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A method of deposition on the surface of metals or ceramics catalytically active compounds by attaching them 

to the intermediate glass crystalline coatings. The effect of the presence of 3d-transition elements in the 

intermediate coating to modify the activity of a palladium containing catalyst was studied. The basic indicators 

of the efficiency of non-isothermal heterogeneous catalytic conversion process of benzene depending on the 

types of transition metals which are part of the intermediate coating were studied. Comprehensive analysis of 

the morphology of a glass-intermediate secondary catalyst carriers and surface coating them with layers of 

catalytically active compounds was carried out, which allowed to estimate the effect of the characteristic features 

of the structure of the coating surface on the rate constant of the process of conversion and mass transfer 

coefficient. 

1. Introduction 

 Road transport and waste-processing complexes are the main consumers of catalysts produced in the world. 

Both in post-combustion exhaust gas systems of internal combustion engines and systems of catalytic exhaust 

gas purification of waste treatment complexes the dynamically changing parameters of the flowing out the 

catalyst gas flow takes place. Changes in temperature can reach up to 200 K, and the gas flow rates changing 

of up to 50 % of the average speed. These conditions lead to mechanical destruction not only the catalyst 

surface but also the catalyst carrier, which reduces the effective lifetime functioning of purification systems. The 

effective functioning of a catalyst in gas emissions purification processes is determined by its chemical activity, 

which is a function not only of its qualitative and quantitative composition, but also depends on the qualitative 

and quantitative composition of catalyst carrier. In many cases, when the catalyst carrier is a metal or ceramics, 

changes in chemical composition of the carrier over a wide range are not possible. This leads to the idea of 

creating an intermediate (secondary) catalyst carrier, localized on the surface of the primary carrier (metal or 

ceramic). Secondary catalyst carrier hosts on its surface the layer of catalytically active compounds. Such a 

multilayer system due to the possibility of varying over a wide range of qualitative and quantitative composition 

of the intermediate coating overcomes drawbacks of bilayer systems ("carrier-catalyst") and provides the ability 

to control thermo-mechanical and catalytic properties of the catalytic coating. 

2. Formulation of the problem 

The study aims to determine the effectiveness of operating characteristics catalysts in the processes of 

neutralization of gas emissions and identify the controlling factors by which is possible to increase the operating 

parameters on the basis of a comprehensive study of the surface structure of the carrier’s catalytic coating, their 

morphology and morphology of the developed catalysts. 

Thermomechanical stability and catalytic activity of catalysts in the purification of gas emissions of road 

transport, thermal power plants and waste-processing complex are determined as well known by qualitative and 

quantitative composition of catalytic coatings. However, not least the catalytic activity is also determined by the 

promoting and modifying properties of catalyst carrier. The promoting properties of the carrier are a function of 

its qualitative, quantitative composition, microstructure and thermal background. Experimental and theoretical 
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studies of the composition of catalyst carrier allow to find such composition values, which will significantly 

increase the thermomechanical stability and catalytic activity of the catalysts. However, since the catalytic 

coatings carriers’ materials have ceramic or metallic nature, the composition of the carrier has significant 

limitations associated with carriers’ mechanical and performance properties. 

To work around the specified limitation the use of intermediate (secondary) carriers of glass-crystalline nature 

is offered. Secondary carriers are formed on the surface of the primary carrier (ceramic or metal) and then on 

the surface of the secondary carrier catalytically active coating layer is created. The above three-layer system 

allows to overcome limitation of composition of the catalyst support, which is undeniable advantage. On the 

other hand, it should be noted that the three-layer system as well as the two-layer system of type "catalyst 

carrier" has the disadvantage due to thermal coefficient of linear expansion difference of carrier and coatings. 

This difference inevitably leads to mechanical stresses between the layers of the catalyst system and as a result 

to mechanical destruction under dynamic thermal operating parameters of catalytic neutralization units. 

The use of secondary carriers of glass-crystalline nature the allows to avoid accumulation of critical 

thermomechanical stresses between the layers of the primary carrier, secondary carrier and layer of catalytically 

active components. This is due to the possibility of selection of the qualitative and quantitative composition of 

the glass-crystalline support, which allows obtaining an intermediate value of coefficient of linear expansion of 

secondary carrier and allows the use of a secondary carrier as a thermal stress absorber between the primary 

carrier and the catalyst layers. 

3. The surface morphology of the synthesized secondary carriers and catalyst layer 

Synthesized secondary coatings in accordance with the proposed method are formed on the foil surface and 

are in the form of oxide system of amorphous or glass crystalline adhesion. The primary carrier is a foil of NiCrA 

alloy (the same as NiCr80/20, Ni80Cr20, Chromel A, N8, Nikrothal 8, Resistohm 80, Cronix 80, Nichrome V, 

HAI-NiCr 80). In this paper the following compositions of oxide systems of the secondary carriers are 

investigated: manganese-aluminum-silicon (MAS), nickel-aluminum-silicon (NAS) cobalt-aluminum-silicon 

(CAS), scanning electron microscopy of surfaces of which is shown in Figure 1. 

The coatings of all above compositions have high mechanical strength and adhesion to the metal surface and 

continuity. On the foil surface coating were formed. Mechanical strength of coatings was studied visually in 

locations of multiple foil bends to almost zero radius. It has been shown the lack of cracks and chips on the 

surface of the coating in a bends. Thermal stability of the catalytically active coating on the surface of the metal 

foil was demonstrated by carrying out thirty thermal cycles of 1,000°C to room temperature, it was demonstrated 

no delamination of the coating from the support and cracks of the coating after such heat treatment. 

Investigation of the structure of coatings was carried out by optical, scanning electron and atomic force 

microscopy. 

 

 
a)    b)    c) 

Figure 1: Exterior of glass crystalline coatings: Ni-Al-S (a), Co-Al-S (b), Mn-Al-S (c). Scanning electron microscopy. 

As seen from Figure 1b Co-containing coating is continuous, completely covers the carrier a foil of NiCrA alloy 

and has a granular surface structure containing a small amount of crystalline inclusions of alleged compositions 

of Co3Al2Si3O12, Co3Al2(SiO4)3 (according to X-ray crystallography). Ni-containing coating is characterized by 

large structural elements such as channels and elevations. The width of the channel is from 5 to 15 μm. The 

edges of the channels and cracks are characterized by sharp corners and the absence of melting traces. Such 

a structure is characteristic of crystalline coatings, which is confirmed by X-ray analysis of NAS coating. The 

NAS coating contains the following crystalline components Ni10.3Al11.3Si2.4O32, Ni27Al13.9Si5.1O48, 
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Ni12.48Al7Si4.5O32, Ni3Al2SiO8. Mn-containing coating is characterized by large structural elements such as 

channels and elevations. The width of the channel is from 5 to 15 μm. The edges of the channels and cracks 

are characterized by sharp corners and the absence of melting traces. Such a structure is characteristic of 

crystalline coatings, which is confirmed by X-ray analysis of MAS coating. The MAS coating contains the 

following crystalline Mn0.86Al1.14(SiO4)O, Mn1.9Al3.8Si8.3O24, Mn3Al12(SiO4)3, Mn46(Al92Si100O384). 

In accordance with the proposed method on the surface of the secondary carrier the catalytically active 

compound layers are formed. In the present study, as the catalytically active substance of palladium oxide PdO 

is selected. Scanning electron microscopy of the resulting coatings is shown in Figure 2. 

 

 
a)    b)    c) 

Figure 2: Exterior of catalytically active compound PdO layers on surfaces of glass crystalline coating of compositions 
Ni-Al-S (a), Co-Al-S (b), Mn-Al-S (c). Scanning electron microscopy. 

Figure 2 shows that the catalytically active layer of palladium oxide completely shields the surface of the support 

structure of the secondary carrier, which means that the thickness of the PdO layer reaches up to 1 μm, which 

corresponds to the amount of applied palladium oxide. 

From Figure 2a follows that the use of Ni-containing glass crystalline phase as a secondary carrier for catalyst 

based on palladium oxide forms a continuous surface characterized by a developed system of microcracks and 

absence melted and smoothed cracks edges. Figure 2b shows that on the surface of Co-containing coating the 

layer of palladium oxide forms more dense network of cracks as compared to nickel-based system. This surface 

is also characterized by the presence of a small amount of rounding chips and cracks. 

Figure 2c shows the structure of the surface of the catalyst layer of palladium oxide on the secondary Mn-

containing carrier. PdO layer completely fills the cracks and channels of a secondary coating and forms 

aggregates ranging in size from 5 to 25 μm on the surface. The catalytic surface is characterized by a expressed 

sharp edges and chipping and by lack of roundness and melted faces and edges. 

An exterior surface of the examined catalysts indicates to the absence of a vitrification in the moment of 

palladium oxide layer formation, resulting in little or no migration of PdO into the interior of the secondary carrier. 

It allows to assume about close gas emissions conversion rate values on all (MAS, NAS, CAS) synthesized 

surfaces in conditions of the external diffusion inhibition. 

4. Determination of catalytic activity of the composite coatings 

The catalytic activity of the synthesized catalytic coatings in gas conversion processes was determined using 

flow type bench model. Tests of the catalytic converters were carried out in benzene oxidation reactions. To 

determine the amount of gaseous components that are part of exhaust gases measuring devices "Infrakar" and 

"Oxy" were used. Conditions for the determination of the catalytic activity are follows: the linear velocity of the 

gas mixture is 1.5 m/s, the particle size of the catalyst is 5×10 mm, heating rate is 10 °C/min. The composition 

of the model mixture containing benzene is benzene (10 g/m3) and air (everything else). 

To determine the effect of composition of the secondary carrier each of sample was impregnated with 

catalytically active compounds PdO of the same qualitative and quantitative composition. Obtained in such way 

catalytic compositions were examined on research stand. 

Figure 3 shows the temperature dependence of the conversion degree of the test compound - benzene - for 

coatings of the aluminum-boron composition series. 
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Figure 3: Temperature dependence of the benzene conversion degree X for coatings compositions of the MAS, 

NAS and CAS. 

As shown by the experimental data presented in Figure 3, the temperature dependences of the degree of 

benzene conversion in cases of various compositions of secondary catalyst supports have their own 

characteristics. 

Each graphical representation of experimental data given on Figure 3 has two sections: a low temperature 

section (corresponding to limitation of benzene conversion process by chemical processes on the surface of the 

catalytic coating) and high temperature section (corresponding to limitation of benzene conversion process by 

features of mass transfer in the system "gas stream - the catalytic surface coatings"). 

The change in the degree of conversion dependency on temperature in the low temperature section is influenced 

by such factors as the number of available catalytic sites for adsorption and their energy distribution. 

At high temperature section all active centers participating in catalytic processes are about equivalent 

energetically therefore the key factor determining the completeness of benzene conversion in the final product 

CO2 is the quantity and availability of active sites for molecules adsorbed starting substances. 

The temperature dependence of the degree of benzene conversion to the final product carbon (IV) oxide has 

two stages of heterogeneous catalytic process. 

Separation set of data points into groups corresponding to the stages of benzene conversion, in accordance 

with (Ved’ et al., 2015) allows to determine parameters such as the observed value of the activation energy and 

pre-exponential factor, as well as the value of mass transfer coefficient according to methodology presented by 

Krasnokutskii and Ved’ (2013a) which takes into account two benzene oxidation mechanisms: catalytic 

mechanism on the surface of the catalytic converter and a thermal radical mechanism in the core gas flow. 

Determination of the observed values of activation energy, pre-exponential factor and mass transfer coefficient 

was performed on the basis of concepts that benzene conversion process takes place not only on the surface 

of the catalyst by the catalytic mechanism but also in the gas flow by a radical chain mechanism. 

The radical reaction rate in the gas flow is additionally influenced by such factors as the benzene concentration 

in a gas flow, flow structure and its mixing intensity. Taking into account these factors makes it possible to obtain 

an equation of benzene conversion rate in the carbon (IV) oxide, which takes into account heterogeneous 

catalytic process and benzene oxidation by radical chain mechanism. In the integral form of this equation for 

limitation of benzene conversion process by chemical processes on the surface of the catalytic coating has the 

following form: 


  
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(1) 

where E is the observed activation energy, J/mol, k0 is the Arrhenius pre-exponential factor, m/s, R is the 

universal gas constant, J/K×mol, τ is the contact time, s, T is the actual temperature in the reaction zone K, Re 
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is the Reynolds number, Ckat is the surface concentration of the catalytically active compounds, kg/m2, V is the 

reactor volume, m3, C0 is the initial concentration of benzene, mol/m3, a, b, and c are constants. 

The main performance indicators of benzene heterogeneous catalytic conversion process on the surface of the 

synthesized catalysts are given in Table 1 below. 

Table 1: Performance indicators of benzene heterogeneous catalytic conversion process 

The 

secondary 

carrier  

The observed 

value of the 

activation 

energy, 

J/(mol K) 

The pre-

exponential 

factor, m/s 

The surface reaction 

rate constant at 

320 °C, m/s 

The length of the reactor 

on which 95% 

conversion is reached at 

320 °C in case of 

absence of external 

diffusion resistance, m 

Mass transfer 

coefficient at 

380 °C, m/s 

NAS 177,000 4.1×1016 10.3 0.83 0.0161 

CAS 197,000 1.6×1019 64.5 0.13 0.0156 

MAS 206,000 1.6×1019 10.3 0.83 0.0152 

5. Analysis of experimental data 

The catalytic coatings synthesized on the surface of the Ni-containing, Mn-containing and Co-containing 

secondary carriers are characterized by close values of the degree of benzene conversion and respectively 

close values of mass transfer coefficients in the high-temperature section. This fact is explained as follows. At 

high temperatures the entire heterogeneous catalytic process is limited by mass-transfer processes, so features 

of chemical kinetics at the catalyst surface did not affect to mass transfer. Therefore only the coverage degree 

of the catalyst surface by active sites affects on the value of the mass transfer coefficient. 

Indeed, the total absence of signs of melting and vitrification of the catalyst layer on the NAS coatings surface 

and the presence of inclusions of crystal phase in it, as well as absence of signs of catalyst vitrification on the 

CAS surface coating, promotes more complete localization palladium oxide PdO on the surface and not in the 

deep layers of the secondary coatings, where it is much more difficult to access for the reactants from the gas 

phase. 

Thus the similarity of the surface structures of the catalyst layer on the secondary carriers indicates to similar 

values of surface concentration of palladium oxide and hence the mass-transfer coefficient and the degree of 

benzene conversion at high temperatures. 

In the case of use of Co-containing secondary carrier the highest conversion rate value is observed at low 

temperatures, which corresponds to limitation of heterogeneous catalytic conversion process by stage of the 

surface chemical kinetics. By the condition of experimental study the palladium content on all the above carriers 

is equal. Also with the help of surface morphology analysis and kinetic analysis of the experimental data of 

heterogeneous catalytic conversion at high temperatures it is shown no migration of palladium into the interior 

of the secondary carrier. The only distinguishing characteristic of the coating CAS is the presence of cobalt 

oxide. This leads to the conclusion that the presence of cobalt oxide in the secondary carrier has a significant 

promoting effect on the catalytic properties of palladium catalyst. Cobalt promotion is so strong that its significant 

effects on the surface of the catalyst layer even if the thickness of the coating of palladium oxide reaches 2 μm. 

6. Conclusions 

Conducted comprehensive study of surface morphology of catalysts and their catalytic activity in the oxidation 

of benzene revealed general patterns the structure and physicochemical properties of the surface of the 

secondary carrier that provide increase in the chemical reaction surface rate constant and the mass transfer 

coefficient from the gas stream to the catalyst surface. 

Features of the temperature dependence of the degree of benzene conversion for catalysts on various 

secondary carriers are explained by differences in the characteristics of the interaction of palladium oxide with 

NAS, CAS and MAS oxides systems on a chemical level at the moment of the formation of the catalytic coating. 

The experimental data shows that the significant increase in constant speed at the given temperature can be 

achieved by means of: 

 Selection of the composition of secondary carrier containing a promoter components; 

 Selection of the composition of secondary carrier, the formation of which will form crystalline inclusions; 

 Selection of the secondary carrier composition with a maximum possible vitrification temperature to avoid 

the dissolution of the catalyst in the secondary carrier. 
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