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Abstract The majority of directed social networks, such as, Twitter, Flickr,
and Google+ exhibit reciprocal altruism, a social psychology phenomenon,
which drives a vertex to create a reciprocal link with another vertex which has
created a directed link towards the former. In existing works, scientists have al-
ready predicted the possibility of the creation of reciprocal link—a task known
as “reciprocal link prediction”. However, an equally important problem is de-
termining the interval time between the creation of the first link (also called
parasocial link) and its corresponding reciprocal link. No existing works have
considered solving this problem, which is the focus of this paper. Predicting
the reciprocal link interval time is a challenging problem for two reasons: First,
there is a lack of effective features, since well-known link prediction features
are designed for undirected networks and for the binary classification task,
hence they do not work well for the interval time prediction; Second, the pres-
ence of ever-waiting links (i.e., parasocial links for which a reciprocal link is
not formed within the observation period) makes the traditional supervised
regression methods unsuitable for such data. In this paper, we propose a solu-
tion for the reciprocal link interval time prediction task. We map this problem
to a survival analysis task and show through extensive experiments on real-

V. S. Dave, M. Al Hasan
Department of Computer & Information Science
IUPUI, Indianapolis, USA
vsdave@iupui.edu, alhasan@cs.iupui.edu

Baichuan Zhang
Facebook
baichuan24@fb.com

C. K. Reddy
Department of Computer Science
Virginia Tech, Arlington, USA
reddy@cs.vt.edu

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:

Dave, V. S., Hasan, M. A., Zhang, B., & Reddy, C. K. (2018). Predicting interval time for reciprocal link creation using survival analysis. Social Network Analysis and 
Mining, 8(1), 16. https://doi.org/10.1007/s13278-018-0494-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/161799208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s13278-018-0494-1


2 Vachik S. Dave et al.

world datasets that survival analysis methods perform better than traditional
regression, neural network based models, and support vector regression (SVR)
for solving reciprocal interval time prediction.

Keywords Link Prediction · Directed Network · Reciprocity · Time
Prediction · Survival Analysis

1 Introduction

Reciprocity is a phenomenon in social psychology which mandates that peo-
ple should repay voluntarily what another person has provided for them. It is
different from altruism (Anand et al, 2013) in the way that reciprocity follows
from others’ initial action, while altruism is a spontaneous action of gift-giving
without the hope or expectation of future positive responses. There also ex-
ists another social psychology, named reciprocal altruism, which is a behavior
whereby one performs an act of gift-giving with the expectation that the re-
ceiving person will act in a similar manner at a later time (Trivers, 1971).
People’s day-to-day activities on online social networks are filled with many
examples of reciprocal altruism: we follow a friend’s Twitter feed with the
hope that he will follow back our feed; we like a friend’s Facebook posts or
her Flicker images with the expectation that she will do the same; we endorse
our friends for their technical skill in LinkedIn hoping that they will return
the favor in a similar manner.

However reciprocity usually is in conflict with another social phenomenon
called social stratification, which favors hierarchical arrangement of people
in a society based on various factors such as power, wealth, and reputa-
tion (Hopcroft et al, 2011). This phenomenon is prevalent in online social
networks as well, but in a different manner. Apparently, for such networks,
the social hierarchy is reflected in various prestige metrics which rank ver-
tices based on their topological bearings, such as pagerank, and in-degree.
Given this hierarchical arrangement in an online social network, people who
are higher up in the hierarchy are sometimes reluctant to perform a recipro-
cal act for an individual who is lower in the hierarchy; they instead defer the
reciprocal action to a later time, or sometimes indefinitely.

For reciprocal link creation, understanding the criteria which control the
interval time and building learning models which predict the interval time are
important. From a research standpoint, such studies help scientists to under-
stand the interaction between reciprocity and social stratification phenomena.
From the perspective of real-life applications in social network analysis, such
prediction models enable better link suggestions, where the interval time is also
factored in within the suggestion. Reciprocity, along with the interval time for
reciprocal link creation, is particularly important for recommendation in online
dating systems (Xia et al, 2015).

The majority of existing works on link prediction assume an undirected net-
work (Hasan and Zaki, 2011; Valverde-Rebaza and de Andrade Lopes, 2013),
in which the concept of reciprocal edges does not exist. A few works consider
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reciprocal link prediction (Hopcroft et al, 2011; Gong and Xu, 2014) in a di-
rected network where the prediction is binary, yielding a yes/no answer to
the question of whether a reciprocal link will be created within a fixed obser-
vation window. Several other works utilize reciprocity as a tool for network
compression (Chierichetti et al, 2009) and information propagation in social
networks (Zhu et al, 2014). Reciprocal links also influence the degree correla-
tions in complex networks, hence they play an important part in modeling the
growth of directed social networks (Zlatić and Štefančić, 2009). However, none
of the existing works consider predicting the interval time for the creation of
a reciprocal edge.

Extending a model which solves a binary class reciprocal link prediction
problem to a model which predicts the interval time of reciprocal links is
non-trivial. The major challenge for interval time prediction is that typical
link prediction features for an undirected network, such as common neighbors,
Jaccard’s similarity, and Adamic-Adar do not have a well-defined counterpart
for directed networks, which makes interval prediction a difficult task. Addi-
tionally, for generating the training data for building a prediction model, a
network is observed for a finite time window, and the absence of a reciprocal
link within that time window does not necessarily mean the absence of that re-
ciprocal edge, because a reciprocal edge might have formed outside (after) the
observation time window. This yields numerous right censored data instances,
for which the target variable, i.e., the reciprocal link formation time is not
available. Traditional supervised regression models cannot include censored
data instances in the training data and hence perform poorly in predicting
reciprocal link creation time.

We explain the cases of right-censored data instances in reciprocal interval
time prediction task using a toy example shown in Figure 1. In this figure we
show a small part of an email communication network consisting of only three
vertices representing three persons, A, B, and C. Our observation period of
this network has five timestamps, T1 to T5. At T1, C sends an email to B, thus
creating the first of the directed links (such links are called parasocial links). At
T2, the parasocial link from A to B is created. At T3, the reciprocal link from
B to C is created; thus the interval time of this edge is T3−T1. At T3, another
parasocial link (B → C) is created. More links are created in subsequent time
intervals T4 and T5. At T5, we reach the end of our observation period, but
the reciprocal link from C to A is yet to be created. The potential reciprocal
link C → A is an instance of right-censored data for which we only know that
the interval time is higher than T5− T1; this value, as well, can be infinity in
the case that the link is never created. Either way, the exact value of the target
variable for this reciprocal edge is unknown. Unfortunately, for any reasonable
observation time window, a significantly large number of potential reciprocal
links are censored data instances, which is the main challenge for the task of
reciprocal link creation time prediction.

In this work, we present a supervised learning model for predicting the
interval time for the creation of a reciprocal edge between a pair of vertices in
an online social network, given that a parasocial edge already exists between
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Fig. 1: An illustration of reciprocal link time prediction RLTP problem.

the vertex-pair. We study real-life networks and validate a collection of topo-
logical features that may influence the reciprocal edge creation time. Then,
we design the prediction task as a survival analysis problem and propose five
censored regression models. Our experimental results show that Cox regres-
sion performs better than traditional supervised learning models for reciprocal
link prediction. This is an extended version of our previous paper (Dave et al,
2017), which is published in 11th International Conference on Web and Social
Media (ICWSM).

2 Related Works

The traditional binary classification task of link prediction has received enor-
mous attention over the years since the inception of this problem by Liben-
Nowell and Kleinberg in 2003 (Liben-Nowell and Kleinberg, 2003). Over the
years researchers have solved the link prediction problem for a variety of graphs
- for example link prediction in homogeneous networks (Hasan et al, 2006;
Liaghat et al, 2013; Wang et al, 2017b), link prediction in heterogeneous infor-
mation networks (Sun et al, 2011; Dong et al, 2012), and link prediction for
knowledge graphs (Dong et al, 2014; Zhang et al, 2016). Other related prob-
lems, such as link/sign prediction and ranking in signed social network (Song
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and Meyer, 2015; Symeonidis and Mantas, 2013), and a recommendation sys-
tem using link prediction techniques (Esslimani et al, 2011) have also been
studied.

Reciprocal link prediction is a variant of link prediction which works on di-
rected networks. Even though the majority of social and communication graphs
are directed, only a few works exist which consider predicting reciprocal links.
In one of the earliest works, J. Hopcroft et. al (Hopcroft et al, 2011) predicted
reciprocal edges in a Twitter network. However, many of the features that they
proposed are too specific to the Twitter dataset and do not apply to a generic
directed network. N. Gong et. al (Gong and Xu, 2014) compared reciprocal
and parasocial link creation in Google+ and Flickr datasets and solved the
reciprocal link prediction problem as an outlier detection task using one-class
SVM. Authors of (Cheng et al, 2011) compared structural differences of re-
ciprocal links and parasocial links and they also studied a Twitter dataset and
corresponding node features to predict reciprocal links. In another work (Feng
et al, 2014), the authors reported that the majority of reciprocating links are
created within a very short time after the creation of corresponding parasocial
links. B. Dumba et al. (Dumba et al, 2016) studied the structural properties
of a reciprocal network and discussed user behavior patterns.

A closely related problem to reciprocal link prediction is online dating rec-
ommendation. There exist a few works that solve this problem, mainly by
using traditional recommendation methods with novel feature extraction pro-
cesses. For example, in (Zhao et al, 2014) the authors modified the classical
collaborative filtering method for the dating recommendation task. P. Xia et
al. (Xia et al, 2015, 2016) proposed different reciprocal score matrices and used
them with collaborative filtering for recommendation. The authors in (Tu et al,
2014) proposed an LDA (Latent Dirichlet Allocation) based approach to learn
latent preferences of users with two side matching based recommendation.
Recently, X. Zang at al. (Zang et al, 2017) proposed a method that extracts
profile-based features, topological features, and preference features from a dat-
ing social network for recommendation. All the existing works discussed so far
target the binary classification problem, which predicts whether the reciprocal
link will be created or not. On the other hand, our work targets the prediction
of time, which is more difficult than the binary classification problem.

To the best of our knowledge, there are only two works that target the
time prediction problem; the first one is by Y. Sun et al. (Sun et al, 2012) and
the second by M. Li et al. (Li et al, 2016). In both of these works, the authors
have extracted unique features for a DBLP-like (author-paper) heterogeneous
network. Y. Sun et al. proposed meta path based topological features and used
a generalized linear model (GLM) for the prediction task. Similarly, M. Li et
al. proposed a novel time difference labeled path (TDLP) based method for
the knowledge graph. Both methods are designed specifically for DBLP like
networks, hence they are difficult to apply to other networks. On the other
hand, our method is applicable to any general directed network to predict time
of a reciprocal link.
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3 Our Methodology

In this section, we first define the problem of Reciprocal Link Time Prediction
(RLTP). Then we present some insight of three real world datasets that we
have used in this work. Then we explain how the RLTP can be solved by
using a survival analysis framework. After that we discuss different survival
analysis methods which we have used for solving the RLTP problem. Finally,
we provide algorithmic representation of the proposed framework.

3.1 Problem Formulation

Definition 1 Directed time-stamped network. Consider a networkG(V,E),
where V is the set of vertices and E is the set of directed edges. T is a set of
time values, and τ is a mapping function, which maps an edge to one of the
time values in the set T , i.e., τ : E → T . For an edge e ∈ E, te ∈ T denotes
the creation time of the edge e. Collectively, G, T , and τ are called a directed
time-stamped network. ut

For vertices u, v ∈ V and link e = (u, v) ∈ E the corresponding time-stamp te
can be represented as tuv. If an edge e is created multiple times, we keep only
the oldest (earliest) creation time and assign that to te. For a vertex u ∈ V ,
Γin(u) and Γout(u) are the set of in-neighbors and the set of out-neighbors of
u, and d(u, v) is the directed shortest path distance from u to v.

Definition 2 Reciprocal/Parasocial Link. For a pair of vertices, u, and
v, the edge (u, v) ∈ E is called a parasocial link if the edge (v, u) /∈ E. On the
other hand, if (v, u) ∈ E and (u, v) ∈ E, and tvu < tuv then (u, v) is called a
reciprocal link. ut

The objective of the RLTP problem is to predict the time of a reciprocal link
for the given parasocial link with time. The interval time for a reciprocal
link (u, v) is defined as Int(u, v) = tuv − tvu. Our model for the RLTP prob-
lem actually predicts Int(u, v), instead of predicting tuv (the reciprocal link
creation time). Nevertheless, the reciprocal link creation time tuv can be ob-
tained from the model by using the expression tvu + Int(u, v). The advantage
of predicting Int(u, v) instead of predicting tuv is that for predicting Int(u, v)
we do not need to use the parasocial link creation time tvu as part of input
of the model, which makes the model independent of temporal bias. Thus the
supervised model of our proposed RLTP task uses only the topological fea-
tures of an edge (u, v) as its covariates and the interval time Int(u, v) as its
target variable, making the model simple.

3.2 Dataset Study

In this section, we discuss the datasets that we use in our study. We also
provide some statistical analysis of the datasets; specifically, for each of these
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Table 1: Basic statistics of the datasets used in the paper.

Dataset |V | |E| |T | Recipro

Epinion 131, 828 841, 373 938 0.3083
MC-Email 167 5, 783 237 0.876
Enron 182 3, 007 944 0.6053
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Fig. 2: Histogram of interval time of reciprocal link.

datasets, we provide the empirical distribution of observed interval time and its
goodness of fit with known statistical distributions. For the Enron dataset, the
persons (along with their rank in the company) associated to a vertex is known,
so in this dataset we have also performed a qualitative study by checking for
the evidences of social stratification phenomenon, which we present at the end
of this section.

We used three real-world directed network datasets for our study. We se-
lected datasets where reciprocal link creation is an important (meaningful)
event; another selection criterion is that the datasets should have a sufficient
number of reciprocal links to train and test the models (Kuhnt and Brust,
2014). Our first dataset, Epinion is a trust network where a directed link from
one vertex to another represents the fact that the former trusts the latter. The
RLTP task for this dataset is to find the time at which a trusted person ac-
knowledges that (s)he also holds a similar sentiment towards the other person.
The dataset was collected from KONECT web page.2 We have also collected
two email datasets: MC-Email3 and Enron. Both of these datasets are email
communication networks from two distinct enterprises, and for these datasets
the RLTP task is to predict the response time for an email. More informa-
tion on these datasets is provided in Table 1, where |V |, |E|, |T |, and Recipro

2 http://konect.uni-koblenz.de/networks/
3 This is Manufacturing Company email dataset available from R. Michalski’s website,

https://www.ii.pwr.edu.pl/~michalski
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are the number of vertices, the number of edges, the number of timestamps
(in days), and the reciprocity of the dataset within the observation window,
respectively.

For these three datasets, we plot the histogram of the interval time for
reciprocal links in log scale (Figure 2). We observed that the majority of the
responses are received within a short period of time (within 10 days or less).
However, there also exist a few late responders whose reply time is much larger
than the average reply time.

3.2.1 Modeling interval time using Parametric Distribution

From the distribution plots in Figure 2 we observe that the number of re-
ciprocal link instances reduces exponentially with the increment of the in-
terval time (note that, y-axis is in log-scale). Hence, we fit different expo-
nential family distributions to model the time interval of reciprocal link for
all three datasets. Specifically, we fit exponential distribution, normal distri-
bution, logistic distribution, log-normal distribution, log-logistic distribution
and Weibull distribution. To evaluate the goodness of fit we use the follow-
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ing four metrics: Kolmogorov-Smirnov (KS) statistic, Cramer-von Mises (CM)
statistic, Aikake’s Information Criterion (AIC) (Akaike, 1998) and Bayesian
Information Criterion (BIC) (Schwarz, 1978). In Figure 3, we show the qual-
ity of fitting results. The results of BIC are very similar to AIC for all three
datasets, so we did not show the results of BIC. As depicted in Figure 3,
exponential, normal, and logistic distributions (shown in red) have relatively
high distance from empirical distribution compared to log-normal, log-logistic
and Weibull distributions (shown in black). For the Enron dataset, Weibull
distribution performs the best over all metrics. Similarly, for the Epinion and
the MC-Email datasets log-logistic distribution fits the best. Results of log-
normal distribution are very similar to both Weibull and log-logistic distri-
butions. Hence, we use log-normal, log-logistic and Weibull distributions for
parametric survival models, which are discussed later in Section 3.5.

3.2.2 Social Stratification in Enron

One of the influencing factors for late responses to a specific user is social
stratification - particularly in corporations, people tend to give quicker replies
to their superior as compared to their colleagues and other juniors. We study
the Enron dataset, for which the employee details are available with email
communications. In the dataset, “Louise Kitchen” is a president; we observed
that her email replying practice follows social stratification phenomenon. She
generally takes more than 2 − 3 days to reply to people with lower ranking
positions such as vice-president (VP), employees, etc. For example, she replied
to VPs “Kevin Presto”, “James Steffes” and “Fletcher Sturm” in 3, 6 and 19
days respectively. She replied to “Sally Beck” (Chief Operating Officer) in 5
days. On the other hand she replied to “David Delainey” (Chief Executive Of-
ficer (CEO)) on the same (0) day. Another example is “Philip Allen”, who is a
manager; he replied within a day to higher ranking officers such as “David De-
lainey” (CEO), “Barry Tycholiz” (VP), “Hunter Shively” (VP) and “Richard
Shapiro” (VP). On the other hand, he took 2 to 3 days to reply to “Michael
Grigsby” (manager), “Jay Reitmeyer” (employee) and “Matthew Lenhart”
(employee).

3.3 Topological Feature Study

In online social networks, user behavior based features are useful for solv-
ing different problems, such as, link prediction (Valverde-Rebaza and de An-
drade Lopes, 2013), personality prediction (Adalı and Golbeck, 2014), user
attribute prediction (Tuna et al, 2016), link sign prediction (Shahriari et al,
2016), prediction of positive and negative users in Twitter (Roshanaei and
Mishra, 2015), etc. Hence, we believe social (behavioral) phenomena based
topological features can contribute substantially to solve the RLTP problem.
Though there are works that study and design user behavior features such as
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topic-specific modeling (Bogdanov et al, 2014), a behavioral model for Face-
book wall posts (Devineni et al, 2017), etc., we assume to have only topological
information. Topological features that we use comes from two different social
phenomena: directed altruism and social stratification. Below we discuss them
in two different sections.

3.3.1 Directed Altruism Based Features

Directed altruism in social networks is described in (Leider et al, 2007), where
the authors have argued that people are more generous to friends and friends of
friends than to a complete stranger. This phenomenon also reflects in people’s
reciprocal link creation behavior. Below, we define some topological features
which quantify the directed altruism phenomena for reciprocal link prediction.

Shortest directed distance: In our problem, one directional link (v, u)
already exists, and we are predicting the creation time for the reverse link
(u, v). Generally people are more generous to indirect friends than complete
strangers. Hence u is more likely to respond quickly to v for small value of the
directed distance from u to v i.e.

DirectedDist(u, v) = d(u, v)

Common in/out neighbors count: The number of common neighbors is
a frequently used topological feature for the link prediction task in undirected
networks; however, for directed graphs, we have two separate features: common
in-neighbors and common out-neighbors. Both of these topological features
capture the idea that if a user has more common neighbors with another user,
then she is more likely to reply fast. Also, more common friends increase the
network flow, which is an important factor for building trust (Leider et al,
2007) and with higher trust people tend to reply faster.

Commonin(u, v) = |Γin(u) ∩ Γin(v)|

Commonout(u, v) = |Γout(u) ∩ Γout(v)|

Jaccard coefficient (In/Out): The Jaccard coefficient is another widely
used topological feature for undirected networks. It is the normalized version
of common neighbors counts. Similar to the common neighbor count feature,
this feature also split into two features due to the directed-ness of the edges.
Jaccard coefficients help to predict the trust level between two nodes. Since,
higher trust leads to faster response, this is a good feature for the RLTP task.

Jaccardin =
|Γin(u) ∩ Γin(v)|
|Γin(u) ∪ Γin(v)|

Jaccardout =
|Γout(u) ∩ Γout(v)|
|Γout(u) ∪ Γout(v)|

Local Reciprocity. In (Gong and Xu, 2014), the authors studied two
local reciprocity features and they showed relative influence of both features
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on linking back probability. The first is Acceptance Local Reciprocity (ALR),
which is defined as:

ALR(v) =
|Γin(v) ∩ Γout(v)|

|Γin(v)|
We compute ALR for the head node (v) of the reciprocal link (u, v). This
feature captures the tendency of node v to accept a link. The second feature
is Request Local Reciprocity (RLR), defined as:

RLR(u) =
|Γin(u) ∩ Γout(u)|
|Γout(u)|

We compute RLR for the tail node (u) of the reciprocating link (u, v). RLR
represents the response behavior of the node u and captures its tendency to
initiate a reciprocal link.

3.3.2 Social Stratification Based Features

It is observed that in online social networks people behave according to their
status in the network (Hopcroft et al, 2011). A similar behavior is observed
in many real world applications, such as the one described in Section 3.2 or
in online dating (Xia et al, 2013). We have also shown evidence of social
stratification in Enron dataset, specifically in connection to the RLTP task.
The following topological features quantify the extent of social stratification
that is practiced by the node u or v.

Preferential Attachment: This feature computes a value which reflects
the social stratification induced rank order of a given node. The basic idea
of preferential attachment is to give more weight to the higher degree nodes.
Traditionally, preferential attachment has been computed for undirected net-
works, so we change the formula to adapt it for a directed networks. For
undirected graph, it is simply the product of the degrees of the node u and v.
For directed graph, we take the product of the out-degree of the tail node (u)
and the in-degree of the head node (v) of a prospective reciprocal link (u, v).
The formula is given below:

PrefAtt(u, v) = |Γout(u)| × |Γin(v)|

Preferential Jaccard: PrefJacc is inspired by both Preferential Attach-
ment and Jaccard Coefficient. It is a trade-off between two concepts—first,
high degree nodes are prone to create more edges, and second, nodes prefer
to connect with similar nodes (social stratification). Both these phenomena
can influence reciprocal edge creation. We calculated PrefJacc by using the
following equation:

PrefJacc(u, v) =
|Γout(u) ∩ Γin(v)|
|Γout(u) ∪ Γin(v)|

In/Out Ratio: A node in the upper hierarchy has a tendency to a create
reciprocal edges with other nodes at the same hierarchy level than to nodes
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which are at a lower hierarchy level (Hopcroft et al, 2011). To reflect this
knowledge in our model, we need to find an efficient way for comparing the
hierarchy of a pair of nodes, which we compute by the ratio of their in-degrees
and the ratio of their out-degrees. Higher InRatio is indicative of higher ten-
dency of the numerator node to attract links compared to the denominator
node; similarly, higher OutRatio represents a higher tendency of the numera-
tor node to create links compared to the denominator node. In this way, these
two features capture the relative patterns of link creation and link acceptance
by the pair of the vertices. For reciprocating link (u, v), we calculate InRatio
and OutRatio by using the following equations:

InRatio =
|Γin(u)|
|Γin(v)|

OutRatio =
|Γout(u)|
|Γout(v)|

PageRank: PageRank represents the prestige of the node in the network.
We use both, pagerank of u and pagerank of v as features. If PageRank(u) is
lower than PageRank(v), then the node u is highly likely to respond faster to
the node v.

3.3.3 Feature analysis

To validate the strength of these features (13 in total) for predicting the in-
terval time of reciprocal edges, we compute the Pearson’s correlation of the
above topological features with the interval time value for three real-life graph
datasets (Table 1) and show the correlation values in Table 2. As we can see, for
the MC-Emails dataset most of the features (mainly Commonin, Commonout,
JaccardIn, JaccardOut, PrefAtt and PrefJacc) have good correlation value
(between 0.2 to 0.5). Similarly, for the Enron dataset the same set of features

Table 2: Correlation of features with Interval time

Features/ Datasets Epinion MC-Emails Enron

DirectedDist -0.04127 -0.03792 -0.13336
CommonIn 0.38109 0.33447 0.44398
CommonOut 0.27254 0.31194 0.27534
JaccardIn 0.17161 0.22101 0.24831
JaccardOut 0.11015 0.18925 0.20195
RLR(u) -0.00290 0.05820 0.16053
ALR(v) -0.06093 0.15383 0.19256
PrefAtt 0.19289 0.23930 0.25443
PrefJacc 0.09136 0.20054 0.25502
InRatio -0.03165 -0.07053 -0.14302
OutRatio -0.01132 0.04269 0.13108
PageRank(u) 0.24783 -0.07523 -0.07609
PageRank(v) 0.14300 0.00211 0.02049
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Fig. 4: Relation of In/OutRatio and linking back probability in Epinion dataset

is highly related to interval time. But, for Epinion dataset the correlation
values for most of the features are poor except for Commonin, Commonout,
and PageRank(u); the worst features are InRatio, OutRatio and RLR(u). To
check the influence of these features on reciprocal link creation, we also check
the average linking back probability over different range of values for different
features. We discuss our observation in the following paragraphs.

In Figure 4, we plot our observation for two of the features: InRatio and
OutRatio. Here, for each bin of InRatio, the linking back probability is calcu-
lated as a fraction of reciprocal links over all the links in that bin. Figure 4
clearly shows high linking back probability for higher InRatio and lower Out-
Ratio, which is expected behavior for these features. In (Gong and Xu, 2014),
the authors provided a thorough study of some features, such as, RLR(u) and
ALR(v), and proved their significant influence on reciprocal link creation.

in Figure 5, we show three plots (one for each dataset) of DirectedDist vs.
interval time. Within each plot we have several graphs, each representing the
directed distance value between the vertices. Along the x-axis is the interval
time and along the y-axis is the number of reciprocal link instances that have
the corresponding interval time. For all dataset, we observe that links with
small directed distance value (such as, 2 or 3) can have high interval time,
i.e. the reciprocal link may appear after many days; but as distance increases
there are few or almost no instances of reciprocal links with high interval time.
This observation may appear counterintuitive as we expect short distance to
influence a short interval time. However, This observation can be explained
as follows: people tend to trust other people who are within their circles, and
they will ultimately create a reciprocal links with them, even if they do not do
it immediately. On the other hand, for people who are outside someone’s circle
(having a high directed distance value, such as 4 or 5), reciprocal links will be
created either in a short interval time or will not be created at all. The short
interval time can be the cases when two strangers meet in-person in a social
event and then mutually agree to be connected online (or trust each other). On
the other hand, the negative case happens, when a stranger trusts (or sends
an invite to) someone, and the second person just ignore that forever. Due to
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(b) MC-Email Dataset
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(c) Enron Dataset

Fig. 5: DirectedDist vs. Interval Time

this complex relation, the correlation between directed distance and interval
time is poor, yet we consider DirectedDist to be a useful feature.

Correlation with Low and High Interval time.

There are a variety of different social behaviors that influence the interval
time, hence some social based features impact the interval time differently
over a period. To understand the impact of different features over a period,
we split the target variable (interval time) into lower and higher range and
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Table 3: Correlation of features with Low and High Interval times

Datasets Epinion MC-Emails Enron
Features Low High Low High Low High

DirectedDist -0.00387 -0.04587 0.14453 -0.06022 -0.04023 -0.15364
CommonIn 0.06671 0.33821 0.00018 0.41728 0.22168 0.35640
CommonOut 0.07231 0.24064 0.06639 0.27446 0.04738 0.20793
JaccardIn 0.07765 0.15312 -0.04154 0.29774 0.17726 0.10033
JaccardOut 0.06829 0.13183 -0.07426 0.22517 0.07820 0.06360
RLR(u) -0.03937 0.06628 -0.17897 0.02467 0.07949 0.06348
ALR(v) -0.01783 -0.07657 0.15905 0.09455 0.08760 0.06401
PrefAtt 0.03049 0.14439 -0.00163 0.31220 0.06305 0.32053
PrefJacc 0.04258 0.13021 -0.06545 0.23248 0.16523 0.09010
InRatio -0.01251 -0.01751 -0.15333 -0.04297 -0.10385 -0.09571
OutRatio -0.00700 -0.02610 0.29600 -0.06979 0.00578 0.12331
PageRank(u) 0.06118 0.20674 -0.07606 -0.09756 -0.00557 -0.12452
PageRank(v) 0.02399 0.14362 0.31830 -0.13432 0.01606 0.03715

calculate feature correlations with lower and higher interval times separately.
For this study, we calculate average interval time for each dataset and if the
interval time is less or equal to average interval time we call it low interval time,
otherwise, we call it high interval time. For each dataset and each feature we
calculate the correlation value between the feature and low and high interval
times; these correlation values are shown in Table 3.

In Table 3, we observe that features like Commonin, Commonout, JaccardIn,
JaccardOut, PrefAtt and PrefJacc have high correlation with higher interval
time. For the Enron dataset, some of these features (Commonin, JaccardIn
and PrefJacc) are highly correlated to lower interval time as well. For the
MC-Email dataset, DirectedDist, ALR(v), Out Ratio and PageRank(v) have
noticeable correlation with lower interval time and other two features (RLR(u)
and In Ratio) are inversely correlated to lower interval time. One surprising
observation for the MC-Email dataset is that PageRank(v) is the poorest fea-
ture (Table 2), but highly correlated with both lower and higher interval times,
mainly because the feature is positively correlated for lower interval time and
inversely correlated with higher interval time. From Table 3 we understand
that for different datasets user behavior varies and hence a distinct set of fea-
tures becomes influential to the interval time (especially lower interval time)
of that dataset.

3.4 Proposed methodology using survival analysis

Survival analysis is widely used in the medical domain to predict survival time
or time to a specific event (such as death) for patient datasets (Vinzamuri and
Reddy, 2013), (Wang et al, 2017a). In the survival analysis setup, for a set of
instances under observation, events happen over a time period, from which a
survival model learns the temporal patterns of these events and predicts the
survival time. Here, we propose a novel method to map the RLTP problem
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to a survival analysis task and explain survival analysis concepts from a re-
ciprocal link creation perspective. For these concepts, we also provide suitable
terminology for the RLTP problem to describe our approach clearly.

Beginning of graph expansion and study period: At the first time-
stamp, a given directed time-stamped network is static (initialized); the be-
ginning of graph expansion is the second time-stamp from when new links
are added to the static network. Survival analysis assumes a starting time of
the study, from when a model starts to observe for the events. In the RLTP
problem, the beginning of graph expansion serves as the starting time of the
study. For the RLTP problem, we divide the time-stamps of the network into
train and test time periods, and we observe the network for the reciprocal link
creation till the end of the train period, so the last time-stamp in the train
period is considered to be the end of the study. Thus the time window from
the beginning of graph expansion to the last time-stamp of train period is
considered to be the study period which is the same as the train period.

Reciprocal event: For a parasocial link (v, u), if a reciprocal link (u, v) is
created during the training period, we call it a reciprocal event, which is the
event of interest in the RLTP problem. In the RLTP problem each parasocial
link is a data instance, time-stamp of a parasocial link generation is the time
when the data instance is considered into the network for study. Hence, the
time-stamp of a parasocial link generation is called the starting time of ob-
servation for that data instance (an ordered pair of vertices).

ever-waiting links: We study the network for a limited time window (train
period), and hence for a set of parasocial links, the corresponding reciprocal
event may not be observed before the end of the study (last time-stamp of
training period). We call these links ever-waiting links. ever-waiting links carry
the information that the reciprocal link creation event did not happen till
the end of the train period. In the survival analysis terminology the ever-
waiting links are also called censored instances; we use both of these terms
interchangeably in this paper.

In a traditional regression task, ever-waiting links may either be ignored,
because the target value (the interval time) for these instances are unknown,
or they may be retained with an arbitrarily chosen large interval time, which
is higher than the time difference between the end of the study time and the
starting time of observation for that parasocial link. The first of the above ap-
proaches ignores important information; specifically, the ignored fact is that
the interval time for ever-waiting links is higher than the time difference be-
tween the end of the study and the starting time of observation for that paraso-
cial link. The second approach is simply a crude approximation of the target
value. As mentioned before, the main reason to map the RLTP problem into
survival regression analysis framework is to exploit the important information
provided by the ever-waiting links.
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Target value of survival regression model: The time difference between
the starting time of observation (parasocial link generation time) and the time-
stamp of the reciprocal edge creation is the interval time which we want to
predict in the RLTP task. For a reciprocal edge (u, v), the interval time is
defined as Int(u, v), as is discussed in Section 3.1. In a traditional survival
model, the interval time is called the life-span of an instance as for these mod-
els “death” is the event of interest. Hence survival models that predict survival
time can be adopted to predict the interval time for the RLTP problem. For
training the prediction model, we need a feature vector for each data instance,
along with the survival time and a binary event indication value (event oc-
curred or not). For the RLTP problem, the feature vector of a parasocial edge
is xi ∈ Rd, a vector of topological features (Section 3.3) for the i’th parasocial
link in training data, where feature dimension d is 13 (number of topological
features). For each parasocial links of the training period, if the reciprocal
event has occurred during training period then life-span of parasocial link is
the interval time with the event indication value set to 1; otherwise, for ever-
waiting links, the time difference between the last time-stamp of training and
time-stamp of the parasocial link generation is the survival time with event
indication value set to 0. Given this training dataset the target value (the in-
terval time) of test instances are predicted by using a trained survival model.
We use various survival models, which we discuss in the next subsection.

3.5 Survival models for the RLTP problem

As explained in the previous section, any survival model can be adopted to
solve the RLTP problem. There are two types of widely used survival models:
1) semi-parametric models and 2) parametric models. Parametric models as-
sume that interval time follows a known statistical distribution; hence, if the in-
terval time for a dataset follows a distribution then parametric models perform
very good for the dataset compared to a semi-parametric models. However for
many real-world datasets, it is difficult to find a suitable statistical distribution
that fits well to the interval time, for these datasets semi-parametric models
perform better than parametric models, because semi-parametric models do
not assume any underlying distribution, rather they try to learn the actual dis-
tribution from the data. As we discussed in Section 3.2, some of our datasets
are good fit for a statistical distribution but others are not. Hence, we con-
duct experiments with both semi-parametric and parametric models to offer
a comprehensive study of the RLTP problem. In this section, we describe
these selected semi-parametric and parametric models and their adaptation
for solving the RLTP problem. Broadly, all types of models try to predict the
survival time of an instance in the data by modeling three functions: 1) Sur-
vival function, 2) Hazard function and 3) Event density function. Definitions
and relationship between these three functions are described below:
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Survival function S(t) Survival models provides a principled approach for in-
terval time prediction by modeling a survival function, which is defined as the
probability value that the reciprocal edge creation does not happen for a given
parasocial link before a specified time t.

S(t) = Pr(T ≥ t)

Here, T is a random variable representing the time of the reciprocal edge cre-
ation event.

Hazard function λ(t) is the reciprocal event rate at time t conditional on the
fact that the reciprocal event has not occurred until that time t,

λ(t) =
f(t)

S(t)
(1)

where f(t) is the reciprocal event density function, which is given as follows:

f(t) =
d

dt
(1− S(t)) = − d

dt
S(t)

For a given parasocial link if corresponding reciprocal link is not likely to
be created at time t then Survival function value for t is high. On the other
hand, if the corresponding reciprocal link is highly likely to be created at time
t then the reciprocal event density function value should be high and that leads
to a higher value of the Hazard function. We can observe that both survival
function and hazard function are interrelated and we can model either func-
tion for the interval time prediction. Next, we describe how semi-parametric
Cox regression models the hazard function to solve the RLTP problem. Later
we discuss parametric methods (BJ-model and AFT models) and their ap-
proach for modeling the survival function with the help of different statistical
distributions.

3.5.1 Cox Regression

Cox regression model (Cox, 1972) is the most widely used semi-parametric
model for predicting the (interval) time taken for a reciprocal event to occur.
The basic Cox model follows the proportional hazard assumption, for which
the hazard function λ(t | xi) takes the following form:

λ(t | xi) = λ0(t)× exp(β1xi1 + β2xi2 + ...+ βdxid)

= λ0(t)× exp(xTi β)
(2)

where, xi is the (topological) feature vector of a parasocial link represented
as i’th data instance in the training data and d is the dimensionality of the
features. Here, λ0(t) is called baseline hazard function, and β is the model
parameter which Cox regression model learns. The Cox regression is called
semi-parametric because the baseline hazard function λ0(t) can be any non-
negative function of time. The probability of occurrence of reciprocal event for
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the ith parasocial link (data instance) at time t can be represented as ratio
λ(t|xi)∑

j∈Rt
λ(t|xj) , where Rt is the set of all instances for which the reciprocal event

did not happen until t. The product of these probabilities gives the partial
likelihood function:

L(β) =

N∏
i=1

[
exp(xTi β)∑
j∈Rt exp(xTj β)

]Ci
(3)

Here, N is the total number of parasocial links appeared during the training
period and Ci is an event indicator value, i.e., if reciprocal link for the ith

parasocial link appear during training period then Ci = 1 otherwise Ci = 0.
The model parameter β is learnt by minimizing the negative log likelihood
function. If β̂ is the optimal model parameter, we have:

β̂ = argmin
β

1

N

N∑
i=1

−Ci(xTi β) + Ci log

∑
j∈Rt

exp(xTj β)

 (4)

Regularized Cox model: For complex model with high dimensional real
world datasets, over-fitting is a frequent problem. To avoid this, we need a
regularization term in the objective function (Equation 4). We observe in
Section 3.3.3 that only a few features have a strong correlation with the target
variable, so we want to use a sparse regularization model. In this work we
use Elastic Net regularization. In literature, a Cox model with Elastic Net
regularization is also known as Cox model with Elastic Net (EN) penalty (Zou
and Hastie, 2005). The penalty term PEN is:

PEN (β) =

d∑
k=1

[
α|βk|+

1

2
(1− α)β2

k

]
(5)

Where, 0 < α ≤ 1 and with EN penalty the objective function in Equation 4,
becomes

β̂ = argmin
β

1

N

N∑
i=1

−Ci(xTi β) + Ci log

∑
j∈Rt

exp(xTj β)

+ γ · PEN (β)

(6)

Here, γ > 0 is a regularization constant. For solving this optimization task, we
can use the maximum partial likelihood estimator proposed in (Cox, 1972); it

uses the Newton-Raphson method to iteratively find the estimated β̂ which
minimizes the Equation (6).
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3.5.2 Parametric Models

The main idea behind a parametric model is that it assumes that the interval
time follows a specific statistical distribution. There are two ways to relate
interval time and a statistical distribution: first, assume that the actual interval
time for all parasocial links follows a distribution; and second, assume that the
logarithm of the interval time follows a distribution. The models under the first
assumption are referred to as linear regression models, and the models under
later assumption are called accelerated failure time (AFT) models.

Generally, parametric models use maximum likelihood estimation (MLE)
approach to learn model parameters. Let’s assume all the parameters of a
model are represented by β = (β1, β2, ...)

T . For a given parasocial link (say
ith link in the training data), if it is an ever-waiting link the corresponding
survival function S(t,β) at time t (in fact, any t value during a training period)
should be near to 1, and if it is not an ever-waiting link then the reciprocal
event density function f(ti,β) at time ti (time of reciprocal event for the ith

parasocial link) should be high (near to 1) for that link. Hence, the likelihood
of all parasocial links of a training period is the product of their reciprocal
event density functions or survival functions based on their state (whether the
link is ever-waiting or not), i.e.

L(β) =
∏
Ci=1

f(ti,β) ·
∏
Ci=0

S(ti,β) (7)

Linear regression model: The statistical linear regression with the least
squares estimation is widely used for a variety of regression tasks. However,
the issue with the model is that it cannot use information from ever-waiting
links. For interval time prediction this issue can be handled by using a spe-
cific survival model such as the Buckley-James model (BJ model). The BJ
model first estimates the interval time of training ever-waiting links using the
Kaplan-Meier (KM) (Kaplan and Meier, 1958) estimation method and then
by using all parasocial links from training period to train a linear model. This
linear model can be trained through MLE as described above. For more prac-
tical use, Wang et al. (Wang and Wang, 2010) proposed twin boosting method
with BJ estimator, we use this method to solve the RLTP problem.

Accelerated Failure Time (AFT) model: An AFT model assumes that
the logarithm of the interval time log(T ) follows a statistical distribution and
it is linearly related to the (topological) feature vectors. The general form for
AFT regression model is

log(T ) = X · β + σ · ε (8)

where X is the covariate matrix of size N × d where ith row of X is xi, β is a
d dimensional coefficient vector (model parameters), σ (σ > 0) is an unknown
scale parameter, and ε is an error variable which follows a similar distribution



RLTP Problem 21

Table 4: Density, Survival and Hazard functions for the distributions used with
AFT model. λ is scale parameter and k is shape parameter for both Weibull
and log-logistic distribution. For log-normal distribution µ is the mean (loca-
tion parameter), σ2 is the variance and Φ is cumulative distribution function
of normal distribution.

Distributions Density Function Survival Function Hazard Function

Weibull λktk−1 · exp(−λtk) exp(−λtk) λktk−1

Log-Normal 1√
2πσt

exp(− (log(t)−µ)2
2σ2 ) 1− Φ( log(t)−µ

σ
)

1√
2πσt

exp(− (log(t)−µ)2

2σ2
)

1−Φ(
log(t)−µ

σ
)

Log-Logistic λktk−1

(1+λtk)2
1

1+λtk
λktk−1

1+λtk

to log(T ). For our problem, we use the three most suitable distributions (see
Figure 3) for interval time, the details of which are given in Table 4.

3.6 Algorithmic framework

In Algorithm 1, we describe a general framework of our proposed method.
First we divide the time-stamps of the input graph into train and test periods
as mentioned in line 1 of Algorithm 1. After that we create training data
instances (train-set) and test data instance (test-set) from the corresponding
train and test periods (Lines 2-4). Then we calculate topological features for
each parasocial link (data instance) in the train-set and test-set as described in
Lines 5-10 of Algorithm 1. After that we generate target variable for each data
instance (Lines 11-26), for which we observe the corresponding reciprocal link
in the graph. For a parasocial link e ∈ train-set, if the corresponding reciprocal
link is generated during train period then interval time Int(e) (Section 3.1 )
is the target value with event indicator value Ce = 1 otherwise time difference
between the link creation and end of training period act as the target value
with event indicator value Ce = 0. Similarly, we generate target values for data
instance of test-set as explained in Lines 27-35 of Algorithm 1. Then, we use
R libraries to train the survival models with training data and predict target
values for the test data to generate the test results (test-res) and lastly we
evaluate that test-res.

4 Experiments and Results

We conducted a set of rigorous experiments to demonstrate the benefit of using
censored information and the superiority of proposed survival models to solve
the RLTP problem. We used five proposed survival models: Cox regression
model, AFT model with Weibull, log-normal and log-logistic distributions,
and Buckley-James (BJ) regression model. To prove the fact that the proposed
survival models are better suited for solving the RLTP problem, we compared
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Algorithm 1 Our Framework

1: For time-stamps (t0 to tM ) of the input graph, divide the starting p% time-stamps as
training period (t0 - tp) and remaining as testing period (tp+1 - tM ).

2: train-set← all parasocial links generated before/at time-stamp tp.
3: test-set← all parasocial links generated after time-stamp tp and immortal links.
4: Sort edge in train-set and test-set based on its edge creation time. {optional}
5: for each (edge) e ∈ train-set do
6: Gte ← create a snapshot of the network at te − 1. {sorting helps in this step}
7: xe ← generate topological features (Section 3.3) for edge e from the snapshot Gte.
8: add xe to X.
9: end for
10: Similarly, generate topological features for edges in the test-set and generate Xtest.
11: for each e ∈ train-set do
12: if e has a reciprocal link er in dataset then
13: if ter ≤ tp then
14: ye ← Int(e)← ter − te {target value for the parasocial edge (data instance)}
15: Ce ← 1 {event indicator value for the parasocial edge (data instance)}
16: else
17: ye ← tp − te {target value for the ever-waiting link (data instance)}
18: Ce ← 0
19: end if
20: else
21: ye ← tp − te {target value for the ever-waiting link (data instance)}
22: Ce ← 0
23: end if
24: add ye to T .
25: add Ce to C.
26: end for
27: for each e ∈ test-set do
28: if e has a reciprocal link er in dataset then
29: ye ← Int(e)← ter − te {target value for the parasocial edge (data instance)}
30: Ce ← 1
31: else
32: ye ← tM − te {target value for the ever-waiting link (data instance)}
33: Ce ← 0
34: end if
35: add ye to Ttest.
36: add Ce to Ctest.
37: end for
38: {Use one of the methods among Cox, BJ, and AFT; below we call all three methods}
39: cox ← cocktail(X, T , C) {method of fastcox (R package)}
40: {For given distribution dist}
41: AFTdist ← survreg(X, T , C,distribution=dist) {method of survival (R package)}
42: BJmodel ← bujar(X, T , C) {method of bujar (R package)}
43: The cox, AFTdist and BJmodel contain the model parameters β.
44: test-res← predict interval time ye for each edge e ∈ test-set using Xtest and β.
45: evaluate test-res using Ttest and Ctest.

them with traditional regression models such as ridge regression (RidgeReg),
lasso regression (LassoReg), feed forward neural networks (FFNN) and support
vector regression (SVR). Note that these traditional regression models cannot
use censored information (ever-waiting links). We also compare proposed Cox
regression model with generalized linear model (GML), which is an adopted
model from (Sun et al, 2012).
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In addition to the suitability of the proposed survival models for the RLTP
problem, we also demonstrate the usability of the ever-waiting links. For that,
we conducted experiments where we train the survival models without cen-
sored information and compare the performance of the models on the test
dataset. We report the improvement in the performance when the ever-waiting
links are used for training the survival models.

Lastly, we conduct an experiment to show that reciprocal links with short
interval time contain enough information required for training the survival
models.

4.1 Datasets

For the experiments, we use three real world datasets Epinion, MC-Email and
Enron. We discuss these datasets in Section 3.2 and basic statistics of the
datasets are shown in Table 1.

Generating a synthetic dataset for the RLTP problem is a challenging
task, because in the literature most of the synthetic graph generation models
try to mimic basic real-world properties such as power-law degree distribu-
tion (Faloutsos et al, 1999), community structures (Leskovec et al, 2007), etc.
All these methods generate directed networks with extremely low reciprocity—
generally, less than 1%. Durak et al. have proposed a synthetic network gener-
ation algorithm which also considers reciprocity (Nurcan Durak, 2013). We use
this algorithm for generating three synthetic graphs where the vertex count
varies between 10, 000 (10K) to 30, 000 (30K) with increments of 10K. Edges
of these synthetic networks have no time-stamps; hence, we assign random
time-stamps between 0 to 100 to parasocial links. The time-stamps of recip-
rocal links of these synthetic networks are selected by matching the reciprocal
link interval time of the Epinion dataset through the best fit Weibull distri-
bution.

4.2 Experimental Setting

For our experiments, we divide the time-stamps of a dataset into two non-
overlapping continuous partitions, where the earlier partition is the train pe-
riod and the latter is the test period. In three different experiments, we use,
respectively, 60%, 70% and 80% of the earlier time-stamps as the train peri-
ods and the remaining time-stamps as the test period. For synthetic datasets,
a 70:30 split of the time-stamps is used as the train and test period of our
experiments. For calculating the topological features explained in Section 3.3
for a parasocial link (data instance), we take a snapshot of the network until
the time-stamp of the corresponding reciprocal link or end of the train period
(whichever is earlier).

Like any other link prediction task, RLTP also suffers from the class im-
balance issue, where the number of positive instances (Ci = 1) is much smaller
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than that of the negative instances. To alleviate this problem we use the well-
known majority undersampling (Bunkhumpornpat et al, 2011) strategy as
discussed below: all the reciprocal links generated during a train period are
considered in the training data pool as positive instances and only 50% of
the parasocial links generated during the same period are censored negative
instances (Ci = 0) in the pool. The test data pool (and their labels) are also
generated similarly from the test period. As train and test data instances need
to be from their corresponding time periods, we use a modified K-fold cross
validation, where each fold contains a random subset of train and test data
instances from their respective pools. For all our experiments, we used 5-fold
cross validation in this manner.

For minimizing the objective function (Equation (4)) of censored prob-
lem formulation of RLTP, for the Cox regression model, we used cocktail
algorithm (Yang and Zou, 2013) (the library is provided by the authors of
(Yang and Zou, 2013)). For AFT models and BJ regression, we used Survival
package5 and Bujar package6, respectively, available in R. For RidgeReg, Las-
soReg and SVR, we used scikit-learn python library and for FFNN, we used
Matlab NNtoolbox. We used TopCom indexing method (Dave and Hasan,
2015, 2016) to find shortest directed distance feature. To choose the best pa-
rameters of SVR, we used grid search, where the cost parameter C takes
values from {0.0001, 0.001, 0.01, 0.1, 1.0} and Epsilon (ε) takes values from
{0.0001, 0.001, 0.01, 1.0}.

4.3 Evaluation Metrics

Datasets generated from directed time-stamped networks are longitudinal data
and for the RLTP problem the datasets also contain censored information.
Evaluating models on these datasets using traditional evaluation metrics is
not suitable, instead we use time-dependent AUC (also known as c-Index),
which is widely used in longitudinal data analysis (Pencina and D’Agostino,
2004).

For a pair of data instances, assume (yi, yj) and (ŷi, ŷj) are the target and
the predicted values, respectively. The time-dependent AUC is defined as the
probability of ŷi > ŷj given yi > yj . If target yi has only 2 possible values,
then time-dependent AUC is the same as the popular AUC (Area Under ROC
Curve) metric for classification. Similar to the AUC metric, time-dependent
AUC takes values between 0 to 1, where 1 is the best possible value for this
metric. Time-dependent AUC (TD-AUC) is calculated as follows:

TD-AUC =
1

Ncnt

∑
i:Ci=1

∑
yj>yi

1(ŷj > ŷi) (9)

where, Ncnt is total count of (yi,yj) pairs such that Ci = 1 (the event has
occurred) and yj > yi holds.

5 cran.r-project.org/package=survival
6 cran.r-project.org/web/packages/bujar/index.html
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For the Cox regression model, the predicted value is the hazard value and
for a higher hazard value the event occurs earlier, hence the time-dependent
AUC for Cox can be calculated as:

TD-AUC =
1

Ncnt

∑
i:Ci=1

∑
yj>yi

1(xTi β̂ > xTj β̂) (10)

4.4 Comparison results of survival models and regression models

We compared proposed survival models with four other traditional regression
models and our results are shown in Tables 5, 6 and 7, where columns rep-
resent different training splits and each row represents a prediction model. A
horizontal bar separates the traditional regression models in the upper part
and the survival based models in the lower part. Here, each table cell shows
mean and standard deviation for TD-AUC values. For most of the cases, the
Cox regression model performs the best.

For the Epinion dataset, as depicted in Table 5, the Cox regression model
performs the best with mean TD-AUC 0.7364, 0.7463 and 0.7485 for training
period with 60%, 70% and 80% splits of time-stamps, respectively. Here, with
increase in the training data we can clearly see improvement in the perfor-
mance, which is an expected behavior because with more training examples
the model learns better. BJ model is the next best with performance very
close to the Cox model. For this model also, the mean TD-AUC improves
from 0.7312 to 0.7416 as we increase the training data. Similar behavior is
observed for other survival models, but the performance of the AFT models
is, unfortunately, not good for the dataset. This can be attributed to the fact
that AFT models make strict distribution assumptions on the data and such
assumption may not be suitable for the Epinion dataset (Figure 3).

For the Epinion dataset, among the traditional regression based methods,
ridge regression performs better than any other competing methods with mean
TD-AUC in the range between 0.60 and 0.61. But, when we compare its per-
formance over different training splits, we see that its performance does not

Table 5: Epinion Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.6185 (±.0018) 0.6086 (±.0013) 0.6060 (±.0018)
LassoReg 0.6169 (±.0013) 0.6020 (±.0014) 0.6039 (±.0017)
FFNN 0.5510 (±.1296) 0.5048 (±.0822) 0.4456 (±.0725)
SVR 0.4791 (±.0005) 0.4871 (±.0039) 0.4914 (±.0030)
BJ Model 0.7312 (±.0010) 0.7339 (±.0020) 0.7416 (±.0021)
Weibull 0.3807 (±.0763) 0.5210 (±.1446) 0.5232 (±.1282)
logNormal 0.3660 (±.0388) 0.4461 (±.0283) 0.4283 (±.0305)
logLogistic 0.4901 (±.0098) 0.5110 (±.0196) 0.5132 (±.0188)
Cox 0.7364 (±.0025) 0.7436 (±.0016) 0.7485 (±.0028)
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Table 6: MC-Email Dataset: TD-AUC results [mean (±standard deviation)]
with different splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.6213 (±.0087) 0.6083 (±.0146) 0.6014 (±.0125)
LassoReg 0.5884 (±.0100) 0.5709 (±.0201) 0.5686 (±.0074)
FFNN 0.4199 (±.0800) 0.4609 (±.0964) 0.5069 (±.0915)
SVR 0.5462 (±.0154) 0.5737 (±.0187) 0.5530 (±.0150)
BJ Model 0.5898 (±.0087) 0.5910 (±.0146) 0.6103 (±.0059)
Weibull 0.6139 (±.0075) 0.6171 (±.0069) 0.6315 (±.0166)
logNormal 0.6391 (±.0053) 0.6463 (±.0015) 0.6695 (±.0116)
logLogistic 0.6380 (±.0121) 0.6494 (±.0062) 0.6747 (±.0201)
Cox 0.6527 (±.0097) 0.6558 (±.0125) 0.6797 (±.0062)

Table 7: Enron Dataset: TD-AUC results [mean (±standard deviation)] with
different splits used for training period.

Method / Split 60% 70% 80%

RidgeReg 0.5732 (±.0073) 0.5847 (±.0159) 0.5318 (±.0164)
LassoReg 0.5740 (±.0076) 0.5850 (±.0152) 0.5309 (±.0178)
FFNN 0.4900 (±.0258) 0.5407 (±.0434) 0.5363 (±.0561)
SVR 0.5490 (±.0080) 0.5680 (±.0176) 0.5608 (±.0136)
BJ Model 0.5292 (±.0120) 0.6096 (±.0076) 0.5599 (±.0121)
Weibull 0.5710 (±.0168) 0.6319 (±.0050) 0.5980 (±.0096)
logNormal 0.5713 (±.0146) 0.6146 (±.0097) 0.5862 (±.0129)
logLogistic 0.5787 (±.0171) 0.6224 (±.0069) 0.5917 (±.0101)
Cox 0.5854 (±.0166) 0.6311 (±.0110) 0.5919 (±.0084)

improve as we increase the training data. The same behavior holds for other
traditional regression methods, such as Lasso regression and FFNN. One pos-
sible explanation for this behavior is model under-fitting; that is, the majority
of the errors in the traditional regression models are coming from the bias
error, so the error does not improve much with a larger dataset which re-
duces variance error only. On the other hand, survival analysis based models
are more sophisticated, which enables them to design complex functions for
predicting the time, thus overcoming the under-fitting issue.

For the MC-Email dataset, the overall behavior of the models is very simi-
lar to the Epinion dataset. Here again the Cox regression model performs the
best with mean TD-AUC between 0.65 and 0.68 and its results are improved
for larger training data. Performance of different AFT models vary, but they
all perform better than all of the traditional regression methods. In particu-
lar, AFT with log-logistic and log-normal distributions perform great and their
mean TD-AUC is very close to the results of the Cox regression as shown in
Table 6. The performance of all survival models improve as we provide more
training data. On the other hand, best among the competing methods is ridge
regression with a mean TD-AUC between 0.60 and 0.62. As we have discussed
earlier, this model suffers from under-fitting problem.
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Table 8: TD-AUC results [mean (±standard deviation)] for various methods
on synthetic datasets.

Method 10K 20K 30K

RidgeReg 0.5210 (±.0029) 0.4949 (±.0018) 0.5203 (±.0023)
LassoReg 0.5150 (±.0034) 0.4876 (±.0059) 0.5091 (±.0048)
FFNN 0.4999 (±.0517) 0.4967 (±.0151) 0.5068 (±.0631)
SVR 0.5379 (±.0021) 0.4963 (±.0026) 0.5473 (±.0015)
BJ Model 0.5589 (±.0011) 0.5232 (±.0013) 0.5557 (±.0008)
Weibull 0.5641 (±.0036) 0.4954 (±.0027) 0.5559 (±.0015)
logNormal 0.5670 (±.0027) 0.4991 (±.0030) 0.5618 (±.0011)
logLogistic 0.5597 (±.0029) 0.4985 (±.0042) 0.5576 (±.0019)
Cox 0.5604 (±.0025) 0.5282 (±.0026) 0.5558 (±.0016)

For the Enron dataset, results are shown in Table 7. Here, for the training
period with 60% split, Cox regression performs the best with mean TD-AUC
0.58. For the other two splits, AFT model with Weibull distribution performs
the best with mean TD-AUC 0.63 and 0.59. The BJ model performs poorly
compared to the other survival models with mean TD-AUC ranging from 0.52
to 0.6, but the performance of BJ model is still better than all competing re-
gression methods for training period with 70% and 80% splits of time-stamps.
For this dataset, for 80% training split, none of the models have better per-
formance than the other splits. This is due to the fact that this dataset is
extremely sparse and it has only 3, 007 links created during 944 time-stamps
(Table 1). Hence even the 80% split does not provide more informative training
samples to perform good prediction on remaining data.

The results for synthetic networks are shown in the Table 8 by using the
mean TD-AUC and standard deviation metrics. As we observe the results
in this table, We can easily conclude that survival models always perform
better than traditional regression methods. For two datasets with 10K and
30K node instances, the AFT model with log-normal distribution performs
the best among all, while for the dataset with 20K nodes the Cox regression
performs the best. The performance of survival models is consistently very
similar except for dataset with 20K node where Cox and BJ models clearly
perform better than AFT models. Among competing methods, SVR always
performs better than others.

4.4.1 Comparison with GLM

Sun et al. (Sun et al, 2012) proposed a method to predict link generation time
in a heterogeneous network, where they design a unique feature for the task
and use the feature with generalized linear model (GLM) for the prediction
task. This proposed feature is designed based on meta-path (a simple path with
link label information) in a heterogeneous network. We adopted this feature
for a homogeneous network and the adopted feature can be described as a
number of simple paths of size k between two nodes. Counting the number
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Fig. 6: Comparison of GLM and cox regression

of simple paths is an extremely costly operation especially for a large dataset
such as the Epinion network; hence for this experiment, we use k upto 5 i.e.
k ∈ {2, 3, 4, 5} for all three networks, Epinion, MC-Email and Enron. We
provide these homogeneous feature values to GLM (with gamma distribution)
to solve the RLTP problem. For this experiment we use a 70% split of time-
stamps as train period and remaining 30% as test period. The results of this
experiment are depicted in Figure 6, where GLM is compared with the Cox
regression model for all three datasets. From Figure 6, we observe that the Cox
regression outperforms the GLM model for all three datasets by noticeable
margins. We believe, one of the main reasons for the poor performance of
the GLM based method is that the feature proposed by Sun et al (2012) is
carefully designed for an author-paper based heterogeneous network and its
adoption in a homogeneous network is not very useful.

4.5 Importance of ever-waiting links

We conducted experiments to show the importance of ever-waiting links and
the results are depicted in Tables 9 and 10. Table 9 shows the increment in
TD-AUC up to 62% in the real-world datasets, when the survival models are
provided with censored information (ever-waiting links) during the training,
as compared to when the models are trained without censored information.
For the Epinion dataset, the increment in the results is significant (more than
27% for all models) except AFT with log-normal distribution. Similarly, for
the MC-Email and the Enron datasets the increment is up to 27%, which
is substantial. As shown in Table 10, for the synthetic datasets we also have
very similar increment in the results except for the BJ model with datasets
of 10K nodes. For the most part the increment in performance is high for
the Cox regression and the AFT with Weibull distribution. However, for other
models the increment is limited to around 10%. The modest contribution of
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Table 9: Time-Dependent AUC results [mean (±standard deviation)] for sur-
vival analysis methods with and without ever-waiting Links on real datasets.

Epinion
model w/o ever-waiting with ever-waiting %incr

BJ Model 0.4580 (±.0042) 0.7416 (±.0021) 61.94
Weibull 0.4096 (±.0090) 0.5232 (±.1282) 27.73
logNormal 0.4218 (±.0035) 0.4283 (±.0305) 1.53
logLogistic 0.3767 (±.0024) 0.5132 (±.0188) 36.23
Cox 0.4975 (±.0024) 0.7485 (±.0028) 50.45

MC-Email
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.4787 (±.0131) 0.6103 (±.0059) 27.51
Weibull 0.5517 (±.0101) 0.6315 (±.0166) 14.46
logNormal 0.6342 (±.0146) 0.6695 (±.0116) 5.56
logLogistic 0.6331 (±.0152) 0.6747 (±.0201) 6.57
Cox 0.6102 (±.0137) 0.6797 (±.0062) 11.38

Enron
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5499 (±.0134) 0.5599 (±.0121) 1.82
Weibull 0.5330 (±.0237) 0.5980 (±.0096) 12.20
logNormal 0.5344 (±.0070) 0.5862 (±.0129) 9.71
logLogistic 0.5379 (±.0053) 0.5917 (±.0101) 10.01
Cox 0.5481 (±.0234) 0.5919 (±.0084) 7.99

Table 10: Time-Dependent AUC results [mean (±standard deviation)] for
survival analysis methods with and without ever-waiting Links on synthetic
datasets.

10K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5730 (±.0045) 0.5589 (±.0011) -2.46
Weibull 0.4847 (±.0096) 0.5641 (±.0036) 16.37
logNormal 0.5564 (±.0102) 0.5670 (±.0027) 1.89
logLogistic 0.5546 (±.0128) 0.5597 (±.0029) 0.92
Cox 0.4910 (±.0037) 0.5604 (±.0025) 14.14

20K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.4956 (±.0062) 0.5232 (±.0013) 5.57
Weibull 0.4951 (±.0025) 0.4954 (±.0027) 0.06
logNormal 0.4984 (±.0018) 0.4991 (±.0030) 0.15
logLogistic 0.4965 (±.0055) 0.4985 (±.0042) 0.41
Cox 0.4938 (±.0098) 0.5282 (±.0026) 6.97

30K
model w/o ever-waiting with ever-waiting %incr
BJ Model 0.5548 (±.0049) 0.5557 (±.0008) 0.17
Weibull 0.4544 (±.0020) 0.5559 (±.0015) 22.35
logNormal 0.5270 (±.0044) 0.5618 (±.0011) 6.61
logLogistic 0.5243 (±.0042) 0.5576 (±.0019) 6.35
Cox 0.4637 (±.0051) 0.5558 (±.0016) 19.86

ever-waiting links for the case of synthetic networks can be attributed to the
network generation model. We used Durak et al’s model (Nurcan Durak, 2013),
which selects pairs of vertices for reciprocal link creation based on only degree
distribution without considering any of the social phenomena, so the features
that we are using may be not very effective for the synthetic datasets.
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Fig. 7: Epinion Dataset: Comparison of training with top 20% reciprocal links
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Fig. 8: MC-Email Dataset: Comparison of training with top 20% reciprocal
links and all reciprocal links.

4.6 Importance of reciprocal links with small interval time

For the RLTP problem, reciprocal links carry very useful information and this
information is not distributed uniformly over all reciprocal links. We described
in Section 3.2 that for most of the reciprocal links the corresponding time
interval is relatively small, and very few have high time interval as depicted
in Figure 2. The reciprocal links for which the corresponding time interval is
equal to or less than 20% of the maximum time interval among all the time
intervals of reciprocal links in the dataset are called “top 20%” reciprocal links.
We trained survival models with top 20% reciprocal links (with ever-waiting
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Fig. 9: Enron Dataset: Comparison of training with top 20% reciprocal links
and all reciprocal links.

links) and compared the results of these models with results of models trained
with all reciprocal links (with ever-waiting links).

Results for these experiments are shown in Figures 7, 8, 9, where all red
bars represent different models trained with top 20% reciprocal links and all
black bars represent the same models trained using all reciprocal links. We can
see that, for all three datasets, survival models trained with top 20% reciprocal
links perform very similar or better to the models trained with all reciprocal
links. This observation supports our argument that all reciprocal links do not
carry same amount of information, but notable amounts of information lie in
the reciprocal links with short interval time.

4.7 Contribution of Top-5 features

In Section 3.3.3, we study correlation of different features with interval time.
Through this experiment, we study the contribution of top five highly corre-
lated features (top5-features) to solve the RLTP problem. From the Table 2,
we can find these top5-features for each real-world dataset. We can see, for
Epinion dataset Commonin, Commonout, JaccardIn, PrefAtt and PageR-
ank(u) are highly correlated features. Similarly, for both MC-Email and En-
ron datasets Commonin, Commonout, JaccardIn, PrefAtt and PrefJacc are
the top5-features (Table 2). For this comparison study, we prepared train and
test instances similarly as described in Section 4.2 with 70% training split,
but the difference is, here each data instance is represented by only corre-
sponding top5-features. We use proposed survival models (Section 3.5) with
top5-features data to solve the RLTP problem.

Table 11 shows results for the comparison experiment with mean TD-
AUC value and standard deviation for 5 independent runs. The last column
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Table 11: Time-Dependent AUC results [mean (±standard deviation)] for sur-
vival analysis methods with top5-features and all features.

Epinion
model top5-features all-features %incr
BJ Model 0.6541 (±.0027) 0.7339 (±.0020) 12.20
Weibull 0.4878 (±.0872) 0.5210 (±.1446) 6.80
logNormal 0.3157 (±.0062) 0.4461 (±.0283) 41.32
logLogistic 0.3360 (±.0032) 0.5110 (±.0196) 52.10
Cox 0.6292 (±.0056) 0.7436 (±.0016) 18.19

MC-Email
model top5-features all-features %incr
BJ Model 0.4728 (±.0059) 0.5910 (±.0146) 25.00
Weibull 0.5503 (±.0102) 0.6171 (±.0069) 12.13
logNormal 0.5802 (±.0074) 0.6463 (±.0015) 11.40
logLogistic 0.5917 (±.0125) 0.6494 (±.0062) 9.76
Cox 0.5738 (±.0187) 0.6558 (±.0125) 14.29

Enron
model top5-features all-features %incr
J Model 0.5995 (±.0061) 0.6096 (±.0076) 1.69
Weibull 0.5985 (±.0140) 0.6319 (±.0050) 5.58
logNormal 0.5972 (±.0130) 0.6146 (±.0097) 2.92
logLogistic 0.6043 (±.0070) 0.6224 (±.0069) 2.99
Cox 0.5964 (±.0069) 0.6311 (±.0110) 5.82

in the Table 11 shows the increment in the mean TD-AUC value from top5-
features data to all features data. This table clarifies the importance of the
other features with lower correlation values (Table 2), because for both the
Epinion and the MC-Email datasets the increment in the results is noticeable.
But for the Enron dataset the increment is not very impressive; we believe low
number of data instances and very high correlation of top5-features are the
main reasons for this shortcoming.

5 Conclusion and Future Works

In this paper, we proposed a novel problem, namely, reciprocal link time predic-
tion (RLTP), which has wide applicability in email, social and other directed
networks. We designed various socially meaningful topological features specif-
ically for directed networks, which are useful to solve the RLTP problem. We
mapped the RLTP problem into a survival analysis task and through exper-
iments on three real-life network datasets, we showed that such a framework
is better suited than traditional regression based approaches for solving the
RLTP problem. We demonstrated that using ever-waiting links for training
adds valuable information to the prediction models. We also investigated the
information contributed by the reciprocal links and show that the majority of
the required information lies in the top few percent (20%) of the reciprocal
links. To the best of our knowledge this is the first study on time interval pre-
diction for reciprocal links, which is useful to answer response time for emails
or friend requests. It can also be used for recommendation in trust networks for
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suggesting a new connection (parasocial link) for which, the predicted response
time is very small.

The RLTP is a novel problem and this is one of the earliest and compre-
hensive study of the problem. There do exist some opportunities to extend
our work. For example, we have used basic survival analysis based regression
models, but one can study the timing patterns and design complex regression
model by considering the timing patterns. Also, one can design sophisticated
time dependent topological features that carry more information to solve the
RLTP problem and study different sparse prediction models to find suitable
features for the prediction.
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