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J. Awrejcewicz, L. Kurpa, and O. Mazur  

Abstract: The parametric vibrations of plates with cutouts subjected to in-plane 
periodic and compressive loads, are studied. The proposed approach is based on 
R-functions method and the classical variational approach. The influence of 
cutouts parameters, as well as static factors of load on stability regions and 
nonlinear vibrations are investigated. 

1. Introduction.  

The most modern constructions, used in civil and aerospace engineering (and other) consist 

mainly various plate structures configurations. Vibration research of plates loaded by compressive 

pulsating force has received a particular interest recently, since in such system dynamic instability 

may occur yielded by certain combinations of load and eigenfrequency parameters. The so far started 

problem was reviewed, for instance, by Sahu and Datta [10]. On the other hand dynamic stability loss 

was investigated by Bolotin [2], Hutt and Salam, [4] and many others. Investigation of nonlinear 

parametric vibrations was carried out in [1,2,3,11], among other. However, the mentioned works are 

aimed on dynamic behavior analysis of regular models of rectangular plates with various boundary 

conditions. It is clear that in engineering practice many of components of modern civil engineering 

constructions have different geometry and shapes and, in particular, they may possess cutouts. 

 In the present work stability and nonlinear vibrations of plates with central cutouts are 

investigated. Both the R- function method (RFM) [5] and the variational method are applied to 

overcome the mathematical difficulties occurred during analysis of complex form plates. The main 

idea of this novel approach relies on reducing the von Kármán equations (governing dynamics of 

isotropic plates) to an ordinary differential equation regarding time by the Bubnov-Galerkin method. 

The coefficients of the obtained ordinary differential equation are found by the R-functions theory.  
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 Instability regions and nonlinear response characteristics are studied numerically, and the 

influence of size of cutouts on investigated characteristics is studied. 

2. Problem Formulation 

The isotropic plate with constant thickness h  is subjected to a uniformly distributed in-plane 

load tcosppp t θ+= 0  along the edges ax ±= , (see Figure.1), where 0p  is the static component of 

( )tp , tp  is the amplitude of the dynamic component of ( )tp , and θ  is the excitation frequency 

 

The governing equations of the nonlinear dynamics of the plate have the following form 
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where: xN , yN , T  are the membrane stress resultants; u , v , w  are the displacements in x , y  

and z  directions, respectively; E  is the elasticity modulus; μ  is the Possion’s ratio; ρ  is density, 

and ( )( )23 112 μ−= /EhD  is the plate flexural rigidity. 

 Different types of the boundary conditions regarding deflection w are considered: 
1) 0=w , 0=

∂
∂

n
w  (clamped plate);             (3) 

2) 0=w , 0=nM  (simply supported plate), where: 
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3) mixed boundary conditions: on the outer contour 0=w , 0=
∂
∂

n
w , and on the inner part of 

contour (cutout) 0=w , 0=nM ; (5) 

4) on the outer contour 0=w , 0=nM , and the inner part of contour (cutout) is free.  (6) 
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Displacements u and v  have to satisfy the following conditions  

 pNn −= , 0=τN , 2/ax ±= ; 

and we have on unloaded part of the contour: 0=nN , 0=τN .           (7) 

In the above n, τ are normal and tangent to domain boundary ∂Ω. 

The initial conditions have the following form 

00 ww t/ == , 00/ =′ =tw . 

Since we use further the nondimensional form of equations, relations between dimensional and 

nondimensional values follow 
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where Lω  is linear frequency. In what follows the bars on nondimensional values are omitted. 

 Substituting expressions for xN , yN , T  [11] into (1)-(2) and taking into account (8), equations 

(1)-(2) regarding displacements u , v , w  can be cast into the following form : 

( )wNLUA = , (9) 
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 Suppose, that the studied plate is in a inhomogeneous subcriticality state, then at the first step of 

our method two problems of elasticity theory have to be solved, namely 

01 =UA , 02 =UA , (11) 

with the following boundary conditions  
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( ) 011 pv,uN L
n −= , ( ) 011 =τ v,uN L ,  ( ) t

L
n pv,uN −=22 , ( ) 022 =τ v,uN L , 2/ax ±= ,  

( ) 011 =v,uN L
n , ( ) 011 =τ v,uN L , ( ) 022 =v,uN L

n , ( ) 022 =τ v,uN L , 

applied to the unloaded part of counter (12), respectively, where L
nN , LNτ  are the normal and 

shear linear forces. These problems are solved using Ritz’s variational method. However, a 

construction of a system of basic functions for the corresponding functional is carried out by the 

R-functions theory [5].  

Hence, further investigation is reduced to linear vibration problem for the unloaded plate. In 

order to find the first frequency Lω  and related modal shape ( )y,xw1 , the Ritz method and the R-

functions theory are used.  

The solution to nonlinear system (9)-(10) is sought for in the following form  
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2

21 ⋅+θ⋅+= ,  

where functions ( )y,xw1 , ( )y,xu1 , ( )y,xv1 , ( )y,xu2 , ( )y,xv2  are known , whereas functions 

( )yxu ,3 , ( )yxv ,3  are found by solving the inhomogeneous linear system of differentional equations 

of the form 

( )13 wlNUA = , (14) 

which addresses the plane elastic problem. The right hand-side of equation (14) can be considered as 

an action of fictitious forces, and system (14) is supplemented by the following boundary conditions 

( ) 0, 33 =vuNn , ( ) 0, 33 =τ vuN . (15) 

In order to solve the problem (14)-(15) in the case of plates with complex form, the Ritz method in 

combination with R-functions theory are applied. 

 It is easy to see that displacements u , v , w , governed by (13), satisfy the system of equations 

(9)-(10) with the corresponding boundary conditions. 

 Substituting (13) into (10) and applying the Bubnov-Galerkin method, the following nonlinear 

differentional equation is obtained. 

( ) ( ) ( ) ( ) 0cos1 32 =γ+θβ−α−ω+′′ tftfttf L , (16) 

where the coefficients α , β , γ  are defined by the following relations 
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Note that in formulas (17), LL
y

L
x TNN ,,  are linear membrane stress resultants. Observe that equation 

(16) can be presented in the following form  

( ) ( )( ) ( ) ( ) 0cos21 32 =γ+θ⋅−Ω+′′ tftftktft , (18) 

where α−ω=Ω 1
L

 is the vibration frequency of our plate loaded by the static component 0p , and 

( )( )α−β= 12/k  is the excitation coefficient. 

3. Stability analysis 

Instability regions, are determined using the Bolotin’s method [2] .Note that for 0=γ , the following 

Mathieu equation governing linear parametric plate vibrations is obtained:  

( ) ( )( ) ( ) 0cos212 =θ⋅−Ω+′′ tftktft . (19) 

It is well known that the solutions of equations [19] can be bounded or unbounded. The boundaries 

between stable and unstable solutions are formed by periodic solutions with period T  and T2 , 

where θπ= /T 2 . Two solutions of the same period confine regions of instability (in the vicinity of 

r/2Ω=θ , ,...3,2,1=r ), whereas two solutions with different periods confine the regions of stability. 

Since equations of curves, governing stability and instability regions are known, the first region of 

instability zone is confined by the curves  

 k−Ω=θ 121  , k+Ω=θ 122 . 

2. The R-functions method (RFM) 

 The R-functions theory is used to construct the system of basic functions for solving equations 

(11)-(12), (14)-(15), and the problem of linear vibrations of the unloaded plate. According to RFM, 

and in order to create structures of solutions, it is necessary to construct a boundary domain equation. 

Method of such construction is proposed in reference [5]. In the case of an arbitrary geometry, the 

governing equation has the form: 

( ) ( ) ( )4030201 ffffy,x ∧∧∧=ω . (20) 

The so called R-operations used in (20) are defined as follows 
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On the other hand functions if , i=1…5, occurred in (20), are defined my relations 
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 Note that equation of the boundary ( )y,xω , constructed in such way, satisfies the following 

conditions 

 ( ) 0=ω y,x , ( ) 0>ω y,x , 1−=
∂
ω∂
n

, ( ) Ω∂∈y,x  

 Hence, the solutions structures (satisfying only principal boundary conditions) can be 

constructed in the following way: 

 1) 0
2

1 Pw ω= , ii Pu = , 3+= ii Pv , 31..i = , for conditions (3)-(7), 

 2) 01 Pw ω= , ii Pu = , 3+= ii Pv , 31..i = , for conditions (4)-(7), 

 3) 011 Pw ωω= , ii Pu = , 3+= ii Pv , 31..i = , for conditions (5)-(7), 

 4) 011 Pw ω= , ii Pu = , 3+= ii Pv , 31..i = , for conditions (6)-(7), 

where 2011 ff ∧=ω  is equation governing outer part of the boundary. Uncertain components jP , 

60..j =  are presented as decomposition in the series forms with a help of some complete system of 

functions. In this study a system of power polynomials is used. 

4. Numerical results 

Numerical results presented in this work are obtained only for simply supported plate with free 

cutout and with the applied boundary conditions (6)-(7). In order to verify our method, calculations of 

plate eigenfrequencies for different size of free cuts are carried out, and the obtained results are 

presented in the Table 1.  
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Table 1. Comparison of non-dimensional fundamental frequencies 

DhaL /2 ρω=λ of a simply supported square plate with a cutout 

ac /  Our results [9] [7] [6] [8] 

0 19.742 19.734 19.739 19.740 19.739 

0.2 19.708 19.134 18.901 18.762 20.193 

0.4 21.108 20.739 20.556 20.785 - 

0.5 23.791 23.422 23.329 23.664 24.243 

0.6 28.719 28.307 28.491 28.844 - 

0.8 57.948 56.949 58.847 58.062 58.359 

 

 The values of parameters used in our further analysis are: 1/ =ba , dc = , 30.=μ . In the present 

work only primary region of instability is considered. The effect of the static load factor on instability 

zone is studied for 511500 .,,.p = . Observe that owing to increase of static component, instability 

regions shift to lower frequencies. In addition, effect of cutout size is studied for different values of 

ratio a/c  ( 400 .a/c ≤≤ ). For 10 =p , with an extension of cutout, instability region is shifted to 

lower frequencies up to 280.a/c = . It has been observed that instability regions tend to higher 

frequencies from 280.a/c =  to 40.a/c = . For 20 =p  behavior of our system is similar to the so 

far described. It should be emphasized that the results for plates with cutouts are in close agreement 

with those obtained in reference [9]. 
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In what follows, the dynamic nonlinear response for the chosen values of load parameters 

10 =p , 1=tp  and with initial amplitude 000100 .h/w =  and for [ ]3000..t∈  is studied (see Figure 

4) 

 
Fig.4. Non-dimensional amplitudes of plate  

for different size of cutouts 
 

Observe that instability region predicated by the linear theory almost coincides with the results 

obtained by nonlinear analysis. It can also be seen that the amplitudes are comparable with initial 

conditions outside of instability region. However, for the critical zone amplitude values are increased. 

The values of amplitudes for various size of cutout are studied for 500 .a/c ≤≤  and for 10 == tpp . 

The extension of cutouts lead to increase of the vibration amplitudes and to a movement of the 

response curves (for instance, a resonance zone is located between critical frequencies 1θ  and 2θ ).  

968



4. Conclusions 

The obtained results can be summarized as follows: instability regions are shifted to lower 

frequencies with increase of static component of the load. Change of cutouts size yields to movement 

of instability regions i.e., first to lower frequencies, and next to higher frequencies. Nonlinear 

vibration analysis of plates allows to note that the extension of cutouts increases amplitudes of 

vibrations. 
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