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Abstract— In recent years, graphlet counting has emerged as
an important task in topological graph analysis. However, the
existing works on graphlet counting obtain the graphlet counts
for the entire network as a whole. These works capture the key
graphical patterns that prevail in a given network but they fail
to meet the demand of the majority of real-life graph related
prediction tasks such as link prediction, edge/node classification,
etc., which require to build features for an edge (or a vertex) of
a network. To meet the demand for such applications, efficient
algorithms are needed for counting local graphlets within the
context of an edge (or a vertex). In this work, we propose an
efficient method, titled E-CLOG, for counting all 3, 4 and 5
size local graphlets with the context of a given edge for its
all different edge orbits. We also provide a shared-memory,
multi-core implementation of E-CLOG, which makes it even
more scalable for very large real-world networks. In particular,
We obtain strong scaling on a variety of graphs (14x–20x
on 36 cores). We provide extensive experimental results to
demonstrate the efficiency and effectiveness of the proposed
method. For instance, we show that E-CLOG is faster than
existing work by multiple order of magnitudes; for the Wordnet
graph E-CLOG counts all 3,4 and 5-size local graphlets in
1.5 hours using a single thread and in only a few minutes
using the parallel implementation, whereas the baseline method
does not finish in more than 4 days. We also show that local
graphlet counts around an edge are much better features
for link prediction than well-known topological features; our
experiments show that the former enjoys between 10% to 45%
of improvement in the AUC value for predicting future links
in three real-life social and collaboration networks.

I. INTRODUCTION

Frequency distribution of small induced subgraphs (aka
graphlets) captures key connectivity patterns in a given
network, hence this distribution is increasingly being used
for various network analysis tasks. For instance, Rahman et
al. [1] and Ahmed et al. [2] have used graphlet frequencies
for network classification; Ugander et al. [3] have used
the same for modeling network structures. Besides these,
graphlet frequencies have also been used for solving prob-
lems in various other disciplines, examples include biological
network comparisons [4], [5], image classification [6], and
building graph kernels for chemoinformatics [7]. In all the
above applications, a vector representing the frequency (nor-
malized or unnormalized) of small-sized graphlets (typically
3 to 5 vertices) induced in a network is used as a signature
for capturing the connectivity patterns of the entire network
as a whole. Obtaining such a vector is a costly task, but
several recent algorithms have been proposed for solving
it efficiently [1], [2]. To overcome the lack of scalability
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issue, parallel [2], [8] and sampling-based approximation
algorithms [9], [10], [11], [12] have also been proposed.

Global graphlet frequencies are useful for network analysis
tasks where the entire network as a whole needs to be
modeled for the task of network-level classification or com-
parison. Unfortunately, the majority of the real-life network
analysis tasks do not consider the network as a whole, rather
they consider vertices or edges as first-class entities, and
perform prediction on the attributes of nodes or edges. For
example, popular tasks on social networks, such as, expert
search, and role discovery are performed by some form
of node classification [13]. On the other hand, tasks like
link prediction [14], relationship-type prediction, and product
recommendation are solved by edge classification [15]. For
solving such tasks, a global graphlet count considering the
entire network is not much useful. We rather want to obtain
graphlet counts within the local context of a vertex or an
edge for capturing the topological neighborhood around that
vertex or edge. This variant of graphlet counting is called
local graphlet counting, which is increasingly being used
for network analysis tasks. For instance, V. Vacic et al. [16]
have used local graphlet counts to classify protein residues,
A. Nabhan et al. [17] have used local graphlet counts for
keyword identification from text. Many of the link predic-
tion features, such as Adamic-Adar, Jaccard-Coefficient, and
Preferential Attachment are functions of local frequency of
a specific graphlet, namely, a triangle.

Although very useful, there are not many works that
have considered counting the local graphlet frequencies,
beyond triangles. An ad-hoc solution to this deficiency is
to restrict a large graph within a local context by building a
contextual subgraph and then apply global graphlet count
algorithm on that subgraph. For instance Hermansson et
al. [18] have built an ego network of a given node and
then used global graphlet counting on the ego network
to obtain a local graphlet counter. Such a method is an
approximation, and more importantly they are an overkill
because a global graphlet counting method needs to be called
for all vertices (for obtaining node-centric graphlet counts)
or for all edges (for obtaining edge-centric counting). There
exist few works which address local graphlet counting for
the case of triangles. For example, Y. Lim et al. [19] and
Ahmed et al. [20] have proposed estimation method to count
local/global triangles from streaming data. T. Hočevar et
al. [21] have proposed node-centric local grpahlet counting.
Recently, Ahmed et al. [22] have proposed an efficient
parallel algorithm for exact and approximate local graphlet
counting upto size 3, 4-vertex graphlets, which enumerates
only a few graphlets and computes the reamining graphlets
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in constant time (using combinatorial arguments). However,
the existing local graphlet counting methods do not find the
local graphlet counts for different vertex and/or edge orbits.
This is important because orbits represent the role of a vertex
or an edge within a given graphlet. An aggregated count of a
graphlet, without considering orbits, misrepresents the local
topological configuration around a vertex or an edge.

In this paper, we provide an efficient method, namely
E-CLOG1 for obtaining local graphlet counts with respect
to a given edge in a graph. E-CLOG counts all 3, 4, and
5-size local graphlets considering all possible edge orbits
of a graphlet. By considering edge orbits there are 8 of
size-4 and 32 of size-5 graphlets, and E-CLOG obtains the
frequency of all of them. The method is efficient because
it does not enumerate all of the above graphlets, rather it
only enumerates 4 out of 8 size-4 graphlets, and 14 out
of 32 size-5 graphlets. The remaining graphlet counts are
obtained in constant time by combinatorial calculation over
carefully-designed data structures. We also provide a multi-
core parallel implementation of E-CLOG, which is highly
scalable.

We claim the following contributions:
1) We propose E-CLOG, an efficient method for counting

edge-centric local graphlets up-to size-5 considering
edge orbits. To the best of our knowledge, E-CLOG
is the first work that obtains local graphlet counts
for size-5 graphlets. It is also the first work which
considers edge orbits in its counts.

2) We also provide a shared-memory, multi-core imple-
mentation of E-CLOG, which makes it even more
scalable for very large real-world networks.

3) We show experiments which validate E-CLOG’s ef-
fectiveness as local edge features for network analysis,
specifically for the task of link prediction.

II. PROBLEM FORMULATION

Let G(V,E) be a simple, undirected graph, where V is the
set of vertices and E is the set of edges. For a vertex u ∈ V ,
neighbors of u are represented by Γ(u) = {v|(u, v) ∈ E}
and degree of u is represented by d(u) = |Γ(u)|.

Definition 1 (Induced graphlet): An undirected graph
g(V ′, E′) is an induced graphlet of G(V,E), if V ′ is a
subset of V and E′ consists of all of the edges in E that
have both endpoints in V ′. If |V ′| = k, we call it k-size (or
size-k) induced graphlet, or in-short, k-graphlet in G. We
also consider that all k-graplets are connected. �

In this work, given a graph G(V,E) and a specific edge
e = (u, v) ∈ E, we count the frequency of edge centric local
graphlets. Such an edge centric local graphlet (say, g) must
include the given edge e; besides, the remaining vertices of
g must be a neighbor of u and/or a neighbor of v. Below is
a formal definition of edge-centric local graphlets.

Definition 2 (Edge centric local graphlet): Say,
g(V ′, E′) is a k-graphlet of a graph G(V,E). Now,
given an edge (u, v) ∈ E, g is called a size-k edge centric

1E-CLOG stands for Edge Centric Local Graphlet.

local graphlet (or size-k local graphlet), if (u, v) ∈ E′ and
w ∈ V ′ \ {u, v} ⇒ w ∈ Γ(u) ∪ Γ(v). �
Say, Gk(u, v) is the set of all connected graphical topologies
such that each member of this set is a possible k-size edge
centric local graphlet with respect to an edge (u, v). In
Figures 1, we show all members of G3(u, v) and G4(u, v),
and in Figure 3, we show all members of G5(u, v). In each of
these graphlets, the edge (u, v) is clearly identified. Notice
that, if we ignore the vertex labels u and v, there are multiple
graphlets in these figures, which are topologically identical.
For examples, in Figure 1 graphlets g7 and g8 have the
same 4-size graph structure (lets call it two-triangles), but
they are represented as two distinct graphlets (g7 and g8).
We identify these structurally identical graphlets differently,
based on edge orbit of the given edge (u, v). Below we
formally define edge orbit and other necessary terminologies.

Definition 3 (Graphlet Isomorphism): A Graphlet
g1(V1, E1) is said to be isomorphic to another graphlet
g2(V2, E2), if there exists a bijective function fiso : V1 → V2

such that (u, v) ∈ E1 ⇔ (fiso(u), fiso(v)) ∈ E2 and the
bijection function fiso is called graphlet isomorphism from
g1 to g2. �

Definition 4 (Graphlet Automorphism): A graphlet auto-
morphism is graphlet isomorphism with itself, i.e. a bijection
function fauto that maps the set of vertices V1 back to V1

with a different permutation and satisfies the properities of
graphlet isomorphism. �

Definition 5 (Edge orbit): For a given graphlet
g1(V1, E1), edges (u, v), (u′, v′) ∈ E1 are in same
orbit if an automorphism fauto of g1 exists such that
u = fauto(u

′) and v = fauto(v
′). �

Fig. 1: 3,4-size local graphlets

Fig. 2: Example of 4-size non local graphlets. Left: a non-
local edge orbit of 4-path, structurally identical to g2; right: a
non-local edge orbit of tailed-triangle, structurally identical to
g5 and g6.

For the two-triangles structure, any two edges from the
rectangle (excluding the diagonal edge) are in the same orbit
as we can easily map incident nodes of the first edge to
incident nodes of the second edge. Hence, selecting any edge
from these four edges (rectangle) as (u, v) represents the
exact same graphlet g7 in Figure 1. Notice that, if two edges
are in the same orbit they must have the same pair of degrees



for their incident vertices. On the other hand, if two edges
do not have the same pair of degrees then they are definitely
in different orbits. For example, in Figure 1 graphlets g7 and
g8 are separated based on the orbit of (u, v), here d(u) =
2, d(v) = 3 in g7 and d(u) = 3, d(v) = 3 in g8.

In this study, each local graphlet, separated by topological
structure or by edge orbit of the given edge, is referred as
a graphlet type or a graphlet, and we obtain its count. For
instance in Figure 1, there are 10 (g0 − g9) graphlet types.
Notice that, we do not count some graphlet types which
have different edge orbits because they are not identified
as a local graphlet. For example in Figure 2 both 4-path
and tailed-triangle graphlets have different edge orbits than
corresponding graphlet types in Figure 1, but they are not
local because the vertex y in both the graphlets in Figure 2
is neither neighbor of u nor neighbor of v. Hence, we do
not count frequency for such non-local graphlet types.

A. Problem definition

Given an edge (u, v) of an undirected graph G(V,E),
our goal is to count the number of appearances of each k
{3, 4, 5}-size local graphlet type for the edge (u, v) in the
graph G.

III. PROPOSED METHOD

In existing works, there are two distinct philosophies for
counting graphlets: counting by enumeration and counting
with algebraic expressions. In the first philosophy, each
of the graphlet instances are enumerated at least once. It
becomes very costly for large graphs as the number of
graphlets in these graphs easily exceeds hundreds of billions.
On the other hand, counting with algebraic expression is
cheap, as counting is performed by using a combinatorial
approach. Unfortunately, combinatorial counting is easy for
size-3 or size-4 graphlets, but it becomes difficult for size-5
graphlets because the number of graphlet configurations is
substantially higher for the case of size-5 than size-4. Also,

TABLE I: Summary of the notations
Notations Meaning

(u, v) Edge for which local graphlets are being computed
d(u) Degree of the node u
Γ(u) Set of neighboring nodes of the node u
T Set of nodes creating triangles with edge (u, v)
Nu Set of nodes that is only neighbor of u not v
Nv Set of nodes that is only neighbor of v not u

i, j, k
Variables, instantiated as 3rd , 4th and 5th nodes
(after u and v) of 5 size graphlets.

Ti Set of neighboring nodes of i which are also in T
Nui Set of neighboring nodes of i which are also in Nu

Nvi Set of neighboring nodes of i which are also in Nv

S1, S2, S3
Set variables, which take set as a value, depending
on the membership of i, j and k, respectively.

l1, l2, l3

Binary variables, l1 = 1 if i, j is connected, else 0
similarly, l2 = 1 | l3 = 1 if i, k | j, k is connected,
else 0.

C(i, j)S1,S2,S3
l1,l2,l3

Count of set of graphlet type(s) for given i, j and
d/ifferent values of S3, l2, l3.

t Takes values from {1, 2, 3, 4}, based on values of l2
and l3 (1 for 11, 2 for 01, 3 for 10, and 4 for 00).

bi
Bias value need to be deducted to maintain the
i 6= j 6= k property.

di, d Dividing factor(s) to handle duplicate counting.

for the case of local graphlet counting, edge orbits need to
be considered, which makes it even more difficult.

Our proposed method for local graphlet counting is a
hybrid approach, which enumerates only a subset of local
graphlets and obtains the count of the remaining local
graphlets in constant time by using algebraic expression.
Another key innovation of our method is that it utilizes the
count of sub-graphlets to efficiently compute the count of a
larger size graphlet, which contains the sub-graphlet. Thus,
our method first counts the size-3 local graphlets, and then
uses these to count size-4 local graphlets, and then iteratively
uses those counts to count size-5 local graphlets. Finally, our
proposed method uses a generic counting algorithm, which
counts the frequency of different graphlets by setting the
value of a small number of template variables, which makes
the method easy to understand and implement. In Section III-
A, we first discuss the method used to count 3 and 4-size
local graphlet types. Then, in Section III-B, we discuss the
method for counting 5-size graphlets. In Table I we show all
the notations that are used in the discussion.

A. 3 and 4 size local graphlet counting

Given an edge (u, v), counting size-3 local graphlets is
easy. There are only two such graphlets, open triple (g0)
and triangle (g1), and both the structures have only one edge
orbit. We count them from Γ(u) and Γ(v) by finding three
disjoint sets of vertices: T , Nu, and Nv , where T = Γ(u)∩
Γ(v), Nu = Γ(u)\T , and Nv = Γ(v)\T . Note that, vertices
u and v are not included in any of these sets, i.e. u, v 6∈
(T ∪ Nu ∪ Nv), this is because we consider only simple
graph without any self loop so no vertex is a neighbor of
itself. Also T,Nu and Nv are pair-wise disjoint i.e.

Nu∩T = φ & Nv∩T = φ & Nu∩Nv = φ

T contains the vertices which are neighbors of both u and
v, thus forming a triangle and Nu contains neighbors of u
which are not neighbors of v, so these vertices are terminal
vertices of open triples centered at u, and identically, Nv
contains the terminal vertices of open triples centered at v.
Then f0 = |Nu| + |Nv| and f1 = |T |. This completes the
counting of size-3 local graphlets for the given edge (u, v).

There are total eight size-4 local graphlets, of which
we enumerate 4 of them, and we obtain the count of the
remaining graphlets in constant time by using algebraic
expression. Besides, for efficient enumeration, we use the
set T , Nu and Nv which we obtain while counting the size-
3 local graphlets.
Counting g9 (4-clique): Say, a vertex x ∈ T forms a triangle
with (u, v). Now, if another vertex y ∈ Γ(x) also forms a
triangle with (u, v), the induced topology (u, v, x, y) forms
a 4-clique. To avoid double counting, we use the condition
that the identifier of x is higher than that of y.
Counting g4 (4-cycle): If x ∈ Nu, y is a neighbor of x, and
y ∈ Nv , then (u, v, x, y) forms a 4-cycle.
Counting g5 (tailed-triangle): Based on edge orbits this
structure includes two graphlet types g5 and g6, of which we
enumerate g5 (tailed-triangle with (u, v) as tail), and obtain



g6 in constant time. If, x ∈ Nu, and y is a neighbor of x,
and y ∈ Nu, then (v, u, x, y) forms a g5, in which v is the
tail vertex. To avoid double counting, we use the constraint
x > y. A symmetric enumeration where x ∈ Nv obtains
tailed-triangle with u as the tail vertex.
Counting g7 (two-triangles): This graphlet has two edge
orbits, g7 and g8, of which we enumerate g7 and obtain g8
in constant time. If x ∈ Nv , and y ∈ Γ(x), and y ∈ T ,
(u, y, x, v) forms a two triangle with (v, y) as the diagonal
edge. A symmetric enumeration where x ∈ Nu obtains two-
triangles with (u, y) as the diagonal edge.

The frequencies of the remaining four graphlet types
(g2, g3, g6, g8) can be calculated in constant time by using
the following equations:

f2← |Nu| × |Nv| − f4 (1)

f3←
(
|Nu|

2

)
+

(
|Nv|

2

)
− f5 (2)

f6← |T | × f0− f7 (3)

f8←
(
|T |
2

)
− f9 (4)

The detailed steps for the method are available in Algo-
rithm 1. In this algorithm we use f to represent the frequency
vector that contains frequency of all the graphlet types
(size-3, 4 and 5) and fN represents frequency of a specific
graphlet type gN . In the algorithm lines 5-14 generates
three distinct sets T,Nu and Nv . The map data structure,
status map, maps a vertex to values α, β, or γ to represent
the membership from sets T,Nu, or Nv , respectively. In the
Algorithm 1, Lines 17-20 show iteration over elements of
T and counting 4-clique frequency and Lines 21-28 (29-34)
show iteration over elements of Nu (Nv) to count frequencies
of graphlet types g4, g5, and g7.

B. 5-size Local Graphlet Counting

For counting 5-size local graphlet types, we utilize the
enumeration of 4-size local graphlets. Given edge (u, v),
and a 4-size local graphlet, we first obtain all feasible fifth
nodes, and based on the connections of the fifth node with
the 4-size graphlet nodes, we identify and count different
5-size graphlet types. This method appears straight-forward,
but counting all 5-size local graphlet types efficiently while
avoiding enumeration of all graphlet types is a challenging
task. Our method enumerates only 14 size-5 local graphlet
types and calculates other 18 local graphlet types in constant
time using algebraic expressions. See the Table II.

A key observation regarding a size-5 local graphlet for
a given edge (u, v) is that the remaining three vertices of
this graphlet must be from T , Nu, or Nv . This is due to
the definition of local edge-centric graphlet, which requires
that the remaining three vertices to be neighbors of u, or v
or both (see Definition 2). We denote these vertices as i, j
and k, such that they are distinct, i.e., i 6= j 6= k; the 3rd

vertex is represented as i, the 4th as j and the 5th as k.
Now, there are total 9 different combinations based on the

Algorithm 1: GET 3− 4 GRAPHLETCOUNT(G, u, v)
1: initialize frequencies // f0− f41 ← 0
2: initialize unique neighbor sets of u and v // Nu ← {} , Nv ← {}
3: initialize common neighbor set // T ← {}
4: initialize status of each vertex in G // for each x do status map(x)← φ
5: for each x ∈ Γ(u) do
6: if x 6= v then
7: Nu ← Nu ∪ x, status map(x)← α // α represents membership of

Nu

8: for each x ∈ Γ(v) do
9: if x 6= u then

10: if status map(x) = α then
11: T ← T ∪ x, status map(x)← γ // overwrite α with γ

(membership of T )
12: Nu ← Nu \ x // remove the element x from Nu

13: else
14: Nv ← Nv ∪ x, status map(x)← β // β represents membership

of Nv

15: f0← |Nu|+ |Nv| // number of unique neighbors (no triangles)
16: f1← |T | // number of triangles
17: for each x ∈ T do
18: for each y ∈ Γ(x) do
19: if status map(y) == γ and y < x then
20: f9← f9 + 1 // 4clique
21: for each x ∈ Nu do
22: for each y ∈ Γ(x) do
23: if status map(y) == α and y < x then
24: f5← f5 + 1 // tail-triangle with (u, v) as tail
25: else if status map(y) == β then
26: f4← f4 + 1 // 4cycle
27: else if status map(y) == γ then
28: f7← f7 + 1 // 2triangles with (u, y) as diagonal link
29: for each x ∈ Nv do
30: for each y ∈ Γ(x) do
31: if status map(y) == β and y < x then
32: f5← f5 + 1 // tail-triangle with (u, v) as tail
33: else if status map(y) == γ then
34: f7← f7 + 1 // 2triangles with (v, y) as diagonal link
35: calculate f2, f3, f6, f8 using Equations 1, 2, 3, 4.
36: return f, T,Nu, Nv, status map

TABLE II: List of enumerating and non-enumerating 5-size
local graphlet types

Enumerated g11, g14, g17, g20, g22, g23, g26, g27, g28,
g33, g34, g37, g39, g41

Not enumerated g10, g12, g13, g15, g16, g18, g19, g21, g24,
g25, g29, g30, g31, g32, g35, g36, g38, g40

joint membership of i, j, and k within the sets T , Nu, and
Nv and each of these combinations lead to different sets of
local graphlets. Besides, these combinations are exhaustive
i.e., they cover each and every local edge-centric graphlet
given the edge (u, v). Also, there is no false-positive, that
is every choice of three vertices i, j, and k within these the
sets T,Nu and Nv leads to a valid graphlet which we need
to consider in our counting. So, for counting all size-5 local
graphlets given (u, v), it suffices that we count all graphlets
by efficiently enumerating i, j, and k over the three sets T ,
Nu and Nv .

To write a generic algorithm that enumerates and counts
graphlets within each of the above 9 combinations, we use
three selector variables S1, S2, S3, which take values from
sets T,Nu, and Nv based on the membership of i, j, k within
these sets. For instance, for an enumeration, if i, j, k ∈ T
we have S1 = S2 = S3 = T . Thus, values of S1, S2, and
S3 denote an equivalence class, and size-5 local graphlets
within one equivalence class can be counted efficiently. Now,
conditioned on the equivalence class, edges between the
vertices {u, v} and {i, j, k} are already fixed. But, based on
the existence of edges between i, j, and k one equivalence



Fig. 3: 5-size local graphlets

i: Example of graphlet types cre-
ated using variable l2 = 0/1 and
fixed S3 = Nu and l3 = 0 ii: Example of graphlet types cre-

ated using variable l2 = 0/1 and
fixed S3 = Nu and l3 = 1

Fig. 4: Illustration of how different values of l2 and l3
generates different graphlet types

class may lead to more than one local graphlet. We use the
binary variable l1, l2, l3 ∈ {1, 0} for denoting edge existence
between i, j, and k; l1 = 1 if (i, j) ∈ E else 0, l2 = 1 if
(i, k) ∈ E else 0 and l3 = 1 if (j, k) ∈ E else 0. This leads
to 8 possible choices within an equivalent class.

From the above discussion, we can obtain a simple size-5
local graphlet enumerator, using three nested for loops for
vertices i, j, and k, each iterating over the set T , Nu and Nv
and within the body of the innermost for loop, the enumerator
determines the graphlet type based on the value of l1, l2, and
l3. However, such a method enumerates all local graphlet
instances and hence is not efficient.

Our approach for counting 5-size graphlets is that we
enumerate over each 4-size graphlets and then without
enumeration we count the number of different graphlets
based on the topological disposition of possible 5th node.
This saves a large number of enumerations and yields a
vastly improved local graphlet counting algorithm. Besides,
the degree of freedom of search space becomes smaller,
because when a 4-graphlet is given, the third and fourth
vertices, i, j are fixed, and the values of S1, S2 and l1 are
known; then the values of S3, l2 and l3 decide the specific
type of the size-5 graphlet.

Example: In Figure 4, we show a specific enumeration, in
which i ∈ T and j ∈ Nv , and we would like to count all
local graphlets for which the fifth vertex k belongs to Nu,
i.e., the selector variable, S3 = Nu. The possible candidates
for the vertex k are shown within dotted ovals. Also, in this
example the vertex i, and j are not connected, so l1 = 0.
Now, the four possible values of l2, l3 create four different
types of size-5 graphlets, which are g12, g21, g23, and g32.
The left figure shows the case for l3 = 0 (k is not connected

with j) and the right figure shows the case for l3 = 1 (k
and j are connected). For both the left and the right figures,
the vertices shown in the dotted oval labeled as “group1”
exhibit l2 = 0 and produce g12 (on left figure) and g23 (on
the right figure). Likewise, the vertices in “group2” stands
for l2 = 1 and they produce g21 (on left figure) and g32 (on
right figure). �

To facilitate effective counting by iterating over 4-
graphlets, we compute a few more vertex-sets beyond T , Nu
and Nv , by utilizing Γ(i), the adjacency vector of the third
vertex i. For different values of l1, the 4th vertex j belongs
to different subsets of the sets, T,Nu or Nv . For example,
if S2 = T , then for l1 = 1, j must belong to Γ(i) ∩ T and
for l1 = 0, j belong to T \ Γ(i). We represent these sets as
below:
Ti = Γ(i)∩ T , Nui = Γ(i)∩Nu , Nvi = Γ(i)∩Nv
Ti = T \ Γ(i), Nui = Nu \ Γ(i), Nvi = Nv \ Γ(i)
In our template algorithm we refer to the above sets by using
their selector variable. For example, for the selector variable
S3, we will write the set as S3i which is equal to Γ(i)∩S3;
thus S3i can be Ti, or Nui or Nvi depending on whether S3

is T , Nu or Nv .
As mentioned earlier, for a given 4-size graphlets, say,

(u, v, i, j), we count (without enumeration) the number
of different graphlets based on the topological disposition
of possible 5th node . To facilitate this, we define the
term C(i, j)S1,S2,S3

l1,l2,l3
. It represents the total count of size-

5 graphlets which contain (u, v, i, j) as their sub-graphlet.
In C(i, j)S1,S2,S3

l1,l2,l3
, i and j are given, thus S1, S2, and l1

are already fixed. Thus the value of C(i, j)S1,S2,S3

l1,l2,l3
is the

number of 5-graphlets for the assigned values of S3, l2 and
l3. By fixing these three variables, we can obtain the count of
a specific graphlet. For example, C(i, j)S1,S2,S3

l1,1,0
represents

the count of a graphlet type generated from the current i, j
vertices and all possible k ∈ S3 such that l2 = 1, l3 = 0.
More specific example is C(i, j)T,T,T1,1,1 , which represents the
count of 5-size cliques for given i, j values. Because, here all
three vertices i, j, k are connected to both u and v and they
themselves are also pair-wise connected (l1 = l2 = l3 = 1),
which creates a fully connected size-5 subgraph (a 5-clique).
Similarly, C(i, j)T,T,T1,0,1 represents count of graphlet type g40
for given i, j values.

For unknown values of l2 and/or l3, we use ∗, hence total
count of graphlet types for given values of i, j, S3 and l2 but
unknown value of l3 can be represented as C(i, j)S1,S2,S3

l1,l2,∗ .
For example, total count of graphlet types {g12, g18} in



Figure 4i can be represented as C(i, j)T,Nv,Nu

0,∗,0 and total
count from Figure 4ii is C(i, j)T,Nv,Nu

0,∗,1 . Similarly, if both
l2 and l3 are unknown then we use C(i, j)S1,S2,S3

l1,∗,∗ , so
C(i, j)T,Nv,Nu

0,∗,∗ is the total count for all the four kinds of
graphlets in Figure 4. Now the value of C(i, j)S1,S2,S3

l1,∗,∗ can
be obtained by using the following theorem.

Theorem 1:

C(i, j)S1,S2,S3

l1,∗,∗ =


|S3|, if (S3 6= S1 ∧ S3 6= S2)

|S3|−1, if ((S3 = S1 ∧ S3 6= S2)
∨(S3 6= S1 ∧ S3 = S2))

|S3|−2, if (S3 = S1 ∧ S3 = S2)


Proof:

For each value of k ∈ S3, the induced graphlet
(u, v, i, j, k) matches a specific local graphlet type. However,
it will always add a count to C(i, j)S1,S2,S3

l1,∗,∗ regardless of
the graphlet type. Hence, the count of C(i, j)S1,S2,S3

l1,∗,∗ is the
same as the cardinality of S3. Now, if vertices i and/or j are
also from the same set as S3 i.e. S1 = S3 and/or S2 = S3

(note that S1, S2, S3 can take only three different values from
{T,Nu, Nv}, and they can have same values), then we need
to deduct the total count by 1 if only i or only j is from the
same set and deduct the count by 2 if both i, j are from the
same set as S3; total count reduces by 1 (or 2) because all
three vertices (i, j, k) are distinct (i 6= j 6= k).

For the case when the value of l2, or l3 is also known, we
have the following theorem.

Theorem 2:

C(i, j)S1,S2,S3

l1,1,∗ =

{
|S3i|−1, if (S3 = S2 ∧ l1 = 1)

|S3i|, otherwise

C(i, j)S1,S2,S3

l1,∗,1 =

{
|S3j |−1, if (S3 = S1 ∧ l1 = 1)

|S3j |, otherwise
Proof:

For C(i, j)S1,S2,S3

l1,1,∗ , we know that k ∈ S3 ∩ Γ(i), hence
total possible count is equal to the size of the set S3i =
S3 ∩ Γ(i). We also need to ensure that j 6= k, hence if
S2 = S3 and j is also a neighbor of i (to make a symmetry
to the condition that k is a neighbor of i), we need to
deduct the count by one. A similar argument also holds for
C(i, j)S1,S2,S3

l1,∗,1 .
Now, the following Theorem and corollaries help us to

count several graphlets in constant time simply by using
algebraic expression.

Theorem 3:

C(i, j)S1,S2,S3

l1,∗,∗ = C(i, j)S1,S2,S3

l1,0,0
+ C(i, j)S1,S2,S3

l1,0,1
+

C(i, j)S1,S2,S3

l1,1,0
+ C(i, j)S1,S2,S3

l1,1,1
Corollary 1:

C(i, j)S1,S2,S3

l1,0,0
= C(i, j)S1,S2,S3

l1,∗,∗ − C(i, j)S1,S2,S3

l1,∗,1 −
C(i, j)S1,S2,S3

l1,1,∗ + C(i, j)S1,S2,S3

l1,1,1
Corollary 2:

C(i, j)S1,S2,S3

l1,1,0
= C(i, j)S1,S2,S3

l1,1,∗ − C(i, j)S1,S2,S3

l1,1,1
Corollary 3:

C(i, j)S1,S2,S3

l1,0,1
= C(i, j)S1,S2,S3

l1,∗,1 − C(i, j)S1,S2,S3

l1,1,1

Algorithm 2: Template Algorithm for N th Graphlet
1: assign S1, S2, S3 to the right set for graphlet N from

Table III
2: select t ∈ {1, 2, 3, 4}, bi, di, and d for graphlet N from

Table III
3: 〈v1i, v2i, v3i, v4i〉 ← 0 // initialization
4: for all i ∈ S1 do
5: 〈v1oldij , v2oldij , v3oldij , v4oldij 〉 ← 0 // initialization
6: for all j ∈ S2 do
7: 〈v1newij , v2newij , v3newij , v4newij 〉 ←

〈v1oldij , v2oldij , v3oldij , v4oldij 〉+ get freq k(i, j, S3)
8: 〈v1oldij , · · · , v4oldij 〉 ← 〈v1newij , · · · , v4newij 〉

// end of loop for j
9: vti ← vti + (vtnewij − bi)/di
// end of loop for i

10: fN ← fN + vti/d

Algorithm 3: get freq k(i, j, S3)

1: S3ij ← S3i ∩ S3j

2: v1 = |S3ij |
3: v2 = |S3i| − |S3ij |
4: v3 = |S3j | − |S3ij |
5: v4 = |S3| − |S3i| − |S3j |+ |S3ij |
6: return 〈v1, v2, v3, v4〉

C. Generic Counting Algorithm
In Algorithm 2, we provide a generic algorithm for

counting all size-5 local graphlets. In this generic algorithm,
we consider the following variables, S1, S2, S3, t, bi, di and
d as template variables and a specific set of values for
these variables gives the frequency of a specific graphlet
type. Among these S1, S2 and S3 are selector variables (for
vertices i, j and k), t is an integer between 1 and 4 depending
on the joint value of l2 and l3, bi is the bias which is
the count adjustment when multiple selector variables have
the same value. The bias values are computed by using
Theorem 1 and Theorem 2. Even after addressing for the
obvious duplication by maintaining order among the vertices
i, j, and k, some graphlets are generated multiple times, di
and d are normalizing factors to ensure that each of the local
graphlets are counted once and exactly once.

The detailed information on graphlet type and the associ-
ated values of the template variables are shown in Table III.
As shown in this table, the variable S1 takes values from
Nu or T , S2 takes values conditioning on the fact whether
the second vertex is adjacent to first vertex or not. So, it
takes values from Ti, Nui, Nvi or their complements Ti, Nui,
Nvi. And S3 takes value from Nu, Nv , or T . The bias and
normalizing factor values are also shown in this table. In this
table, we also have three other variables, S1r, S2r and S3r.
They will be discussed in Section III-D.

Algorithm 2 uses a sub-routine, Algorithm 3, where
|S3ij | represents value of C(i, j)S1,S2,S3

l1,1,1
. Using Theorem 2,

Corollary 2 and 3, we calculate frequencies of specific
graphlet types represented as f2ij and f3ij in the algorithm.



Similarly, line 5 of the algorithm gives frequency of a
graphlet type where k is not connected to either i or j using
Theorem 1 and Corollary 1. The deduction from the total
count (in both Theorem 1 and 2) for maintaining i 6= j 6= k
property, is adopted as a bias value bi in the Algorithm 2.

Example: Frequency of the 5-size clique i.e. graphlet type
g41 can be calculated using template variable values S1 = T ,
S2 = Ti, S3 = T , t= 1, bi = 0, di = 2 and d = 3.
For 5 size clique, as shown in the Figure 5, three vertices
(a, b, c) other than u and v need to be from set T , hence
S1 = T , S2 = T and S3 = T and all three vertices need to
be interconnected, so we use S2 = Ti (l1 = 1) and t = 1
(f1ij ⇒ l2 = 1, l3 = 1). Now, as we can see for each i,
selection of j and k are interchangeable i.e. in Figure 5i j
and k are interchangeable between vertices b and c. Therefore
this graphlet will be counted twice for each i, which leads to
di = 2. Similarly, in Figure 5ii, we can see that we select all
the 3 vertices (a, b, c) as an i one by one (Algorithm 2: line
1), hence we need to divide the total count by 3 i.e. d = 3.

D. Counting frequency of non-symmetric local graphlets

Definition 6 (Vertex orbit): For a given graphlet g(V,E),
vertexes u, v ∈ V are in same orbit if an automorphism fauto
of g exists such that u = fauto(v). �

Definition 7 (Symmetric local graphlets): For a given
edge (u, v) a local graphlet g is called symmetric if vertices
u and v are in the same vertex orbit for g. �
For symmetric local graphlets we do not need to count
frequency for reverse sequence of the vertices v, u (instead
of u, v). For a symmetric local graphlet, d(u) = d(v) and
also graphlet structure remains the same after exchanging
neighborhood of the vertices u and v. For example, as shown
in Figure 6i for graphlet type g31, d(u) = d(v) = 3
and when we exchange neighbors of u and v the graphlet
structure remains the same, because vertex u and v are in
the same orbit. On the other hand, Figure 6ii shows two
examples of non-symmetric graphlets of type g19 and g27.

i: 5 clique graphlet (i = a) ii: 5 clique graphlet (i = b/c)

Fig. 5: 5 clique graphlet counting

i: Example of edge
Symmetric graphlet

ii: Examples of edge non-symmetric
graphlets

Fig. 6: Example of edge symmetric and non-symmetric
graphlets

TABLE III: Set of values for template variables to count
various 5 size local graphlets

grap-
S1 S2 S3 t bi di d S1r S2r S3rhlet

g10 Nu Nui Nv 4 0 1 2 Nv Nvi Nu

g11 Nu Nui Nu 4 2 · |S2| 2 3 Nv Nvi Nv

g12 T Nui Nv 4 0 1 1 − − −
g13 Nu Nui Nv 4 0 1 2 Nv Nvi Nu

g14 T Nui Nu 4 |S2| 2 1 T Nui Nv

g15 Nu Nui Nu 4 0 1 2 Nv Nvi Nv

g16 Nu Nui Nv 3 0 1 1 Nv Nvi Nu

g17 T Ti Nu + Nv 4 0 1 2 − − −
g18 T Nui Nu 4 0 1 1 T Nvi Nv

g19 Nu Nui Nu 3 |S2| 1 2 Nv Nvi Nv

g20 Nu Nui T 4 0 1 2 Nv Nvi T
g21 T Nui Nv 4 0 1 1 T Nvi Nu

g22 Nu Nui Nv 1 0 1 2 Nv Nvi Nu

g23 T Nui Nv 3 0 1 1 − − −
g24 Nu Nui Nv 3 0 1 1 Nv Nvi Nu

g25 T Nui Nu 2 0 2 1 T Nvi Nv

g26 T Ti T 4 2 · |S2| 2 3 − − −
g27 T Ti Nu + Nv 4 0 1 2 − − −
g28 Nu Nui Nu 1 0 2 3 Nv Nvi Nv

g29 T Nui Nu 3 0 1 1 T Nvi Nv

g30 T Nui T 4 0 1 1 T Nvi T
g31 T Nui Nv 2 0 1 1 − − −
g32 T Nui Nv 3 0 1 1 T Nvi Nu

g33 Nu Nui Nv 1 0 1 2 Nv Nvi Nu

g34 T Nui Nu 1 0 2 1 T Nvi Nv

g35 T Ti T 4 0 1 2 − − −
g36 T Nui T 2 0 1 1 T Nvi T
g37 T Nui Nv 1 0 1 1 − − −
g38 T Nui T 3 |S2| 1 2 T Nvi T
g39 T Nui T 1 0 1 2 T Nvi T
g40 T Ti T 3 |S2| 1 2 − − −
g41 T Ti T 1 0 2 3 − − −

To calculate the correct frequency for non-symmetric
graphlets, we need to count occurrence of the graphlet with
reverse sequence of the vertices. For example, in Figure
6ii(1) a, b and c all are neighbors of u and d(u) = 4.
However to count the correct frequency of the graphlet
type g19, we need to count frequency for the graphlet
shown in Figure 6ii(2) where d(v) = 4 and a′, b′ and
c′ all are neighbors of v. To count the correct frequency
for the graphlet in Figure 6ii(1), template variables take
values S1 = Nu, S2 = Nui and S3 = Nu. But to count
frequency of the graphlet in Figure 6ii(2), the variable values
become S1r = Nv , S2r = Nvi and S3r = Nv , where
S1r represents reverse version of S1 as shown in Table III.
Template variables t, bi, di and d remain the same for both
cases. Because when we calculate f3ij using Algorithm 3,
Nuj (S3j) also includes vertex represented by i (here a),
hence we need to subtract 1 from f3ij for each j. We subtract
this value combined using bias bi = |S2|. Lastly, we also
count the same graphlet two times considering i = a and
i = c, hence we divide the global count by d = 2.

Another example of non-symmetric graphlet is graphlet
type g27. To count correct frequency for this type, we just
need to sum up possible unique neighbors of u and unique
neighbors of v (with red dotted line). To calculate both cases
as shown in Table III, we just need to put two different values
(Nu and Nv) of template variable S3 and sum the resultant
frequency values.

E. complexity

For 5-size local graphlets counting, any regular algorithm
generally takes O(∆3) time for each edge [1], where ∆ is



maximum degree in the graph G. However, time complexity
of our method for the same (Algorithm 2) is O((Tmax +
Nmax
u + Nmax

v )3), where Tmax is the largest value of |T |
out of all edges of the graph. Similarly Nmax

u and Nmax
v

represent largest value of |Nu| and |Nv| respectively. We
can claim that for real world networks O((Tmax +Nmax

u +
Nmax
v )3) < O(∆3), because for any edge (u, v), |Nu| =

d(u) − |T | and |Nv| = d(v) − |T |, and for any real-world
sparse network 0 ≤ Tmax � ∆. Also, for any node with
highest degree there is very low probability that |T | = 0,
hence |T | > 0 and Nmax

u < ∆ and Nmax
v < ∆.

F. Parallel version of E-CLOG

E-CLOG is embarrassingly parallelizable, as the main
work is performed over two for loops and operations in-
side the loops are independent for each iteration. Addition-
ally, each edge can have unique independent data structure
(T,Nu, Nv) values, hence parallel computation over edges
is highly effective for large number of edges. We use only
second strategy in our implementation.

IV. EXPERIMENTS AND RESULTS

We conducted three different experiments to show effi-
ciency, scalability and usability of the proposed method.
In the first experiment, we compare running time of our
method with GRAFT [1]. In the second experiment we show
that, nearly linear speed-up can be achieved for the parallel
version of the E-CLOG. Lastly, in the third experiment, we
show the utility of local graphlet frequencies for solving link
prediction problem.

We collected 18 different graph datasets from different
domains from KONECT2. We have 3 biological networks:
ARENAS-META is a metabolic network, MAAYAN-VIDAL and
REACTOME are protein interaction networks. Arenas-png is
an interaction network of users of the Pretty Good Privacy
(PGP) algorithm. AC-CAIDA and TOPOLOGY are networks
of autonomous systems of the Internet. CA-ASTROPH and
COM-DBLP are co-authorship graphs, and COM-AMAZON
is a co-purchase network of Amazon. There are 4 different
types of online social networks: DOUBAN is an online
recommendation based social network, FACEBOOK-WOSN is
an online friendship network, LOC-BRIGHTKITE is a location
based social network and PETSTER-HAMSTER is a friendship
network of pet owners. We have few infrastructure based
networks, such as OPSAHL-POWERGRID is a power-grid net-
work, and three road networks ROADNET-CA, ROADNET-
PA and ROADNET-TX for three different states of the USA.
WORDNET-WORDS is a lexical network of words from the
WordNet dataset. We generated two synthetic networks3

using a small-world phenomenon to check scalability of our
method for huge networks with higher average degree. Some
basic statistics such as number of vertices (|V |), number of
edges (|E|), and average degree (Avg.Deg) for the datasets
are shown in the Table IV.

2Koblenz Network Collection: konect.uni-koblenz.de/
3NetworkX-Python Library: networkx.github.io/

TABLE IV: Dataset statistics
Datasets |V | |E| Avg.Deg

ARENAS-META 453 2,025 8.94
MAAYAN-VIDAL 3,023 6,149 4.07
OPSAHL-POWERGRID 4,941 6,594 2.67
PETSTER-HAMSTER 2,426 16,630 13.71
ARENAS-PGP 10,680 24,316 4.55
AC-CAIDA 26,475 53,381 4.03
TOPOLOGY 34,761 107,719 6.20
REACTOME 6,229 146,160 46.93
CA-ASTROPH 18,771 198,050 21.10
LOC-BRIGHTKITE 58,228 214,078 7.35
DOUBAN 154,908 327,161 4.22
WORDNET-WORDS 146,005 656,999 9.00
FACEBOOK-WOSN 63,731 817,035 25.64
COM-AMAZON 334,863 925,872 5.53
COM-DBLP 317,080 1,049,866 6.62
ROADNET-CA 1,965,206 2,766,607 2.82
ROADNET-PA 1,088,092 1,541,898 2.83
ROADNET-TX 1,379,917 1,921,660 2.79
SMALLWORLD-1M 1,000,000 7,499,767 14.99
SMALLWORLD-5M 5,000,000 37,501,514 15.00

A. Runtime Comparison

There exist no methods that perform local edge-centric
graphlet counting for size-5 graphlets. There exist two re-
cent global methods for exact counting of size-5 graphlets:
GRAFT [1], and ESCAPE [23]; from which, GRAFT iterates
over each of the edges of the input graph and aggregates
the sub-counts of the graphlets that are incident to the edge
of that iteration. At the end, it divides the duplicity factors
of each graphlet to obtain the global graphlet counts. Thus
GRAFT, indirectly, is an edge centric local graphlet counting
method, which produces count of local 5-graphlets for each
edge. In this experiment, we compare GRAFT’s running
time with E-CLOG’s running time by finding the total time
of computing local graphlets over all the edges. Note that,
This comparison is a bit unfair for E-CLOG as it generates
frequencies of local 5-graphlets of all edge orbits, totalling
32 graphlets, but GRAFT generates frequency of only 21
size-5 graphlets. Also note, among the 21 topologies that
GRAFT counts, two topologies 5-path and 5-cycle are not
counted by E-CLOG as they are not local graphlets as per
definition. For this comparison, we extend E-CLOG and
compute these two counts also4. Lastly, GRAFT does not
provide parallel implementation, hence we use single thread
(serial) computation for our method for fair comparison. The
other exact global graphlet counting method, ESCAPE, does
not iterate over the edges so it cannot produce counts for
local edge graphlets and is not comparable with our method.

Table V shows the runtime comparison between E-CLOG
and GRAFT over all 20 different graph datasets listed in
Table IV. First column is the dataset name, the second
and third columns show timing for the E-CLOG and the
GRAFT, respectively. The reported time for both the methods
is the time for counting local graphlets for all edges for
each dataset after averaging the run-time over 5 runs5. For a
better understanding, we write different time units (such as,
s for seconds, m for minutes, and so on.) besides the time

4Algorithm is omitted because of space limitation.
5Single run timing for datasets with un-finished run of the GRAFT.



TABLE V: Runtime comparison between E-CLoG and
GRAFT (d = days, h = hours, m = minutes, s = seconds)
Datasets E-CLoG (serial) GRAFT E-CLoG (parallel)

ARENAS-META 5.2 s 2.67 m 0.36 s
MAAYAN-VIDAL 1.71 s 47.39 s 0.11 s
OPSAHL-POWERGRID 0.0556 s 0.3292 s 0.01 s
PETSTER-HAMSTER 43.44 s 54.79 m 3.24 s
ARENAS-PGP 14.6 s 13.49 m 1.06 s
AC-CAIDA 160.98 m > 8.51 d 8.56 m
TOPOLOGY 510.7 m > 7.15 d 26.17 m
REACTOME 98.9 m > 7.15 d 6.72 m
CA-ASTROPH 23.51 m 3 d 1.58 m
LOC-BRIGHTKITE 43.93 m > 7.15 d 2.54 m
DOUBAN 5.41 m 10.02 h 15.43 s
WORDNET-WORDS 93.13 m > 4.01 d 5.43 m
FACEBOOK-WOSN 210.94 m > 4.01 d 13.03 m
COM-AMAZON 4.3 m 9.82 h 24.22 s
COM-DBLP 14.32 m 1.56 d 56.31 s
ROADNET-CA 17.71 m 2.2 m 5.1 m
ROADNET-PA 5.52 m 1.07 m 1.57 m
ROADNET-TX 8.64 m 1.38 m 2.49 m
SMALLWORLD-1M 20.582 m > 3.07 d 64.69 s
SMALLWORLD-5M 226.45 m > 3.06 d 43.89 m

values. As we can see, for most of the datasets E-CLOG
runs one or two orders of magnitude faster than GRAFT. For
8 datasets, GRAFT is unable to complete the counting even
after few days (> in the Table V), while E-CLOG completed
the counting in few hours on those datasets. A specific
example can be WORDNET-WORDS dataset, for which E-
CLOG took only 93.13 minutes (= 1.5 hours), but GRAFT
did not finish in 4 days! By using combinatorial approach,
the E-CLOG avoids enumeration of more than a half of
the graphlets and that contributes significantly towards its
speed. In 17 of 20 graphs, E-CLOG performs very good.
Other 3 graphs in which GRAFT did better than E-CLOG,
interestingly, are all road networks. A possible reason for
this is during enumeration GRAFT first aligns an edge of a
tree graphlet with the given edge, and then performs costly
checks for counting cyclic graphlets. We found that these
road networks are mostly tree networks, hence they run
very fast on GRAFT. However, most of the other real-life
networks have a substantial number of cycles, for those
graphs, GRAFT is very poor.

In this table, we also show the runtime of the parallel
version of E-CLOG in Column 4. This parallel version uses
72 threads. For most of the graphs, the parallel version
improves the runtime significantly. For instance, for facebook
graph the parallel version runs in 13 minutes whereas the
single-thread version runs in 211 minutes.

B. Scalability

This section investigates the parallel performance of our
proposed algorithm. The parallel algorithm for local graphlet
counting has lock-free updates due to the partitioning of
edges across the processing units and each edge is guaranteed
to be processed by a single worker. For these experiments,
we used a machine with two Intel Xeon E5-2699 v3 platform
with 2.30GHz CPUs. Each processor has 18 cores with
46MB of L3 cache and 256KB of L2 cache. The machine
has 256GB of memory, however, E-CLOG never came close
to using all of it. E-CLOG scales well as the number of

TABLE VI: Comparison results for Link Prediction Problem
ROC-AUC PR-AUC

Datasets Topo-feat LGFD Topo-feat LGFD

FACEBOOK-WOSN 0.5519 0.9101 0.6784 0.9351
TOPOLOGY 0.8179 0.9366 0.8837 0.9415
DBLP 0.6897 0.7411 0.7703 0.7822
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Fig. 7: Strong scaling results for a variety of graphs. We
obtain 14x–20x speedup using 70 threads.

processing units increase. In particular, strong scaling is ob-
served in Figure 7 for the 5 graphs having the worst running
time for serial execution. We obtain 14x–20x speedup using
70 threads for most graphs.

C. Link Prediction

Given a pair of non-adjacent vertices u and v in a
social network, the goal of the link prediction task is to
predict whether the vertices will form a link in future. In
a supervised classification set-up, link prediction is typically
solved by using a fixed set of topological features which
determine the topological similarity between u and v. In this
experiment we will demonstrate that local graphlet frequency
distribution (LGFD) for the edge (u, v) captures topological
properties (around the vertices u, v) that have substantially
more predictive power than the traditionally used topological
features for link prediction.

For this experiment, we use three datasets which are
time-stamped networks. From Table IV, only two datasets
(FACEBOOK-WOSN and TOPOLOGY) have time-stamps af-
filiated with edges. Here, FACEBOOK-WOSN has 333, 923
unique time-stamps and TOPOLOGY has 23, 768 unique time
stamps, which we use. We also create DBLP co-authorship
network with time-stamps (yearly) from AMiner [https:
//aminer.org/data]. To create this network, we select
a set of authors who have published 2 or more papers
in database and data mining conferences and from these
selected authors we generate induced co-authorship graph.
This network has 4, 545 authors with 20, 491 connections
over 45 years.

For experiment, we divide the time-stamps of each dataset
into three chronologically ordered partitions, network grow-
ing period, train period and test period; from the beginning
up to 70% of total time-stamps is network growing period,
70% to 85% is train period, and from 85% till the end is
the test period. An edge created in train period is a positive
train instance and an edge created (for the first time) during



TABLE VII: Useful graphlets for link prediction
Datasets Graphlets with high individual AUC

FACEBOOK-WOSN g0, g5, g12, g14, g16, g18, g20, g21, g25, g29, g34.
TOPOLOGY g0, g5, g11, g14, g15, g18, g19, g20, g25, g29, g34.

DBLP g0, g2, g5, g12, g14, g18, g20, g21, g25, g27, g29,
g34, g36, g39.

this test period is a positive test instance. We take random
node pairs which do not have a connecting edge till the end
of the training period as negative train instances and random
disconnected node pairs as negative test instances. In this ex-
periment, we use local graphlet frequencies normalized over
all local graphlet types (42) as a features set. For comparison
with these local graphlet frequencies, we use 10 traditional
topological features : number of common neighbors, Jac-
card’s coefficient, preferential attachment, adamic-adar and
Katz for 5 different β values (0.1, 0.05, 0.01, 0.005, 0.001).
Note that, Katz, adamic-adar and Jaccard’s coefficient are
proven to be the best topological features for link prediction.
Also, computing some of these link prediction features on
a large network is substantially more costly than computing
local graphlet frequency. For instance, for all datasets com-
puting Katz takes several days! For supervised classification
we use linear SVM (Support Vector Machine), for which the
regularization coefficient C is chosen by grid-search from
values {0.001, 0.01, 0.1, 1.0, 10.0, 100.0} using a random
20% of test instances as a validation set. We evaluate the
link prediction results using Area Under Curve ROC (ROC-
AUC) and Precision-Recall AUC (PR-AUC)

In Table VI we show the link prediction results. For both
the metrics, LGFD substantially improves the link prediction
performance, typically 10% to 45% improvement in both
kinds of AUC has been observed. This is not surprising be-
cause local graphlet frequency actually encodes information
that traditional topological features encode. These results
show high discriminative power of graphlet frequencies to
identify future links, but not all local graphlet types are
equally important. So we conducted an analysis study to
find out frequencies for which specific local graphlets are
highly impactful. For the study, we find normalized graphlet
frequency of each graphlet which is treated as a predicted
probability of a classifier to calculate individual AUC value
for each graphlet type. In Table VII, we show list of graphlet
types for which AUC is above 85% for FACEBOOK-WOSN
and TOPOLOGY datasets and above 70% for DBLP dataset.
This table shows which graphlet type is an important feature
by itself, and it also highlights the fact that 5-size local
graphlets are good features for link prediction.

V. CONCLUSION

We present an efficient algorithm for computing the fre-
quencies of edge-centric local graphlets upto size 5 nodes.
Our experimental results show that the proposed method
is extremely efficient and highly scalable for large real-
life networks from different domains. We also show the
utility of local graphlet counts for predicting future links in
social or collaboration networks and prove that local graphlet
frequency vector is a superior edge feature as compared to
widely used topological features.
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