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Geometrically non-linear free vibrations of the composite laminated 
plates are investigated using new multi-modal approach to discretization 
of motion equations . The non-linear governing equations for laminated 
plates are derived by Hamilton’s principle using first-order shear 
deformation theory. Due to proposed algorithm of the discretization all 
unknown functions except of transverse displacement are eliminated and 
governing equations are reduced to system of ordinary differential 
equations in time by the Bubnov-Galerkin procedure. The expansion of 
all unknown functions in the truncated Fourier series is performed using 
the eigenfunctions of the linear vibration problems and solutions of the 
sequence of elasticity problems. All auxiliary problems are solved by 
RFM (R-functions method). 

 
 

INTRODUCTION 
Composite materials have essential advantages with compare to isotropic materials. They 

possess high stiffness-to-weight ratio, high strength-to-weight ratio and another properties. So these 
materials are intensively used in many industrial fields. The laminated composite plates simulate 
many elements of modern thin-walled structures. Therefore, there have been many numbers of papers 
concerned with non-linear vibrations of laminated plates [1-10]. But it is impossible to say that the 
problem is solved, because here many unsolved questions occur. One of them is connected with 
geometry and boundary conditions. 

In the given paper the new approach to discretization is proposed. The considered approach 
allows to perform multi-modal approximation in time and to analyze the geometrical non-linear free 
dynamic response of the plates with complex shape and different boundary conditions. This approach 
is based on using of the R-functions method (RFM), that is, on joined application of the varionational 
methods and the R-functions theory. For implementation of proposed method it is needed to solve 
series problems: linear problem about free vibrations laminated plates and the sequence of elasticity 
problems. 
 
1.  Formulation of the geometrically non-linear free vibration symmetrically laminated 
composite plates 

The laminated plate with an arbitrary shape, which consists of N layers of the constant 

thickness ih  is considered. The general thickness h is defined as ∑
=

=
N

i
ihh

1
, . The coordinate system 

( )zyx ,,  is taken in the midsurface of the plate. The displacement components at an arbitrary point of 
the plate are U, V, and W in the x, y and z directions respectively. Assume that plate is symmetrically 
laminated with respect to midsurface and delamination between the layers is not. Investigation we will 
carry out by first-order shear deformation theory [11, 15, 16]. 
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According to this theory it is assumed that in-plane displacements U and V are linear 
functions of coordinate z, and that the transverse displacement W is constant through the thickness of 
the plate. So displacements are presented as 
 

wWzvVzuU yx =+=+= ,, ψψ ,    (1) 
 
where u, v and w are the displacements at the midsurface, xψ  and yψ  are the rotations of the 
midsurface about the y- and x-axes respectively. 

The normal to the midsurface remains straight after deformation, but not necessarily normal 
to the middle surface. The non-linear strain-displacement relations of the plates can be written as 
 

xxx ze χε += , yyy ze χε += , 0=ze , xyxyxy ze χε += , xxxz we ψ+= , , yyyz we ψ+= ,  
 
in which 

2,
2
1, xxx wu +=ε , 2,

2
1, yyy wv +=ε , yxxyxy wwvu ,,,, ++=ε , xxxz w ψε += , , yyyz w ψε += ,  

xxx ,ψχ = , yyy ,ψχ = , xyyxxy ,, ψψχ +=  
 

In these equations the subscripts following comma denote the partial differentiation. 
The constitutive relations of the symmetrically laminated plate can be expressed as follows  
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where 
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{ }Txyyx εεεε ;;}{ = , { } { }Txyyxyyxx ,,;,;, ψψψψψ +=  
 
On the other part, { } { })()(}{ NLL εεε += , where 
 

( ){ } { } ,,,;,;,,)( T
xyyx

L vuvuvu +=ε  ( ){ } { }Tyxyx
NL wwwww ,,2;,;,

2
1 22)( =ε  

 
Vector { }N  can also be written as follows: 
 

{ } { } { })()( NLL NNN += , { } [ ] { })()( LL CN ε⋅= , { } [ ] { })()( NLNL CN ε⋅=  
 
Stiffness coefficients ijC  and ijD  (elements of matrices ][C  and ][D  respectively) are defined by the 
following expressions: 
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Here ( )m

ijB  are stiffness coefficients of the m-th layer, ik , 5,4=i  are shear coefficients. 

Usually the value 2
ik , 5,4=i  are taken equal to 5/6. Further, we assume that 54 kk = , so 5445 CC = . 

Coefficients im , 2,1=i  are calculated by the formulas: 
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As shown in works [2, 8, 10] the movement equations may be obtained by the Hamilton’s 

principle which is supplemented by appropriate boundary and initial conditions
Let us write the system of differential equations of the motion in operator form: 

. 

 
[ ]{ } { } { }{ } T

ttyxwmNLUL ,,,,0,0 ψψ+= ,    (4) 
 
where 
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Here linear operators ijL , 5,1, =ji  and nonlinear operators iNL , 3,1=i  are defined as: 
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2. METHOD OF SOLUTION 

Let us solve the linear problem of vibrations of the laminated plates. In general case the 
solving algorithm of this problem is developed by RFM and described in works [12–15]. Note that 
solving linear problem we will not ignore inertia and rotation forces. 

The solution of the nonlinear problem (4) will be sought in the following form of: 
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where ),()( yxw c

i , ),()( yxc
xiψ , ),()( yxc

yiψ  are eigenfunctions of linear vibrations of plate and ),( yxuij , 
),( yxvij  are unknown functions. 

Vector of eigenfunctions { })(cU  and the natural frequencies of linear oscillations of the plate 
we can find by solving of the corresponding linear problem: 



347 

 
[ ]{ } { }{ } T

tt
c UmUL ,)( = ,     (6) 

 
where 

{ } { }Tc
y

c
x

cccc wvuU )()()()()()( ,,,, ψψ= . 
 

Solving of the linear problem we will not ignore by inertial forces. Solution of linear 
problems has been widely discussed [14,15], so details on this will not be dealt. 

Let us substitute the relations (5) into the first two equations of the system (4). Then a system 
for finding the unknown functions ),( yxuij  and ),( yxvij will be got as 
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Note that the system of equations (7), supplemented by appropriate boundary conditions, 

coincides with the resolution of the system of equations of equilibrium for plane elasticity problem of 
anisotropic plate. Solving of this problem will also perform with the RFM method. Variation 
formulation of the problem is represented by the Lagrange functional  
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Substituting (5) for unknown functions u, v, w, xψ  and yψ  to the system (4), we can find that 

the last two equations are satisfied identically, while the third equation becomes as 
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Applying the Bubnov-Galerkin’s procedure to the equation (9), we can arrive at a nonlinear 

system of ordinary differential equations for the functions )(tyr , nr ,1=  of the form: 
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The coefficients of equations (10) are determined by formulas given below: 
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The solving obtained system of ordinary differential equations (10) can be performed using 

various approximate methods, such as the harmonic balance method (HBM), multiscale method, 
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method of Runge-Kutt, and other ones. If we use  the single-mode approximation [16], i.e., in the 
expansion for the unknown functions we can preserve only the term corresponding to the fundamental 
frequency, then, applying the Bubnov-Galerkin method, we can obtain the explicit dependence of the 

ratio 
L

NA
ω
ων =)(  of nonlinear to linear frequency. This dependence is expressed by the following 

formula [16]: 
 

2

4
31 Aγν +=       (12) 

 
The implementation of the proposed method will be carry out in framework POLE-RL system 

and MATLAB. 
 
REFERENCES 
 
[1] Won-Hong Lee, Sung-Cheon Han Free and forced vibration analysis of laminated composite 

plates and shells using a 9-node assumed strain shell element, Comput. Mech. 39: 41–58, 2006. 
[2] Harras B., Benamar R., White R. G. Geometrically non-linear free vibration of fully clamped 

symmetrically laminated rectangular composite plates, Journal of Sound and Vibration 251(4), 
579–619, 2002. 

[3] Ribeiro P., Petyt M. Non-linear free vibration of isotropic plates with internal resonance, 
International Journal of Non-Linear Mechanics 35, 263–278, 2000. 

[4] Ribeiro P., Petyt M. Multi-modal geometrical non-linear free vibration of fully clamped 
composite laminated plates, Journal of Sound and Vibration 225(1), 127–152, 1999. 

[5] Petyt M., Ribeiro P. Geometrical non-linear periodic vibration of plates, IMECE 2000, 
November 5–10, 2000. 

[6] Maloy K. Singha M. Ganapathi. Large amplitude free flexural vibrations of laminated 
composite skew plates, International Journal of Non-Linear Mechanics 39, 1709 – 1720, 2004. 

[7] Singh A.V. Linear and geometrically nonlinear vibrations of fiber reinforced laminated plates 
and shallow shells, Computers and Structures 76, 277–285, 2000. 

[8] Singha M.K., Daripa R. Nonlinear vibration of symmetrically laminated composite skew plates 
by finite element method, International Journal of Non-Linear Mechanics 42, 1144–1152, 2007. 

[9] Amabili M. Nonlinear Vibrations and Stability of Shells and Plates, University of Parma, Italy,  
374p., 2008 

[10] Qatu M. S. Vibration of Laminated Shells and Plates, Elsevier Ltd., Oxford, 2004. 
[11] Ambartsumian S.A. The general theory of anisotropic shells. Moscow,Nauka,1974 (in Russian) 
[12] Rvachev V. L. Theory of R-functions and some of its applications. Naukova Dumka, Kiev, 551 

p., 1982 (in Russian).  
[13] Rvachev V. L. and Kurpa L. V., R-functions in Problems of the Theory of Plates, Naukova 

Dumka, Kiev, 176p., 1987 (in Russian). 
[14] Kurpa L. V. R-functions method for linear bending and vibration of shallow shells 

problems solution. NTU «KhPI», Kharkov, 408 p., 2009 (in Russian). 
[15] Kurpa L.V. Nonlinear Free Vibrations of Multilayer Shallow Shells with a Symmetric Structure 

and with a Complicated Form of the Plan. J. Mathem. Methods and Phisic. Mech. Polya, Vol.51, 
No.2, pp.75-85, 2008 (in Russian). 

[16] Volmir A.S. Nonlinear Dynamic of the Plates and Shells. Nauka, Moscow, 432 p. 1972. 


	p.001.         First Page
	p.002
	p.003.         Preface
	p.004.          Sci. committee
	UOrganizing Committee

	pp.005-008. CONTENT
	CONTENT


