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COMPOSITE LAMINATED PLATES WITH THE COMPLEX SHAPE

L.V. Kurpa'
N.A. Budnikov? ABSTRACT
National Technical

University,

Kharkov. Ukraine Geometrically non-linear free vibrations of the composite laminated

plates are investigated using new multi-modal approach to discretization
of motion equations . The non-linear governing equations for laminated
plates are derived by Hamilton's principle using first-order shear
deformation theory. Due to proposed algorithm of the discretization all
unknown functions except of transverse displacement are eliminated and
governing equations are reduced to system of ordinary differential
equations in time by the Bubnov-Galerkin procedure. The expansion of
all unknown functions in the truncated Fourier series is performed using
the eigenfunctions of the linear vibration problems and solutions of the
sequence of elasticity problems. All auxiliary problems are solved by
RFM (R-functions method).

INTRODUCTION

Composite materials have essential advantages with compare to isotropic materials. They
possess high stiffness-to-weight ratio, high strength-to-weight ratio and another properties. So these
materials are intensively used in many industrial fields. The laminated composite plates simulate
many elements of modern thin-walled structures. Therefore, there have been many numbers of papers
concerned with non-linear vibrations of laminated plates [1-10]. But it is impossible to say that the
problem is solved, because here many unsolved questions occur. One of them is connected with
geometry and boundary conditions.

In the given paper the new approach to discretization is proposed. The considered approach
allows to perform multi-modal approximation in time and to analyze the geometrical non-linear free
dynamic response of the plates with complex shape and different boundary conditions. This approach
is based on using of the R-functions method (RFM), that is, on joined application of the varionational
methods and the R-functions theory. For implementation of proposed method it is needed to solve
series problems: linear problem about free vibrations laminated plates and the sequence of elasticity
problems.

1. Formulation of the geometrically non-linear free vibration symmetrically laminated
composite plates
The laminated plate with an arbitrary shape, which consists of N layers of the constant

N
thickness h is considered. The general thickness h is defined as h=)h,. The coordinate system
i=1

(x, 2 z) is taken in the midsurface of the plate. The displacement components at an arbitrary point of
the plate are U, V, and W in the x, y and z directions respectively. Assume that plate is symmetrically
laminated with respect to midsurface and delamination between the layers is not. Investigation we will
carry out by first-order shear deformation theory [11, 15, 16].
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According to this theory it is assumed that in-plane displacements U and V are linear
functions of coordinate z, and that the transverse displacement W is constant through the thickness of
the plate. So displacements are presented as

U=u+zy,V=v+zy, W=w, 1)

where u, v and w are the displacements at the midsurface, y, and y, are the rotations of the

midsurface about the y- and x-axes respectively.
The normal to the midsurface remains straight after deformation, but not necessarily normal
to the middle surface. The non-linear strain-displacement relations of the plates can be written as

& =&tZyy, =6,+2Zy,, =0, 8, =6, +2Zy,, 6, =W,+YW,, €, =W, +y,

in which

1
2 2 _ _ _
o €y = v,y+—2 Wy Exy = Uy PV AW W, £ = Wy, £, = W,y +7,

1
EX:u’X+EW ,y, 1y!
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In these equations the subscripts following comma denote the partial differentiation.
The constitutive relations of the symmetrically laminated plate can be expressed as follows

{N}=[C]{}
{M}=[D]- v} , ¥
Q| G Ca|fe
{Q}_{Qy}_{cﬁ C44H£yz}
where
Cu G, G Dy D, Dy
{N}:{Nx;Ny;ny}T’ {M}Z{Mx;My;Mxy}T’ [C]= C12 sz Cze ’[D]z D12 Dzz D26
Ce Cp GCg Dig Dy Dg

(3={eei80 ] W= WaiWyry Wy Wy )

On the other part, {&} = {g(” }+ {g‘“” } where

1x 1 Wy

), T ) 2,
Vector {N} can also be written as follows:

N} 0 ), O} b, e -

Stiffness coefficients C; and D, (elements of matrices [C] and [D] respectively) are defined by the
following expressions:

n M

n
(€, 0,)=3 [B™L2)z (,j=126) C,=k>> [B™Mdz (i,]j=45)
m=1 M m=1 N
Here B.,gm) are stiffness coefficients of the m-th layer, k;, i:ﬁ are shear coefficients.

Usually the value k7, i = 4,5 are taken equal to 5/6. Further, we assume that k, =k;,s0 Cs =C,,.
Coefficients m, i :1,_2 are calculated by the formulas:

345



m+1
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m=1h,

As shown in works [2, 8, 10] the movement equations may be obtained by the Hamilton’s
principle which is supplemented by appropriate boundary and initial conditions.
Let us write the system of differential equations of the motion in operator form:

[LHU }= {NL}+ im0, T (4)

where
Ul=tuviwy, ., 7 dmh={m,m,m,m,m, 7

L, L, 0 0 0]

L, L, O 0 0

[L]: 0 0 Ly Ly Lg
0 0 Li Ly L
0 0 Ly L Les |

{NL}={NL, (w), NL, (w), NL;(u,v,w),0,0}"

Here linear operators L”, v :1,_5 and nonlinear operators NL,, i :1,_3 are defined as:

Lu(C):((Cn’Cle'Ces )'VZ)’ I—12( ) LZl(C) ((Clﬁ’(C12 +C66) )VZ)’ Lzz( ) ((Ces'cze’czz) )’

) 5'(C45 +C54) C44) VZ) 34(C):_|—43( ) ((C55,C45) )' 35(C) _Lss( ) ((C45'C44)!V)'
L(C,D)=L1y(D)~Css,  Lys(C,D)=Lss(C,D)=Ly,(D)~Cus, Lss(C, D)=Ly, (D)-Cy,
NLl(W):_( L, W, LW }VW) NL (W ({L12W Lzzw} VW) NLS( VW )Z_{N}NIV w

where {v}:{aﬁ,i}T,.{vz}z{az 2.0 ,GZZ}T

ox?' oxay ' oy

2. METHOD OF SOLUTION

Let us solve the linear problem of vibrations of the laminated plates. In general case the
solving algorithm of this problem is developed by RFM and described in works [12-15]. Note that
solving linear problem we will not ignore inertia and rotation forces.

The solution of the nonlinear problem (4) will be sought in the following form of:

U Y =3 v (1), (0 Uy (% Y)

i j=
VYD =3 D Y)Y, 0V, (x V)

i=l j=1
Wi, Y1) = 3 ¥ (0w (x, y) ®)

'L

v, (% Y1) Z )y (xy)

wy (X y,t) = Zl i) w i (xy)

where W (x,y), v (xy), w{(xy) are eigenfunctions of linear vibrations of plate and u; (x,y),
v; (%, y) are unknown functions.

Vector of eigenfunctions {U(°)} and the natural frequencies of linear oscillations of the plate

we can find by solving of the corresponding linear problem:
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L @)= fmiiu}a. ©
where
{U(C)}z{u“),v(“’,w“’,y/ 1W§/C)}-

Solving of the linear problem we will not ignore by inertial forces. Solution of linear
problems has been widely discussed [14,15], so details on this will not be dealt.
Let us substitute the relations (5) into the first two equations of the system (4). Then a system

for finding the unknown functions u; (x,y) and v; (x, y) will be got as

) Lu(c,-)Hu”Hm(c:,wﬁﬂ le(C,WE”)} {w@,;}

L12(C") Lzz(C") Vi L12(C1WEC)) Lzz(C:WEC)). W(C),

ij i

(7)

Note that the system of equations (7), supplemented by appropriate boundary conditions,
coincides with the resolution of the system of equations of equilibrium for plane elasticity problem of
anisotropic plate. Solving of this problem will also perform with the RFM method. Variation
formulation of the problem is represented by the Lagrange functional

‘J(uu’ IJ) ,”( Uij» Vi » W(C))} { (L)(uu’vu )}}jQ, (8)
where
Nl vy W w0 =[] (9 v )+ o™ (k) i )
{ (L)(ul’vu)} {uij’x;vij’y;uij y+V|]’X}T

{g‘“”(vvi‘c),wj“))}z % {(\Ni(C) ch)'x)(Wi(c) WO )(W(c) W, W@, ch)’x)}T

1y J’y

Substituting (5) for unknown functions u, v, w, v, and v to the system (4), we can find that
the last two equations are satisfied identically, while the third equation becomes as

m -y - Zy. (t)-w® =m- Zy(t) W —

n n n T (9)
(55 S 0n0,0- ) i)

i=1 j=i+l k=1

Applying the Bubnov-Galerkin’s procedure to the equation (9), we can arrive at a nonlinear
system of ordinary differential equations for the functions y, (t), r =1,n of the form:

Y +a®y, 0+ Y 0y 0y, Oy ) =0, r=1 (10)

i=1 j=1 k=1

The coefficients of equations (10) are determined by formulas given below:

a :Z—é’ 7i§lr<) =T 2 Ihwf© J;J( UIJ,V”,W(C) W(C))} { ZWIEC)}')'WT(C)dQ (11)

L rnlLl‘r

The solving obtained system of ordinary differential equations (10) can be performed using
various approximate methods, such as the harmonic balance method (HBM), multiscale method,

347



method of Runge-Kutt, and other ones. If we use the single-mode approximation [16], i.e., in the
expansion for the unknown functions we can preserve only the term corresponding to the fundamental
frequency, then, applying the Bubnov-Galerkin method, we can obtain the explicit dependence of the

ratio v(A) =N of nonlinear to linear frequency. This dependence is expressed by the following

21
V= ,/1+%yA2 (12)

The implementation of the proposed method will be carry out in framework POLE-RL system
and MATLAB.

formula [16]:
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