV detection method used (Paper IV). 

 

• To study the impact of histological context on HPV prevalence and survival in 

tonsillar cancer (Paper V). 
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3 STUDY SUBJECTS, MATERIAL AND METHODS 

3.1 STUDY SUBJECTS, MATERIALS AND STUDY DESIGN 

The majority of studies performed in our group include FFPE pre-treatment tumor biopsies 

from TSCC and BOTSCC. From year 2000 and onward, the goal has been to collect samples, 

when available, from all of the patients with TSCC and BOTSCC diagnosed in the Stockholm 

region, enabling the performance of fairly large cohort studies. The samples have 

routinely been tested for presence of HPV DNA and p16 expression and additional tumor 

sections have been collected for various types of studies. Papers I and II, for example 

include samples from this cohort, used for IHC analysis, HPV DNA, and for Paper II also p16 

data. Unfortunately, it is difficult to receive samples from all patients diagnosed with TSCC 

and BOTSCC in Stockholm. Some common reasons for exclusion have been e.g. the lack of 

FFPE samples due to cytology-based diagnosis only, lack of tumor material within the FFPE 

block, permission for use of tumor material in research was not granted by the patient, 

and that the FFPE block was missing at the time of collection. Before year 2000, a large 

amount of mainly TSCC samples have also been collected from the Stockholm region, here 

however the clinical data is less complete and p16 data is often missing. This cohort is 

however valuable in the way that these patients mainly have received radiation therapy as 

their only treatment, making it a more homogenous group of patients compared to 

patients diagnosed at a later time, who often have received a range of different treatment 

modalities. Samples included in Paper V are mainly retrieved from this earlier cohort.  

Paper I & II.  Both studies were retrospective cohort studies and included patients 

diagnosed with TSCC and BOTSCC between 2000-2007. When selecting tumor material for 

these studies, the aim was to include samples that in a previous study [200] had been 

tested for HLA class I expression. Initially a pilot study was performed on a small number 

of these patient FFPE TSCC and BOTSCC samples, staining by IHC for a number of APM 

components. Immunoproteasome component LMP10 showed most prognostic potential 

and was therefore further evaluated on a large patient cohort (Paper I). Several of the 

other APM components showed a correlation to HLA class I expression and were then 

further evaluated on a medium sized patient cohort (Paper II).  
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Paper I. TSCC (ICD-10: C09.0-9) and BOTSCC (ICD-10: C01.9), diagnosed at the Karolinska 

University Hospital during 2000-2007 were identified through the Swedish Cancer 

Registry. Of these, 278 patients with pre-treatment biopsies containing sufficient tumor 

material were available and included in this study. Of these, 258 patients were treated 

with intension to cure and could therefore be included in the survival analysis.  

Paper II. Again, when selecting tumor material for this study, the aim was to include 

samples that in a previous study [200] had been tested for HLA class I expression. This 

study included two study cohorts, comprising a total of 151 patients with TSCC (ICD-10: 

C09.0-9) and BOTSCC (ICD-10: C01.9) treated at the Karolinska University hospital. The 

first set of samples consisted of 78 available TSCC samples from patients that were treated 

with the intention to cure, diagnosed between 2000-2006, all of which had been tested 

for HLA class I expression in a previous study [200]. The second set consisted of all 73 

BOTSCC samples from patients diagnosed from 2000 to 2007, with available pretreatment 

biopsies, and 66 of these were treated with curative intent, while the rest received 

palliative treatment. 

Paper III. This is an in vitro study examining the effects of radiotherapy on HLA class I 

expression. Ideally, three HPV+ and three HPV- cell lines derived from TSCC or BOTSCC with 

and suppressed HLA class I expression would have been selected for this study. However, 

cell lines with these naturally occurring, specific properties do not exist. Moreover, it is 

also very difficult to establish OPSCC cell lines that retain their HPV infection. Therefore, in 

this study three HPV16+ cancer cell lines, UM-SCC-47, UPCI-SCC-154, and UPCI-SCC-090, 

and one HPV- cancer cell line, UT-SCC-14, were studied. UPCI-SCC-154 and UPCI-SCC-090 

were established from base of tongue squamous cell carcinomas, and UM-SCC-47 and UT-

SCC-14 were established from lateral/mobile tongue squamous cell carcinoma. Moreover, 

UPCI-SCC-090 was established from a recurrence [202–204].  

Paper IV. Since this study was designed as a systematic review and meta-analysis of the 

literature, only data from sample material already published was included. In total, 58 

unique cohorts, meeting the inclusion criterion, and published between 2013-01-01 and 

2016-10-31, from 64 scientific publications, were included in the analysis. Following 

inclusion criterion had to be met: separation by “lymphoepithelial” and “non-
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lymphoepithelial” oropharyngeal sub-sites, reporting of HPV data by molecular tissue 

specific method (PCR, ISH or p16 IHC), in an un-selected cohort. 

Paper V. This is a retrospective cohort study. For this paper, 203 patients diagnosed with 

TSCC (ICD-7: 145.0) between 1970 and 2002, with available hematoxylin and eosin stained 

tumor sections were evaluated. From these, 139 tumor sections contained sufficient 

normal tissue surrounding the tumor area for inclusion. This early cohort was mainly 

selected because hematoxylin and eosin stained tumor sections were readily available in 

our lab, from a previously published cohort [205, 206]. 

3.2 METHODS 

3.2.1 HPV DNA and RNA extraction 

All FFPE samples included in Paper I, II and V, have been tested for presence of HPV DNA, 

for details see each paper. DNA was extracted using the Roche High Pure RNA Paraffin Kit 

(Roche Diagnostics, Mannheim, Germany), according to manufacturer’s instructions, with 

the exception of excluding the DNase treatment step. In Paper III, RNA was extracted from 

cell lines using the RNeasy® Mini kit (Qiagen, Venlo, The Netherlands), according to 

manufacturer’s instructions. Samples were DNase treated using the RNase-free DNase set 

(Qiagen) to ensure DNA free samples. In order to avoid cross-contamination between 

samples, blanks were added and treated the same way as the samples, during both DNA 

and RNA extraction. 

Methodological considerations: The Roche High Pure RNA Paraffin Kit used for DNA 

extraction is optimized for RNA retrieval, however DNA retrieval is also achieved by 

omitting the DNase treatment step. The reason for using an RNA kit instead of a DNA kit is 

to facilitate collection of both DNA and RNA from one sample.  

3.2.2 HPV DNA detection 

The HPV DNA detection method used in this thesis is mainly based on PCR methods using 

the general primers GP5+/6+ or broad-spectrum GP5+/6+ (bs-GP5+/6+) primers, targeting 

the conserved L1 region of the HPV genome. The GP5+/6+ primers were initially 

developed by de Roda Husman et al. [105] in order to increase detection sensitivity, and 
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was an extension by 3 nucleotides to the previously used GP5/6 primers [207]. However, 

these primers still had low sensitivity for some HPV types. Therefore, a multiplex PCR 

followed by a Luminex bead-based assay for 27 different HPV types was later developed 

by Schmidt et al. in the Michael Pawlita group, and is presently used in our group, 

although later with some added targets [108, 109].  

Starting with the HPV DNA PCR method presently used (paper I and II), bs-GP5+/6+ 

together with specific primers for HPV16 E6 were used. As positive controls for HPV, DNA 

from SiHa cells, corresponding to 1, 10 and 100 HPV16 genomes per 5µl were utilized. In 

addition, specific primers for the house keeping gene β-globin were added to ensure 

presence of amplifiable cellular DNA. Moreover, as a negative control an RNase free water 

sample was included. For PCR amplification, 10 ng DNA for each reaction was used.  

Amplified DNA was thereafter analyzed utilizing a bead-based assay on a Magpix 

instrument. This assay detects L1 DNA of 27 different HPV types, including all currently 

recognized high-risk and putative high-risk HPV types, as well as some low-risk types 

(HPV6, 11, 16, 18, 26, 30, 31, 33, 35, 39, 42-45, 51-53, 56, 58, 59, 66-70, 73 and 82). 

Detection of HPV16 E6 and β-globin was also included in the assay.  

The amplified PCR product was mixed with HPV type specific probes (27 different) coupled 

to magnetic beads with a unique fluorescent color for each HPV type in the assay. Heating 

of the sample enables separation between DNA strands, followed by ligation of bead-

coupled probes with corresponding HPV DNA strands, if present. The PCR product 

hybridizes to the bead-coupled probes and is detected by labeling one primer in each 

primer pair with biotin, to which a fluorescent conjugate can bind to, and thereby this 

fluorescent conjugate will be detected and analyzed. The Magpix instrument uses two 

lasers to evaluate the samples, the red laser evaluates the color of the beads determining 

which HPV-types are present, and the green laser detects the fluorescent conjugate and 

semi-quantifies the amount of HPV DNA. The results are reported back as median 

fluorescence intensity (MFI) values. As cut-off for HPV positivity 1.5 x background + 15 was 

used (figure 9) [109, 110].   
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Figure 9. HPV genotyping by a PCR based assay utilizing Luminex technologies.  

In paper V, in this earlier cohort for detection of HPV DNA, the older GP5+/6+ general 

primers had been used, together with another consensus primer pair, the CPI/CPIIG 

primers (targeting the E1 region), as well as HPV16 type specific primers targeting E6. 

Here, specific primers or the house keeping gene S14 were used to ensure presence of 

amplifiable cellular DNA. Gel electrophoresis was used for detection of amplified DNA at 

the correct amplicon length. 

Methodological considerations: In the Papers I and II broad-spectrum GP5+/6+ primers 

were used. A drawback with general primers is that they in general, due to mismatches in 

the primer sequence, amplify some HPV types better, whereas other types require many 

more viral copies to be detected. A way to overcome this is to use a combination of 

primers with some sequence variation, or a combination of different general primers (bs-

GP5+/6+) making the sensitivity more equal among different HPV types. However, at the 

time HPV testing was performed for Paper V, the Luminex assay together with bs-GP5+/6+ 

primers was not available. Instead HPV was tested using GP5+/6+ PCR and CPI/CPIIG PCR, 

followed by HPV type specific PCR for detecting. On the other hand, the sensitivity for 
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HPV16 was very high with this algorithm, and since the dominating HPV type in TSCC and 

BOTSCC is HPV16, this did likely not pose a problem for the studies included in this thesis. 

In addition, in paper V, two consensus primer pairs were used to exclude the possibility of 

false negative results due to loss of L1 region upon to viral integration. However, no 

additional cases were identified with the CPI/CPIIG primers (data not shown) as compared 

to using GP5+/6+ and HPV16 type specific primers only. Similarly, in the newer assay using 

bs-GP5+/6+ primers, HPV16 E6 specific primers were also used to exclude the possibility of 

false negative samples due to loss of L1 region upon integration. 

Lastly, HPV genotyping using the bead-based Magpix assay is a good choice for evaluating 

large amounts of samples, since it allows for the detection of many different HPV types 

simultaneously, from the same sample, and is a very effective and a fairly cheap method. 

3.2.3 Immunohistochemistry 

Immunohistochemistry (IHC) comprised a large part of the methods for Paper I and II. For 

these studies, 4µm thin FFPE tumor sections were de-paraffinized in xylene and thereafter 

re-hydrated in decreasing concentrations of ethanol. Antigen-retrieval was achieved by 

boiling the sections in citrate buffer, followed by quenching of endogenous peroxidase 

activity using hydrogen peroxidase. Unspecific binding sites were blocked by treatment 

with horse serum. This was followed by an over-night incubation with the primary 

antibody, see next section for antibody details. In addition, for information regarding 

where the antibodies were purchased, please see the methodology part of the different 

papers. In order to detect specific binding of the antigen of interest, the sections were 

incubated first with a biotinylated secondary antibody, followed by incubation with an 

avidin-biotin enzyme complex (Vectastain Elite ABC kit (HRP), Vector Laboratories, 

Burlingame, USA). Antigen visualization was achieved by adding the substrate chromogen-

39-diaminobenzydine (DAB) (Vector Laboratories, Burlingame, USA) necessary for the 

enzyme of the avidin-biotin complex to produce a brown color. The slides were 

counterstained with hematoxylin, followed by de-hydration in increasing concentrations 

of ethanol and xylene. Mounted sections were evaluated by light microscopy by 

researchers blinded for clinical outcome.   
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For Paper I, the primary antibody MECL-1 (C-2) (anti-LMP10 antibody from Santa Cruz 

Biotechnology) was used. For Paper II, following primary antibodies were used: TAP1, 

rabbit polyclonal H-300; TAP2, rabbit polyclonal 44 H210, both from Santa Cruz 

Biotechnology, Inc. (Dallas, TX, USA); LMP2, rabbit polyclonal antibody ab3328; LMP7, 

ab3329, both from Abcam (Cambridge, United Kingdom). As secondary antibodies, BA-

1000 anti-rabbit (1:200) and BA-2000 anti-mouse (1:200) both from Vector Laboratories 

(Burlingame, CA, USA), were used. By light microscopy, IHC staining of all five APM 

components were evaluated both in the nuclear and cytoplasmic compartment for 

intensity and percentage stained tumor cells. The intensity was scored as absent, weak, 

medium or strong/normal (similar to infiltrating immune cells). The percentage was 

scored as: 0%, 1-25%, 26-50%, 51-75% and 76-100% of stained tumor cells. In Paper II, the 

primary antibody p16INK4A (clone: JC8, dilution 1:100, Santa Cruz Biotech, Dallas, USA) was 

used to determine p16 status. Samples were considered p16+ if >70% of tumor were 

stained [145].  

Methodological considerations Evaluation of the APM components was performed on 

both the nuclear and cytoplasmic compartment of tumor cells, as these APM components 

have been described to be localized to both the cytoplasm and nucleus. However, since 

the staining in the nucleus and cytoplasm was not clearly correlated, we decided to score 

these separately. There may also be some uncertainty concerning the consistency of 

evaluation relying on human visual estimations only. This uncertainty was minimized by 

letting two trained scientists evaluate the sections separately. When discrepancies were 

observed a consensus was reached, or a third researcher was consulted. Moreover, all 

studied APM components showed strong expression in both stromal tissue and tumor 

infiltrating lymphocytes, where the latter then served as positive internal controls. 

Notably, staining intensity may in some cases be hard to interpret, and interpretation may 

vary between samples. However, the presence of a strong internal control as described 

above, that can be related to tumor staining intensity, should in this study elicit a more 

stringent evaluation with increased reproducibility. The evaluation of p16 expression was 

very clear cut, where in the vast majority of cases, either 100% or 0% of tumor cells were 

strongly stained. p16 overexpression is therefore a very practical marker. However, as 

already mentioned earlier, p16 overexpression does still not always correlate with HPV 

DNA positivity. In Paper I and V, p16 expression was unfortunately not evaluated since we 
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earlier only assayed for presence of HPV DNA. This may have led to that a few tumors 

were wrongfully classified as being HPV-driven. However, in cohorts partly overlapping 

with the ones in Paper I and V, the combination of p16 overexpression and HPV DNA, gave 

few discrepancies from HPV DNA alone. This suggests that the impact of not evaluating 

both for the combined presence of HPV DNA and p16 overexpression, for the conclusion 

regarding the effects of the evaluated markers, or the differences of specified TSCC 

(STSCC) and non-specified TSCC (NTSCC), should be marginal.  

3.2.4 Histological evaluation 

In Paper V, TSCC hematoxylin-eosin stained sections were evaluated with regard to the 

histological context surrounding the tumor. Firstly, only sections with a representative 

amount of normal surrounding tissues were included. Secondly, these sections were 

separated into specified TSCC (STSCC) and non-specified TSCC (NSTSCC), as described first 

by Garnaes et al. [208]. STSCC was defined as having tonsillar crypts and tonsillar lymphoid 

tissue with germinal centers outside of the tumor area. NSTSCC was defined as lacking 

these characteristics in the normal surrounding tissue. However, while Garnaes et al. 

included tumors with no stroma in the NSTSCC category, we excluded these tumors from 

the analyses. None of the tumors assessed had arisen from the base of tongue.  

Methodological considerations: Working with FFPE tumor sections, one always has to 

bear in mind that only a very thin section per fraction of the actual tumor is evaluated, 

and this section may not always be representative for the entire tumor. Especially in Paper 

V, when evaluating the histology surrounding the tumor, some samples had to be 

excluded just because no representative normal tissue was present, which in the patient 

of course would be there.  

3.2.5 In vitro cell culture 

In vitro studies on cancer cell line cultures were only used for the experiments in Paper III, 

and for further purchasing details and cell line characteristics, please see this paper. In 

short, the cell lines were handled as follows. Cell lines were cultured in either Dulbecco's 

modified Eagle's medium (DMEM) with 1% penicillin streptomycin solution, or in minimum 

essential medium (MEM) with 1% non-essential amino acids and 0.1% gentamicin, both 
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containing 10% fetal bovine serum, and 1% L-glutamine. Stocks of all cell lines were grown 

in 75 cm2 cell culture flasks with filter lids. From these the cells were then plated into 6-

well cell culture plates for experiments and kept at 37 ̊C with 0.5% carbon dioxide at 100% 

humidity. Medium was changed regularly (usually every 2-3 days) and the cell cultures 

were split using trypsin EDTA 1x when around 70-100% confluent. All cell lines were free 

from mycoplasma, tested using the Takara mycoplasma detection set.  

Methodological considerations: Cell cultures are a very convenient way of studying 

biological mechanisms in vitro. However, the conditions for cells growing in a plastic flask 

are extremely different from the human body, and also the cells growing in cell cultures 

have been selected to grow well in cell culture settings. Therefore, in vitro studies only can 

give an indication of what may be happening in vivo and must be confirmed by in vivo 

studies before possibly being applied in humans.    

3.2.6 Radiation 

Paper III focused on the effects of radiation in different cancer cell lines, with the specific 

aim to study the influence of irradiation on HLA class I expression. The cells were 

irradiated using a Caesium-137 source, for different amounts of time depending on what 

dose was desired. Initially, different radiation doses, as well as fractionated doses, were 

tested out, and as a result of this calibration, one dose of 10 (Gray) Gy was used for the 

consecutive experiments. Standardized experiments were performed on cell lines plated 

in 6-well plates, with the goal of reaching 75% confluence upon radiation. To obtain this, 

different amounts of cells depending on each specific cell line were plated. Non-radiated 

controls were also prepared in the same way, with the exception of not being irradiated.  

Methodological considerations: It is difficult to determine what a clinically relevant dose 

of radiotherapy translates into when treating cell lines, and perhaps a 10 Gy dose is fairly 

high. However, the dose was calibrated for these experiments, and allowed the majority 

of cells to still be viable after treatment, since a major goal of these experiments was to 

study the effect of irradiation on HLA class I expression in HPV+ and HPV- cell lines, and to 

examine whether the two types of tumors responded differently. We assume that most 

cells receive the same radiation dose, however, small variations in radiation dose between 

the wells could occur depending on location of the well in relation to the radiation source.  
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3.2.7 Real-time PCR 

In Paper III, real-time (RT) PCR was performed in order to determine presence of HPV16 E5 

and E7, as well as HLA class I mRNA levels pre- and post-irradiation. For experimental 

details and sources of purchase, please see paper III. In total 0.1 μg of RNA was utilized for 

first strand cDNA synthesis using a First Strand cDNA Synthesis kit (ThermoFisher 

Scientific) using random hexamers as primers. The cDNA was thereafter prepared for RT 

PCR by preparation with SYBR-Green together with primers for HPV16 E5 and E7 as 

described by Ramqvist et al. [209], and primers for HLA-A on exon 3 as described by 

Villabona et al. [210]. Triplicates were included from each sample (treated and non-

treated), for each gene of interest, and for GUS B (endogenous control). Triplicates 

containing primers from each gene of interest, mixed with water, were used as negative 

controls. The RT PCR program started at 50°C for 3 min followed by 95°C for 10 min, 

followed by 40 cycles of denaturation at 95°C for 15 s, and annealing and elongation at 

60°C for 1 min. Starting at 40°C and increasing by 0.5°C every 10 s until 120°C was 

reached, produced the melting curve needed for analysis. Radiated samples were 

compared to non-radiated samples by calculation of ΔΔCT values (delta delta cycle 

threshold values).  

Methodological considerations:  Measuring changes in mRNA for E5 and E7 expression is 

an indication, and an indirect way of following the potential of changes on the protein 

level after irradiation. It does not prove changes on the protein levels of E5 or E7 proteins, 

or that the interactions of these proteins with HLA class I expression are affected. 

However, we also assayed for HLA class I protein expression. Secondly, one has to bear in 

mind that SYBR green is not gene specific and binds to any double stranded DNA, also e.g. 

non-specific amplicons or contaminating DNA. Therefore, it is important to evaluate the 

melting curve, created at the end of RT PCR amplification, and compare to a positive 

control. A probe specific PCR, as e.g. TaqMan PCR, would not have this problem with 

possible non-specific amplification.  

3.2.8 Flow cytometry 

Flow cytometry was utilized to detect surface HLA class I expression, cell cycle analysis, 

and measurements of apoptosis, presented in Paper III. For further details and regarding 
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sources of purchase see paper III. In short, treated and non-treated cells were washed and 

collected in tubes after trypsinization, and stained and with the marker of interest 

together with appropriate controls. Cells were then analyzed for the markers of interest 

on the flow cytometer within an hour.  

HLA class I expression was stained for, 48 hours after irradiation. More specifically, first 

the cells were stained with a live/dead cell marker (LIVE/DEAD® Fixable Near-IR Dead Cell 

Stain kit) in order to separate out live cells only, in the analysis. Thereafter the cells were 

stained with an HLA class I (A, B, C) specific antibody, clone W6/32, coupled to an Alexa 

Fluor 488 (anti-human) fluorescent dye. Unstained controls and isotype controls were 

included.  

The DNA content of the cells was analyzed 24 hours after irradiation, in order to 

determine cell cycle changes depending on if the cells were irradiated or not. Here the 

cells were fixed by dropwise adding 100% ethanol, while vortexing them mildly and letting 

them incubate in the fridge overnight. This was then followed by staining for DNA content 

using propidium iodine (PI) together with RNase A, the latter in order to reduce RNA 

interference.  

To distinguish apoptotic from normal cells, the cells were stained with a FITC Annexin V 

apoptosis detection kit I, which binds to phospholipid phosphatidylserines, a protein that 

in apoptotic cells becomes more exposed. This was done 96 h after irradiation. Both 

floating and adherent cells were collected, in order not to miss apoptotic cells that may 

have detached. Cells were stained for Annexin V coupled to a FITC fluorophore together 

with PI.  

Methodological considerations: Although FACS can be used to measure a broad range of 

markers in one sample, for this thesis, fairy simple methods including very few 

parameters, have been used. One issue with FACS is that a single cell suspension is needed 

for the analysis of cells, which mostly works fine when analyzing cell lines, however some 

samples can be more prone to clump and then a lot of valuable cells may be lost for the 

analysis. Moreover, FACS is a method that in most cases only measures cell surface 

proteins, which means that information about intracellular expression is lost. 
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3.2.9 Systematic review and meta-analysis 

Systematic reviews with meta-analyses are a great way of getting an overview of a certain 

research topic, and are also a common starting point for developing clinical practice 

guidelines [211].  

The systematic review in Paper IV was performed by searching the database PubMed for 

publications published between 2013-01-01 and 2016-10-31 with the following search 

terms: (HPV OR Papillomaviridae[MeSH]) AND (oropharyngeal OR oropharynx OR tonsil 

OR tonsillar OR “base of tongue” OR “soft palate”) AND (cancer OR carcinoma) AND 

(2016[DP] OR 2015[DP] OR 2014[DP] OR 2013[DP]). By consulting the PRISMA statement, 

which is a guide for performing good and valid systematic reviews and meta-analyses, the 

reviewing of our 1266 articles was initiated. After filtering out 230 review articles, 30 

articles that were not written in English, and 41 articles without an abstract, 965 articles 

remained for further selections. The abstracts containing information about HPV data 

were further reviewed by reading the methods and results sections of the articles in order 

to determine whether to include or exclude the article. Articles reporting HPV data by 

PCR, ISH, or immunohistochemistry (p16), in “lymphoepithelial” oropharyngeal sub-sites 

(i.e. tonsillar and base of tongue) and in “non-lymphoepithelial” oropharyngeal sub-sites 

(i.e. walls of oropharynx, uvula and soft palate) in an unselected cohort 

(retrospective/prospective, randomized/non-randomized) were included. From each 

article, the number of patients with HPV+ and HPV- tumors per sub-site were extracted or 

calculated, together with what HPV detection method was used. The most common 

reason for excluding a study, was that the oropharyngeal sub-sites were not specified. 

Ultimately 64 studies met the inclusion criterion, and from these 58 unique cohorts were 

identified. 

Methodological considerations: A common issue with systematic reviews is that it may be 

difficult to know if the same patient cohort has been included in several studies, and thus 

may be reported twice within the same analysis. In our case, we managed by reading the 

articles and consulting the authors when suspecting the use of overlapping/or identical 

cohorts, to identify and exclude a couple of studies that were already included in the 

analysis. Furthermore, we restricted our analysis to patient cohorts included in reports 

published only during three consecutive years, in order to reduce the risk of double 
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reporting patients, yet still allowing for the inclusion of more than 11.000 patients. 

Moreover, it is important to cover all published articles in the study field and therefore the 

search terms are very important. Here we used very broad search terms, which rendered 

us with >1000 articles, where the loss of relevant articles hopefully should have been 

minimal. 

3.2.10 Statistical analyses 

In most papers (Paper I, II, IV, V) patient characteristics and categorial data were 

compared and analyzed using the Chi-squared test, or in small samples (n<100) using 

Fishers exact test. In case that mean values were compared, Student’s t-test was used 

(Papers I, II, III, V). In paper IV, pooled odds ratios (OR) with 95% confidence intervals (CI) 

across studies using the Der Simonian and Laird random-effects methods were used. Two-

tailed p-values were reported for all analyses, where a value ≤ 0.05 was considered 

statistically significant. For further details, please see each paper separately. 

Survival/clinical outcome was measured in days from diagnosis until an event occurred, or 

until 3 years (Paper I, II), or 5 years (Paper V) after diagnosis, when all remaining patients 

where censored. Events were defined as death due to any cause (overall survival, OS), 

death with TSCC or BOTSCC present (disease-specific survival, DSS) or a recurrence in 

disease (disease-free survival, DFS). Patients who died without a documented TSCC or 

BOTSCC present were censored at time of death in DSS.  Patients, who were never tumor 

free, were censored at day 0 in DFS. The Kaplan-Meier estimator was used for the 

estimation of OS, DSS, and DFS. Differences in survival were tested using the log-rank test, 

and only patients who were treated with the intention to cure were included in the 

analyses. In papers I and V, multivariate analyses, using the Cox proportional hazards ratio 

model, were used for calculations of adjusted and unadjusted hazard ratios (HRs). In paper 

II, the Spearman rank correlations test was used in order to test the correlation of 

different APM to each other and to HLA class I.  
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4 RESULTS AND DISCUSSION 

4.1 PAPERS I & II 

Correlation of LMP10 expression and clinical outcome in human papillomavirus (HPV) 

positive and HPV-negative tonsillar and base of tongue cancer (Paper I).  

Reduced expression of the antigen processing machinery components TAP2, LMP2, and 

LMP7 in tonsillar and base of tongue cancer and implications for clinical outcome (Paper 

II).  

Aims  

To examine the potential role of the immunoproteasome units, LMP2, 7 and 10 and the 

antigen processing machinery components (APM) TAP1 and TAP2 as potential prognostic 

biomarkers in HPV+ and HPV- TSCC and BOTSCC, as well as to study their possible co-

dependence.  

Background 

Patients with HPV+ TSCC and BOTSCC generally have a much better clinical outcome 

compared to patients with HPV- tumors (roughly 80% vs. 40-50% survival) [15, 101, 132]. 

Since current treatment often leads to severe side effects, de-escalation trials for patients 

with HPV+ TSCC and BOTSCC with an expected excellent prognosis would be an attractive 

alternative. Therefore, there is a need for more biomarkers that together with HPV status 

would help identify patients that would be expected to have an excellent prognosis, and 

to benefit of de-escalated or targeted therapy. Previous publications had indicated that 

expression of HLA class I can be used as a prognostic marker in HPV+ and HPV- TSCC and 

BOTSCC [200, 201]. Furthermore, a study by Meissner et al. suggested that some APM 

components and HLA class I had potential prognostic value [199]. Therefore, an important 

aim of these studies was to investigate markers associated with HLA class I expression and 

more specifically the molecules involved in preparation/processing of peptides for antigen 

presentation. The immunoproteasome subunits LMP2, LMP7, and LMP10 together with 

APM components TAP1 and TAP2 were therefore an obvious choice as potential 

prognostic biomarkers in HPV+ and HPV- TSCC and BOTSCC. Another aim was to investigate 

the correlation of these components to one another as well as to HLA class I expression, 

and whether downregulation of AMP components follow HLA class I downregulation.  
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Material and methods 

In paper I, in total 385 patients with TSCC and BOTSCC were diagnosed between 2000 and 

2007 at the Karolinska University Hospital. From these 278 FFPE biopsies, with known HPV 

DNA status were tested for LMP10 nuclear and cytoplasmic expression by IHC, by studying 

the fraction of stained cells and intensity. The data was then correlated to clinical 

outcome.  

In paper II, in total 151 FFPE TSCC and BOTSCC biopsies, with known HPV DNA and p16 

status, were tested for LMP2, LMP7, TAP1 and TAP2 nuclear and cytoplasmic expression 

by IHC, by studying the fraction of stained cells and intensity. The studied molecules were 

correlated to each other, and to previously reported data on LMP10 and HLA class I, as 

well as to clinical outcome. 

Main results 

Paper I 

• In HPV+ TSCC and BOTSCC an absent/low LMP10 nuclear fraction was correlated to 

a better 3-year DFS.  

• In HPV- TSCC and BOTSCC a moderate/high LMP10 cytoplasmic fraction, and a 

weak/moderate/high LMP10 cytoplasmic intensity was correlated to a better 3-

year DFS.  

• An absent/low expression of LMP10 was common in both HPV+ and HPV- TSCC and 

BOTSCC. 

• Fraction of nuclear LMP10 positive cells and HLA class I intensity were independ 

predictors of a 3-year DFS in HPV+ TSCC and BOTSCC. 

• Fraction of cells positive for cytoplasmic LMP10 and HLA class I were independ 

predictors of a 3-year DFS in HPV- TSCC and BOTSCC. 

Paper II 

• An absent/low expression of TAP2, LMP2 and LMP7 was common in both HPV+ and 

HPV- TSCC and BOTSCC. 

• TAP1 and TAP2 expression was correlated, as was LMP2 and LMP7 expression.  

• LMP2 and LMP7 expression was correlated to HLA class I expression. 

• Absence of nuclear LMP7 expression was correlated to increased DFS in both HPV+ 

and HPV- TSCC and BOTSCC. 
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Discussion  

By studying components of the APM, we were able to identify immunoproteasome 

components LMP10 and LMP7 as prognostic markers for both HPV+ and HPV- TSCC and 

BOTSCC. More specifically, patients with HPV+ tumors with an absent/low (0-25%) fraction 

of LMP10 stained nuclei had a better prognosis compared to those with a moderate/high 

(26-100%) fraction of LMP10 stained nuclei. In HPV- tumors, however, a moderate/high 

expression of LMP10 in the cytoplasm was instead correlated to a better survival. For 

LMP7, absence of nuclear LMP7 expression was correlated to a better prognosis in both 

HPV+ and HPV- TSCC and BOTSCC. That a normal expression of LMP10 in the cytoplasm 

was correlated to a better prognosis compared to low levels, seemed logical, since low 

levels of LMP10 would suggest that the immune system is compromised in theses tumors, 

which previously has been shown is dismal for tumor clearance [212]. It is however harder 

to understand why a lower or absent fraction of nuclei, positive for LMP7 or 10, in HPV+ 

tumors (and in HPV- for LMP7), would be of survival benefit. One possible explanation 

could be that the immunoproteasome also has secondary functions to protein processing, 

and that is the regulation of cell proliferation, differentiation, signaling, and gene 

transcription [213] A high expression of e.g. LMP10 and LMP7, could thus enhance cell 

survival and proliferation, thereby resulting in a poorer clinical outcome.  

The function of the immunoproteasome has been described to take place in the 

cytoplasm, but whether the immunoproteasome has another function in the nucleus is 

unclear [160]. There are a few studies that have shown presence of immunoproteasome 

components in the nucleus, as we also do in this study [161–165]. Moreover, some studies 

have shown that the proteolytic activity of proteasomes also has been detected in the cell 

nucleus [214, 215], which could be a similar reason for immunoproteasomes to reside in 

the nucleus.  

AMP components have been studied by IHC in other cancer types, such as bladder cancer 

and esophageal cancer, and similarly to our studies evaluated by both fraction and 

intensity of stained cells [216, 217]. These studies did however, not report any prognostic 

value of the markers examined, but showed, like us, that they often were downregulated.  

Reduced expression of APM components, as well as reduced HLA class I surface expression 

has previously been shown, e.g. in HNSCC, laryngeal squamous cell carcinoma, cervical 
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and urethral cancer, and is assumed to be mechanisms of immune evasion [199, 216–

219]. In HNSCC and cervical carcinoma, expression of APM components TAP1, TAP2, 

LMP2, and LMP7 was commonly reduced, although LMP7 reduction was not as 

pronounced in the latter [199, 219]. In the HNSCC study by Meissner et al., frequencies of 

absent or low TAP1, TAP2, LMP2, and LMP7 expression were somewhat higher than those 

presented here, but still similar to our data [199]. Some described mechanisms for 

immune evasion due to decreased expression of APM components or HLA class I 

expression have previously been presented in section 1.5.3.  

In paper II, we show that TAP1 and TAP2 expression were correlated to each other, as was 

LMP2 and LMP7 expression. Furthermore, LMP2 and LMP7 expression was also correlated 

to HLA class I expression. LMP10 expression was however not correlated to any of the 

studied components. This can possibly be explained because the gene for LMP10 is 

located on a different chromosome (chromosome 16) while the genes for TAP1, TAP2, 

LMP2 and LMP7, are located within a narrow region of the class II cluster of the major 

histocompatibility complex on chromosome 6 and are regulated together [220, 221]. 

The difference between the nuclear and cytoplasmic staining in regard to HPV status and 

survival is puzzling. It is also not known if HPV has the ability to influence the expression of 

the immunoproteasome components. It has however been shown that E5 has the 

potential to downregulate the expression of HLA class I [51, 174, 222]. Further 

investigations are needed to study possible interactions between HPV and the 

immunoproteasome components. 
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4.2 PAPER III 

Effects of irradiation on human leukocyte antigen class I expression in human 

papillomavirus positive and negative base of tongue and mobile tongue squamous cell 

carcinoma cell lines.  

Aim  

To study whether irradiation affects HLA class I expression in HPV+ and HPV- HNSCC, and 

primarily to investigate whether HLA class I expression is upregulated in HPV+ cancer after 

irradiation. 

Background  

A previous study by our group showed that absent or low HLA class I expression in pre-

treatment HPV+ OPSCC was correlated to a good prognosis, whereas the opposite trend 

was observed in HPV- OPSCC [200]. The former is paradoxical, since HLA class I expression 

is important for recognition and killing of tumor cells by CD8+ T cells and the number of 

CD8+ TILs have been shown to be correlated to clinical outcome. However, it is also known 

that HPV can downregulate HLA class I expression, and therefore we were interested in 

examining whether irradiation could increase HLA class I expression, making HPV+ TSCC 

and BOTSCC more sensitive to the immune system. Therefore, the aim of this study was to 

test whether radiotherapy increased HLA class I expression in HPV+ and possibly also HPV- 

cancer cell lines. 

Material and methods 

HPV16 positive head and neck cancer cell lines UPCI-SCC-154, UPCI-SCC-090 and UM-SCC-

47, and the HPV- cancer cell line UT-SCC-14, were treated with 2-10 Gray (Gy), or kept 

untreated as negative controls. Following characteristics were then compared between 

treated and non-treated cells: HLA class I expression, cell cycle changes, and apoptosis 

were examined using flowcytometry, and HPV16 E5, E7, and HLA-A mRNA expression was 

examined using real time PCR.  

Main results 

• A radiation dose of 10 Gy significantly increased HLA class I surface expression in 

two HPV+ head and neck cancer cell lines, and a similar trend was observed in 

another HPV+ cancer cell line, and in an HPV- cancer cell line. 

• HLA-A class I mRNA did not change upon radiotherapy.  
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• HPV16 E5 mRNA expression significantly decreased in one out of three cell lines, 

whereas HPV16 E7 mRNA did not change upon radiotherapy.  

• In all cell lines a shift towards G2/M phase, and increased apoptosis was observed 

after radiotherapy.  

Discussion 

The main finding of this study, was that HLA class I cell surface expression could 

potentially be increased by radiotherapy, at least for some cell lines, as shown significantly 

for 2/3 HPV+ cell lines but not for the one HPV- cell line. This would partially explain, 

without too much emphasis, why some patients with an HPV+ TSCC or BOTSCC with 

absent/low experession of HLA class I, before treatment, could have a good prognosis. 

Since, an increase in HLA class I expression may lead to increased presentation of tumor 

and viral antigens to the immune system, and especially if the tumor has high numbers of 

cytotoxic T cells (CD8+) to recognize the antigen, and subsequently kill the tumor cell. Our 

group has previously shown that a high number of CD8+ tumor infiltrating T cells in 

pretreatment biopsies from patients with TSCC or BOTSCC, which is more common in HPV+ 

tumors, is correlated to a better survival [192]. A couple of other studies have also 

observed an increase of MHC class I expression after irradiation, in e.g. melanoma and 

murine colon cancer cell lines as well as in vivo [183], and in human colon and lung cancer 

cell lines [223].   

It has been shown that the HPV viral genes E5 and E7 may be able to downregulate 

surface HLA class I expression [49–51, 174, 222]. Our results hint of a possible decrease in 

HPV E5 mRNA expression after radiation, which could therefore have an association to the 

observed increase HLA class I surface expression. These results are however only 

indicative and must be tested further in order to establish a correlation. On the other 

hand, we observed a tendency for increased HLA class I surface expression also in the HPV- 

cell line, which would indicate that another mechanism could be behind the increase.  

One could further speculate as to why HLA class I expression would be upregulated upon 

radiotherapy. Under normal conditions the TAP transporters are not fully active, due to 

that the peptide pool forms the limiting factor in the pathway of antigen presentation 

[183]. However, stressful situations, such as an acute viral infection, may change that 

[183]. The rapid generation of viral proteins will lead to a massive increase in the numbers 
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of generated peptides, thereby enabling increased HLA class I presentation and a swift 

cytotoxic t cell response to the infection. This is what Reits et al. suggest happens, but 

instead of an infection, the radiation damage is suggested to increase the intracellular 

peptide pool, which in turn would lead to an upregulation of surface MHC class I 

expression [183]. For especially HPV+ tumors this may be extra beneficial, since increasing 

the peptide pool with both viral and tumor antigens would lead to more diverse peptides 

presented, which in turn may lead to a greater chance of cytotoxic killing. 

In our study, we did not see an increase of HLA-A mRNA expression after radiotherapy, 

although there was a protein increase of cell surface HLA class I expression. However, 

increased protein expression does not always have to reflect an increased mRNA 

expression. It has e.g. been shown that HPV protein E5 can inhibit HLA class I from being 

expressed on the cell surface, by keeping them in the Golgi apparatus [51, 52]. Moreover, 

only mRNA expression of HLA-A was tested, while testing for more HLA groups, e.g. HLA-B, 

and HLA-C which were included in testing of surface HLA class I expression, would show a 

more representable picture of HLA class I mRNA expression levels.  

A shift towards G2/M cell cycle arrest was observed in mainly cell lines UM-SCC-47 and 

UPCI-SCC-154, whereas a small tendency in shift towards G2/M was observed in the other 

two cell lines. This could indicate that radiotherapy has a larger effect on UM-SCC-47 and 

UPCI-SCC-157, whereas the other two are more radiotherapy resistant. Since UPCI-SCC-

090 is a tumor recurrence [203], a greater resistance to therapy would not be surprising. 

UT-SCC-14 is an HPV- cancer cell line and HPV- tumors are in general known to have 

greater range of mutations compared to HPV+ tumors, and which therefore could maybe 

explain why this cell line also seems to be affected to a lesser extent by radiotherapy. On 

the other hand, all cell lines showed a significant and similar increase in apoptotic cells. 

We were, however, not able to measure exact percentages of apoptosis, since many cells 

were already fragmented at the time of measurement, thus the total number of cells 

undergoing/had underwent apoptosis may vary more than that reported between the 

different cell lines. 

Our results should be interpreted with caution, mainly because all experiments were 

performed in vitro on a limited amount of cell lines. In vitro, many other cell types and 

molecules are missing, that would be present in vivo. E.g. the interplay with the immune 
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cells as well as a possible cytokine release by these, as a result of irradiation, would be 

missing in vitro [224]. One example of this is INF-γ, a pro-inflammatory cytokine, that is 

assumed to trigger the immunoproteasome activity [160]. Nonetheless, we observed a 

consistent tendency for increased surface HLA class I expression after radiotherapy in all 

cell lines, thereby suggesting that HLA class I expression could indeed increase after 

radiotherapy. 

As already mentioned briefly in section 3.1 it would have been preferred to include more 

both HPV+ and HPV- cell lines that were exclusively derived from TSCC or BOTSCC that had 

a suppressed HLA class I expression. However, cell lines with these naturally occurring, 

specific properties do not exist, and it is also very difficult to establish OPSCC cell lines that 

retain their HPV infection. In this study at least one cell line was not derived from TSCC or 

BOTSCC, and was instead derived from the mobile tongue. Another cell line used is 

described as originating from the lateral tongue, however it is not published whether it is 

derived from a base of tongue or mobile tongue cancer. On the other hand, since this cell 

line expresses HPV E6 and E7 mRNA, this indicates that it is HPV-driven.  

In conclusion, our results show that surface HLA class I expression may be increased by 

radiotherapy. This could explain why patients with an HPV+ TSCC or BOTSCC with an 

absent or low HLA class I expression before treatment, still have a good prognosis, where 

radiotherapy would lead to more cytotoxic killing through an increase in HLA class I 

expression.  
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4.3 PAPER IV 

Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of 

HPV prevalence per oropharyngeal sub-site the last 3 years.  

Aim 

To investigate HPV prevalence per OPSCC sub-site by performing a systematic review and 

meta-analysis.  

Background 

HPV is a well-established risk factor in OPSCC, however accumulating data suggest that 

grouping all OPSCC together is too unspecific in regard to HPV prevalence, and to its 

clinical importance [77, 185, 208, 225]. Our group has previously published that HPV is 

mainly observed in TSCC and BOTSCC, and less frequently found in OPSCC sub-sites 

outside the tonsil and the base of tongue [185]. Furthermore, in the same study, HPV only 

had prognostic influence in TSCC and BOTSCC and not for other OPSCC sub-sites [162]. To, 

validate this study, it would be useful to perform a systematic review and meta-analysis 

on a large number of patients, since they would likely provide us with more robust data. 

This was therefore the aim of this study. 

Material and methods 

The database PubMed was searched, and studies reporting HPV data (p16/HPV DNA/HPV 

RNA) in both “lymphoepithelial” and “non-lymphoepithelial” sites were included. HPV 

prevalence was compared between histological sites and pooled odds ratios by HPV 

detection method were analyzed using a random effects model. 

Main results 

• HPV prevalence was 56% and significanlty higher in the “lymphoepithelial” sites 

(TSCC and BOTSCC) compared to 19% in the “non-lymphoepithelial” sites (cancer 

of the soft palate and posterior walls).  

• HPV prevalence was 59% in TSCC, 40% in BOTSCC, 19% in cancer of the posterior 

wall, and 12% in cancer of the soft palate.  

• Significant association of HPV to “lymphoepithelial” vs. “non-lymphoepithelial” 

sites was observed independent of HPV detection method. 

• Statistical homogeneity was only observed when data from studies using p16 

overexpression together with presence of HPV DNA as detection method were 
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pooled. Statistical homogeneity was not observed for studies reporting p16 or HPV 

DNA only.   

Discussion 

It did not entirely come as a surprise that this review showed that HPV was more 

prevalent in the “lymphoepithelial” sites compared to “non-lymphoepithelial” sites, since 

other studies have suggested these differences before [185, 226]. However, by 

summarizing, for the first time, a large amount of data in a systematic review, we now 

emphasize and suggest that we have great support that the concept of OPSCC is too 

unspecific in regard to HPV prevalence. Moreover, several studies show that the 

prognostic value of HPV in “non-lymphoepithelial” sites is more uncertain [77, 185, 208, 

225]. These findings are important for understanding the differences in these diseases, 

and for the planning of future treatment strategies of HPV+ and HPV- OPSCC.  

Unfortunately, today most studies do not specify the oropharyngeal sub-sites (not 

separating by oropharyngeal sub-site was the most common exclusion criterion in this 

study). This is problematic, since obtained data will become more difficult to compare 

between studies, and this way some valuable information may be lost. In Sweden for 

example, only cancers of the “lymphoepithelial” sites are increasing, whereas the 

incidence of cancers of the “non-lymphoepithelial” sites have remained stable, according 

to the Swedish Head and Neck Cancer Register (SweHNCR). This difference in incidence 

could easily have been missed if the incidence for all OPSCC had been reported together, 

especially since the “non-lymphoepithelial” cancers are much fewer than 

“lymphoepithelial” cancers. 

The histology of cancer of the “non-lymphoepithelial” sites is more similar to the histology 

of the oral cavity [227], moreover, HPV prevalence is also lower and more similar in these 

sites compared to the “lymphoepithelial sites”. This indicates that the etiology of cancer of 

the “non-lymphoepithelial” sites may be similar to oral cancer.  

Our findings show that HPV was significantly more common in the “lymphoepithelial 

sites”, irrespective of what HPV detection method was used. However, statistical 

homogeneity was only observed when studies using algorithm-based HPV detection were 

pooled. This finding suggests that data produced by the algorithm-based HPV detection 

method is more consistent as compared the data presented using only HPV DNA or p16 as 
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detection method. Since a proportion (ca 10-15%) of HPV DNA- OPSCC are p16+, data 

produced by testing p16 only, will especially for OPSCC sites with a low HPV prevalence 

include a large number of p16+/HPV DNA- tumors. This does however not explain the 

inconsistency in data from studies using HPV DNA only as detection method. 

Since countless studies have shown that patients with HPV+ OPSCC have great survival 

rates, suggestions have been made to reduce therapy for this patient group [228]. 

However, cancer of the “non-lymphoepithelial” sites are a minority of OPSCC (<20% in 

Sweden [72]), and HPV prevalence is also lower in this site. This may have led to the 

publication of survival studies on HPV+ OPSCC, where the high survival rates of HPV+ 

cancer of the “lymphoepithelial” sites overshadow the survival rates of cancer from the 

“non-lymphoepithelial” sites. We suggest that this implies that the latter patient group 

may not benefit from reduced therapy. Therefore, it is important that before de-

escalation trials are introduced, minor subpopulations, such as the one just described, are 

identified. Moreover, the introduction of the new staging system for p16+ OPSCC may 

classify cancer from the “non-lymphoepithelial” sites with a lower tumor stage than would 

be accurate. This is notably not the only issue with the new staging system. As already 

mentioned, some p16+ OPSCC cases are HPV DNA-, and as shown by e.g. Rietbergen et al., 

patients with p16+/HPV DNA- tumors have a worse prognosis than those with p16+/HPV 

DNA+ tumors, and also p16+/HPV DNA- tumors are genetically more similar to p16-/HPV 

DNA- tumors [113, 114]. 

There is a small risk for misclassification of tumors of the oropharynx, which could have 

influenced the reported HPV prevalence of the different sub-sites. Especially, large mobile 

tongue cancers can be mistaken for BOTSCC and vice versa. Therefore, we performed a 

second analysis comparing HPV prevalence from only the TSCC sub-site to the “non-

lymphoepithelial” site, which showed an even more pronounced difference in prevalence. 

However, if possible misclassifications are included in our analysis, these have likely only 

decreased the difference in HPV prevalence between sites, and since the differences are 

significant this does not impact our main finding.  

A question that remains answering is, however, if even further sub-classification of OPSCC 

could be of importance, and this will in part be answered in Paper V.  



 

 65 

4.4 PAPER V 

Human papillomavirus (HPV) and survival of patients per histological sub-site of tonsillar 

squamous cell carcinoma (TSCC).  

Aim  

To study the impact of histological context on HPV prevalence and survival in TSCC, by 

sub-classifying TSCC into specified and non-specified TSCC (STSCC and NSTSCC). 

Background 

Current data advocate that OPSCC should be divided into sub-sites, when evaluating the 

presence of HPV and prognosis [77, 185, 208, 225]. More specifically, TSCC and BOTSCC 

have much higher HPV prevalence compared to other OPSCC, as presented in Paper IV, 

and the prognostic value of HPV in oropharyngeal sub-sites besides TSCC and BOTSCC is 

unclear [185, 208, 225]. In a recent report from Denmark, TSCC was further sub-classified 

into specified TSCC (STSCC) and non-specified TSCC (NSTSCC), with HPV significantly more 

prevalent in STSCC [208, 225].  

Material and methods 

In total, 203 FFPE TSCC biopsies (ICD-7 145.0), stained with hematoxylin and eosin, from 

patients diagnosed between 1970 and 2002 in Stockholm, were evaluated for presence of 

both tumor and adjacent normal tissue. From these 139 samples met the inclusion 

criteria, and were separated into STSCC and NSTSCC, and together with HPV status 

correlated to clinical outcome. 

Main results 

• HPV was significantly more common in STSCC compared to NSTSCC (75% vs. 20%).  

• Patients with HPV+ STSCC had a better DSS and OS as compared to patients with 

HPV+ NSTSCC. 

• No survival differences were observed in patients with HPV- STSCC and NSTSCC. 

Discussion 

We were able to confirm that HPV was more significantly common in the STSCC compared 

to NSTSCC, as previously published by Garnaes et al. [208, 225], and that patients with an 

HPV+ STSCC had a better clinical outcome compared to HPV+ NSTSCC. On the contrary, 
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HPV was significantly less prevalent in NSTSCC, and the histomorphological context (STSCC 

or NSTSCC) of HPV- TSCC did not affect patients’ prognosis.  

As already discussed and shown to some extent in Paper IV, the oropharynx is a 

heterogenous site, and HPV is more commonly found the “lymphoepithelial” sub-sites of 

oropharynx, comprising TSCC and BOTSCC, as compared to the “non-lymphoepithelial” 

sites, comprising cancer of the soft palate and posterior walls [128]. However, with the 

findings of this study, we show that even the sites classified as “lymphoepithelial” sites 

may not be specific enough in regard to HPV prevalence and clinical outcome.  

Since the tumor material used for this study is quite old (from 1970-2002), ICD-7 was used 

for classifying these tumors. Here patients with ICD-7 code 145.0 were included. ICD-7 

code 145.0 translates into ICD-10 codes C02.4 (lingual tonsil), C09.0 (tonsillar fossa), C09.9 

(tonsil, unspecified), and C14.2 (Waldeyer’s ring) [229]. This indicates that different 

tonsillar sub-sites were included in the studied cohort. We do not know whether these 

different tonsillar sites would separate into different groups when dividing by STSCC and 

NSTSCC, however this could be a possible explanation to why we observed differences in 

histology surrounding the tumors. Therefore, it would be interesting to repeat this study 

on a newer TSCC cohort using ICD-10 codes.  

One can also speculate whether tissue fractions and sections taken from a specimen of 

the studied tumor is representable for the entire tumor. Notably a number of patients had 

to be excluded from this study when no surrounding normal tissue or tumor was found. 

For this reason, this method is not optimal, but for the HPV+ STSCC patient group, this type 

of histological evaluation may still be of benefit and clinically applicable. Moreover, there 

are some described histological differences for HPV+ and HPV- TSCC and BOTCC [230, 231]. 

HPV+ tumors often present with a lack of keratinization, growing in distinct areas with 

pushing borders, together with a basaloid morphology. Whereas, HPV- TSCC and BOTSCC 

often present with keratinization, cytoplasm-rich cells with distinct cell borders that grow 

more infiltrative, without the distinct basaloid morphology found in HPV+ tumors [230, 

231]. These differences may also affect how our samples have been classified, due to that 

the “normal tissue” may be more affected by an HPV- tumor with e.g. a desmoplastic 

stroma, whereas the “normal tissue” in HPV+ tumors may retain more original features, 

such as e.g. germinal centers.  
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Another limitation to this study was that HPV positivity was only defined by HPV DNA due 

to that no tumor sections were available for p16 evaluation, however in previously 

published cohorts, that partly overlap with this one, we have shown that p16 

overexpression was significantly associated and concordant with HPV+ DNA status [79, 

200]. On the other hand, because the studied cohort was diagnosed before treatment was 

intensified in OPSCC in the Stockholm region, the cohort was more homogenously treated, 

in that patients only received radiotherapy, surgery, or both. 

To conclude, HPV+ status was more commonly found in STSCC, whereas the opposite was 

observed in NSTSCC, where HPV- status was more common. Moreover, HPV-positivity was 

correlated to a good prognosis in the context of STSCC, but not in NSTSCC. Our findings 

indicate that the context of the tumor is important for tumor prognostication and 

evaluating HPV prevalence. Lastly, the concept of OPSCC is still too unspecific when sub-

grouping patients into groups with HPV+ and HPV− tumors.  
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5 CONCLUSIONS 

• The immunoproteasome component LMP10 can potentially be used as an 

independent prognostic marker in both HPV+ and HPV- TSCC and BOTSCC. In 

patients with HPV+ tumors, low or absent nuclear LMP10 expression was 

correlated to better DFS. In patients with HPV- tumors moderate or high 

cytoplasmic intensity was correlated to a better DFS (Paper I).   

 

• Expression of antigen processing machinary components TAP2, LMP2, LMP7, and 

LMP10 is commonly suppressed in both HPV+ and HPV- TSCC and BOTSCC (Papers I 

and II).  

 

• Absence of nuclear immunoproteasome component LMP7 expression is correlated 

to a better DFS in patients with HPV+ or HPV- TSCC and BOTSCC (Paper II).  

 

• Our results indicate that radiotherapy has the ability to increase cell surface HLA 

class I expression in HPV+ head and neck cancer cell lines. Although further studies 

are needed, our findings suggest that radiotherapy may possibly potentiate the 

immune response to HPV+ tumors, where viral antigens may contribute to immune 

recognition (Paper III). 

 

• When studying HPV in OPSCC, HPV prevalence was found significantly higher in 

“lymphoepithelial” sites, which include TSCC and BOTSCC, as compared to the 

“non-lymphoepithelial” sites, which include cancer of the soft palate and posterior 

walls. This suggests and supports that the concept of OPSCC is too unspecific in 

regard to HPV prevalence. (Paper IV). 

 

• HPV is significantly more common in STSCC compared to NSTSCC, and patients 

with HPV+ STSCC have a better clinical outcome compared to patients with HPV+ 

NSTSCC. No survival differences were observed in patients with HPV- STSCC and 

NSTSCC. This suggests that the histological context is important for evaluating HPV 

prevalence and tumor prognostication in TSCC and that the concept of OPSCC is 

too unspecific in regard to HPV prevalence and clinical importance (Paper V). 
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6 FUTURE PERSPECTIVES 

There is great promise that the vaccines against HPV will drastically decrease the number 

of HPV-related cancers in the future. However, there is a long way to go before the 

majority of the world population will be vaccinated and herd immunity can be achieved. In 

addition, there is a long lag period (20-40 years) between HPV-infection and detection of 

cancer. In the meantime, the number of patients with HPV related OPSCCs will likely 

continue to increase, as will the need for improved prevention, prognostication and 

treatment. Moreover, patients with OPSCC, caused by factors other than HPV, is a patient 

group with poor prognosis, where the need for new treatment options is large. The target 

is that each patient is given an optimal treatment with a high probability of tumor 

clearance in combination with minimized side effects. 

Papers I and II have led to the discovery of new prognostic markers in HPV+ and HPV- 

OPSCC that could potentially be used in combination with other markers to predict patient 

outcome, and thereby personalize the treatment accordingly. Moreover, these studies 

may contribute to a deeper understanding of the immunological aspects in HPV+ and HPV- 

OPSCC, and this way potentially be helpful in the development of immunotherapies.  

Paper III demonstrates how radiotherapy may affect tumors in regard to HLA class I 

expression, which may trigger the immune system and induce tumor clearance. Since 

paper III only presents in vitro data, performing similar studies on patient material would 

be very interesting. Future experiments could include studying immunological 

components pre- and post-treatment, in a patient-derived xenograft mouse model, or 

preferentially directly in human biopsies, which ethically however, could be more difficult.  

Papers IV and V highlight the importance of studying cancer of the oropharyngeal sub-

sites separately, and that also the tissue surrounding the tumor may provide additional 

information. These studies can potentially lay ground for improving ways of grading 

OPSCC and increase the understanding of where HPV driven tumors arise. 

The studies included in my thesis will hopefully, in one way or other, contribute to my goal 

of improved prevention, prognostication, and treatment, in both patients with HPV+ and 

HPV- OPSCC. 
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