

Available online at www.sciencedirect.com

Communications

Mendeleev Commun., 2007, **17**, 178–180

Synthesis, structure and properties of *N***-alkoxy-***N***-(1-pyridinium)urea salts,** *N***-alkoxy-***N***-acyloxyureas and** *N***,***N***-dialkoxyureas†**

Vasiliy G. Shtamburg,*a* **Oleg V. Shishkin,***b* **Roman I. Zubatyuk,***b* **Svetlana V. Kravchenko,***^a* **Alexander V. Tsygankov,***a* **Victor V. Shtamburg,***c* **Vitaliy B. Distanov***c* **and Remir G. Kostyanovsky****^d*

a Department of Chemistry, Dnepropetrovsk National University, 49050 Dnepropetrovsk, Ukraine. E-mail: heterocycle@ff.dsu.dp.ua

b STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 61001 Kharkov, Ukraine. E-mail: shishkin@xray.isc.kharkov.com

c Department of Chemistry, National Technical University, Kharkov Polytechnic Institute, 61002 Kharkov, Ukraine. E-mail: vitalius2002@ukr.net

d N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow,

Russian Federation. Fax: +7 495 137 8284; e-mail: kost@chph.ras.ru

DOI: 10.1016/j.mencom.2007.05.016

Mendeleev

N-Alkoxy-*N*-(1-pyridinium)urea salts **3**, **4** have been prepared, the conversions of *N*-acetoxy-*N*-methoxyurea **7** into *N*,*N*-dimethoxyurea **8** and of *N*-*n*-propyloxy-*N*-(1-pyridinium)-*N'*,*N'*-dimethylurea chloride **6** into *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **11** were carried out. A high pyramidality of the amide nitrogen in O–N–X groups $[X = N+C_5H_5$, OMe, OC(O)C₆H₄Cl-*p*] has been revealed by XRD studies of ureas **3b**, **8** and *N*-*p*-chlorobenzoyloxy-*N*-*n*-butyloxyurea **9**.

The pyramidality of amide nitrogen was found earlier in acyclic anomeric amides² such as *N*,*N*-dialkoxy-*N'*,*N'*-dimethylureas by the DNMR method3 and XRD studies in *N*-acyloxy-*N*-alkoxybenzamides,4 *N*,*N'*-diacyl-*N*,*N'*-dialkoxyhydrazines,5 *N*-acyloxy-*N*-alkoxyureas,^{6(*a*)} *N*-acyloxy-*N*-alkoxycarbamates^{6(*a*)} and *N*-chloro-*N*-alkoxyureas.1 However, *N*-alkoxy-*N*-(1-pyridinium)urea salts have never been regarded as a kind of anomeric amides and the pyramidality parameters of unsubstituted *N*,*N*-dialkoxyureas were unknown.

We have synthesised salts **3**, **4**‡ and **6** by nucleophilic substitution at nitrogen in *N*-chloro-*N*-alkoxyureas **1**, **2**, **5**1,7 and performed an XRD study of **3b** (Figure 1, Tables 1, 2).

Scheme 1 *Reagents and conditions*: i, Py, Et₂O, room temperature; ii, AgClO₄, MeCN.

In order to investigate the structure of the simplest *N*,*N*-dialkoxyurea by methanolysis of *N*-acetoxy-*N*-methoxyurea **7**, crystalline *N*,*N*-dimethoxyurea **8**1 was obtained (Scheme 2) and studied by XRD analysis (Figure 2, Tables 1, 2).

Chlorides **3a**, **4** are stable at room temperature for 12 h and decompose at long-duration storage at -5 °C (10 weeks). Chloride **6** can be stored without decomposition at -5 °C for

Figure 1 Molecular structure of **3b**. Selected bond lengths (Å) and bond angles (°): N(1)–C(6) 1.4515(19), N(3)–C(6) 1.3234(18), O(1)–C(6) 1.2218(17), N(1)–N(2) 1.4254(18), O(2)–N(1) 1.3999(17), O(2)–C(7) 1.442(3), N(2)– C(1) 1.341(2), N(2)–C(5) 1.341(2); O(2)–N(1)–N(2) 109.03(12), O(2)–N(1)– C(6) 113.03(12), N(2)–N(1)–C(6) 111.72(11), N(1)–O(2)–C(7) 108.94(18), $C(5)-N(2)-N(1)$ 120.44(13), $C(5)-N(2)-C(1)$ 123.61(16), $C(1)-N(2)-N(1)$ 115.95(15).

more than one year, but it is very hygroscopic. Chloride **3a** was converted into more stable perchlorate **3b**. This allowed us to perform an XRD study§ at room temperature without any decomposition of the crystal. The results revealed that amide nitrogen in the O–N–N+ system has a pyramidal configuration (Figure 1, Tables 1, 2). The nitrogen pyramidality parameters as the sum of bond angles centered at this atom $(\Sigma \beta)$ and the deviation of N(1) from the plane of three atoms it is bonded with (h_N) are given in Table 1. In *N*-alkoxy-*N*-(1-pyridinium)urea salt **3b**, the N pyramidality degree is less as it was found for *N*-alkoxy-*N*-(1-pyridinium)-*N*-*tert*-alkylamine salts,8 but it is closer to N pyramidality in *N*-acetoxy-*N*-ethoxyurea^{6(a)} and methyl *N*-4-chlorobenzoyloxy-*N*-methoxycarbamate.^{6(*a*)} The decreasing nitrogen pyramidality degree in salt **3b** against the *N*-alkoxy-*N*-(1-pyridinium)-*N*-tert-alkylamine salt⁸ can be explained by stabilization of the planar configuration of amide

Scheme 2 *Reagents and conditions*: i, MeOH, room temperature.

[†] Asymmetric Nitrogen, Part 100. Geminal Systems, Part 57. Previous communication, see ref. 1.

Figure 2 Molecular structure of **8**. Selected bond lengths (Å) and bond angles (°): N(1)–C(1) 1.438(2), N(2)–C(1) 1.320(3), O(1)–C(1) 1.220(2), O(2)–N(1) 1.397(2), O(3)–N(1) 1.401(2), O(2)–C(2) 1.431(3), O(3)–C(3) 1.429(2), O(2)–N(1)–O(3) 110.33(13), O(2)–N(1)–C(1) 111.37(16), O(3)– N(1)–C(1) 110.07(14), O(1)–C(1)–N(2) 125.61(19), O(1)–C(1)–N(1) 118.78(16), N(2)–C(1)–N(1) 115.2(2), N(1)–O(2)–C(2) 114.17(16), N(1)– O(3)–C(3) 109.19(16).

‡ N*-Methoxy-*N*-(1-pyridinium)urea chloride* **3a**. A solution of pyridine (95 mg, 1.206 mmol) in Et₂O (2 ml) was added to a solution of *N*-chloro-*N*-methoxyurea 1^1 (135 mg, 1.085 mmol) in Et₂O (3 ml) at -30 °C. During 3 h, the reaction mixture was heated to 5° C and kept at this temperature for 40 h. The obtained solid was filtered off, washed with Et₂O and dried *in vacuo*, yielding 198 mg (89%) of urea 3a, white crystals, mp 97–98 °C (decomp.). ¹H NMR (300 MHz, $[^{2}H_{6}]$ DMSO) δ : 3.90 (s, 3H, OMe), 8.31 (br. s, 2H, NH₂), 8.32 [t, 2H, C(3)H, C(5)H, 3.90 (s, 3H, OMe), 8.31 (br. s, 2H, NH2), 8.32 [t, 2H, C(3)H, C(5)H, ³*J* 7.5 Hz], 8.83 [t, 1H, C(4)H, 3*J* 7.5 Hz], 9.40 [d, 2H, C(2)H, C(6)H, ³*J* 5.7 Hz]. IR (n/cm–1): 3285 (NH), 1745 (C=O). MS (FAB, H+), *m*/*z* (%): 168 (M+, 100). Found (%): C, 41.18; H, 5.02; N, 20.75; Cl, 17.32. Calc. for $C_7H_{10}N_3O_2Cl$ (%): C, 41.29; H, 4.95; N, 20.64; Cl, 17.41.

In a similar manner, *N*-ethoxy-*N*-(1-pyridinium)urea chloride **4** was obtained from *N*-chloro-*N*-ethoxyurea **2**, 7 colourless crystals, yield 73%, mp 124–125 °C (decomp.). ¹H NMR (300 MHz, $[^{2}H_{6}]$ DMSO) δ : 1.21 (t, 3H, NOCH2*Me*, 3*J* 7.2 Hz), 3.98 (q, 2H, NOC*H*2Me, 3*J* 7.2 Hz), 8.22 ³J 7.8 Hz], 9.25 [d, 2H, C(2)H, C(6)H, ³J 7.8 Hz]. IR (v /cm⁻¹): 3270 (NH), 1750 (C=O). Found (%): N, 19.12; Cl, 16.05. Calc. for $C_8H_{12}N_3O_2Cl$ (%): N, 19.31; Cl, 16.29.

In a similar manner, *N*-*n*-propyloxy-*N*-(1-pyridinium)-*N'*,*N'*-dimethylurea chloride **6** was obtained from *N*-chloro-*N*-*n*-propyloxy-*N'*,*N'*-dimethylurea **5**, 7 colourless crystals, yield 77%, mp 83–84 °C (decomp.). 1H NMR (300 MHz, CDCl₃) δ: 0.95 (t, 3H, NOCH₂CH₂*Me*, *J* 7.2 Hz), 1.68 (sext, 2H, NOCH₂CH₂Me, ³J 7.2 Hz), 3.09 (s, 3H, NMe), 3.35 (s, 3H, NMe), 4.17 (t, 2H, NOCH₂CH₂Me, ³J 7.2 Hz), 8.42 [t, 2H, C(3)H, C(5)H, ³J 7.8 Hz], 8.78 [t, 1H, C(4)H, ³J 7.8 Hz], 9.59 [d, 2H, C(2)H, C(6)H, ³J 7.8 Hz]. IR (v/cm^{-1}): 1745 (C=O). Found (%): N, 16.01; Cl, 13.74. Calc. for $C_{11}H_{18}CIN_3O_2$ (%): N, 16.18; Cl, 13.65.

N*-Methoxy-*N*-(1-pyridinium)urea perchlorate* **3b**. A solution of AgClO4 (139 mg, 0.670 mmol) was added to a solution of urea **3a** (137 mg, 0.670 mmol) in a mixture of MeCN (5 ml) and MeOH (2 ml). The AgCl precipitate was filtered off; the filtrate was evaporated *in vacuo*. The obtained residue was washed by THF and crystallised from MeCN– CH₂Cl₂ at –20 °C, yielding 159 mg (88%) of urea **3b**, colourless crystals, mp 128–130 °C (decomp.). ¹H NMR (300 MHz, $[^{2}H_{6}]$ DMSO) δ : 3.90 $(s, 3H, OMe)$, 8.29 (br. s, 2H, NH₂), 8.32 [t, 2H, C(3)H, C(5)H, ³J 7.5 Hz], 8.83 [t, 1H, C(4)H, 3*J* 7.5 Hz], 9.39 [d, 2H, C(2)H, C(6)H, 3*J* 5.7 Hz]. MS (FAB, H+): 168 (M+, 100). Found (%): C, 31.23; H, 3.92; N, 15.45. Calc. for $C_7H_{10}N_3O_6Cl$ (%): C, 31.42; H, 3.77; N, 15.70.

N*,*N*-Dimethoxyurea* **8**. *N*-Acetoxy-*N*-methoxyurea **7**1 (87 mg, 0.598 mmol) was dissolved in MeOH (2 ml), and the solution was kept at 22 °C for 74 h. Then, it was evaporated *in vacuo*; the residue was kept at 2 Torr and crystallised from Et₂O–hexane, yielding 57 mg (79%) of urea $\mathbf{8}$, colourless crystals, mp 47-48 °C, identified by ¹H NMR with a sample¹ obtained from *N*-chloro-*N*-methoxyurea **1**1. MS (FAB, H+), *m*/*z*: 121 $([M + H]^+, 100)$.

Methanolysis of N*-*n*-propyloxy-*N*-(1-pyridinium)-*N*',*N*'-dimethylurea chloride* **6**. A solution of salt **6** (199 mg, 0.766 mmol) in MeOH (3 ml) was refluxed for 3 h; then, it was evaporated *in vacuo*. The residue was extracted by Et₂O (10 ml), the extract was evaporated *in vacuo*. By NMR, the residue is a mixture of *N*,*N*-dimethoxyurea **11**3 (main component) with trace *N*-*n*-propyloxy-*N*-methoxyurea **10**. 7 After distillation *in vacuo*, 11 mg (10%) of *N*,*N*-dimethoxy-*N'*,*N'*-dimethylurea **11** was obtained and identified by 1H NMR spectroscopy.3,7 1H NMR (300 MHz, CDCl₃) δ : 3.00 (s, 6H, NMe₂), 3.75 [s, 6H, N(OMe)₂].

Table 1 Parameters of nitrogen atom pyramidality in Y–N(X)OR compounds.

Y	X	R	$h_{\rm N}/\tilde{A}$	$\Sigma \beta$ /°
H ₂ NC(O)	OMe	Me(8)	0.444	331.8
H ₂ NC(O)	Cl ¹	Me	0.500	329.0
$O_2NC_6H_4HNC(O)$	Cl ¹	CMe ₂ CO ₂ Me	0.533	325.8
H ₂ NC(O)	$OAc^{6(a)}$	Et	0.431	333.6
H ₂ NC(O)	$OC(O)C6H4Cl-p$	$Bu^n(9)$	0.511	323.8
H ₂ NC(O)	$N+C5H5$	Me(3b)	0.429	333.9
MeO ₂ CMe ₂ C	$N+C5H58$	Me	0.531	322.8
Bz	OBz ⁴	$CH_2C_6H_4Bu^t-p$	0.508	324.14
p -Bu ^t C ₆ H ₄ C(O)	$OC(O)C_6H_4Bu^t-p^4$	$CH_2C_6H_4Bu^t-p$	0.513	323.51
MeOC(O)	$OC(O)C_6H_4Cl-p^{6(a)}$ Me		0.426	334.1

nitrogen due to conjugation with the carbonyl group. The nitrogen pyramidality parameters in different O–N–X geminal systems are given in Table 1. Earlier, we believed that *N*-acyloxy-*N*-alkoxybenzamides are most strongly pyramidal at nitrogen.4 But, as we have found by means of XRD study, in *N*-*p*-chlorobenzoyloxy-*N*-*n*-butyloxyurea **9**6(*b*) the nitrogen pyramidality parameters h_N and $\Sigma \beta$ were close to those of *N*-acyloxy-*N*-alkoxybenzamides4 (Table 1). The conformation of urea **9** (Figure 3) is similar to the conformation of *N*-acyloxy-*N*-alkoxybenzamides.4 In urea **9**, the nitrogen pyramidality degree is higher than that in the Kirby 'most twisted' amide (1-aza-2-adamantanone9). We suppose that the high degree of nitrogen pyramidality in urea **9** is caused by the *O*-butyl group.

In urea **3b**, the lone electron pair (Lp) of $N(1)$ is oriented in the pyridine ring plane [the torsion angle $C(1)$ –N(2)–N(1)–Lp(N1) is equal to 0.2°] similarly to *N*-methoxy-*N*-(1-pyridinium)- *N*-*tert*-alkylamine perchlorate.8 It is interesting to note some differences in amide N–C bonds in urea **3b**. The N(1)–C(6) bond is much longer than the $N(3)$ –C(6) bond (see Table 2). It is probably the sequence of different degrees of carbonyl $C(6)=O(1)$ conjugation with *sp*²-hybridized N(3) and *sp*³-

Crystal data for 8: crystals were grown from Et_2O –hexane at –20 °C, $C_3H_8N_2O_3$, rhombic, space group *Fdd*2, $a = 24.358(9)$, $b = 18.941(6)$ and $c = 5.199(2)$ Å, $V = 2399(1)$ Å³, $F(000) = 1024$, $d_{\text{calc}} = 1.330$ g cm⁻³, $Z = 16$, $u = 0.118$ mm⁻¹.

Crystal data for $9.6(b)$ crystals were grown from CH_2Cl_2 –hexane at –20 °C, C₁₂H₁₅N₂O₄Cl, monoclinic, space group *C*2/*c*, $a = 17.362(2)$, *b* = 20.000(2) and *c* = 9.7443(8) Å, β = 121.10(1)°, *V* = 2897.1(4) Å³, $F(000) = 1200$, $d_{\text{calc}} = 1.315$ g cm⁻³, Z = 8, $\mu = 0.275$ mm⁻¹.

Data were measured using an Xcalibur 3 diffractometer $[T = 298 \text{ (3b)}$, 100 K (8 and 9), graphite-monochromated MoK α radiation, $2\theta/\theta$ scan, $2\theta_{\text{max}} = 70^{\circ}$ (3b), 55° (8), 60° (9)]. The structures were solved by a direct method using the SHELXTL PLUS program package.12 Refinement against $F²$ in an anisotropic approximation (the hydrogen atoms isotropic in the riding model, except for H atoms of amino groups, those were free refined) by a full matrix least-squares method for 5054 reflections was carried out to $wR_2 = 0.252$ [163 parameters, $R_1 = 0.076$ for 3368 reflections with $F > 4\sigma(F)$, $S = 1.01$] for **3b**, for 1065 reflections were carried out to $wR_2 = 0.067$ [82 parameters, $R_1 = 0.029$ for 675 reflections with $F > 4\sigma(F)$, $S = 1.00$] for **8** and 4090 reflections out to $wR_2 = 0.159$ [181 parameters, $R_1 = 0.058$ for 3430 reflections with $F > 4\sigma(F)$, $S = 1.08$] for **9**.

Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data can be obtained free of charge *via* www.ccdc.cam.uk/ conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or deposit@ccdc.cam.ac.uk). Any request to the CCDC for data should quote the full literature citation and CCDC reference numbers 624636, 624635 and 632716 for **3b**, **8** and **9**, respectively. For details, see 'Notice to Authors', *Mendeleev Commun.*, Issue 1, 2007.

 $\frac{8}{3}$ *Crystal data for* **3b**: crystals were grown from MeCN–CH₂Cl₂ at –20 °C, $[C_7H_{10}N_3O_2]^+$ [ClO₄]⁻, monoclinic, space group P_2^1/n , $a = 9.733(2)$, *b* = 0.330(2) and *c* = 11.929(3) Å, β = 103.77(2)°, *V* = 1164.9(4) Å³, $F(000) = 552$, $d_{\text{calc}} = 1.526$ g cm⁻³, $Z = 4$, $\mu = 0.35$ mm⁻¹.

Figure 3 Molecular structure of **9**. Selected bond lengths (Å) and bond angles (°): N(1)–O(1) 1.447(2), N(1)–O(4) 1.397(2), N(1)–C(8) 1.441(2), N(2)–C(8) 1.321(2); O(4)–N(1)–O(1) 106.4(1), O(4)–N(1)–C(8) 111.5(1), $O(1)$ –N(1)–C(8) 105.9(1).

hybridized N(1) nitrogen atoms. In urea **3b**, the N(1)–N(2) bond is shorter [1.4254(18) Å] than the corresponding bond in *N*-alkoxy-*N*-(1-pyridinium)-*N*-tert-alkylamine salts⁸ [1.466(2) Å]. It may cause a lower mobility of the pyridine group in reactions of ureas **3**, **4**, **6** with nucleophiles.

However, the $N(1)$ – $N(2)$ bond is much longer than the N–N bonds of carboxylic acid hydrazides (1.400 Å) .¹⁰ As it follows from quantum-chemical calculations, 11 the N–N bond in anomeric *N*-dimethylamino-*N*-methoxyformamide should be 1.385 Å, whereas the N–OMe bond is longer (1.426 Å) . It is a sequence of an $n_{NMe₂}-\sigma_{N-OMe}^{*}$ anomeric effect. In the cases of *N*-alkoxy-*N*-(1-pyridinium)-*N*-*tert*-alkylamines and *N*-alkoxy-*N*-(1-pyridinium)urea salts, the opposite n_{O} – $\sigma_{\text{N}-\text{N}^+}^*$ anomeric effect takes place, and the $N(1) - N(2)$ bond is destabilised. Probably, this is the reason why at boiling in methanol *N*-*n*-propyloxy-*N*-(1-pyridinium)urea chloride **6** is converted (with a moderate yield) into *N*,*N*-dimethoxyurea **11** *via* intermediate urea **10** (Scheme 3).

Scheme 3 *Reagents and conditions*: i, MeOH, reflux, 3 h.

XRD studies of *N*,*N*-dimethoxyurea **8** have revealed that amide O–N–O nitrogen N(1) had a pyramidal configuration (Figure 2, Tables 1, 2). The pyramidality parameters h_N and $\Sigma \beta$ are close to those of *N*-acetoxy-*N*-ethoxyurea^{6(*a*)} (see Table 1). The carbamoyl nitrogen N(2) has a planar trigonal configuration; the sum of bond angles is 358.2°. Similarly to urea **3b**, big differences in the amide N–C bond are observed for urea **8**. The $N(1)$ –C(1) bond is much longer than the $N(2)$ –C(1) bond (see Table 2). It is also a sequence of a bigger conjugation degree of carbonyl $C(1)=O(1)$ with the sp^2 -hybridized N(2) nitrogen atom comparing with *sp*3-hybridized N(1). The total picture of N–C and N–O bond deformation in anomeric ureas is given in Table 2. The carbonyl stretch frequencies of ureas **3b** (1745 cm^{-1}) and **8** $(1720 \text{ cm}^{-1})^1$ are appreciably higher than those of *N*-methoxyurea (1685 cm^{-1}) . The same fact was predicted and found by Glover and Rauk2 for different kinds of anomeric benzamides.

In *N*,*N*-dimethoxyurea **8**, the methoxy groups C(2)–O(2) and C(3)–O(3) have *ap*- and *sp*-orientations, respectively, in reference to Lp(N1) [the torsion angle Lp(N1)–N(1)–C(2)–O(2) is 174° , and $Lp(N1)-N(1)-C(3)-O(3)$ is -29° . However, the N–O bond lengths are close (see Table 2). The lengths of C–O bonds are

Table 2 The lengths of N–O bonds and amide N–C bonds in anomeric ureas $H_2N^{(2)}C^{(1)}(O)N^{(1)}(X)O^{(1)}R(A)$.

X	R	$N(1) - C(1)$	$N(2) - C(1)$	$N(1)-O(1)R$
$OAc^{6(a)}$	Et	1.426	1.330	1.398
$O_2CC_6H_4Cl-p(9)$	Bu	1.441	1.321	1.397
$\bar{\rm C}^{\bar{1}1}$	Me	1.446	1.319	1.397
OMe (8)	Me	1.438	1.320	1.397, 1.401
$N^+C_5H_5(3b)$	Me	1.452	1.323	1.3999

almost similar [O(2)–C(2), 1.431(3) Å; O(3)–C(3), 1.429(2) Å]. A carbamoyl substitutent is perpendicular to the direction of Lp(N1) [the torsion angle Lp(N1)–N(1)–C(1)–O(1) is 88°].

Thus, by means of XRD data, the nitrogen pyramidality in the O–N–O geminal systems of *N*,*N*-dialkoxyureas and in the O–N–N+ geminal systems of *N*-alkoxy-*N*-(1-pyridinium)urea salts has been proved. It is caused by the presence of two electronegative substituents at the nitrogen atom and by the n_{O} – $\sigma_{\text{N}-X}^*$ anomeric effects (X = OAlk, N⁺C₅H₅). In *N*-acyloxy-*N*-alkoxyureas, the nitrogen pyramidality degree depends on the nature of *O*-alkyl substituents.

This work was supported by the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant no. 06-03-32840).

References

- 1 V. G. Shtamburg, O. V. Shishkin, R. I. Zubatyuk, S. V. Kravchenko, A. V. Tsygankov, A. V. Mazepa, E. A. Klots and R. G. Kostyanovsky, *Mendeleev Commun.*, 2006, 323.
- 2 (*a*) S. A. Glover and A. Rauk, *J. Org. Chem.*, 1996, **61**, 2337; (*b*) S. A. Glover, *Tetrahedron*, 1998, **54**, 7229; (*c*) S. A. Glover and A. Rauk, *J. Org. Chem.*, 1999, **64**, 2340.
- 3 I. I. Chervin, V. S. Nosova, V. F. Rudchenko, V. I. Shevchenko and R. G. Kostyanovsky, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1986, 1148 (in Russian) (*Chem. Abstr*., 1986, **105**, 2082129q).
- 4 A.-M. E. Gillson, S. A. Glover, D. J. Tucker and P. Turner, *Org. Biomol. Chem.*, 2003, **1**, 3430.
- 5 S. A. Glover, G. Mo, A. Rauk, D. J. Tucker and P. Turner, *J. Chem. Soc., Perkin Trans. 2*, 1999, 2053.
- 6 (*a*) O. V. Shishkin, R. I. Zubatyuk, V. G. Shtamburg, A. V. Tsygankov, E. A. Klots, A. V. Mazepa and R. G. Kostyanovsky, *Mendeleev Commun*., 2006, 222; (*b*) V. G. Shtamburg, A. V. Tsygankov, E. A. Klots and R. G. Kostyanovsky, *Mendeleev Commun.*, 2004, 208.
- 7 V. G. Shtamburg, E. A. Klots, A. P. Pleshkova, V. I. Avramenko, S. P. Ivonin, A. V. Tsygankov and R. G. Kostyanovsky, *Izv. Akad. Nauk, Ser. Khim.*, 2003, 2132 (*Russ. Chem. Bull., Int. Ed.*, 2003, **52**, 2251).
- 8 V. G. Shtamburg, A. V. Tsygankov, E. A. Klots, I. I. Fedyanin, K. A. Lyssenko and R. G. Kostyanovsky, *Mendeleev Commun.*, 2006, 85.
- 9 (*a*) A. J. Kirby, I. V. Komarov, P. D. Wothers and N. Feeder, *Angew. Chem., Int. Ed.*, 1998, **37**, 785; (*b*) A. J. Kirby, I. V. Komarov, K. Kowski and P. Rademacher, *J. Chem. Soc., Perkin Trans. 2*, 1999, 1313; (*c*) A. J. Kirby, I. V. Komarov and N. Feeder, *J. Chem. Soc., Perkin Trans. 2*, 2001, 522.
- 10 L. H. Jensen, *J. Am. Chem. Soc.*, 1956, **78**, 3993.
- 11 S. A. Glover, G. Mo and A. Rauk, *Tetrahedron*, 1999, **55**, 3413.
- 12 G. M. Sheldrick, *SHELXTL PLUS. PC Version. A System Computer Programs for the Determination of Crystal Structure from X-ray Diffraction Data.* Rev. 5.1.

Received: 19th October 2006; Com. 06/2798