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Speaker Diarization Error Analysis Using
Oracle Components

Marijn Huijbregts, David A. van Leeuwen, and Chuck Wooters

Abstract—In this paper, we describe an analysis of our speaker
diarization system based on a series of oracle experiments. In this
analysis, each system component is substituted by an oracle com-
ponent that uses the reference transcripts to perform flawlessly.
By placing the original components back into the system one at a
time, either in a top-down or bottom-up manner, the performance
of each individual system component is measured. The analysis ap-
proach can be applied to any speaker diarization system that con-
sists of a concatenation of separate components. Our experimental
findings are relevant for most RT09s diarization systems that all
apply similar techniques. The analysis revealed that three compo-
nents caused most errors: speech activity detection, the inability to
handle overlapping speech, and robustness of the merging compo-
nent to cluster impurity.

Index Terms—Rich transcription, speaker diarization, system
analysis.

I. INTRODUCTION

S PEAKER diarization is the task of determining: “Who
spoke when?”. Speaker diarization systems segment and

cluster speech on the basis of speaker characteristics. Being
able to group all speech from one particular speaker is a useful
pre-processing step for various speech processing tasks. For ex-
ample, speaker diarization information can be used to improve
automatic speech recognition (ASR) performance (feature
normalization or model adaptation [1]), for a meeting sum-
marization application it is important to track who said what
to whom, and a dialog act tagger needs utterance boundary
information and can exploit speaker change information to
model interruptions. Speaker diarization is also useful as an
initial step for tracking people across recordings, making it
possible, for example, to search for quotations of a specific
person in multimedia collections.

Since 2002 the U.S. National Institute of Standards and Tech-
nology (NIST) has organized evaluations of speaker diarization
technology in the broadcast news domain and since 2004 these
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evaluations have also been performed in the meeting domain [2].
We have participated in the 2006, 2007, and 2009 Rich Tran-
scription (RT) evaluations1 with a system based on a hidden
Markov model architecture and Gaussian mixture models that
are trained using only the speech in the data under evaluation.
Although we have made numerous adjustments, the framework
of our system is still very similar to the system initially proposed
in [3].

After participating in the NIST rich transcription evaluation
in 2006 we performed an analysis of our system based on a se-
ries of “oracle” experiments that enabled us to determine effi-
ciently which component needed our attention most in future
research efforts [4]. Oracle experiments are “cheating” experi-
ments where the system or part of the system can make use of
whatever knowledge is available [5]. For our analysis in 2006,
oracle experiments were used to assess the performance of sep-
arate system components. We first replaced all system compo-
nents with an oracle variant and then, one by one, placed the
original components back into the system. By measuring the
difference in system performance at each step, we determined
the performance of each individual component. In our original
paper we did not investigate to what extent the performance of
one component influences that of others [4]. In this study, we
extend our analysis in order to measure this dependency and to
obtain more detailed and more reliable information about the
components in our system.

This paper is organized as follows. First, in the remainder of
this section we will describe the procedures during the NIST RT
evaluations, the overall framework of our diarization system and
that of the other systems that were entered into the most recent
NIST RT evaluation. Next, in Section II we will describe our
analysis method. In Section III we will summarize the results of
our initial study and we will discuss the most important changes
made to our system due to the first analysis. In Section IV, we
will investigate the shortcomings of our most recent system and
finally we will use the same oracle setup to investigate why the
results at RT09s were poorer than expected.

A. NIST Rich Transcription Evaluation Series

Since 2004, NIST has conducted competitive evaluations of
speaker diarization systems using recordings from multi-party
meetings and lectures, as part of the Rich Transcription (RT)
evaluations, the speaker diarization task must be performed with
little knowledge of the characteristics of the audio or of the
talkers in the recording. There are several conditions in which
diarization systems are evaluated. The primary evaluation con-
dition allows the use of audio recorded from multiple distant

1NIST did not organize the RT evaluation in 2008.
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Fig. 1. Schematic representation of the speaker diarization algorithm. The steps
for creating the initial 16 models and merging the models each consist of a
number of training and re-segmentation iterations.

microphones (MDM) [2]. In this paper, we focus solely on the
primary MDM condition in the meeting domain.

The metric used to evaluate the performance of each speaker
diarization submission is called diarization error rate (DER) [2].
The diarization error rate is the sum of two error rates: the
speech activity detection (SAD) error and the speaker classi-
fication error. The SAD error is the percentage of speech and
non-speech that is misclassified. The speaker classification error
is the time-weighted error due to misclassifying speakers. Note
that if two speakers are talking simultaneously, both should be
classified correctly. The speaker classification error consists of
regular classification errors and of all overlapping speech errors.

Another metric, mainly used for system analysis, is hypoth-
esis speaker purity (or cluster purity). The entire set of speech
segments from one single hypothesis speaker might contain
multiple reference speakers. The hypothesis speaker purity
is the time-weighted fraction of the most occurring reference
speaker for the particular hypothesis speaker. We use hypoth-
esis speaker purity in our oracle experiments to determine
which two clusters should be merged (see Section II).

Note that it is possible that multiple hypothesis speakers use
the same reference speaker for purity calculation. If the purity
of a hypothesis speaker is a hundred percent, this means that all
speech of this speaker can be mapped to one single reference
speaker and no noise of other speakers is present. However, this
does not mean that the hypothesis speaker does not contribute to
the DER as the reference speaker might be mapped to another
hypothesis speaker.

B. Agglomerative Model-Based Speaker Diarization

The system described in this paper is based on a system that
was originally proposed in [3]. Our system is model-based, but
the models are created on the audio that is being processed and
not on a pre-defined training set. It uses an agglomerative clus-
tering algorithm: speech data is first partitioned into a large
number of clusters and these clusters are merged pairwise until,
presumably, the correct number of clusters is reached.

Fig. 1 presents the five steps of the algorithm. In the first step,
speech activity detection, all non-speech audio is removed from
the data and only speech is used in the remainder of the system.
Second, during initialization the speech data is randomly dis-
tributed over a number of clusters and by iteratively training

models for these clusters and re-segmenting the speech data,
speaker models are created. In the third step, a distance metric is
used to determine which two models are most similar and in the
fourth step, if the two models are not regarded to be from the
same speaker, the optimum number of clusters is reached and
the process finishes. Finally, if the two models are indeed re-
garded to be from the same speaker, the two models are merged
into one single model and the system continues at the third step.

In order to find the two models that are most similar, the
Bayesian information criterion (BIC) distance metric is used [6].
This metric compares the sum of likelihoods of two models
and each on their own data with the likelihood of a third
model that is trained and evaluated on the combined data
of and . If the combined likelihood of models and

is smaller than the likelihood of , the two models are
considered to be trained on speech from a single speaker.

The first to apply BIC to segmentation and clustering were
Chen and Gopalakrishnan [7]. The need for a tunable model
complexity parameter was later made superfluous in [3] by
keeping the complexity the same before and after merging,
effectively done by keeping the number of Gaussians in the
same as the sum of Gaussians in and . For our system,
we have adopted the approach in [3].

C. State-of-the-Art Diarization Systems

The agglomerative clustering algorithm described above is
not only the basis for our system, it is also used in most other
systems that were entered into the most recent NIST Rich Tran-
scription evaluation. For example, the IIR-NTU [8] submission
for RT09s applies HMM based agglomerative clustering. The
system uses two feature streams: time delay of arrival (TDOA)
features and MFCC features. The MFCC features are used for
SAD and both feature streams are applied in the agglomerative
clustering step. Before clustering is started, the IIR-NTU system
performs a smart initialization step in which the audio is clus-
tered in nine groups using the TDOA information.

Also the UPC [9] and UPM [10] systems apply agglomera-
tive clustering using an HMM topology, Viterbi, and BIC. The
UPC system incorporates a model for determining the prior
probability of a speaker talking after other speakers have been
speaking. The UPM system applies “frame purification” to filter
out feature vectors that are not helpful for classification.

The LIA-Eurecom submission was the only system in RT09s
that did not apply agglomerative clustering [11]. Instead this
system starts with a single cluster for the entire recording and
splits this cluster iteratively into multiple speaker clusters.
Similar to the other systems, the LIA-Eurecom systems applies
GMMs in an HMM topology for segmentation and clustering
and the models are also refined iteratively.

Because the basis of all systems in RT09s is similar, we are
convinced that the findings of our system analysis will be, to
greater or lesser extent, applicable to the other systems. Further,
even for systems that do not apply the same techniques as ours,
the analysis method itself can be interesting. For every system
that can be divided in a concatenation of separate components,
the oracle-based analysis approach can be applied.
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II. ORACLE-BASED SYSTEM ANALYSIS

The analysis described in this paper is based on oracle ex-
periments. The term “oracle” stems from the fact that (part of)
the system can make use of whatever knowledge is available.
Even the optimal system output, the reference transcripts, may
be used. In a sense, the system is an oracle that knows every-
thing [5].

A. Oracle-Based Experiments in Other Studies

Oracle-based analysis is commonly used in various research
fields and also for analysis of speaker diarization systems; or-
acle experiments have been conducted before. In [12], oracle
experiments were used to determine the impact of overlapping
speech in speaker diarization. It was shown that, with perfect
overlap detection, the system could be improved in two ways: by
skipping the overlap regions during clustering and by assigning
the overlap regions to two speakers using an effective algorithm
called “nearest-2.” By applying the perfect overlap input, the
performance was close to that of the oracle optimum overlap
assignment. In the same research, oracle experiments were used
to show that the extent of dimensionality reduction of location
features should be variable for each recording.

In [13] oracle experiments were used to analyze existing and
new stopping criteria. Both the speech/non-speech classifica-
tion and speaker change detection components were replaced
by oracle components and only the clustering and stopping
components were tested. This study showed that, with perfect
input, the proposed stopping component based on information
change rate, outperformed the conventional BIC based stopping
criterion.

The two papers used oracle experiments in order to focus
on a specific problem in speaker diarization. By using oracle
components as input for the component under test, the errors in
each experiment could be attributed purely to the tested com-
ponents. This advantage can also be regarded as a disadvantage
because in the oracle setting, the component is not tested to be
robust for non-perfect input. In this paper, we do not focus on
one single component of the system. Instead, we will use the
oracle technique to analyze each component under perfect con-
ditions (top-down analysis, see Section II-D) and under actual
input conditions (bottom-up, see Section II-E).

B. Oracle Based System Analysis of Our Diarization System

For our analysis, oracle experiments are used to assess the
performance of separate system components. For each of these
tests, the components that are not tested are replaced by an ex-
perimental setup that performs optimally by using knowledge of
the reference transcription (the oracle knowledge) and the com-
ponents that are tested are left unchanged.

In our initial set of experiments, at first all components are
replaced by the oracle setup and the DER is measured. Then,
one at a time and in a top-down approach, the actual compo-
nents are placed back into the system. The increase in DER
after replacing a component is attributed to shortcomings of that
particular component. By replacing the components top-down,
each newly replaced component receives its normal input, but
its output is further processed by the oracle.

In our second set of experiments, we replace the components
in a bottom-up approach. This way, the investigated component
receives perfect oracle input and the output is further processed
by the actual system.

Note that because of the iterative nature of the diarization al-
gorithm (the loop in Fig. 1), it is not possible to perform the ex-
periments completely top-down or bottom-up. We have chosen
the order to replace the oracle components with the actual com-
ponents in such a manner that this effect is minimized. Before
discussing these experimental setups, we will first describe how
the reference transcripts are used.

C. Reference Transcripts

For scoring the output of diarization systems, a reference tran-
script is manually created labeling the fragments where each
speaker is talking [2]. In the oracle experiments, these reference
transcripts are used in three different ways. In the first experi-
ments of the series, the transcripts are used as input for the di-
arization system. One way of doing this is to replace the SAD
output with the transcription. In this case the IDs of all speakers
in the transcripts are replaced with one ID (“speech”) and all
overlap regions are replaced by single regions. Another method
for using the reference transcripts as input, is to replace the ini-
tial clustering with a perfect clustering obtained from the refer-
ence transcript.

The reference transcripts are also used to take merging deci-
sions. Instead of performing BIC, the oracle merge component
scores a segmentation with the NIST scoring tools2 and deter-
mines for each cluster which speaker it represents most (which
speaker is classified by that cluster the longest period of time).
The purity of each cluster is then calculated as discussed in
Section I-B. The oracle merge component will then decide to
merge the two clusters with the same representing speaker that
has the highest purity.

Third, the system is modified so that an intermediate hypoth-
esis segmentation file can be printed after each merging itera-
tion for monitoring purposes. From these files we can calculate
what is the best possible system performance, the diarization
error rate if the system does not make any more mistakes, in
two steps. First, for each speaker cluster we determine which
speaker it represents the most. After labeling all IDs with the
true speaker identities (an oracle approach for perfectly merging
clusters with the same reference speaker identity) we use the ref-
erence transcripts for scoring.

D. Top-Down Analysis

The basis of our analysis consists of six oracle experiments.
In the first experiment, all algorithm steps are replaced by an ex-
perimental setup that uses oracle information, and at each fol-
lowing experiment one of the components is placed back into
the system (top-down). This procedure is depicted in Fig. 2.

Experiment 1, Optimal Models: If the algorithm would do
a perfect job, the HMM would contain exactly one model per
speaker and each model is trained on all the available speech of
its speaker. Even if the algorithm would not make a single mis-
take and these optimal models were created, the system is not

2http://www.nist.gov/speech/tools.
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Fig. 2. The six experimental setups. The bigger light gray boxes represent the oracle components that replace the actual components. The oracle components
perform their task using the reference transcript. In each experiment, one component is placed back into the system.

expected to have a perfect diarization score because the system
is not able to model overlapped speech and because the models,
with their limited number of Gaussians, might not be able to
classify all speech perfectly. In order to test the system on these
limitations, in the first experiment the reference transcription is
used instead of the SAD component. For each speaker in the
reference, one model is trained using all speech from that par-
ticular speaker. The total number of Gaussians in the system is
the same as normal (80) and they are distributed over the clusters
based on the amount of speech that is available for each speaker.
After the models are created, a Viterbi pass is performed to find
the final system result. This experiment gives us the error due to
overlapping speech (further referred to as error A: the overlap-
ping speech error) and the error due to imperfect modeling and
segmenting the data (error B: the modeling/segmentation error).

Experiment 2, Speech Activity Detection: In the second ex-
periment, the actual SAD component is placed back into the
system. The models are still trained directly on the speech from
the reference transcription, but the final segmentation is per-
formed with the actual SAD segmentation. Compared to exper-
iment 1 (the DER scored on this experiment subtracted by the
error of experiment 1), this gives us the error that can be blamed
on the SAD component (further referred to as error C: the speech
activity detection error).

Experiment 3, Iterative Merging: Next it is tested what the
influence of performing the actual merging iterations is on the
final result. For this test, the reference transcript is used to create
16 initial models. Each model is created with speech of only
one speaker, but because now 16 models are needed, the speech
of each speaker is cut up in pieces so that multiple models can

be trained for each speaker. The data are distributed such that
each model is trained on an average amount of data (a person
that spoke a lot in a meeting, will have a high number of initial
models). The normal model initialization and iterative merging
procedure are used, but the decisions about which models to
merge and when to stop are performed by the oracle setup (as
described in Section II-C). Compared to experiment 2, this gives
us the error due to the procedure of creating the final models by
merging the smaller initial models together (error D: the itera-
tive merging error).

Experiment 4, Model Initialization: Instead of creating the
initial models with use of the reference transcript, in this ex-
periment the initial models are created normally by dividing the
speech data randomly. However, the merging and stop decisions
are still performed by the oracle setup. Therefore, compared to
experiment 3, this gives us the error due to the shortcomings of
the systems model initialization method (error E: non-perfect
initial clusters error).

Experiment 5, Merge Candidate Selection: The oracle merge
candidate selection component is now replaced by the actual
candidate selection component-based on BIC. Compared to ex-
periment 4, this gives us the error due to the shortcomings of
the BIC selection component (error F: combining wrong models
error).

Experiment 6, Stop Criterion: Finally, the remaining oracle
setup that is able to decide when to stop merging perfectly, is re-
placed by the actual component that decides when to stop based
on BIC. Compared to experiment 5, this gives us the error due to
incorrect stop decisions (error G: stop clustering too early/late
error).
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E. Bottom-Up Analysis

By applying the oracle-analysis described above, it is as-
sumed that the performance of each component is mostly
independent of the performance of others. However, changing
one component is likely to have an impact on other components.
Therefore, blaming a single component for the increase of DER
between two experiments, might sometimes give a slightly
distorted picture. The first two blame classes, overlapping
speech and SAD, do not suffer from this problem because the
amount of overlapping speech is fixed (for a given test set) and
SAD is the first component in the system and it does not need
input from any other component.

A way to investigate the dependencies between the remaining
components is to test each component with input of varying
quality. The results of such experiments would probably pro-
vide very valuable information and possibly give a nuance the
analysis results, but performing such a set of experiments is very
elaborate. Also, creating a set of inputs with varying quality is
not always straightforward. For example, if two SAD segmenta-
tions have the same SAD error it is not necessarily true that the
diarization system performs equally well using both segmenta-
tions. Because of these two difficulties we restrict the possible
input for each component to either perfect (or actually as good
as we can do) or real input.

With the six oracle experiments described above, we have
not yet tested the bottom components with perfect input.
We only tested the string of components top-down, but not yet
bottom-up. Therefore, in order to provide a better understanding
of the last five blame classes, in a second series of experiments,
we start with all components replaced by the oracle components
and we replace the actual components bottom-up.

In the previous set of top-down experiments, we could blame
the increase in DER when replacing an oracle component for
the real component entirely on that one component, because the
components following the evaluated component were all oracle
components and therefore were not affected by the errors of
the evaluated component. In this set of experiments, any errors
made by a replaced component will influence the behavior of
the components that follow and therefore we cannot blame the
increase in DER on the component that is placed back, but we
have to blame it on that one component and all components that
use its input. If we want to specify where the error lies exactly,
for each group of components that influence each other we have
to do another top-down analysis.

Experiment 1, Cheat All: In the first experiment of this series
we use oracle components for all four steps (SAD and overlap
are not taken into account in this series). This experiment is not
the same as the “optimal models” experiment in the first ex-
periments series, because here we are not bypassing any of the
components. In the optimal models experiment, we train models
for each speaker directly. Now, we train 16 perfect models and
we actually merge these models until we reach the (cheated)
stopping point. For this experiment we now also use an oracle
component for the re-segmentation step. In the previous series
we either used the actual component (“Iterative merging”) or
we bypassed it completely. Now we cheat by simply not per-
forming re-segmentation at all. Because the initial segmentation

is already perfect, re-segmenting is not needed. When two clus-
ters are merged, the training data of the two clusters is simply
combined.

Experiment 2, Stop Criterion: The first bottom-up exper-
iment is to replace all components with their oracle variant,
except for the stop criterion component. This experiment will
teach us how well the stop criterion is performing with “per-
fect” input.

Experiment 3, Merge Candidate Selection: Next, the com-
ponent that is responsible for the selection of models to merge
is also placed back into the system. The diarization error of
this experiment minus the error of the first experiment can be
blamed on both the stopping criterion and on the component for
selecting merge candidates.

To find out which part of the error to blame on which of the
two components, it is needed to perform an experiment where
the stopping criterion component is replaced by its oracle
variant. This oracle component is implemented as follows: we
simply merge until only one cluster is left. We then calculate
the DER for each possible number of clusters and we pick the
number of clusters with the lowest error rate.

Experiment 4, Performing Re-Segmentation: In this exper-
iment, we replace the oracle re-segmentation component (not
doing segmentation at all) with the actual Viterbi segmentation
step. If the models represent their data well enough, placing
back the segmentation component will not influence the DER
much. The increase in DER is shared between the three non-or-
acle components. If it needs to be specified which component
is to blame exactly, two additional experiments need to be per-
formed: one where the merging and stopping components are
both replaced by the oracle components and one where only the
stopping component is replaced by the oracle variant.

Experiment 5, Non-Perfect SAD and Initialization: Finally,
we replace the perfect initialization step with the original step
and we replace the perfect SAD segmentation with the actual
segmentation. Note that for the previous experiments we trained
the models on the perfect non-overlapping speech regions, but
at the very end we perform one single Viterbi segmentation on
the actual SAD segmentation. Because of this, we are able to
compare the results of the previous experiments directly to the
results of this experiment.

Again, in order to divide the increase in error over all the
non-oracle components, a top-down analysis is needed of the
segmentation, merging and stopping components in which the
oracle variants are used and top-down replaced with the real
components.

F. Discussion

In this section, we have described a system analysis method
based on oracle experiments. With six components in the
system, there may be possible oracle experiment by re-
placing any of the components by their oracle counterpart.
However, not all of these combinations are feasible or even
make sense. We can investigate cumulative effects by adding
components successfully, this can be performed top-down or
bottom-up and if both are done, a total of eleven experiments
are needed. Performing only the top-down analysis provides a
good impression of the performance of each system component.
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However, because the components do not work independently
of each other, combining the top-down and bottom-up analysis
provides a better picture.

An even better understanding can be formed when the
bottom-up analysis is combined with a top-down analysis of
all components that use the output of the component under
evaluation. This type of analysis is a bit more complicated than
the simple top-down and bottom-up approaches and it also
requires some additional experiments (six experiments in our
case).

III. SUMMARY OF THE 2006 ANALYSIS

In this section, we summarize the results of the top-down
analysis that we performed in 2006 and we discuss how we ad-
justed our current system largely based on the results of this
analysis. An in-depth description can be found in [4].

A. Top-Down Analysis

In our previous work [4], we have performed the six top-down
oracle experiments on our 2006 system. In the first experiment,
the entire algorithm to create the HMM topology was bypassed
and the models were created directly. At each following ex-
periment in a top-down manner, one step of the algorithm was
placed back into the system (see Section II-D).

The error analysis showed that three factors contributed most
to the total DER: the lack of being able to model overlapped
speech, the speech activity detection itself and the initialization
of the 16 clusters. Unfortunately, because each component is
treated as a black box in the the error analysis, the analysis did
not provide information on why these components performed
suboptimal or how they could be improved. We therefore needed
to investigate the three components further. In the remainder of
this section we summarize our attempts to improve the three
weakest components of our system. These studies are described
in-depth in [1] and [14].

Cluster Initialization: One of the parameters in cluster ini-
tialization is choosing the number of initial clusters. In the orig-
inal system, the number of initial clusters is fixed to 16, but
for recordings of varying length, keeping the number of initial
models fixed will result in models trained on too little data for
short recordings and models trained on too much data for long
recordings. Models trained on too little data tend to get over-
trained and this might prevent models from the same speaker to
be selected for merging. Models that are trained on high quanti-
ties of data might be so general that all models become similar
and are all merged together. In order to prevent these two kinds
of mistakes, after the analysis we changed cluster initialization
so that the number of initial models was determined on basis of
the amount of speech in the recording. We found that our system
performed best with one initial model for each 40 seconds that
the recording contains speech (using 5 Gaussians in each initial
GMM).

We have not yet investigated other methods for cluster ini-
tialization improvement. One interesting method to investigate
is that of IIR-NTU used at RT09s where the initial models are
only trained on part of the data that is believed to be clean [8].

Speech Activity Detection: In our 2006 system, speech ac-
tivity detection was done with the RT06s SAD component of
ICSI [15]. This component used a two step algorithm. First, a si-
lence-based setup was used to find all segments with low energy.
It was assumed that silence was the only form of non-speech in
the meetings and that this first step was able to find enough rep-
resentative speech and silence segments to use in the second
step. In this second step, the segments were used to train a
model-based system with two states: one for speech and one
for non-speech. The HMM was used to re-segment the data
and using the new segmentation, new Gaussian mixture models
(GMMs) were trained. After a number of iterations the final
speech/non-speech segmentation was obtained.

The appealing feature of the original SAD algorithm was that
it did not apply any models or parameters that needed tuning
on an in-domain training set. Unfortunately, the energy-based
method used to generate an initial segmentation for training the
speech and silence models did not always work well. When au-
dible non-speech is expected to be present in the audio, a boot-
strap classification based on silence will not be sufficient. Our
new approach addresses the problem by applying a model-based
classification component to create the bootstrap classification.
After the initial classification step, three models are trained on
the audio to be processed: a model trained on silence, a model
trained on audible non-speech, and a model trained on speech.
Each of these models is trained on the data to be segmented.
By applying the three models, the system is able to perform
high-quality SAD.

The downside of our new method is that the models for the
bootstrapping classifier need to be trained on external data. For-
tunately, the initial segmentation does not need to be perfect. We
have shown that it is even possible to use bootstrapping models
trained on Dutch broadcast news data for use in English meeting
recordings.

Overlapping Speech: In [12], it is shown that overlapping
speech is a problem in two ways. First, because our system is
not able to output overlapping speech segments. The Viterbi seg-
mentation only outputs the one most likely speaker at each time.
Second, during the training process of the speaker models, the
overlapping speech segments act as noise. Because the overlap-
ping speech is not at all similar to the speech of the individual
speakers, it only degrades the models and with that, the final
segmentation.

In [14], we have attempted to improve our system by trying
to avoid to use overlapping speech segments during the model
training phase and by assigning multiple speakers to these over-
lapping regions. In line with our approach for diarization, we
tried to detect overlapping speech segments without the use of
models trained on a development set. Instead, we generated
overlapping speech models during a first diarization run and
applied these models in a second iteration. In [14], we show
that by applying this two-pass approach, it is possible to obtain
a modest gain in system performance (0.33% DER absolute),3

but we feel that this very modest system improvement does not
justify inclusion of this component in our detailed analysis in

3This result is obtained on the same test set as used in Section IV where we
show that the total error due to overlapped speech is ten times as high.
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TABLE I
THE 27 CONFERENCE MEETINGS OF THE TEST SET

TABLE II
RESULTS OF THE ORACLE EXPERIMENTS WITH- AND

WITHOUT APPLYING DELAY FEATURES

this work. Although we feel that our approach is promising, we
clearly need to perform more research to improve our overlap
detection system. Note that a number of other research insti-
tutes currently also investigate the overlapping speech problem
[12], [16].

Delay Feature Stream: One improvement, adding a delay
feature stream, was not obtained by performing the analysis but
by comparing our system to that of others (see Section I-C). The
delays between microphones with which a sound is recorded are
a by-product of the beam forming toolkit and can be used as a
second feature stream. The probability density function of each
state is then modeled by two GMMs: one for the MFCC stream
and one for the delay stream. In the original study in [17], this
decreased DER by 21% relative. We adopt this approach for the
system that we analyze in the following section.

IV. ORACLE-BASED ANALYSIS

The performance of our system on the NIST 2009 rich
transcription evaluation was poorer than expected. Instead of
analyzing our system on the evaluation set directly, we decided
to first analyze its behavior on a bigger test set, composed
from recordings of earlier NIST evaluations. In this section
we discuss the evaluation on this set. Both the top-down and
bottom-up series of oracle experiments are performed as de-
scribed in Section II-D. Table I contains the meetings from
which we have compiled the test set. The reference segmen-
tations were obtained by forced alignment of the reference
speech transcriptions in order to avoid inconsistencies in the
placement of segment boundaries.

A. Top-Down Analysis

In Table II, the results of the six oracle experiments are listed
for our most recent system with- and without the use of delay

TABLE III
BLAME ASSIGNMENT ON THE TEST SET

features. The SAD error on our test set is 6.7%, consisting of
4.8% missed speech and 1.9% false alarms.

As can be seen in Table II, the delay features improve the
system considerably for each experiment. The improvement in
the real system, without the use of oracle components, is 3.84%
DER absolute (experiment 6).

The six experiments from Table II were used to perform the
blame assignment. For example, the error due to the inability to
model overlapping speech (error A) is the missed speech error
from experiment 1 where a perfect (one-speaker) segmentation
was used. Note that this error of 3.5% (error A) is just the frac-
tion of overlapping speech. The remaining part of the error in
experiment 1 is due to imperfect modeling (error B). The SAD
error (error C) is obtained by subtracting the overlapping speech
error (error A) from the SAD error of the actual component
(6.7%) in experiment 2.

In this manner we have assigned part of the overall diarization
error rate to each of the system components (see Section II-D).
In Table III the contribution of each component to the total DER
is listed. Solely relying on these top-down analysis results it
seems that overlapping speech and speech activity detection are
still responsible for a large fraction of the error. New compared
to our previous analysis is that, especially for the system setup
without delay features, a high percentage of the DER is due to
errors in combining models. Twenty percent of the total error is
due to model merging errors.

B. Bottom-Up Analysis

Because the component for model merging seems to func-
tion suboptimal, it is interesting to analyze the system in the
bottom-up approach described in Section II-E. For the system
set-up that does not apply the delay features, we have performed
the five oracle experiments for this analysis and listed the re-
sults in Table IV. What stands out is that the stopping criterion
experiment resulted in a very high error rate of 42%. We ex-
perienced that testing the stopping criterion on its own is diffi-
cult. For each recording, at one point the BIC score is negative
for a pair of clusters that should be merged according to the or-
acle merging component. If the system is actually stopped at this
point, the DER is very high. Normally, the merging component
provides the pair of clusters with the highest BIC score—this
is not necessarily the same as found by the oracle, but also not
necessarily wrong. This will lead to higher BIC scores and to
a lower probability of premature stopping. This shows that it is
hard and maybe even less meaningful to separate the merging
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TABLE IV
RESULTS OF THE BOTTOM-UP ORACLE EXPERIMENTS ON THE TEST SET

WITH A SYSTEM SETUP WITHOUT DELAY FEATURES

and stopping components. The results of the remainder of ex-
periments on the test set are more according to expectations.
The difference in DER between each step is similar to the dif-
ferences observed in the top-down analysis.

We observe that when given perfect input, the step for se-
lecting models to merge does not perform poor at all. Both the
stopping criterion and the models selection component perform
well with perfect input, but when re-segmentation is switched
on, the performance drops. Note that in the fourth experiment
when re-segmentation is performed, the initial segmentation is
still perfect. This means that somehow the perfect segmentation
is corrupted during the iterations of re-training the models and
re-segmenting the data. We have investigated three hypotheses
that can cause this performance drop: 1) it is possible that the
perfect segmentation consists of so many short speaker seg-
ments that it is impossible for the system to generate a segmen-
tation that is close enough to the truth; or 2) the initial models
are not trained well enough to generate a good initial segmenta-
tion so that the system starts essentially with an almost random
segmentation after the first Viterbi run (as is the case normally
without cheating); or 3) the merge candidate selection and stop-
ping components are not robust enough to handle non-perfect
input.

1) Impossible Segmentation: If it is true that with the chosen
HMM topology and the restricted number of Gaussians for each
GMM it is not possible to generate a segmentation close enough
to the truth for the remaining steps to work with, then the optimal
segmentations that where generated in the second experiment of
the first series would have to be very poor input for the system. In
the second experiment, the actual SAD segmentation was used
to train a GMM for each speaker in the recording with as many
Gaussians that would optimally be used for each speaker in the
normal system setup. The final Viterbi segmentation in that ex-
periment is generated with all the limitations that the system has
due to its topology or number of Gaussians and it is as close as
the system can get in generating the perfect segmentation.

In the third experiment of our bottom-up analysis, we have re-
placed the reference segmentation by the near-perfect segmen-
tation output of the second experiment from the top-down anal-
ysis. If the first hypothesis is true, the model combining and
stopping step should fail on this segmentation and the output
of this experiment should be poor. However, the result of this
experiment for our test set was 10.93% DER. This is similar to
the DER of the third experiment (10.22%). In fact, the speaker
error was 4.10% in both experiments and the difference is com-
pletely due to the increase in SAD error.

2) Poor Initial Modeling: It is very easy to test the hypothesis
if the first models are too weak to generate good initial segmen-
tations. If this would be the case, the segmentation after the first

TABLE V
BLAME ASSIGNMENT ON RT09S. FRACTION OF THE DER, IN %,

ABSOLUTE, AND RELATIVE IN PARENTHESES

few Viterbi iterations would be so poor that even if all clusters
would be assigned to the actual speakers (perfect merging and
stopping), the diarization error rate would be very high.

We stored the segmentation after each Viterbi iteration
and relabeled and scored these segmentations as described in
Section II-E. The DER after the first Viterbi run (and with
perfect merging and stopping) is 9.82%. This is only 0.61%
above the optimal result of 9.21%. After ten iterations, the best
possible DER is 11.26%, which is still reasonable. We therefore
deduce that modeling and re-segmenting is going well and that
the problem must lie in the robustness of the component for
picking clusters to merge.

3) Robustness Problem: We observe that the merging and
stopping components seem to work fine for (near-)perfect input,
but that the performance drops as soon as the input is corrupted
by imperfect segmentation. With the reference input, the DER is
10.22% and with the near-perfect input in the experiment above
(“Impossible segmentation”) the DER was 10.94% while with
linear segmentation and even when perfect initial models are
created, the DER is 16.5% and 15.75%, respectively.

In the previous two experiments, we could not prove that the
input is unfit to be used by the merging component. We there-
fore conclude that this component is just not robust enough for
the actual input and that the system performance can only be im-
proved by either developing (near-)perfect initial components or
by developing a more robust merging/stopping component.

In the next section, we try to specify if it is the merging com-
ponent that is not robust, if it is the stopping component or if
both components are not robust against corrupted input.

V. RT09S EVALUATION

The performance of our system on the RT09s evaluation set
is 30.98% DER for the setup without delay features and 26.61%
DER for the setup that does apply delay features. In Table V, we
have conducted the top-down blame assignment on the RT09s
data.

What stands out from this analysis is that there is a lot more
overlapping speech in this set than we have observed in the test
set, that the SAD component is not performing as well as be-
fore and that the merging and stopping components are not per-
forming well. The fact that we observe a lot more overlapping
speech indicates that the meetings are less structured and per-
haps more informal than before (more interruptions, people ar-
guing) and therefore more difficult to process.

All the overlapping speech and the increase in false alarms
of the SAD component (the sum of errors A and C; 10.9% for
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Fig. 3. Performance of the stopping criterion and merging component of the system in three cases of Table IV (perfect segmentation, perfect initial modeling and
for the real system) obtained by a combination of top-down and bottom-up experiments. Left: the test set; right: the RT09s evaluation set).

RT09s against 6.7% for the test set) act as noise for the other
components. This might explain why the merging and stop-
ping component are not performing well. In order to test this
hypothesis we have performed an experiment on the system
without delay features and without any oracle components, ex-
cept that for training the models we have filtered-out all over-
lapping speech and SAD false alarms. If the increase in error is
due to these two sources of noise, the DER should drop consid-
erably in this experiment. For the test set, this was only true in
part. The DER dropped from 16.5% to 14.83%. For the RT09s
evaluation set the DER was reduced from 30.98% to 27.51%.

A. Top-Down, Bottom-Up Analysis

For both the test set and the RT09s evaluation set, we have
performed a bottom-up analysis where we also performed a
top-down analysis for each bottom-up experiment so that we
could observe the growth in error for each component for each
bottom-up step (see Section II-E). Fig. 3 contains the results
of this analysis for the system without delay features. We have
focussed on the stopping criterion and merging component in
three cases: one where the perfect initial segmentation is used
throughout the entire process (cf. Table IV, line 3; Fig. 3, 1st
bar), one where we started with the perfect segmentation but
re-segmented the data during the process (line 4; second bar)
and finally the case where we ran the system without cheating
(line 5; third bar). Note that the error region “modeling” in this
graph also contains the errors due overlapping speech and SAD.

Fig. 3 shows that, as we have noted before, Viterbi segmen-
tation is performing well and that the stopping criterion and
model selection for merging, even with perfect input, are not
performing well. It is surprising that for both sets, the stopping
criterion performs poorly even if the perfect segmentation is
used. In this case, the clusters are very pure and it should not
be very difficult to determine the optimal stopping point. The
merging selection component is not robust against corrupted
input. With perfect input the component performs very well, but
unfortunately, the performance drops for the full system.

VI. DISCUSSION

In this paper, we have analyzed our speaker diarization
system using oracle components. For each component an oracle
variant has been developed and in a set of experiments we have
replaced one or more components with their oracle variant
and measured the performance of the remaining components.
Although the oracle analysis method has its shortcomings,
we gained a good insight of the performance of individual
system parts. In this section, we first discuss our findings of the
analysis method itself and then summarize the results of the
experiments.

A. Oracle Based Component Tests

The golden rule of performing experiments is to change only
one aspect of the experimental setup between experiments. Ap-
plying this rule for experiments on a reasonably complex appli-
cation such as a speaker diarization system, the number of ex-
periments needed grows combinatorically. For the RT09s eval-
uation for example, we have stored the logging of 398 experi-
ments and performed at least as many that we did not log. For
benchmarks we will probably stick to the tactics of trying every
possible system setting to tune the system as well as possible,
but we do feel that for obtaining better insights during devel-
opment it is better to also test components in an oracle-based
experimental setup.

The oracle-based analysis as described in this paper has two
advantages over testing the entire system. The total analysis is
done with only 17 experiments.4 After these experiments, it is
clear for each component how it performs under perfect condi-
tions and how robust it is against errors of other components.
This information will help to focus the remaining experimental
efforts towards the components that need most attention.

Another advantage of the oracle setup is that it can be used to
speed up individual experiments. When testing a new compo-
nent it is not needed to run the entire system, but instead oracle
components can be used for the part of the system that is not

4Six for the top-down analysis, five for the bottom-up analysis and six for the
combined bottom-up/top-down analysis.
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tested. Later, the component robustness can be tested by placing
back one or more other components.

We also acknowledge a number of disadvantages of the
method. The first shortcoming of the method is that although
we test the components with input of various quality to mea-
sure their robustness, in the end the system performance will
depend on one particular set of components and the interaction
between these components. It is possible that a component
change that seems to work fine during analysis has a negative
effect in the actual system. The system is more than the sum of
its components. We believe that this might especially be true
for major component changes but we have not yet experienced
this ourselves.

The analysis is reasonably straightforward once an oracle is
created for each component; it is possible to automate the entire
analysis and run it overnight to have a clear picture of the system
performance every day. Unfortunately, developing the entire or-
acle environment and creating an oracle for each component is
quite elaborate. This is only a minor problem if the architecture
of the system does not change often, but when the architecture
does change, it is likely that also the oracles need to be devel-
oped again.

Finally, the error analysis can be a little bit misleading be-
cause it is not necessarily true that the component that is per-
forming the least is also the component that can be improved
most easily. After a lot of effort on the development of our SAD
component for example, we still measure high errors due to mis-
classified speech and non-speech.

B. Component Performance

In this paper, we have analyzed our most recent speaker di-
arization system on a test set of 27 recordings and on the RT09s
evaluation set. The analysis showed on both sets that speaker
modeling, the iterative retraining process and initialization per-
form reasonably well (errors B, D, and E). Judging solely on
the basis of the top-down analysis of the test set, it seemed
that the lack of handling overlapping speech and misclassifica-
tions in speech activity detection are responsible for a large part
of the diarization error rate (errors A and C). The overlapping
speech problem was shown even more clearly in an additional
test where we ran the system without training the models on the
overlapping regions (Section V). This experiment showed that
on top of the errors made because of the lack of assigning speech
to more than one speaker, another 1.67% DER (absolute) is lost
because of training errors due to overlapping speech.

In the bottom-up analysis of the test set and also in the top-
down and bottom-up analysis on the RT09s evaluation set it
became clear that also the merging step and stopping criterion
were responsible for a large part of the DER (errors F and G).
Without combining the bottom-up and top-down analysis it is
hard to tell which of the two components is most to blame for the
poor performance. In Section V-A, we combined both methods
and discovered that the merging component performs well with
pure clusters, but that it starts to make more errors if the input
quality degrades. The stopping criterion is not affected much by
the input quality. Especially on the RT09s evaluation set it per-
forms poorly on both perfect input and on the actual input (5%
DER absolute).

In Section IV-B, we further investigated the role of the
SAD and resegmentation steps in the poor performance of the
merging component. The experiments show that the merging
component performs well when SAD and resegmentation are
done perfectly, but also when SAD is close to perfect, that
is, when overlapping speech errors are included in SAD and
minimum duration constraints are enforced (the “Impossible
segmentation” experiment). However, merging performance
drops for the actual SAD input. Although the top-down analysis
shows that the SAD component can be improved considerably
and that overlapping speech detection can potentially improve
the system, future research is needed to tell to what extend
the merging component will negate improvements to SAD or
overlap detection.
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