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ABSTRACT

In this paper we present a method for automatically generating
acoustic sub-word units that can substitute conventional phone
models in a query-by-example spoken term detection system. We
generate the sub-word units with a modified version of our speaker
diarization system. Given a speech recording, the original diariza-
tion system generates a set of speaker models in an unsupervised
manner without the need for training or development data. Modify-
ing the diarization system to process the speech of a single speaker
and decreasing the minimum segment duration constraint allows
us to detect speaker-dependent sub-word units. For the task of
query-by-example spoken term detection, we show that the pro-
posed system performs well on both broadcast and non-broadcast
recordings, unlike a conventional phone-based system trained solely
on broadcast data. A mean average precision of 0.28 and 0.38 was
obtained for experiments on broadcast news and on a set of war
veteran interviews, respectively.

Index Terms— Spoken term detection, zero resource speech
recognition, acoustic sub-word unit generation, speaker diarization

1. INTRODUCTION

Modern large vocabulary continuous speech recognition (LVCSR)
systems require large collections of orthographically transcribed
speech data for training their statistical language and acoustic mod-
els. It is not always feasible to construct such data sets due to the
time and expense associated with the annotation of large quantities
of audio. This is typically the case for ‘low resource’ languages
for which performing automatic speech recognition (ASR) is eco-
nomically less profitable. For example, due to the lack of automatic
transcription tools, only a few percent of the recordings of 4,000+
endangered languages, currently being made by linguists, can be
analyzed [1].

Even if sufficient training data is available for a particular lan-
guage to develop standard broadcast news speech recognition sys-
tems, high quality ASR for other speech styles of that language can-
not be guaranteed. For example, sufficient resources are available to
perform LVCSR on Dutch broadcast news data [2], but we are still
struggling to recognize interview material consisting of unprepared
speech in various acoustic conditions. Recently we have developed
a system for automatic transcription of a collection of interviews
with Dutch war veterans. Despite the manual annotation of small
portions of audio for acoustic model adaptation and training special
in-domain language models, the performance of this system left con-
siderable room for improvement.

Given that limited annotated training data is available for many
LVCSR tasks, new techniques are needed that are robust to such low

training resources. Ideally, an ASR system would require no train-
ing data at all. For Speech Activity Detection (SAD) and speaker
diarization we have shown that such an approach is actually possi-
ble [3, 4]. In these cases we use a Hidden Markov Model (HMM)
based segmentation and clustering set-up, in which the Gaussian
Mixture Models (GMM) needed for each class are trained and itera-
tively refined on the test data itself. In order to do the same within a
standard ASR framework, we would need to be able to automatically
generate acoustic models, a dictionary and a language model. It is
the first step, automatic generation of acoustic models, that presents
the focus in this work. We extend our speaker diarization system in
our attempt to accomplish this.

Speaker diarization is the task of segmenting and clustering
speech based on speaker identity. Our diarization system is able to
do this without the need of external training data. It clusters the
test audio based on the most salient acoustic variation within the
recording — the variation between speakers. If we only process
speech from one single speaker and relax a few system constraints,
we expect the system to model the acoustic variation at a smaller
granularity, e.g., the phone or sub-word level. We hypothesize
that the acoustic sub-word units generated in this case may be an
appropriate substitution for conventional acoustic models.

In this paper we investigate the automatic generation of speaker-
dependent acoustic models on the test audio itself using a system
originally developed for speaker diarization. We will evaluate the
models in a spoken term detection task. Because we do not use
resources such as a lexicon and language model to perform large
vocabulary continuous speech recognition, we will perform query-
by-example spoken term detection. With this type of spoken term
detection, an example fragment of a recording is used as query to
find other, similar fragments in the recording. Although the applica-
bility of such a search-by-example system may appear limited, we
find a useful application in the veteran interview collection where
single speakers are talking for several hours in a single recording
and for which traditional LVCSR did not provide satisfactory search
facilities.

The remainder of this paper is organized as follows. Section 2
describes studies that are related to this work. Our proposed ap-
proach is detailed in section 3. Section 4 describes the experimental
set-up followed by a discussion in section 5 on how we plan to ex-
pand our system towards speaker- and recording-independent acous-
tic sub-word unit modeling.

2. RELATED WORK

A number recent studies have been carried out on automatically ob-
taining acoustic sub-word units. We will briefly discuss them in this
section.

The methodology of discovering words or sub-words from the
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raw speech signal is an important issue in studies of language ac-
quisition in babies. In a recent study, an algorithm for unsupervised
word discovery was presented that automatically generated phone-
like sub-word units [5]. The segmentation and clustering approach
employed in this study was based on dynamic time warping compar-
isons. In [6], a GMM was trained on speech from multiple speakers
and the posteriors of each Gaussian in the mixture were used as units
in a dynamic time warping framework. In [7], unsupervised learning
of acoustic sub-word units was achieved using divisive clustering.
In this study, an extended method for allophone learning was used to
go from one cluster (all speech) towards sufficient multiple acoustic
sub-word units for Japanese.

The work in the three aforementioned studies is similar to our
work. All papers were successful in automatically finding a set of
acoustic sub-word units, each using different clustering methods —
dynamic time warping, training a GMM to be used in a posterior-
gram and applying an extended form of the successive state splitting
algorithm. In contrast to the first two clustering methods, the ap-
proach taken in this work is to re-align the data iteratively over the
models and to refine the models with each iteration (see section 3).
For speaker diarization this iterative approach has proven to be very
effective. Although in the third method [7], the data is also itera-
tively re-aligned over the models, a divisive clustering algorithm is
used instead of the agglomerative algorithm applied in this study. A
potential advantage of agglomerative clustering over divisive cluster-
ing is that in general, considerably more iterations are applied using
agglomerative clustering, allowing for better refinement of the mod-
els. Further, in our clustering approach, the number of components
of each GMM scales with the amount of data being processed. This
also works very well for speaker diarization.

We were not able to implement all three techniques and compare
them on our evaluation set. Instead, we chose to implement solely
the GMM-based approach for comparison due to its ability to find
acoustic sub-word units across speakers [6]. This means that we can
also use this method as a baseline for future research when we will
try to link sub-words of speakers to generate a speaker independent
set of units.

A clear description of a system set-up for query-by-example
spoken term detection can be found in [8]. In this study the out-
put of a conventional phone recognizer is transformed into a pos-
teriorgram, a matrix with the posterior probabilities of all phones
for all time frames of the recording. Such a posteriorgram is made
for both the query and the recording. Next, for each time frame in
the query, the distance to all frames in the recording is calculated.
Dynamic time warping is then used to find relevant ‘documents’ for
each query. We will use the framework of posteriorgram calculation
and dynamic time warping for our own retrieval set-up using our au-
tomatically generated sub-word units instead of the phone posteriors
used in [8].

3. AGGLOMERATIVE CLUSTERING APPROACH

Our query-by-example spoken term detection system consists of
three steps. First, acoustic sub-word units are generated using the
modified speaker diarization system. Next, using the models for the
sub-word units, a posteriorgram is formed. Finally, for each query a
template is constructed and, with the use of dynamic time warping,
a list of relevant documents is generated. In this section we will first
describe the steps of our approach and then we will describe three
systems that we built to establish a baseline for comparison to our
system. In the following section we will describe how we applied
the systems to a retrieval experiment.

3.1. Unsupervised acoustic sub-word unit detection (UASUD)

Before we perform unsupervised acoustic sub-word unit detection,
we first run our standard speech activity detection and speaker di-
arization system to filter out all non-speech and to obtain the speech
segments labeled by speaker identity [3, 4]. We then perform unsu-
pervised acoustic sub-word unit detection (UASUD) using a model-
based agglomerative clustering approach in which speech data is first
divided into a large number of clusters and these clusters are merged
pairwise until the desired number of clusters is reached. The mod-
els that are needed during UASUD are not generated on an external
training set but on the audio that is being processed itself.

Fig. 1. A schematic representation of the UASUD-algorithm. The steps for
creating the initial models and merging the models each consist of a number
of training and re-alignment iterations.

Figure 1 presents the five steps of the algorithm. In the first
step, speech activity detection and diarization, all non-speech audio
is removed from the data and the speech segments are labeled on
speaker identity so that the remaining steps can be performed on
the speech segments of each individual speaker. In the second step,
initial acoustic sub-word unit models are generated in an iterative
manner. This involves random assignment of the speech data to each
GMM, followed by iteratively training the models and re-aligning
the data. In the third step, a distance metric is used to determine
which two models are most similar which are subsequently merged
in the fourth step. The third and fourth steps are repeated until the
desired number of clusters is reached.

For Viterbi re-alignment the GMMs are organized in an HMM
topology depicted in figure 2. Each acoustic sub-word unit is rep-
resented by a string of four states that share the single GMM as
probability density function (pdf). This topology ensures that the
minimum duration of each segment after the Viterbi search is 40 ms.

Fig. 2. The HMM topology of the UASUD-system. Each sub-word unit is
represented by a string of four states that uses a single GMM.

In order to find the two acoustic units that are most similar, the
Bayesian Information Criterion (BIC) distance metric is used [9].
This metric compares the two models Mi and Mj with a third model
Mij that is trained on the combined data of Mi and Mj . The advan-
tage of this metric is that it does not require a threshold that needs
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to be tuned on a development set as long as the number of free pa-
rameters in Mij (the number of gaussians) equals the number of free
parameters in Mi + Mj [10, 11]. This metric was first used for
acoustic change detection in [12].

3.2. Comparison to speaker diarization

The UASUD-system described above remarkably resembles the de-
sign of a speaker diarization system. In fact, our system is derived
from our speaker diarization system [4]. There are, however, sev-
eral distinct differences between the proposed UASUD-system and
our diarization system. First, the minimum duration imposed by the
HMM topology is 4 states, compared to 250 for the diarization sys-
tem. Second, in addition of the 19 MFCC features used in the di-
arization system, the UASUD-system uses the first and second order
derivatives of the features, thereby allowing our system to capture
more of the smaller granularity dynamics in speech. Thirdly, we ini-
tialize with 207 clusters (approx 3.5 times the final number of acous-
tic units) whereas we use 16 for speaker diarization, assuming appli-
cation in scenarios with 2–10 speakers. Finally, the speaker diariza-
tion system has an additional stopping criterion due to the number of
speakers in the recording being unknown. For our UASUD-system,
we use a fixed number of 57 final clusters for the reasons detailed in
section 3.4.

3.3. Search by dynamic time warping on posteriorgrams

In [8], a phonetic posteriorgram is defined as a time-vs-class matrix
representing the posterior probability of each phonetic class for each
time frame of a recording. Similar to the approach in [8], we create
a posteriorgram for both the recording and each query. However,
instead of using phone probabilities to create the posteriorgrams, we
use the probabilities of the acoustic sub-word units.

From the query posteriorgram and the recording posteriorgram,
we create a similarity matrix containing a similarity score for each
vector q in the query posteriorgram with each vector x in the record-
ing posteriorgram. The similarity score S is determined as follows:

S(q,x) = log(q · x) (1)

Using the similarity matrix we perform Dynamic Time Warping
(DTW) to retrieve fragments in the recording that contain speech
similar to the query. We constrain the DTW search to a local time
warping ratio of maximum 2. That is, each frame in the query se-
quence is assigned to maximum two frames in the search sequence
and vice versa.

3.4. Alternative query-by-example systems

We have developed three alternative systems for comparison to
our proposed system. All systems make use of the same posteri-
orgram/DTW framework for search, but the posteriorgram proba-
bilities are obtained in three different ways. For the first system,
the MFCC system, the probabilities are substituted by the MFCC
feature vectors of the modified diarization system. Each of the 57
MFCC components is normalized over the entire recording so that
all values fall between zero and one.

The second system, the GMM system, is our implementation of
the system from [6] (see section 2). We train the GMM up to 57
Gaussians so that the systems are comparable.

Finally, we have created a system using posterior probabilities of
our Dutch phone models, as obtained from our LVCSR BN-system
developed for Dutch [4].

4. EXPERIMENTAL SET-UP AND RESULTS

We test the proposed system and the three baseline systems on two
sets of data. We use all 78 speech segments, totaling 7.5 minutes in
duration, of the anchor-person in a Dutch broadcast news recording
to see how the algorithms work on clean studio speech. We then test
the systems on 15 veteran interviews. These interviews are table-
top microphone recordings of Dutch war veterans, who are senior
citizens. Each interview is two hours long. From each interview
we have manually annotated 2.5 minutes of speech for evaluation
purposes. We performed a forced-alignment with our regular Dutch
LVCSR BN decoder to obtain the exact start and end time of each
word. Note that although we only evaluate on 2.5 minutes of each
recording, the systems process each interview in its entirety.

Normally, for spoken document retrieval tasks, only content
words are used as queries because these are the words of interest.
As we are interested in the acoustic modeling capabilities, we de-
termine the performance on all words in the annotated parts of the
recordings, and do not limit ourselves to content words.

For a retrieval experiment we need the concept of a ‘document’
and for this we use the speech segments obtained from the SAD
module. We use each annotated word as a query and request the
system to output all other speech segments that contain this word.
DTW is used to find the optimal relevance score for each document
and we then sort the documents according to this score.

We evaluate the system performance in terms of the Mean Aver-
age Precision (MAP).

4.1. Results

Table 1 contains the results of the four systems on the broadcast
news data and on the 15 interviews. It shows that the phone search
worked well for in-domain broadcast news data, but not for the in-
terview data. This was expected as the LVCSR system was devel-
oped for broadcast news data for which it obtained a Word Error
Rate (WER) of 34.9% [4], whereas the system achieved a 63.5%
WER on the interview data. The three other systems are not based
on models trained on external data and, consequently, did not suf-
fer from the same performance drop as the phone-based system.
Searching directly on the MFCC features was suboptimal on both
test sets. The straightforward GMM-based system performed sur-
prisingly well, however our proposed UASUD-system performed
consistently better on the two tasks. The improvement was 3.7%
relative on broadcast news and 5.6% relative on the interview data.

Table 1. Results of the four systems.

Experiment MAP on BN MAP on interviews

MFCC 0.25 0.32

phone 0.27 0.06

GMM 0.27 0.36

UASUD 0.28 0.38

To analyze if the output of the UASUD-system and the GMM-
based system are different, we have plotted the individual average
precision scores of the two system outputs against each other (fig-
ure 3). Although the MAP of the two systems is similar, the cloud
in figure 3 shows that the average precision is different for most
queries. This suggests that the fusion of the two techniques, such
as often is done in the field of speaker recognition, could lead to
improved performance [13].

The MFCC-based and the phone-based systems are not affected
by the duration of each recording as they do not train or tune any
models on the data. However, this is not the case for the GMM-based
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system and the UASUD-system. On the one hand, long recordings
provide more data to train on and hence leads to potentially richer
models, but on the other hand, in longer recordings more variation
in speech will be observed than is necessary for the short evaluation
segments. This potentially makes it harder to generate a small set of
models that can be successfully applied for spoken term detection.
To check if the length of the recording influences the performance
of the system, we repeated the interview experiment for the GMM-
based system and the UASUD-system with the adjustment that only
the 2.5 minutes of evaluation data needed to be processed. The mean
average precision for the UASUD-system was not affected by this
(0.38). The MAP of the GMM-based system actually improved to
0.37 (0.36 on the original test). It is hard to predict whether this indi-
cates that the GMM-based system is less robust to long recordings.
Experiments on much larger audio collections are needed to prove
this hypothesis.
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Fig. 3. The average precision of each query for the UASUD-system (hori-
zontal) and the GMM-based system (vertical) on the veteran interview col-
lection.

5. DISCUSSION
In this paper we have shown that with only a few small adjustments,
it is possible to use a standard speaker diarization system to automat-
ically learn acoustic sub-word units that are suitable for use in a spo-
ken term detection system. From the four systems that we evaluated
in this study our approach performed best, offering a marginal but
consistent performance improvement over the GMM-based method.
It is remarkable that the divisive GMM approach and the agglomer-
ative UASUD approach consistently give rise to quite similar MAP,
where the per-keyword performance is quite uncorrelated.

This study was a first step in the direction of performing ASR
with the use of as little supervised training resources as possible. We
were able to automatically generate speaker-dependent acoustic sub-
word units that proved useful in a spoken term detection framework.
In future research we will extend our system to be able to generate
speaker independent sub-word units. We will investigate whether it
is possible to do this the same way as we do for diarization of large
archives: perform clustering for each speaker and link the acous-
tic units between the different speakers using generalized detection
techniques [14]. It will further be interesting to see if our assumption
is true that the difference in performance between this approach and
the GMM-based method grows for larger data sets.

Another step that we will need to take in future research is au-
tomatically generating pronunciation lexicons for our acoustic sub-
word units. We plan to ‘identify’ words by searching for often ap-
pearing recurrent sequences of sub-word units in our data. The au-
thors of [15] managed to do this for relatively long sequences using
conventional phone models. It will be interesting to find out if we

are able to perform similar experiments with our automatically gen-
erated acoustic sub-word units.

Orthographically labeling the generated ‘words’ will be the next
challenge. We realize that the solution for this challenge is far away;
the problem can only be solved once the other steps are successfully
taken. Hopefully it will be possible to find word labels by compar-
ing sequences of ‘words’ with the actual words in textual newspaper
archives.
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