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Abstract 

Introduction: Stargardt macular dystrophy (STGD1) is a hereditary retinal degeneration 

that lacks effective treatment options. Gene therapy, stem cell therapy, and 

pharmacotherapy with visual cycle modulators (VCMs) and complement inhibitors are 

discussed as potential treatments. 

Areas Covered: Investigational therapies for STGD1 aim to reduce toxic bisretinoids and 

lipofuscin in the retina and retinal pigment epithelium (RPE). These agents include C20-

D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Avacincaptad 

pegol is a C5 complement inhibitor that may reduce inflammation-related RPE damage. 

Animal models of STGD1 show promising data for these treatments, though proof of 

efficacy in humans is lacking. Fenretinide and emixustat are VCMs for dry AMD and 

STGD1 that failed to halt geographic atrophy progression or improve vision in  trials for 

AMD. A1120 prevents retinol transport into RPE and may spare side effects typically 

seen with VCMs (nyctalopia and chromatopsia). Stem cell transplantation suggests 

potential biologic plausibility in a phase I/II trial. Gene therapy aims to augment the 

mutated ABCA4 gene, though results of a phase I/II trial are pending. 
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Expert Opinion: Stem cell transplantation, ABCA4 gene therapy, and VCMs offer 

biologically plausible treatment mechanisms for treatment of STGD1. Further trials are 

warranted to assess efficacy and safety in humans. 

 

Keywords: C20-D3-vitamin A, Stargardt macular dystrophy, visual cycle, complement 
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1. Introduction 

 Autosomal recessive Stargardt macular dystrophy (STGD1) is a retinal dystrophy 

resulting from mutations in the ATP-Binding Cassette, subfamily A, member 4 (ABCA4) 

gene. It is the most common form of inherited macular degeneration, affecting roughly in 

1 in 10,000 people. The age of onset of juvenile and early adult STGD1 is usually 8–25 

years with some cases occurring in older adults (late-adult onset STGD1) [1, 2]. These 

patients develop irreversible vision loss due to atrophy of the macular retinal pigment 

epithelium (RPE) and loss of photoreceptors, with patients presenting at a younger age 

having worse visual outcomes compared to those with later onset [1].  

 

1.1 Clinical Presentation 

The phenotypes of STGD1 are heterogeneous and distinct phenotypic groups of 

STGD1 are recognized. Early-onset childhood STGD1 typically affects children age 6 to 

12 years causing rapid severe decline in visual acuity over 12 to 24 months. Clinical 

findings in the posterior pole are sometimes subtle, showing rare peripheral flecks and 

mild macular changes, but dramatic macular atrophy can be apparent on OCT and 

autoflouresence [3]. Juvenile and young adult forms of STGD1 have varying degree of 



macular atrophy and distribution of flecks with a wide spectrum of progression. Late 

onset forms of STGD1 usually have perifoveal atrophy with preserved foveal function 

and structure that subsequently degenerate in later adulthood [4].  

  

 A hallmark of the disease is premature accumulation of lipofuscin (a brown-

yellow autofluorescent pigment associated with aging) in the RPE, causing a pattern of 

yellowish flecks that extend outward from the macula, recently though to represent 

degenerated photoreceptor cells [5-7] (Figure 1). The diffuse accumulation of this 

lipofuscin material results in the classic dark or “silent” choroid identified on fluorescein 

angiography due to masking of choroidal fluorescence (Figure 2) [8]. On funduscopic 

examination, patients may demonstrate an atrophic or a bull’s-eye appearance in the 

macular region, even more apparent on fundus autofluorescence (FAF) (Figure 3) [9, 10]. 

Lipofuscin is also found in cells of the liver, kidney, heart muscle, adrenals, and nerves, 

and is considered one of the most consistent morphologic features of aging, with a degree 

of accumulation inversely related to age [11, 12]. However, it is thought that the 

mechanisms involved in RPE lipofuscin formation are closely related to metabolic 

pathways that are specific to the retina and fundamentally different from mechanisms 

found in other tissues (described in Section 1.2) [13]. 

 The RPE is essential for the neurosensory retina homeostasis. It acts as a transport 

exchange system with blood capillaries and is critical for phagocytosis of photoreceptor 

outer segments. However, rising RPE lipofuscin levels contributes to a decline in 

photoreceptor and RPE function, resulting in the degeneration of the macula with 

subsequent loss of central vision [14, 15]. Figure 4 shows a spectral domain optical 



coherence tomography (SD-OCT) image of a patient with STGD1, demonstrating 

atrophic retina with RPE and photoreceptor irregularities. 

In the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies, 

valuable information about the natural history of this disorder is being collected.  Over 

200 STGD1 patients were enrolled in this natural history study across multiple clinical 

sites.  Change in best-corrected visual acuity (BCVA) over a 12-month period was 

minimal, and varied depending on baseline acuity, and consequently was not a sensitive 

1-year outcome measure [17]. However, microperimetry is being assessed as a potentially 

more accurate functional outcome measure for future clinical trials [18].  In ProgStar, 

anatomic endpoints to assess progression of atrophy through both FAF and OCT are 

being assessed [19, 20].  

 

1.2 Molecular Genetics 

 ABCA4 acts as a membrane transporter for the recycling of chromophores (11-cis-

retinal) during the visual cycle. Specifically, ABCA4 encodes for a photoreceptor outer 

segment rim protein, a “flippase” whose function is to transport the all-trans –

retinaldehyde-phosphatidylethanolamine (retinaldehyde-PE) Schiff base and excess 11-

cis-retinal from the luminal/extracellular leaflet to the cytoplasmic leaflet of rod and cone 

photoreceptor disc membranes, where they can then be transformed back to retinol [21, 

22]. Without its functional transporter, the retinaldehyde-PE conjugates may react to 

form vitamin A dimers (bisretinoids, some of which include A2E and ATR-dimer), which 

then accumulate in the RPE after phagocytosis of the photoreceptors outer segments. 

Vitamin A dimers are toxic to cultured RPE cells and are thought to play a significant 



role in lipofuscin formation and subsequent retinal degeneration [23, 24].  Experimental 

models of cultured RPE cells have suggested that A2E sensitizes RPE cells to light-

induced apoptosis [25] and has an inhibitory effect on phospholipid digestion in RPE 

phagolysosomes. This may result in accumulation of undigested waste products in the 

RPE that contributes to degeneration, though this has not been confirmed in human or 

STGD1 mouse models [26].  

 Lipofuscin also originates from the free 11-cis-retinal that is continuously 

supplied to the rod for rhodopsin regeneration and outer segment renewal. A2E and 

lipofuscin are produced in the dark as well as in the light, and ABCA4 plays a role in 

removing 11-cis retinal in excess of that needed to combine with opsin to regenerate 

rhodopsin [22]. Hence, loss in the function of ABCA4 can result not only in the 

accumulation of all-trans retinal generated by photobleaching of rhodopsin, but also 

excess 11-cis retinal from the visual cycle. These retinoids can then produce A2E and 

related compounds found in lipofuscin deposits. 

 More recently, the ABCA4 gene was found to be expressed not only in the 

photoreceptor outer segments, but also the RPE cells. Consequently, ABCA4 mutations 

may have a pathogenic role in both the photoreceptors and RPE cells, which could impact 

gene therapy, with regard to the need to potentially transduce both the photoreceptor and 

RPE layers (Farnoodian-Tedrick, et al, ARVO E-Abstract 198, 2018). 

 At the current time, there are no commercially available treatments for STGD1. 

Investigational therapies include visual cycle modulators (VCMs) that aim to reduce 

accumulation of Vitamin A dimers, complement inhibitors, gene therapy, and human 

embryonic stem-cell therapy for regeneration of the RPE. These treatments are 



summarized in Table 1. 

 

2. Pharmacotherapy to treat Stargardt Macular Dystrophy 

2.1 Introduction to Visual Cycle Modulators 

 The visual cycle is a series of enzymatic reactions that take place in the outer 

retina photoreceptors and RPE that converts all-trans retinal to 11-cis retinal for the 

regeneration of rhodopsin. As understanding of the visual cycle progresses, the ability to 

manipulate it to treat retinal disease has advanced. 

 The rods are single photon receptors that allow visual perception in low 

illumination, while the cones are less sensitive but can distinguish various wavelengths of 

light, to facilitate color vision.  Both rods and cones use 11-cis-retinal, which binds to 

opsins to then form visual pigments such as rhodopsin or cone opsins [27].  When light 

strikes rhodopsin (composed of the protein opsin bound to the chromophore 11-cis-

retinal, a vitamin A derivative) in the rod outer segments, 11-cis-retinal is converted to its 

all-trans-retinal isomer.  This, in turn, activates the opsin and initiates a signal 

transduction cascade, closing a cyclic GMP-gated cation channel, and hyperpolarizing the 

photoreceptor cell. The all-trans-retinal must be converted back to 11-cis-retinal, through 

a sequence of reactions catalyzed by enzymes, including retinol dehydrogenases (RDH), 

which catalyze reduction and oxidation reactions in the photoreceptor, as well as lecithin 

retinol acyltransferase (LRAT) and retinoid isomerohydrolase (a 65 kilodalton protein, 

encoded by the RPE65 gene), both of which are located in the RPE [28]. The visual cycle 

is diagrammed in Figure 5, which also shows the role of select therapeutics that influence 

the visual cycle.  



 Although necessary for vision, 11-cis-retinal in excess (like all-trans-retinal) can 

be toxic due to its highly reactive aldehyde group. It must be detoxified by either 

reduction to retinol or sequestration within retinal-binding proteins.  It has been 

demonstrated that ABCA4 can transport N-11-cis-retinylidene- PE, the Schiff-base 

conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disc 

membranes. This transport role together with chemical isomerization to its all-trans 

isomer and reduction to all-trans-retinol by RDH can prevent accumulation of excess 11-

cis-retinal and its Schiff-base conjugate, and the formation of toxic bisretinoid 

compounds [29].  

 It has been demonstrated that the RPE visual cycle, which supplies chromophore 

to both rods and cones, is too slow to support cone function under bright conditions [30]. 

Additionally, pigment regeneration is rate-limited by the supply of recycled chromophore 

to the photoreceptors [31], suggesting that chromophore is supplied faster to cones than 

to rods, possibly with the help of a second, cone-specific visual cycle. This cone-specific 

visual cycle depends on Müller cells instead of the RPE to regenerate chromophores [32]. 

This second pathway could serve as a target for future therapies, though the authors are 

unaware of any that exist at this time. 

  The visual cycle plays a key role in several retinal disorders aside from STGD1.  

For example, dysfunction of enzymes in the visual cycle leads to several inherited retinal 

diseases (IRDs) such as retinitis pigmentosa (RP) and Leber’s congenital amaurosis 

(LCA), due to the inability to either produce an adequate supply of 11-cis-retinal or an 

inability to remove the accumulation of various retinoid products. The visual cycle has 

become the focus of therapeutic strategies as several compounds have the potential to 



address defects in this cycle to treat rare IRDs.  Several clinical trials have assessed these 

investigational VCMs with the goal of potentially slowing the progression of STGD1 and 

age-related macular degeneration (AMD), the leading cause of irreversible blindness in 

the industrialized world.  

 

2.2 Decrease Toxic Byproducts of ABCA4 Dysfunction: ALK-001 (C20-D3-vitamin 

A) 

 The rate determining step in vitamin A dimerization is the cleavage of a C20 

carbon-hydrogen bond of the retinaldehyde-PE Schiff base [33]. Replacing the C20 

hydrogen atoms of vitamin A with deuterium atoms (i.e. C20-D3 -vitamin A) makes this 

bond harder to cleave and impedes vitamin A dimerization. Several studies have sought 

to determine whether slowing the intrinsic reactivity of vitamin A to dimerize could slow 

lipofuscin formation in the RPE and delay changes associated with human STGD1. In an 

experimental mouse model of STGD1, ABCA4-/- mutant albino mice were raised on diets 

containing either C20-D3 –vitamin A (the treated group) or vitamin A at its natural 

isotopic abundance (the control group). The concentration of vitamin A dimers, 

lipofuscin and other biological markers indicative of ocular health in both groups were 

measured. Treated mice exhibited an 80% reduction in A2E, a 95% reduction in ATR 

dimer and a 70% decrease in fundus autofluorescence at three months of age. After six 

months, the treated group showed fewer lipofuscin granules as visualized qualitatively by 

electron microscopy, and at 12 months they showed improved eye function as measured 

by electroretinogram (ERG). These results suggest that pathological phenotypes that arise 

from defects in the ABCA4 gene may result from the dimerization of vitamin A and may 



be improved by hindering the ability of vitamin A to dimerize [34].  

 Similar results were found in another mouse model of STGD1, in which Vitamin 

A dimerization contributed to over 50% of lipofuscin accumulation and caused 

transcriptional dysregulation of several complement genes associated with inflammation 

[35]. Replacing Vitamin A with C20-D3-vitamin A impeded dimerization of Vitamin A 

(by approximately five-fold for A2E), and additionally normalized the aberrant 

transcription of complement genes without impairing retinal function. Phenotypic rescue 

by C20-D3-vitamin A was also observed noninvasively by quantitative autofluorescence 

in as little as 3 months after the initiation of treatment, whereas upon interruption of 

treatment, the age-related increase in autofluorescence resumed. These results further 

indicate that administration of C20-D3 -vitamin A may be a feasible therapeutic approach 

to slow the progression of associated retinal disease caused by Vitamin A dimerization. 

During these mice studies, no side effects were noted, and the animals were administered 

the drug for 12 months. 

 The promising results of the aforementioned pre-clinical studies have paved the 

way for the oral once-daily C20-D3-vitamin A molecule, ALK-001 (Alkeus 

Pharmaceuticals, Boston, MA), to begin human clinical trials in STGD1. A Phase 1 trial 

(NCT02230228) to assess the safety and pharmacokinetics in healthy volunteers has been 

completed [36]. The phase 2 TEASE study (NCT02402660) is ongoing [37].  

 

2.3 Decrease Toxic Byproducts of ABCA4 Dysfunction:  VM200 

 Vision Medicine’s VM200 molecule for STGD1 is currently in pre-clinical trials. 

This oral aldehyde trap sequesters the toxic compound, all-trans retinal, to potentially 



prevent retinal cell death [38].  Specifically, VM200 is a primary amine that reacts with 

the aldehyde group of all-trans retinal to form an inactive Schiff base, thus making it 

unable to form A2E. VM200 was shown to preserve retinal structure in ABCA4-/- Rdh8-/- 

mice, as measured by SD-OCT. According to unpublished data from Case Western 

Reserve University, VM200 has also demonstrated ability to preserve retinal function, as 

mice treated with it were noted to have increased concentration of 11-cis retinal (a 

biomarker of intact photoreceptors) compared to controls [39]. No significant toxicities 

were noted in 2-week and 13-week long studies. The molecule of VM200 is an 

enantiomer of pregabalin, which is used to treat neuropathic pain, though its affinity for 

the pregabalin target is 10-fold less than that of pregabalin. VM200 could also have 

therapeutic potential in other inborn errors of aldehyde metabolism including Sjogren-

Larsson Syndrome, Best Disease, and Succinic semialdehyde-dehydrogenase deficiency. 

Pre-clinical studies are continuing [39].  

 

2.4 Inhibition of 11-cis-retinol dehydrogenase: Isotretinoin 

 Isotretinoin (Accutane) is a drug indicated for the treatment of acne.  It has also 

been shown to inhibit lipofuscin formation in a mouse model [40] by inhibiting 11-cis-

retinol dehydrogenase in the visual cycle, thus slowing the synthesis of 11-cis-

retinaldehyde and regeneration of rhodopsin. This explains the side effect of decreased 

night vision in patients who use isotretinoin for acne [41] , though isotretinoin has not 

been shown to induce photoreceptor degeneration, and actually protects against light-

induced damage [42]. Light activation of rhodopsin results in its release of all-trans-

retinaldehyde, which constitutes the first reactant in toxic A2E biosynthesis. ABCA4-/-  



mice that were injected with isotretinoin had decreased production of A2E, along with 

less formation of lipofuscin granules in the retina compared to controls, as viewed by 

electron microscopy. Additionally, wildtype mice treated with isotretinoin for 2 months 

had a 40% reduction of A2E formation in the RPE compared to controls. On ERG, both 

wild-type and ABCA4-/- mice showed smaller delays in dark adaptation after isotretinoin 

administration with bright compared with dim probe flashes. These results suggest that 

isotretinoin reduced rhodopsin levels in both wild-type and ABCA4-/- retinas. The authors 

propose that isotretinoin may delay visual loss in STGD1 and other retinal diseases 

linked to lipofuscin accumulation. 

 

2.5 Inhibition of RPE65: Emixustat. 

 Emixustat (ACU-4429, developed by Acucela Inc) is a small non-retinoid 

derivative of retinylamine that inhibits retinoid isomerohydrolase (encoded by the RPE65 

gene), thus reducing the conversion of all-trans-retinyl ester to 11-cis-retinol and 

preventing accumulation of A2E. Phase 1 studies showed that the drug was well-tolerated 

up to 75 mg with expected dose dependent suppression of scotopic ERG in healthy 

subjects [43].  It was initially developed as an investigational agent to potentially slow 

the progression of geographic atrophy (GA) in age-related macular degeneration (AMD), 

but it is also being assessed as a potential treatment for STGD1. 

 
 In May 2016, Acucela announced the results of its Phase 2b/3 “S.E.A.T.T.L.E.” 

clinical trial, which was designed to determine if emixustat could reduce the growth rate 

of GA compared to placebo. The study failed to meet its primary endpoint, as there was 

no statistically significant difference in lesion growth rate for any treatment group 



compared to placebo. There was no significant difference in the mean change of BCVA 

from baseline to month 24 between treatment groups. There was a small numerical 

treatment difference observed in certain patients with specific genetic profiles in favor of 

emixustat. The profile of adverse events was similar to that of earlier trials [44]. Acucela 

is currently assessing emixustat as a potential treatment for STGD1, and approximately 

30 patients were enrolled in a phase 2a study in the United States [45], and phase 2b/3 

study is planned. 

 

2.6 Retinol-binding protein antagonists: Fenretinide  

 Fenretinide (Sirion Therapeutics) is an oral synthetic retinoid derivative that 

competes with retinol to bind with retinol-binding protein 4 (RBP4), thus preventing 

transport of retinol into the RPE.  Serum retinol is maintained in circulation as a tertiary 

complex with RBP4 and transthyretin (TTR). Reduction in delivery of retinol-RBP-TTR 

to the RPE is thought to decrease accumulation of A2E, and may potentially slow vision 

loss in patients with STGD1 and AMD. Once fenretinide binds to RBP, the RBP-

fenretinide complex is rapidly eliminated in the urine [46].  Fenretinide has been shown 

to reduce formation of A2E in a mouse model of STGD1 [47]. Possible downsides to 

fenretinide therapy include its tendency to induce apoptosis in many cell types (including 

RPE) [48], along with teratogenic effects that would limits its use in women of child-

bearing age (more pertinent in treating STGD1 than AMD) [49]. 

 A recent phase 2 study assessed fenretidine (100 and 300 mg orally administered 

daily versus placebo) for slowing lesion growth in 246 patients with GA [50].  There was 

a dose-dependent reduction of serum RBP in fenretinide-treated patients.  There was also 



a trend for reduced annual lesion growth rates in patients in the 300 mg fenretinide group 

who achieved serum retinol levels of ≤1µM (1.70 mm2/year vs. 2.03 mm2/year, mean 

reduction of 0.33 mm2 compared to placebo, p = 0.1848). Only 51% of patients receiving 

300 mg and completing the 2-year study achieved this level of serum retinol reduction, 

resulting in a non-significant change in lesion growth rate versus the placebo group. RBP 

reductions < 2 mg/dL correlated with further reductions in lesion growth rates (r2= 

0.478). There was a 45% reduction in CNV formation among fenretinide groups, though 

all groups in the study lost a mean of 10-11 letters of vision at 2 year follow up, 

consistent with the natural history of GA and suggesting no visual benefit to the modest 

reduction in GA growth [50]. Furthermore, in the 300 mg fenretinide group, 20.2% of 

patients withdraw from the study due to adverse effects, though only complaints related 

to the skin or eye were thought to be drug related. The most common ocular adverse 

events that were reported (but did not necessarily lead to study withdrawal) included 

decreased visual acuity (71 %), night blindness (37.3 %), and visual disturbance (26.5 

%). 

 

2.7 Retinol-binding protein antagonists: A1120  

 A1120 (ICR-14967) is another drug that lowers serum retinol levels as a 

mechanism of potential treatment of STGD1. It was originally developed as a potential 

treatment for diabetes. Like fenretinide, A1120 is a RBP4 antagonist, though A1120 

differs in that it is not a retinoid and not an agonist to Retinoic Acid Receptor-alpha. This 

property may spare patients from the side effect profile associated with retinoids, which 

includes nyctalopia and delayed dark adaptation. ABCA4 -/- mice that were administered 



A1120 30 mg/kg daily for 6 weeks were found to have a 75% reduction of serum RBP4 

along with 50% reduction of lipofuscin bisretinoids compared to the control group. On 

ERG testing, no statistically significant difference in kinetics of the b-wave recovery after 

photobleaching was found between the groups of A1120- and vehicle-treated wild-type 

animals, suggesting that A1120's capacity for reduction of lipofuscin bisretinoids in the 

retina may not be associated with the appreciable suppression of the visual cycle. This 

finding supports the notion that A1120 is unlikely to cause side effects of nyctalopia or 

delayed dark-adaptation, which is seen in the other visual cycle modulators [51]. Based 

on this preclinical data, clinical trials are under development by a collaborative effort 

between iCura Vision, Columbia University, and the National Institutes of Health [51].  

 

2.8 Complement C5 inhibition: avacincaptad pegol (Zimura ®) 

 A2E and other bisretinoids are thought to have a pro-inflammatory effect by 

activation of the complement system in RPE cells [52-54]. Increased complement 

activation and inflammatory markers have been observed in ABCA4-/- mice, which has 

been associated with RPE dysfunction and photoreceptor degeneration [55]. C5 

complement plays a role in the terminal portion of the complement pathway, where the 

lectin, classical, and alternative complement pathways merge to form an inflammasome 

(a multi-protein complex responsible for activation of inflammatory responses) and 

membrane attack complex (MAC, involving complement C5b-9), both of which result in 

cell death [56]. 

 The antioxidant resveratrol and anti-C5 antibody have been shown to protect 

against RPE cell death in a cell culture model in which the RPE cells were exposed to 



bisretinoid-induced alternate complement pathway activation [54]. In a model of ABCA4-

/- mice, viral vector gene therapy was used to increase expression of complement receptor 

1-like protein (CRRY), a complement negative regulatory protein, in the RPE. This 

resulted in reduced complement levels of C3/C3b in the RPE, along with a 2-fold 

reduction in bisretinoid accumulation compared to sham-injected ABCA4-/- mice. On 

histologic evaluation, there were 30% fewer lipofuscin granules and significantly more 

photoreceptor nuclei in the outer nuclear layer compared to sham-injected ABCA4-/- mice 

after one year [57]. This study suggested that complement inhibition could be a feasible 

treatment option for preventing RPE and photoreceptor degeneration in STGD1. 

 Avacincaptad pegol (Zimura®, Ophthotech Corporation) is a C5 complement 

inhibitor which may prevent formation of the MAC, and consequently reduce cell death 

caused by destruction of the cell membrane. It is delivered by intravitreal injection and is 

being explored as a potential treatment option for a number of eye diseases including 

STGD1, dry AMD (GA), wet AMD, idiopathic polypoidal choroidal vasculopathy, and 

posterior uveitis [58]. A phase 2b study (NCT03364153) was initiated at the beginning of 

2018, which plans to follow approximately 120 STGD1 patients for 18 months. The 

primary endpoint of the study will assess the mean rate of change of the area of ellipsoid 

zone defects as measured by SD-OCT (Csaky KG, et al, ARVO E-Abstract 1569, 2018). 

For Dry AMD (GA) patients, a phase 1/2a clinical trial has already been completed, 

which showed that intravitreal injections of avacincaptad pegol were well-tolerated and 

there were preliminary signs of a relative dose-dependent decrease in growth of GA after 

monthly injection for 36 weeks [58, 59].  

 

3. ABCA4 Gene Therapy for Stargardt Macular Dystrophy 



 The goal of gene therapy for STGD1 is to introduce a functional ABCA4 gene to 

the retina, which will allow for expression of the membrane transporter and reduce 

buildup of toxic vitamin A dimers in the RPE. 

3.1 Introduction to viral vectors for gene therapy 
 
 A variety of viral and non-viral gene delivery methods have been developed over 

the past two decades. Choosing one delivery method over another is influenced by the 

tissue to be targeted, the cloning capacity of the vector (which determines the size of the 

expression cassette that can be accommodated in the genome of the virus), longevity of 

expression, and safety concerns (inflammatory responses, and possibility of 

genotoxicity/insertional oncogenesis). Adeno-associated virus (AAV) and lentivirus 

vectors have been used in the treatment of inherited retinal diseases, with AAV being the 

most common viral vector utilized [60].  

 

3.2 Methods of introducing viral vectors to the eye  
 
 Due to the ability to monitor functional changes in retinal disease, the eye 

provides an excellent model for investigating gene therapy. Additionally, the relative 

ocular immune-privilege limits an immune response to the implanted genetic material. 

Additional advantages include ease of accessibility for delivery of the genetic material 

directly to the target cells of interest, and the non-invasive ability to monitor for disease 

progression and response to therapy [61].    

 Vector delivery to the target retinal tissue involves two potential methods. The 

most commonly investigated method involves pars plana vitrectomy (PPV) followed by 

retinotomy and injection of the viral vector with genetic material into the subretinal 

space. This more invasive method creates a temporary retinal detachment, but allows for 



direct delivery to the cells of interest. The virus then “infects” the RPE cells or 

photoreceptors, causing the host cells own translational machinery to express the protein. 

Alternatively, injection of the vector into the vitreous cavity has been attempted, and 

although this method may be less invasive and potentially has fewer procedure-related 

complications, the penetration of viral vector to the target tissue is perceived to be 

inferior to that of subretinal injections [62]. Additionally, animal models have 

demonstrated an induced humoral immune response to intravitreally delivered vectors 

that was not observed with subretinally delivered vectors [63].  

 

3.3 EIAV-ABCA4 for Stargardt Macular Dystrophy 

 The ABCA4 gene (6.8 kb) far exceeds the 4.5-5.0 kb capacity of the AAV vector, 

leading to utilization of an equine infectious anemia lentivirus (EIAV) for gene transfer 

[64]. Subretinal injection of EIAV-ABCA4 was found to be effective in a knock out 

ABCA4 -/- mouse model, in which treated eyes had a significant reduction of A2E 

concentrations compared to untreated and mock-treated (EIAV-null vector) control eyes. 

Treated eyes of ABCA4 -/- mice accumulated 8-12 pmol per eye (s.d.=2.7) of A2E 1 year 

after treatment, amounts similar to wild-type controls, whereas mock-treated or untreated 

eyes had 3-5 times more A2E (27-39 pmol per eye, s.d.=1.5; P=0.001-0.005) [44]. 

  Further animal studies tested the safety and distribution of EIAV-ABCA4 in 

rabbits and macaques. In both species, there was a slightly higher amount of intraocular 

inflammation in eyes receiving the subretinal injection, though it was localized, transient, 

and did not cause toxicity. Intraocular pressure and ERG were unaffected, while 

histopathological evaluation did not reveal any detrimental effects of the subretinal 



injection. The vector remained in the ocular compartment, though a serum antibody 

response was observed in rabbits but not macaques, and did not result in any long-term 

systemic toxicity [65]. 

 Currently, Oxford Biomedica in coordination with Sanofi, is sponsoring an 

escalating dose Phase I/II clinical trial of SAR422459, formerly known as StarGen™ 

(NCT 01367444), investigating safety and preliminary signs of efficacy in STGD1 over a 

48 week follow up period [66] [60]. The trial, which plans to enroll an estimated 46 

patients, began in June 2011 and has an expected completion date in November 2019.  

Another study (NCT01736592) is assessing the long-term safety and tolerability of 

patients in the original SAR422459 trial, in which these patients are followed without 

further intervention for 15 years.  

 Another approach to address the large size of the ABCA4 gene, employs a dual 

AAV strategy instead of Lentivirus vector, which splits the gene into two AAV vectors. 

Inside the host cell, the two transgene fragments combine to generate the ABCA4 gene. 

One group recently presented preclinical work in a ABCA4 knock out mouse model 

showing that dual AAV vectors can be used to deliver ABCA4 gene, express protein, and 

have an effect on lipofuscin/A2E accumulation in this model (Dyka FM, et al. ARVO E-

Abstract 4533, 2018; Garanto A, et al. ARVO E-Abstract 4532, 2018).  

 An alternative to viral vector gene therapy is nanoparticle technology, which can 

accommodate large genes such as ABCA4 for injection into the subretinal space, have 

historically not shown long term gene expression in animal models. However, in a recent 

STGD1 mouse model, eyes that were injected with subretinal ABCA4 nanoparticles were 

found to have ABCA4 transgene expression that peaked at 2 months and lasted for up to 8 



months. The eyes showed reduced lipofuscin granules on histopathologic evaluation, and 

improvement of dark-adaptation recovery on ERG [67]. Based on these results, further 

study with nanoparticle gene therapy is warranted. 

 Another strategy involves oligonucleotides to address common splice defects in 

the ABCA4 gene.  At least two groups have presented preclinical work supporting this 

route for these specific mutations (Dulla K, et al. ARVO E-Abstract 5315, 2018).   

Antisense oligonucleotide-based treatment restores ABCA4 splicing defects caused by 

deep-intronic mutations associated with STGD1. Given the effect is not long lasting, 

repeat treatments via intravitreal injections have been proposed. 

 

4. Stem Cell Therapy for Stargardt Macular Dystrophy 

4.1 Introduction to stem cell therapy for retinal disease 

 Given that RPE cell dysfunction is thought to play a major role in the 

pathogenesis of STGD1, stem cell therapy has been explored as an option to rejuvenate 

or replace these damaged RPE cells. Stem cells can be derived from human embryonic 

stem cells (hESCs), induced pluripotent stem cells (iPSCs), and adult stem cells. Human 

ESCs have a great ability to divide and differentiate into a variety of cell types [68]. 

Induced pluripotent stem cells (iPSCs) are intriguing in that they can be derived from a 

previously differentiated cell source and have the potential for reduced ethical 

controversy over hESC- based therapies, and may negate immunological issues 

associated with hESC-based therapies. Like with gene therapy, the eye is an ideal 

candidate for stem cell research because the clear ocular media allows for direct 

visualization of transplanted cells and the eye is a relatively immune privileged site; 



furthermore, the size of the eye requires smaller quantities of therapeutic tissue in 

comparison to other organs [69]. Preclinical studies of hESC-derived RPE cells 

transplanted into the subretinal space of mouse models of retinal degeneration have been 

well tolerated and the cells sustained visual function and photoreceptor integrity in a 

dose-dependent fashion [70, 71]. 

 

4.2 hESC-derived RPE cell via subretinal transplantation for STGD1 

  Given the success of preclinical studies, phase I/II clinical trials were developed 

to test safety and preliminary signs of efficacy of subretinal transplantation of hESC-

derived RPE cells in patients with STGD1 and AMD (NCT01345006/NCT01469832). 

Nine subjects with atrophic AMD and nine with STGD1 were included and all had 

baseline visual acuity measuring from 20/200 to hand motion [72]. Patients underwent 

pars plana vitrectomy, followed by injection of 150 μl of terminally differentiated RPE 

cellular suspension into the subretinal space at preselected sites of transition between 

diseased and healthy retina. Patients received either 50,000 cells, 100,000 cells, or 

150,000 cells and were immunosuppressed with tacrolimus and mycophenolate mofetil 

from 1 week before surgery until 12 weeks following surgery, and thereafter as 

determined on individual basis [72]. 

 Following surgery, no signs of acute rejection were noted, such as prominent 

lymphocyte infiltration, acute or chronic moderate grade noninfectious uveitis, 

hyperacute rejection, cystoid macular edema, persistent retinal detachment, encapsulation 

of the transplanted cells, or whitening of the transplanted area. No eyes developed 

abnormal growth suggestive of a teratoma, a tumor comprised of two or more germ 



layers, which was seen in animals transplanted with suspension of RPE cells spiked with 

these hESC. No eyes developed proliferative vitreoretinopathy or a retinal detachment, 

although four patients developed a cataract and one developed endophthalmitis not 

associated with a subretinal abscess. These results support safety and tolerability of 

subretinal stem cell-derived RPE therapy [72].   

 Although visual outcomes without randomization and control group in phase 1/ 2 

trials are inconclusive, no alarming functional adverse events were noted. No significant 

changes were seen in visual field, static perimetry, ERG, or reading speed. Treated eyes 

that did not develop cataracts during at least 6 months of follow-up (n=5) improved by a 

median of ten letters at 1 month, 15 letters at 6 months, and 12 letters at 12 months 

whereas the fellow untreated eyes improved by a median of four letters at 1 month, four 

letters at 6 months, and two letters at 12 months. The National Eye Institute Visual 

Function Questionnaire revealed an improvement in the mental health and vision 

subscales for general vision, peripheral vision, near activities, and distance activities by a 

median of 8–20 points 3–12 months after transplantation of hESC-RPE [72]. A long-term 

follow-up study (NCT02445612) is following the same cohort of patients up to five years 

after stem cell implantation. Three-year results supported continued safety of the hESC-

RPE transplantation. The STGD1 patients gained a mean of 4.1 ETDRS letters in the 

treated eye and 3.3 letters in the untreated eye at 3 year follow up (5.8 and 4.0 letters, 

respectively, when excluding visually significant cataract) (Schwartz SD, et al. ARVO E-

Abstract 5004, 2018). Further studies by the same company will continue to explore 

safety and potential efficacy of hESC-derived RPE cells utilizing an updated cell line 

compliant with the current guidelines.  



 

5. Conclusion  

 While there are currently no commercially available treatments for STGD1, there 

are several categories of therapeutics under investigation to potentially fulfill this unmet 

need. These include investigational VCMs, complement inhibitors, subretinal ABCA4 

gene replacement therapy (with viral vectors or nanoparticles), and subretinal 

transplantation of stem cell-derived RPE cells. 

 Pharmacological modulation of the visual cycle serves as a novel approach to the 

potential treatment of degenerative retinal diseases. Four classes of therapeutics, with 

mechanisms of action involving inhibition of vitamin A dimer accumulation in the retina, 

are emerging as potential treatments for STGD1. These include direct inhibitors of key 

visual cycle enzymes (isotretinoin and emixustat), RBP4 antagonists (fenretinide and 

A1120), primary amine-containing aldehyde traps (VM200), and deuterated analogs of 

vitamin A (ALK-001). Avacincaptad pegol is an investigational C5 complement inhibitor 

that aims to reduce inflammation-induced RPE cell death.  

 Gene therapy with subretinal injection of EIAV-ABCA4 (SAR422459) has been 

well-tolerated and successful in reducing A2E accumulation in animal models, thus 

paving the way for a phase I/II clinical trial that is expected to complete at the end of 

2019. A Phase I/II trial of subretinal transplantion of hESC-derived RPE cells has 

demonstrated safety and tolerability in a small cohort of STGD1 patients. 

 

6. Expert Opinion  
 
 As the pathophysiology of STGD1 is complex and not fully comprehended, a 



multi-targeted approach may be necessary to maximally halt the disease processes. 

Lipofuscin/bisretinoid accumulation, activation of the complement system, and chronic 

inflammation are all intertwined processes that could contribute to STGD1 progression to 

varying degrees. The emixustat and fenretinide trials both failed to show a statistically 

significant improvement in GA progression or BCVA in AMD patients, and also caused a 

notable amount of ocular and non-ocular side effects.  Still, their manufacturers hope for 

better results with these two drugs to prevent vision loss in STGD1 patients. 

 Since success in mouse models has not translated to meaningful success in human 

subjects, it is unclear if A2E reduction will enhance visual function in humans. There are 

many issues that can plague a clinical trial - for instance in a mouse model the phenotype 

is fairly constant. This is often not the case in human disease. The selection of patients in 

terms of disease stage is a difficult matter especially in clinical trials evaluating safety. 

Additionally, it is doubtful that patients in the real world would show compliance with a 

drug that causes nyctalopia and impaired dark adaptation. These are some of the issues 

that must be resolved before investigational VCMs become a feasible treatment option 

for STGD1.  

 Isotretinoin, which has been used as an acne treatment for many years with an 

acceptable safety proposal (aside from teratogenicity), has shown some promise in 

reducing lipofuscin formation in mouse models of STGD1, but there is a paucity of data 

to confirm its beneficial effect on humans with STGD1 at this point in time. C20-D3-

vitamin A (ALK-001) has shown similarly impressive results in reducing accumulation 

of Vitamin A dimers in the retina, along with improved ERG function in Stargardt mouse 

models, though the results of the completed phase 1 trial have not been released, to the 



best of the authors’ knowledge. 

 For management of STGD1, A1120, a RBP4 antagonist that lowers serum retinal 

levels, may one day serve as an intriguing option, as its developer suggests that it may not 

be associated with mechanism-based ocular side effects typical for direct visual cycle 

inhibitors, such as nyctalopia and delayed dark-adaptation [36]. However, given that it 

has only been tested in mouse models of STGD1, it is too soon to speculate about its 

potential efficacy in humans. Aldehyde trapping (VM200) could also theoretically 

represent an appealing approach to inhibiting retinal bisretinoid formation, as it may also 

lack the mechanism-based ocular side effects typical for direct visual cycle inhibitors. 

However, these compounds may need to be administered at very high systemic doses to 

act as aldehyde traps in the retina, which raises safety concerns. Local retinal delivery 

may be considered as an alternative to systemic administration of aldehyde traps to 

overcome potential systemic toxicities [36]. 

 Complement inhibition has been investigated as a treatment to potentially prevent 

progression of GA in dry AMD, but results have not been encouraging thus far, which 

casts uncertainty about potential efficacy for STGD1. Despite promising phase 2 results, 

intravitreal injections of the alternative pathway complement factor D inhibitor, 

lampalizumab (Roche/Genentech) failed to reduce GA area change from baseline in the 

twin phase 3 CHROMA and SPECTRI studies [37]. Intravenous infusion of the C5 

complement inhibitor, eculizumab (Alexion pharmaceuticals) also failed to significantly 

decrease the growth rate of GA in the phase 2 COMPLETE study [39]. It is unclear if 

avacincaptad pegol, another C5 complement inhibitor, will be more successful in 

AMD/STGD1, but perhaps intravitreal injection delivery may allow for better retinal 



drug levels than intravenous infusion.  

  Viral vector gene therapy has been approved for RPE65 mutation associated  

retinal dystrophy [60, 73], which has spurred interest in gene therapy for STGD1, 

although the ABCA4 gene is too large for AAV vectors and will require an alternative 

approach. Similar excitement surrounds the potential of stem cell therapy to treat STGD1. 

Although the Phase I/II hESC-RPE clinical trials provided encouraging safety results, the 

study is limited by the small sample size, relatively brief follow-up time, and lack of a 

control group. Further research is warranted to demonstrate safety and potential efficacy 

while improving methodologies of implantation.  

 
Article Highlights Box  

• Stargardt macular dystrophy (STGD1) is a hereditary retinal degeneration that 

may cause central vison loss and currently lacks therapies. 

• Investigational oral therapies for STGD1 aim to decrease accumulation of 

Vitamin A dimers and lipofuscin in the retina and RPE, and include ALK-001, 

isotretinoin, VM200, emixustat, and A1120. There is suggestion of efficacy in 

mouse models of STGD1, though evidence of efficacy in humans is currently 

lacking.  

• Visual cycle suppression is associated with nyctalopia, delayed dark-adaptation, 

and dyschromatopsia. 

• Intravitreal avacincaptad pegol is a C5 complement inhibitor under investigation 

for STGD1. 

• Embryonic stem cell derived RPE cell transplantation for STGD1 has shown early 

safety and tolerability in a small phase I/II clinical trial,  Further research will 



assess potential efficacy with respect to visual function and anatomic 

improvements.ABCA4 gene therapy with viral vectors and nanoparticles holds 

promise as a potential treatment for STGD1, though no results of a phase I/II trial 

are available at this time. 
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Figure Legends 
 
Figure 1. Fundus photo of a patient with STGD1 demonstrates atrophic retina with a 
“beaten bronze” appearance and surrounding yellow pisciform flecks extending outward 
from the fovea. 
 
Figure 2. Fluorescein angiography demonstrates classic dark or “silent” choroid due to 
masking of choroidal fluorescence. 
 
Figure 3. Fundus autofluorescence (FAF) accentuates the classic bull’s eye maculopathy. 
Abnormally increased FAF represents excessive lipofuscin accumulation in the RPE. 
Inversely, decreased areas of FAF relate to low level RPE metabolic activity, which 
normally underlies local atrophy with secondary photoreceptor loss.  
 
Figure 4. Spectral domain - optical coherence tomography demonstrates central retinal 
atrophy with outer retinal loss. 
 
Figure 5. The visual cycle pathway begins when light (orange starburst shape) interacts 
with rhodopsin (green diamond shape), setting off a series of steps catalyzed by enzymes 
(red cloud shapes). The chemical byproducts and investigational drugs are represented in 
blue box and purple oval shapes, respectively. The cross-through symbol denotes an 
inhibitory effect of a drug on the enzymes, while a plus sign indicates the effect of 
increasing rhodopsin levels.   RDH = retinol dehydrogenase, ABCA4 = ATP-Binding 
Cassette Subfamily A Member 4, LRAT = lecithin retinol acyltransferase, RPE = retinal 
pigment epithelium. 
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