Synthesis and structure of N -alkoxyhydrazines and N-alkoxy- $N^{\prime}, N^{\prime}, N^{\prime}$-trialkylhydrazinium salts ${ }^{\dagger}$

Vasiliy G. Shtamburg, ${ }^{* a}$ Oleg V. Shishkin, ${ }^{b}$ Roman I. Zubatyuk, ${ }^{b}$ Victor V. Shtamburg, ${ }^{c}$ Alexander V. Tsygankov, ${ }^{d}$ Alexander V. Mazepa, ${ }^{e}$ Gulnara K. Kadorkina ${ }^{f}$ and Remir G. Kostyanovsky* ${ }^{f}$
${ }^{a}$ Ukrainian State Chemico-Technological University, 49038 Dnepropetrovsk, Ukraine. E-mail: stamburg @ gmail.com
${ }^{\text {b }}$ STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 61001 Kharkov, Ukraine
${ }^{c}$ Kharkov Institute of Ecology and Social Dependence, 61035 Kharkov, Ukraine
${ }^{d}$ State Flight Academy of National Aviation University, 25005 Kirovograd, Ukraine
${ }^{e}$ A. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine
${ }^{f}$ N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation

DOI: 10.1016/j.mencom.2013.09.018

New types of 1,1,1-trialkyl-2-alkoxyhydrazinium chlorides and N-alkoxyhydrazines were obtained by reactions of N-chloro- N-alkoxyureas with trimethylamine or 1,4-diaza[2.2.2]bicyclooctane and by reactions of methyl N-chloro- N-methoxycarbamate with potassium salt of N-acetylbenzenesulfonylamide. The XRD studies of N, N^{\prime}-bis(methoxycarbonyl)- N, N^{\prime}-dimethoxyhydrazine, N^{\prime}-methoxy-N^{\prime}-methoxycarbonyl- N-acetylbenzenesulfonylhydrazide and 1,1,1-trimethyl-2-methoxyhydrazinium perchlorate revealed the pyramidal configuration of the central nitrogen atoms in $\mathrm{O}-\mathrm{N}-\mathrm{N}$ geminal system, unusual elongation of $\mathrm{N}-\mathrm{N}^{+}$bond and shortening of $\mathrm{N}-\mathrm{OMe}$ bond in 1,1,1-trimethyl-2-methoxyhydrazinium perchlorate.

N -Alkoxyhydrazines represent an interesting example of $\mathrm{O}-\mathrm{N}-\mathrm{N}$ geminal systems. ${ }^{1-10}$ Usually, N-alkoxyhydrazines are very unstable due to $n_{\mathrm{N}} \rightarrow \sigma_{\mathrm{N}-\mathrm{O}(\mathrm{Alk})}^{*}$ orbital interaction within the N-OAlk bond. ${ }^{11}$ Only one compound of this type $\mathbf{1}$ is known, ${ }^{11}$ in which the donor capacity of nitrogen is decreased owing to its participation in aziridine cycle (Scheme 1). Tetramethoxyhydrazine $\mathbf{2}^{3}$ easily dissociates into two dimethoxyaminyl radicals on heating since its $\mathrm{N}-\mathrm{N}$ bond is weakened by $n_{\mathrm{O}(\mathrm{Me})} \rightarrow \sigma_{\mathrm{N}-\mathrm{N}}^{*}$ anomeric effect. ${ }^{3,4}$ The other N-alkoxy- N-alkylhydrazines are postulated as unstable primary intermediates in nucleophilic substitution at nitrogen atom in the reactions of N-chloro- N-alkoxy- N-tert-alkylamines with N -nucleophiles ${ }^{9,11}$ and in the reactions of N -acyloxy- N -alkoxybenzamides with anilines. ${ }^{12,13}$

However, N-alkoxyhydrazines with electron-withdrawing substituents at both nitrogen atoms, such as N, N^{\prime}-dialkoxy- N, N^{\prime}-bis(alkoxycarbonyl)hydrazines ${ }^{14}$ and N, N^{\prime}-diacyl- N, N^{\prime}-dialkoxyhydrazines ${ }^{8,15,16}$ are relatively stable compounds. Among them, structure of N, N^{\prime}-bis(4-chlorobenzoyl)- N, N^{\prime}-diethoxyhydrazine 3 has been studied by XRD. ${ }^{8}$ For the further XRD studies of N-alkoxyhydrazines structures we selected N, N^{\prime}-bis(methoxy-carbonyl)- N, N^{\prime}-dimethoxyhydrazine 5 and N-methoxyhydrazine 7. Compound $\mathbf{5}$ is major product of methanolysis of methyl N -chloroN -methoxycarbamate 4 in the presence of $\mathrm{Et}_{3} \mathrm{~N} .{ }^{17}$ Compound 7 was synthesized by the reaction of compound 4 with potassium salt of N-acetylbenzenesulfonamide in MeCN (see Scheme 1). ${ }^{\ddagger}$

[^0]

Scheme 1
$\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{ml})$ and dried in vacuo (2 Torr), yielding $0.53 \mathrm{~g}(45 \%)$ of the product 7, the colourless crystals, mp $114-115^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{C}_{6} \mathrm{H}_{14}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 2.28[\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{Me}], 3.91$ (s, $3 \mathrm{H}, \mathrm{NOMe}$), 3.97 (br. s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$), $7.57\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}, \mathrm{C}^{5} \mathrm{H},{ }^{3} \mathrm{~J} 7.5 \mathrm{~Hz}\right.$), $7.68\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right.$, $\left.{ }^{3} J 7.5 \mathrm{~Hz}\right), 8.12\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}^{2} \mathrm{H}, \mathrm{C}^{6} \mathrm{H},{ }^{3} \mathrm{~J} 7.5 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta: 22.115[\mathrm{C}(\mathrm{O}) \mathrm{Me}], 55.101(\mathrm{NOMe}), 62.338\left(\mathrm{CO}_{2} \mathrm{Me}\right), 128.557,129.439$, $129.674,134.205,138.212\left(\mathrm{C}_{\mathrm{Ph}}^{2-6}\right), 155.845\left(\mathrm{C}_{\mathrm{Ph}}^{2}\right), 168.540$ [C(O)Me], $183.442\left(\mathrm{CO}_{2} \mathrm{Me}\right)$. MS (FAB, NaI) m/z (\%): $325[\mathrm{M}+\mathrm{Na}]^{+}(100)$. Found (\%): C, 43.64; H, 4.72; N, 9.15; S, 11.02. Calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (\%): C, 43.70; $\mathrm{H}, 4.67 ; \mathrm{N}, 9.27 ; \mathrm{S}, 10.61$. The ethereal extract was evaporated in vacuo to half volume and hexane $(10 \mathrm{ml})$ was added. The formed precipitate was filtered off to give $0.161 \mathrm{~g}(14 \%)$ of product 7. The $\mathrm{C}_{6} \mathrm{H}_{14}-\mathrm{Et}_{2} \mathrm{O}$ filtrate was evaporated in vacuo, yielding $0.110 \mathrm{~g}(27 \%)$ of compound $6 .{ }^{17}$

Scheme 2

Earlier, ${ }^{18}$ it was found that N-chloro- N-methoxy- N^{\prime}, N^{\prime}-dimethylurea 9 on treatment with $\mathrm{Me}_{3} \mathrm{~N}$ yields hydrazonium derivative $\mathbf{1 0}$ (Scheme 2). N -Chloro- N -methoxyurea 11a reacts with 1,1 -dimethylhydrazine to form unstable salt 12. However, on using excess of $\mathrm{Me}_{3} \mathrm{~N}$ in the presence of AgClO_{4} compound 11a is converted into 1,1,1-trimethyl-2-methoxyhydrazinium perchlorate 13. ${ }^{2}$ Similarly, reaction of N-chloro- N-alkoxyureas 11a-g with $\mathrm{Me}_{3} \mathrm{~N}$ affords 1,1,1-trimethyl-2-alkoxyhydrazinium chlorides 15a-g. Probably, the primary unstable intermediates 14a-g eliminate HNCO yielding compounds $\mathbf{1 5 a}-\mathbf{g}$. Analogously, N-chloro- N-alkoxyureas 11a-c,e react with 1,4-diaza[2.2.2]bicyclooctane giving 1-alkoxyamino-1-azonia-4-aza[2.2.2]bicyclooctanes chlorides $\mathbf{1 6 a}-\mathbf{d} .^{\S}$ The structures of compounds $\mathbf{1 2 , 1 5 a - g}$ and $\mathbf{1 6 a} \mathbf{- d}$ were characterized by ${ }^{1} \mathrm{H}$ NMR and MS spectra, the structure of compound $\mathbf{1 3}$ has been studied by XRD.
${ }^{1} \mathrm{H}$ NMR spectra of salts $\mathbf{1 5 b}, \mathbf{c}, \mathbf{e}$ showed significant nonequivalence of geminal $\mathrm{N}-\mathrm{OCH}_{2} \mathrm{R}$ protons $\left[{ }^{2} J=32.8\right.$ (15b), 27.3 (15c) and $55.0 \mathrm{~Hz}(\mathbf{1 5 e})$]. The signals of $\mathrm{N}-\mathrm{OCH}_{2} \mathrm{R}$ protons appear as doublet of quartets $(\mathbf{1 5 b})$, doublet of triplets $(\mathbf{1 5 c})$, doublet of doublets ($\mathbf{1 5 e}$) and doublet of multiplets $(\mathbf{1 5 f}, \mathbf{g})$.

XRD studies of compound $5^{\mathbb{I}}$ (Figure 1) revealed that $\mathrm{N}(1)$ and $\mathrm{N}\left(1^{\prime}\right)$ atoms had the same pyramidal configuration. The sum

[^1]

Figure 1 Molecular structure of compound 5. Selected bond lengths (\AA) : $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right) 1.366(2), \mathrm{N}(1)-\mathrm{O}(1) 1.4233(16), \mathrm{N}(1)-\mathrm{C}(5) 1.408(2), \mathrm{O}(1)-\mathrm{C}(1)$ $1.4340(19), \mathrm{C}(2)-\mathrm{O}(5) 1.1937(18), \mathrm{O}(3)-\mathrm{C}(2) 1.4507(18), \mathrm{O}(3)-\mathrm{C}(5) 1.3171$ (19); selected bond angles $\left({ }^{\circ}\right): \mathrm{N}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{O}(1) 111.92(9), \mathrm{N}\left(1^{\prime}\right)-\mathrm{N}(1)-\mathrm{C}(5)$ $116.59(15), \mathrm{C}(5)-\mathrm{N}(1)-\mathrm{O}(1) 111.50(12)$.
of bond angles centered at these nitrogen atoms $(\Sigma \beta)$ is $340.0(4)^{\circ}$, the deviation of $\mathrm{N}(1)$ atom from the plane of bonded with $\mathrm{N}(1)$ atoms $\left(h_{\mathrm{N}}\right)$ is $0.368(2) \AA$. In N-methoxy- N-(1-pyridinium)urea perchlorate $\mathbf{8}^{19}$ and its analogues ${ }^{2}$ the pyramidality degree of such nitrogen atoms is higher [in $8 \Sigma \beta$ is $333.9(3)^{\circ}$ and h_{N} is $\left.0.429(3) \AA^{19}\right]$. In N, N^{\prime}-diethoxyhydrazine $\mathbf{3}$ the nitrogen atoms have different and some smaller pyramidality degrees ($\Sigma \beta$ are 341.1° and $343.2^{\circ}, h_{\mathrm{N}}$ are $0.358 \AA$ and $0.334 \AA^{8}$).

In the crystal, the molecule of hydrazine 5 is situated in the particular site at the second order rotation axis, which continued from $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)$ bond center. The methoxy group $\mathrm{C}(1)-\mathrm{O}(1)$ bond is parallel oriented to lone pair (Lp) of $\mathrm{N}(1)$ atom [the $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is $\left.16^{\circ}\right]$. The $\mathrm{MeOC}(\mathrm{O})$ substituent is oriented perpendicular to $\mathrm{LpN}(1)$ [the $\mathrm{O}(2)-\mathrm{C}(5)-$ $\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is $\left.95^{\circ}\right]$. The $\mathrm{LpN}(1)$ and $\mathrm{LpN}\left(1^{\prime}\right)$ are mutually turned [the $\mathrm{LpN}(1)-\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{LpN}\left(1^{\prime}\right)$ torsion angle is $\left.77^{\circ}\right]$. Thus, the hydrazine $\mathbf{5}$ molecule has $s c$-conformation along the lines of $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)$ bond. $N, N^{\prime}-\mathrm{Bis}(4$-chlorobenzoyl)$N, N^{\prime}$-diethoxyhydrazine 3^{8} and N, N^{\prime}-dimesyl- N, N^{\prime}-dimethoxyhydrazine ${ }^{20}$ have the similar conformations.

The $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)$ bond is substantially shortened [1.366(2) \AA] and $\mathrm{O}(1)-\mathrm{N}(1)$ bond is some elongated $[1.4233(16) \AA$] relative to the similar bonds in salt $\mathbf{8}^{19}\left[1.4254(18) \AA\right.$ for $\mathrm{N}-\mathrm{N}^{+}$bond and 1.3999 (17) \AA for $\mathrm{N}-\mathrm{O}(\mathrm{Me})$ bond], and in N-methoxy- N-[1-(4dimethylamino)pyridinium]urea chloride ${ }^{2}$ [1.413(2) \AA for $\mathrm{N}-\mathrm{N}^{+}$ bond and $1.411(2) \AA$ for $\mathrm{N}-\mathrm{O}(\mathrm{Me})$ bond].

XRD studies of compound $7^{\mathbb{I}}$ (Figure 2) revealed that the $\mathrm{N}(1)$ and $N(2)$ atoms had different configurations. Atom $N(1)$ atom has pyramidal configuration [$\Sigma \beta$ is $341.7(9)^{\circ}, h_{\mathrm{N}}$ is $0.351(4) \AA$], whereas atom $\mathrm{N}(2)$ has planar configuration [$\Sigma \beta$ is 360.0°]. The pyramidality degree of $\mathrm{N}(1)$ is similar to that in compound $3 .{ }^{8}$ The lengths of $\mathrm{N}(1)-\mathrm{N}(2)[1.379(4) \AA$ and $\mathrm{N}(1)-\mathrm{O}(3) \mathrm{Me}$ [1.414(4) \AA] bonds are mediate to these parameters in compounds 5 and $\mathbf{3}^{8}[\mathrm{~N}-\mathrm{N}, 1.389(3) \AA ; \mathrm{N}-\mathrm{O}(\mathrm{Et}), 1.403(2)$ and $1.411(3) \AA]$.

Crystal data for 13: $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{ClO}_{4}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}, M=204.61$), monoclinic, space group $P 2_{1} / c, a=5.8068(5), b=12.2167(8)$ and $c=$ $=13.6451(9) \AA, \beta=94.405(6)^{\circ}, V=965.13(12) \AA^{3}, F(000)=432, d_{\text {calc }}=$ $=1.408 \mathrm{~g} \mathrm{~cm}^{-1}, Z=4, \mu=0.387 \mathrm{~mm}^{-1}$.
Data were measured using an Xcalibur 3 diffractometer $(T=298 \mathrm{~K}$, graphite-monochromated $\operatorname{MoK} \alpha$ radiation), $2 \theta / \theta$ scan, $2 \theta_{\max }=57.6^{\circ}(5)$, $56.24^{\circ}(7), 58.0^{\circ}(\mathbf{1 3})$. The structures were solved by direct method using the SHELXTL PLUS program package. ${ }^{23}$ Refinement against F^{2} in an anisotropic approximation (the hydrogen atoms isotropic in the riding model) by a full matrix least-squares method was carried out for 3784 reflections to $w R_{2}=0.136\left[R_{1}=0.041\right.$ for 788 reflections with $F>4 \sigma(F)$, $S=1.05]$ for $\mathbf{5}, 3101$ reflections to $w R_{2}=0.171\left[R_{1}=0.071\right.$ for 1887 reflections with $F>4 \sigma(F), S=1.07$] for 7 , and 2337 reflections to $w R_{2}=$ $=0.175\left[R_{1}=0.054\right.$ for 1696 reflections with $\left.F>4 \sigma(F), S=1.04\right]$ for 13 .
CCDC 942261-942263 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk. For details, see 'Notice to Authors', Mendeleev Commun., Issue 1, 2013.

Figure 2 Molecular structure of compound 7. Selected bond lengths (\AA) : $\mathrm{N}(1)-\mathrm{N}(2) 1.379(4), \mathrm{N}(1)-\mathrm{O}(3) 1.414(4), \mathrm{N}(1)-\mathrm{C}(1) 1.398(5), \mathrm{N}(2)-\mathrm{C}(4)$ 1.411(4), $\mathrm{C}(1)-\mathrm{O}(1) 1.196(4), \mathrm{C}(4)-\mathrm{O}(4) 1.193(4), \mathrm{N}(2)-\mathrm{S}(1) 1.723(3)$; selected bond angles (${ }^{\circ}$: $\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{O}(3)$ 112.1(3), $\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)$ 118.0(3), $\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{C}(1) 111.6(3), \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{S}(1) 119.0(2), \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(4)$ 120.2(3), $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(1) 120.8(2)$.

In compound 7 the $\mathrm{O}(3)-\mathrm{C}(3)$ bond has $s p$-orientation toward $\mathrm{LpN}(1)$ [the $\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is 17°]. The $\mathrm{C}(1)=\mathrm{O}(1)$ and $\mathrm{C}(4)=\mathrm{O}(4)$ carbonyl groups are perpendicular oriented toward adjacent LpN [the $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is 89°, the $\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{N}(1)$ torsion angle is $\left.169.1(3)^{\circ}\right]$. The $\operatorname{LpN}(1)$ and $\operatorname{LpN}(2)$ have mutual orthogonal orientation [the $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is -8°].

The XRD data for compound $\mathbf{1 3}^{\text {III }}$ (Figure 3) revealed that $\mathrm{N}(1)-\mathrm{N}(2)^{+}$bond is elongated to $1.483(3) \AA$ compared to $\mathrm{N}-\mathrm{N}$ bond length in hydrazine $(1.466 \AA)^{21}$ and $\mathrm{N}-\mathrm{N}^{+}$bond length in salt $17[1.466(2) \AA] .{ }^{22}$ The length of $\mathrm{N}(1)-\mathrm{N}(2)^{+}$bond in salt 13 is similar to the $\mathrm{N}-\mathrm{N}$ bond length in tetramethoxyhydrazine $(1.484 \AA) .{ }^{4}$ In compound $\mathbf{1 3}$ the $\mathrm{N}(1)-\mathrm{O}(1) \mathrm{Me}$ bond is strongly shortened [1.391(3) \AA] compared to that in compound $\mathbf{1 7}$ $[1.4142(16) \AA] .{ }^{22}$ The $\mathrm{N}(1)$ atom is strongly pyramidal, $\Sigma \beta$ is 312°. This is in accordance with significant geminal nonequivalence of $\mathrm{N}-\mathrm{OCH}_{2} \mathrm{R}$ protons in ${ }^{1} \mathrm{H}$ NMR spectra of hydrazinium salts 15 . The $\mathrm{C}(1)-\mathrm{O}(1) \mathrm{Me}$ bond is parallel oriented towards $\mathrm{LpN}(1)$ [the $\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{LpN}(1)$ torsion angle is $\left.-1.4^{\circ}\right]$.

Thus, the study of structures of compounds 5, $\mathbf{7}$ and 13 has revealed the pyramidal configuration of the central nitrogen

Figure 3 Molecular structure of compound 13. Selected bond lengths (\AA) : $\mathrm{N}(1)-\mathrm{N}(2) 1.483(3), \mathrm{O}(1)-\mathrm{N}(1) 1.391(3), \mathrm{O}(1)-\mathrm{C}(1) 1.446(4), \mathrm{N}(2)-\mathrm{C}(2)$ $1.491(3), \mathrm{N}(2)-\mathrm{C}(3) 1.500(4), \mathrm{N}(2)-\mathrm{C}(4) 1.481(4)$; selected bond angles $\left({ }^{\circ}\right):$ $\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{N}(2) \quad 107.12(19), \mathrm{N}(1)-\mathrm{O}(1)-\mathrm{C}(1) 109.1(3), \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(2)$ 113.4(2), N(1)-N(2)-C(3) 102.9(2).
atoms in $\mathrm{O}-\mathrm{N}-\mathrm{N}$ geminal system, unusual elongating of $\mathrm{N}-\mathrm{N}^{+}$ bond and shortening of $\mathrm{N}-\mathrm{OMe}$ bond in salt 13.

This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-90460) and Ukrainian Foundation for Fundamental Research (grant no. F-53/105-2013).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.mencom.2013.09.018.

References

1 V. G. Shtamburg, A.V. Tsygankov, O. V. Shishkin, R. I. Zubatyuk, B. V. Uspensky, V. V. Shtamburg, A. V. Mazepa and R. G. Kostyanovsky, Mendeleev Commun., 2012, 22, 164.
2 V. G. Shtamburg, A. V. Tsygankov, O. V. Shishkin, R. I. Zubatyuk, V. V. Shtamburg, M. V. Gerasimenko, A. V. Mazepa and R. G. Kostyanovsky, Mendeleev Commun., 2012, 22, 92.
3 A. I. Prokof'ev, V. F. Rudchenko, S. M. Ignatov, I. I. Chervin and R. G. Kostyanovsky, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 1666 (Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 1819).
4 M. Yu. Antipin, Yu. T. Struchkov, V. F. Rudchenko, S. M. Ignatov and R. G. Kostyanovsky, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 1672 (Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 1825).
5 S. A. Glover, Tetrahedron, 1998, 54, 7229.
6 S. A. Glover and A. Rauk, J. Org. Chem., 1996, 61, 2337.
7 S. A. Glover and A. Rauk, J. Org. Chem., 1999, 64, 2340.
8 S. A. Glover, G. Mo, A. Rauk, D. J. Tucker and P. Turner, J. Chem. Soc., Perkin Trans. 2, 1999, 2053.
9 J. J. Campbell and S. A. Glover, J. Chem. Soc., Perkin Trans. 2, 1992, 1661.

10 S. A. Glover, G. Mo and A. Rauk, Tetrahedron, 1999, 55, 3413.
11 V. G. Shtamburg, V. F. Rudchenko, Sh. S. Nasibov, I. I. Chervin, A. P. Pleshkova and R. G. Kostyanovsky, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 1914 (Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 2327).
12 J. J. Cambell and S. A. Glover, J. Chem. Res. (S), 1999, 8, 474.
13 J. J. Cambell and S. A. Glover, J. Chem. Res. (M), 1999, 8, 2075.
14 R. J. Crawford and R. Raap, J. Org. Chem., 1963, 28, 2419.
15 J. H. Cooley, M. W. Mosher and M. A. Khan, J. Am. Chem. Soc., 1968, 90, 1867.
16 R. O. C. Norman, R. Purchase and C. B. Thomas, J. Chem. Soc., Perkin Trans. 1, 1972, 1701.
17 V. G. Shtamburg, V. F. Rudchenko, S. S. Nasibov, I. I. Chervin and R. G. Kostyanovsky, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 423 (Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 449).
18 V. F. Rudchenko, V. I. Shevchenko and R. G. Kostyanovsky, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 551 (Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 598).
19 V. G. Shtamburg, O. V. Shishkin, R. I. Zubatyuk, S. V. Kravchenko, A. V. Tsygankov, V. V. Shtamburg, V. B. Distanov and R. G. Kostyanovsky, Mendeleev Commun., 2007, 17, 178.
20 R. Brink and R. Mattes, Chem. Ber., 1985, 118, 564.
21 M. Tsuboi and J. Overend, J. Mol. Spectrosc., 1974, 52, 256.
22 V. G. Shtamburg, A. V. Tsygankov, E. A. Klots, I. I. Fedyanin, K. A. Lyssenko and R. G. Kostyanovsky, Mendeleev Commun., 2006, 84
23 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

Received: 30th May 2013; Com. 13/4128

[^0]: ${ }^{\dagger}$ Geminal Systems. Part 63. For the previous communication, see ref. 1.

 * $\mathrm{N}, \mathrm{N}^{\prime}$-Bis(methoxycarbonyl)-N, N^{\prime}-dimethoxyhydrazine 5: ${ }^{17}$ the colourless crystals, mp $52-53^{\circ} \mathrm{C}$ (hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 3.902 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{NOMe}$), 3.916 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}$). MS (FAB, NaI) m/z (\%): $439[2 \mathrm{M}+\mathrm{Na}]^{+}(12), 231[\mathrm{M}+\mathrm{Na}]^{+}(100)$.
 N'-Methoxy- ${ }^{\prime}$ '-methoxycarbonyl-N-acetylbenzenesulfonylhydrazide 7. The solution of methyl N-chloro- N-methoxycarbamate $4^{17}(0.541 \mathrm{~g}$, $3.877 \mathrm{mmol})$ in $\mathrm{MeCN}(8 \mathrm{ml})$ was added to the mixture of $(1.187 \mathrm{~g}$, 4.996 mmol) potassium salt of N -acetylbenzenesulfonylamide and MeCN $(11 \mathrm{ml})$. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 32 h , the precipitate was filtered off and washed with MeCN (8 ml). The combined MeCN filtrate was evaporated in vacuo, the residue was extracted with benzene $(20 \mathrm{ml})$, the extract was evaporated in vacuo, the residue was washed with

[^1]: § 1,1,1-Trimethyl-2-methoxyhydrazinium perchlorate $\mathbf{1 3}$ was obtained from N-chloro- N-methoxyurea 11a and AgClO_{4} solution in $\mathrm{Me}_{3} \mathrm{~N} .{ }^{2}$
 For synthesis and characteristics of compounds $\mathbf{1 2 , 1 5}$ and 16, see Online Supplementary Materials.
 ${ }^{I I}$ Crystal data for 5: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$ (from hexane, $M=208.18$), monoclinic, space group $C 2 / c, a=14.3113(13), b=8.5900(5)$ and $c=9.1538(7) \AA$, $\beta=118.918(11)^{\circ}, V=984.99(13) \AA^{3}, F(000)=440, d_{\text {calc }}=1.404 \mathrm{~g} \mathrm{~cm}^{-1}$, $Z=4, \mu=0.126 \mathrm{~mm}^{-1}$
 Crystal data for 7 : $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ (from benzene-hexane, $M=302.30$) monoclinic, space group $C 2 / c, a=12.7416(10), b=6.9567(4), c=$ $=30.729(2) \AA, \beta=92.436(7)^{\circ}, V=2721.4(3) \AA^{3}, F(000)=1264, d_{\text {calc }}=$ $=1.476 \mathrm{~g} \mathrm{~cm}^{-1}, Z=8, \mu=0.265 \mathrm{~mm}^{-1}$.

