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Abstract: This paper is devoted to the study of basis properties of the system{t}∪
{

ei(n+βsignn)t
}

n∈Z
, whereβ is a real parameter,

in Morrey-Sobolev-type spaces. We find sufficient conditions for the basicity in Morrey-Sobolev-type spaces in terms ofinequalities of
the parameterβ .
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1 Introduction

Morrey spaces were introduced by Morrey [1] in the
setting of partial differential equations and appeared to be
quite useful in the study of the local behavior of solutions
of elliptic partial differential equations, a priori estimates
and other topics in the theory of PDE. Precisely, it is a
useful tool in the qualitative theory of elliptic differential
equations [2,3]. Further, it provides a large class of
examples of mild solutions of the Navier–Stokes system
[4]. In the context of fluid dynamics, Morrey spaces have
been used to model flow when vorticity is a singular
measure supported on certain sets inRn [5]. There are
sufficiently wide investigations related to fundamental
problems in these spaces in view of differential equations,
potential theory, maximal and singular operator theory
and approximation theory (c.f. [6] and the references
above). Special interest in the study of Morrey-type
spaces arised in harmonic analysis and approximation
theory [7,8,9,10,11].

The splash of interest to Morrey-type spaces during
the last decade allow to consider the basis properties of
systems in such spaces in order to fill the gaps in the
theory of Morrey spaces. The basis properties of
exponential systems have been extensively investigated in

various function spaces by several authors. Babenko [12]
has proved that the degenerate system of exponentials
{

|t|α eint
}

n∈Z with |α| < 1
2 forms a basis forL2 (−π ,π)

but does not form a Riesz basis whenα 6= 0, whereZ is
the set of integers. Generalization of this result to a more
general degenerate function is given by Gaposhkin [13].
In [14], the conditions on the weight functionρ , for
which the system

{

eint
}

n∈Z forms an unconditional basis
for the weighted Besov space have been obtained. Similar
problems have been studied in [15,16]. Basis properties
of the systems of sines, cosines and exponentials with the
linear phase in weighted Lebesgue space have been
studied in [17,18,19]; see also [20,21,22].

The basis properties of the exponential systems in
Morrey-type spaces are much less studied. In the paper
[23], there were obtained the basis properties of the
system of exponentials in Morrey space. Also, in [24] the
basis properties of the perturbed systems of exponentials
in Morrey space have been investigated. On the other
hand, the Riemann boundary value problem in
Morrey-Hardy classes has been studied in [25].

In this paper we introduce a simple method for
investigating the basis properties of the system

{t} ∪
{

ei(n+β signn)t
}

n∈Z
, whereβ is a real parameter, in

the Morrey-Sobolev space.
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2 Preliminaries and Notation

Throughout this paper, we always denote byC a positive
constant which is independent of main parameters, but it
may have different values even in the same line. Denote
the set of natural numbers byN and the set of nonnegative
integers byN0. We always assume, unless otherwise
stated, thatα, p and q are real numbers such that
0≤ α ≤ 1, 1< p< ∞ andp−1+q−1 = 1.

Let Γ be a rectifiable Jordan curve on the complex
planeC. By |M|Γ we denote the linear Lebesgue measure
of a set M ⊂ Γ . The Morrey-Lebesgue (or simply,
Morrey) spaceLp,α (Γ ) is the normed space of all
measurable functions onΓ equipped with the norm

‖ f‖Lp,α (Γ ) =

(

sup
B

1

|B∩Γ |1−α

∫

B∩Γ
| f (t)|p |dt|

) 1
p

<+∞,

where the supremum is taken over all disksB centered on
Γ . Lp,α (Γ ) is a Banach space andLp,1 (Γ ) = Lp (Γ ),
Lp,0 (Γ ) = L∞ (Γ ). The embeddingLp,α1 (Γ ) ⊂ Lp,α2 (Γ )
is valid for 0≤ α1 ≤ α2 ≤ 1. Thus,Lp,α (Γ ) ⊂ Lp (Γ ) for
1 < p < ∞. The case ofΓ = [−π ,π ] will be denoted by
Lp,α .

Denote byL̃p,α the linear subspace ofLp,α consisting
of functions whose shifts are continuous inLp,α , i.e.

L̃p,α =
{

f ∈ Lp,α : ‖ f (·+ δ )− f (·)‖Lp,α → 0, asδ → 0
}

.

We always assume that a functionf continues
2π-periodically to the real axisR. The closure of̃Lp,α in
Lp,α will be denoted byMLp,α .

The Morrey-Sobolev space is denoted byW1
p,α and

consists of functions which belong, together with their
derivatives of the first order, to the Morrey spaceLp,α

equipped with the norm

‖ f‖W1
p,α

= ‖ f‖Lp,α +
∥

∥ f ′
∥

∥

Lp,α . (1)

Denote byW̃1
p,α the linear subspace ofW1

p,α consisting of
functions whose shifts are continuous inW1

p,α . By MW1
p,α

we denote the closure of this space with respect to the
norm (1). ByMLp,α we denote the direct sum ofMLp,α

andC (C is the complex plane)

MLp,α = MLp,α ⊕C.

Let us define the norm inMLp,α in the following way

‖û‖MLp,α = ‖u‖Lp,α + |λ | , û= (u;λ ) ∈ MLp,α .

We assume here some familiarity with basic concepts
of basis theory and we refer to the book of Heil [26].

3 The Main Result

The main result reads

Theorem 1.Let 0 < α < 1. The system

{t}∪
{

ei(n+β signn)t
}

n∈Z
forms a basis for MW1

p,α (−π ,π)
if the following inequalities are satisfied

−
α
2q

≤ β <
α
2p

. (2)

The proof is based on constructing an isomorphism
between the spaceMW1

p,α and the spaceMLp,α , which
allows using the basis properties of the system
{

ei(n+β signn)t
}

n∈Z
in the spaceMLp,α presented in [24].

This will be shown in the following lemma.

Lemma 1.The operator A: MLp,α −→MW1
p,α , defined as

(Aû) (t) = v(t) = λ +
∫ t
−π u(τ)dτ, is an isomorphism.

Proof.Firstly, let us show that the operatorA is
well-defined. Indeed, sinceLp,α ⊂ Lp ⊂ L1, then, for all
û∈ MLp,α we have

‖Aû‖Lp,α = ‖v‖Lp,α ≤ (2π)
α
p |λ |+ sup

I⊂(−π,π)

{

1

|I |1−α

∫

I

∣

∣

∣

∣

∫ t

−π
u(τ)dτ

∣

∣

∣

∣

p

dt

}1/p

≤ (2π)
α
p |λ |+ sup

I⊂(−π,π)

{

1

|I |1−α

∫

I

(

∫ π

−π
|u(τ)|dτ

)p

dt

}1/p

= (2π)
α
p |λ |+(2π)

α
p ‖u‖L1(−π,π) <+∞. (3)

Additionally, v′ = u ∈ Lp,α . Thus Aû ∈ W1
p,α . Next, we

show thatAû∈ MW1
p,α .

‖Aû(·+δ )−Aû(·)‖W1
p,α

= ‖v(·+δ )−v(·)‖W1
p,α

= ‖v(·+δ )−v(·)‖Lp,α

+
∥

∥

∥
v
′
(·+δ )−v

′
(·)
∥

∥

∥

Lp,α

=

∥

∥

∥

∥

∫ ·+δ

·
u(τ)dτ

∥

∥

∥

∥

Lp,α
+‖u(·+δ )−u(·)‖Lp,α

= sup
I⊂(−π,π)

{

1

|I |1−α

∫

I

∣

∣

∣

∣

∫ t+δ

t
u(τ)dτ

∣

∣

∣

∣

p

dt

}1/p

+‖u(·+δ )−u(·)‖Lp,α .

By using the absolute continuity of the Lebesgue integral,
whent ∈ (−π ,π), uniformly with respect tot, we have

∫ t+δ

t
u(τ)dτ → 0, as δ → 0.

Also, sinceu∈ MLp,α , we have

‖u(·+ δ )−u(·)‖Lp,α → 0, asδ → 0.

Therefore

‖Aû(·+ δ )−Aû(·)‖W1
p,α

→ 0, asδ → 0.
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Furthermore, the operatorA is a bounded operator. Indeed,
by using (3), we obtain that

‖Aû‖W1
p,α

≤ (2π)
α
p |λ |+(2π)

α
p ‖u‖L1(−π ,π)+ ‖u‖Lp,α .

Since
‖u‖L1

≤C‖u‖Lp
≤C‖u‖Lp,α ,

we immediately have

‖Aû‖W1
p,α

≤C(|λ |+ ‖u‖Lp,α ) =C‖û‖MLp,α

for an appropriate constantC. Next we show that
kerA = {0}. Let Aû = 0, i.e. λ +

∫ t
−π u(τ)dτ = 0. If we

differentiate both sides, we getu(t) = 0, almost
everywhere. Thusλ = 0, and so ˆu = 0. Finally, the
operatorA is onto, since, for allv ∈ MW1

p,α , there exists
v̂ = (v′;v(−π)) ∈ MLp,α and A(v̂) = v. Using the
Banach theorem on inverse operators [27, Theorem 3.4],
the inverse ofA is a continuous operator. This completes
the proof of the lemma.

It is now easy to provide the

Proof(Proof of Theorem 1).It is known that with respect

to the condition (2), the system
{

ei(n+β signn)t
}

n∈Z
is a

basis forMLp,α [24, Corollary 3]. We will prove that the
system{û−1} ∪ {u0} ∪ {û±n } , n ≥ 1 forms a basis for
MLp,α , where

û−1 =

(

1
−π

)

, û0 =

(

0
1

)

,

û+n =

(

i(n+β )ei(n+β )t

e−i(n+β )π

)

, û−n =

(

−i(n+β )e−i(n+β )t

ei(n+β )π

)

,n≥ 1.

Any element ˆu ∈ MLp,α has a unique expansion of the
form

û= c−1û−1+ c0û0+
∞

∑
n=1

c+n û+n +
∞

∑
n=1

c−n û−n . (4)

This expansion is equivalent to the expansions

u(t) = c−1+
∞

∑
n=1

ic+n (n+β )ei(n+β )t +
∞

∑
n=1

(−i)c−n (n+β )e−i(n+β )t , (5)

λ =−πc−1+ c0+
∞

∑
n=1

c+n e−i(n+β )π +
∞

∑
n=1

c−n ei(n+β )π . (6)

Following [24, Corollary 3] we obtain that (5) uniquely
exists and belongs to the spaceMLp,α . SinceLp,α ⊂ Lp,
then, by using the main result of [28], for the system

{

ei(n+β signn)t
}

n∈Z
, the Hausdorff-Young inequality holds

for β >−
1
2q

. That is, for 1< p≤ 2, we have

(

|c−1|
q+

∞

∑
n=1

∣

∣c−n (n+β )
∣

∣

q
+

∞

∑
n=1

∣

∣c+n (n+β )
∣

∣

q

)1/q

≤M‖u‖Lp
,

where1
p +

1
q = 1. Applying Hölder’s inequality, we obtain

|c−1|+
∞

∑
n=1

∣

∣c−n
∣

∣+
∞

∑
n=1

∣

∣c+n
∣

∣ =

|c−1|+
∞

∑
n=1

1
|n+β |

∣

∣(n+β )c−n
∣

∣+
∞

∑
n=1

1
|n+β )|

∣

∣(n+β )c+n
∣

∣

≤ |c−1|+
∞

∑
n=1

1
|n+β |p

∞

∑
n=1

∣

∣(n+β )c−n
∣

∣

q
+

∞

∑
n=1

1
|n+β |p

∞

∑
n=1

∣

∣(n+β )c+n
∣

∣

q
<+∞.

Let us note that, whenn≥ 1, we haven+β 6= 0. Therefore,
with respect to the condition (2) the inequalityβ > − 1

2 is
valid.

For p> 2, sinceLp,α ⊂ Lp ⊂ L2, we have
(

|c−1|
2+∑∞

n=1 |c
−
n (n+β )|2+∑∞

n=1 |c
+
n (n+β )|2

)1/2
≤ M ‖u‖L2

,

and similarly

|c−1|+∑∞
n=1 |c

−
n |+∑∞

n=1 |c
+
n | ≤ |c−1|+∑∞

n=1
1

|n+β |2

(

∑∞
n=1 |(n+β )c−n |

2
+∑∞

n=1 |(n+β )c+n |
2
)

<+∞.

So, we show that the series∑∞
n=1 |c

±
n | is absolutely

convergent. Therefore, in the series (6), the coefficientc0
is uniquely defined. Thus, we have shown the existence
and uniqueness of the expansion (4) for all ˆu ∈ MLp,α .
Thus, the system{û−1} ∪{û0} ∪{û±n }n≥1 forms a basis
for MLp,α . We can easily show that, for the operator

Aû= λ +

∫ t

−π
u(τ)dτ,

the following relations are true

A(û−1) = t,A(û0) = 1, A(û−n ) = e−i(n+β )t , andA(û+n ) = ei(n+β )t .

Since A is an isomorphism, the system

{t} ∪
{

ei(n+β signn)t
}

n∈Z
forms a basis forMW1

p,α . This

completes the proof.
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