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Abstract Bayesian network are widely accepted as models for reagavith un-
certainty. In this chapter we focus on models that are cdeaseng domain exper-
tise only. After a short review of Bayesian networks modeld eemmon Bayesian
network modeling approaches, we will discuss in more détadle applications of
Bayesian networks. With these applications, we aim totilite the modeling power
and flexibility of the Bayesian networks that goes beyondsthedard textbook ap-
plications. The first network is applied in a system for matiagnostic decision
support. A distinguishing feature of this network is thegmamount of variables in
the model. The second one involves an application for phatrsipal decision sup-
port to determine the mineral content of a well based on hweemeasurements.
This model differs from standard Bayesian networks by itsticmous variables
and nonlinear relations. Finally, we will discuss an apglien for victim identifica-
tion by kinship analysis based on DNA profiles. The distispirig feature in this
application is that Bayesian networks are generated anguetad on-the-fly based
on case information.
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1 Introduction

In modeling intelligent systems for real world applicasomne inevitably has to
deal with uncertainty. This uncertainty is due to the imubt/ to model all the
different conditions and exceptions that can underlie defiset of observations.
Probability theory provides the mathematically consisfeamework to quantify
and to compute with uncertainty. In principle, a probabdimmodel assigns a proba-
bility to each of its possible states. In models for real @agbplications, the number
of states is so large that a sparse model representatiogvisahle. A general class
with a representation that allows modeling with many vdedalare the Bayesian
networks [20, 14, 7].

Bayesian networks are nowadays well established as a mgdelol for ex-
pert systems in domains with uncertainty [22]. Reasonstaaie powerful but con-
ceptual transparent representation for probabilistic el@th terms of a network.
Their graphical representation, showing the conditiondependencies between
variables, is easy to understand for humans. On the othel; kente a Bayesian net-
work uniquely defines a joint probability model, inferencedrawing conclusions
based on observations — is based on the solid rules of prdgataiculus. This
implies that the mathematical consistency and correctoiisderence are guaran-
teed. In other words, all assumptions in the method are owdan model, i.e., the
definition of variables, the graphical structure, and thexpeeters. The method has
no hidden assumptions in the inference rules. This is uwnliker types of reasoning
systems such as e.g., Certainty Factors (CFs) that wereiuged., MYCIN — a
medical expert system developed in the early 1970s [24]hénGF framework,
the model is specified in terms of a number of if-then-elsegwith certainty fac-
tors. Furthermore, the CF framework provides prescrigtibaw to invert and/or
combine the if-then-else rules to do inference. These pp®ms contain implicit
conditional independence assumptions which are not imetedgli clear from the
model specification and has consequences in their applicdii3].

Probabilistic inference is the problem of computing thetposr probabilities
of unobserved model variables given the observations @rattodel variables. For
instance in a model for medical diagnoses, given that thematas complaints
andy, what is the probability that he/she has disegsiference in a probabilistic
model involve summations or integrals over possible statése model. In a real-
istic application the number of states to sum over can be leegg. In the medical
example, the sum is typically over all combinations of uresteed factors that could
influence the disease probability, such as different patenditions, risk factors,
but also alternative explanations for the complaints, ketg@eneral these compu-
tations are intractable. Fortunately, in Bayesian net&avikh a sparse graphical
structure and with variables that can assume a small nunitstates, efficient in-
ference algorithms exists such as the junction tree algarji4, 7].

The specification of a Bayesian network can be describedarpawts, a qualita-
tive and a quantitative part. The qualitative part is theprstructure of the network.
The quantitative part consists of specification of the ctodal probability tables
or distributions. Ideally both specifications are inferfeain data [15]. In practice,
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however, data is often insufficient even for the quantigafpart of the specifica-
tion. The alternative is to do the specification of both paytsiand, in collaboration
with domain experts. Many Bayesian networks are creatddsmtay. Furthermore,
Bayesian networks are often developed with the use of softwackages such as
Hugin (www.hugin.com) or Netica (www.norsys.com). Theselzages typically
contain a graphical user interface (GUI) for modeling anéhéerence engine based
on the junction tree algorithm for computation.

Although the networks created in this way can be quite corle scope of
these software packages obviously has its limitationshis ¢hapter we discuss
three models in which the standard approach to Bayesian lingdes outlined
above was infeasible for different reasons: the large numbeariables in the first
model, the need to model continuous-valued variables is¢send model, and the
need to create models on-the-fly from data in the third appbo.

The first model has been developed for an application for ca¢diagnostic de-
cision support (Promedas, in collaboration with UMC Utr@chhe main function-
ality of the application is to list the most probable disesgigen the patient-findings
(complaints, tests, physical examinations) that are edterhe system is aimed to
support diagnosis in general internal medicine, coveringrge medical domain
with several specializations. However, a considerablelle¥ detail at which the
disease areas are modeled is essential for the system tgbactital use. For this
application, this means that the model should contain H8fdliseases and a factor
10 more of relations between diseases and findings. Withsuictbers of variables
and relations, the standard modeling approach is infeasibl

The second model has been developed for an application fiapbg/sical deci-
sion support (in collaboration with SHELL E&P). The main @ition of this applica-
tion is to provide a probability distribution of the minecamposition of a potential
reservoir based on remote borehole measurements. In thexlyindg model, the
number of variables is limited. However, variables are ardus valued. One of
them represents the volume fractions of 13 minerals, arietigfore a 13-D contin-
uous variable. Any sensible discretization in a standaneBian network approach
would lead to a blow up of the state space. Due to nonlinearénd constraints, a
Bayesian network with linear-Gaussian distributions §34iso not a solution.

Finally, we will discuss an application for victim identiéiton by kinship analy-
sis based on DNA profiles (Bonaparte, in collaboration wiki)NVictims should be
matched with missing persons in a pedigree of family memtbetsis application,
the model follows from Mendelian laws of genetic inheritarand from principles
in DNA profiling. Inference needs some preprocessing buthieraise reasonably
straightforward. In this application, however, the chadje is that the model struc-
ture depends on the family structure of the missing persbis. Structure will differ
from case to case and a standard approach with a static rkeisvaloviously insuf-
ficient. In this application, modeling is implemented in #r&ine. The application
generates Bayesian networks on-the-fly based on case iatiormNext, it does the
required inferences for the matches.

The chapter is organized as follows. First, we will providsteort review of
Bayesian networks in section 2. Next, in sections 3, 4 and Widiscuss the three
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applications. In particular we will discuss the underlyBayesian network models
and the modeling approaches at a rather detailed leveh&unbre we will discuss
the inference methods that we applied whenever they defriate the standard
junction tree approach. In section 6, we will end with disias and conclusion.

2 Bayesian Networks

In this section, we first give a short and rather informal eawiof the theory of
Bayesian networks (subsection 2.1). Furthermore in stibse2.2, we briefly dis-
cuss Bayesian networks modeling techniques, and in phatithe typical approach
that is taken in most Bayesian network applications. Weflgr@iscuss pro’s and
con’s of this approach, and in particular why this approasésdnot work in the
applications that we will discuss in the later sections.

2.1 Bayesian Network Theory

To introduce notation, we start by considering a joint piality distribution, or
probabilistic modelP(Xy, ..., X) of n stochastic variableX, ..., X,. VariablesX;
can be in state;. A state, or value, is a realization of a variable. We usetsaod
notation

P(X0 = X1, -+, X0 = Xn) = P(Xt, -, Xn) (1)

to denote the probability (in continuous domains: the pbiliig density) of vari-
ablesX; in statexy, variableX, in statex, etc.

A Bayesian network is a probabilistic modbn a finite directed acyclic graph
(DAG). For each nodein the graph, there is a random variabletogether with a
conditional probability distributiof(x;|X), wherer(i) are the parents a¢fin the
DAG, see figure 1. The joint probability distribution of thayesian network is the
product of the conditional probability distributions

n
P(le"'axn) = _|_|P(Xi|X7T(i)) . (2)
=
Since any DAG can be ordered such titét) C 1,...i — 1 and any joint distribu-
tion can be written as
n
P(X1,...,%n) = |'lP(xi|>q71,---,xl) ; ©)
i=

it can be concluded that a Bayesian network assumes

Pi[Xi—1,- -, X1) = P(Xi[ X)) - 4)
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Fig. 1 DAG representing a Bayesian netwd?kx; )P(x2|x1)P(x3)P(Xa|X1) P(X5|X2, X3, X4) P(Xs|X3)

In other words, the model assumes: given the values of tleetdiarents of a vari-
ableX;, this variableX; is independent of all its other predecessing variablesen th
graph.

Since a Bayesian network is a probabilistic model, one carpete marginal dis-
tributions and conditional distributions by applying tharslard rules of probability
calculus. For instance, in a model with discrete varialiles marginal distribution
of variableX; is given by

P(X‘):Z“‘Z z...ZP(xl,...,xN). (5)

X1 X-1X%4+1 XN

Conditional distributions such aB(x;|x;) are obtained by the division of two
marginal distributions

P(Xi,Xj)

PG) ©

The bottleneck in the computation is the sum over combinatdd states in (5). The
number of combinations is exponential in the number of \deis A straightforward

computation of the sum is therefore only feasible in modéik & small number of

variables. In sparse Bayesian networks with discrete blasa efficient algorithms
that exploit the graphical structure, such as the junctiea algorithm [16, 14, 7]

can be applied to compute marginal and conditional digtiobs. In more general
models, exact inference is infeasible and approximate odstisuch as sampling
have to be applied [17, 3].

POalxj) =

2.2 Bayesian Network Modeling

The construction of a Bayesian network consists of decidbaut the domain, what
are the variables that are to be modeled, and what are tleespiates of each of the
variables. Then the relations between the variables have tmodeled. If these
are to be determined by hand (rather than by data), it is a galedof thumb to

construct a Bayesian network from cause to effect. Statht mitdes that represent
independent root causes, then model the nodes which thagirti, and so on until
we end at the leaves, i.e., the nodes that have no direct mc#uen other nodes.
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Fig. 2 Screen shot of part of the 'Alarm network’ in the BayesBuil@J|

Such a procedure often results in sparse network strudtuaesre understandable
for humans [22].

Often, models are constructed using Bayesian network aoftauch as the ear-
lier mentioned packages. With the use of a graphical userfade (GUI), nodes
can be created. The nodes represent the variables in thersy$ypically, vari-
ables can assume only values from a finite set. When a nodedded; it can
be linked to other nodes, under the constraint that therenareirected loops in
the network. Finally — or during this process — the table ofidiional proba-
bilities are defined, often by educated guesses, and soeeetirferred from data.
Many Bayesian networks that are found in literature falbithis class, see e.g.,
www.norsys.com/netlibrary/. In figure 2, a part of the ALARMtwork as repre-
sented in BayesBuilder (www.snn.ru.nl/) is plotted. TheAM network was orig-
inally designed as a network for monitoring patients inmsiee care [2]. It consists
of 37 variables, each with 2, 3, or 4 states. It can be consitias a relatively large
member of this class of models. An advantage of the GUI bagprbach is that a
small or medium sized Bayesian network, i.e., with up to adezen of variables,
where each variable can assume a few states, can be devglapkly, without the
need of expertise on Bayesian networks modeling or inferatgorithms.

In the next sections we will discuss three Bayesian netwiark®al world appli-
cations that fall outside the class of models that have baghusing these model-
ing tools. The main reason is that the graphical user inteffeas no added value for
these models. The first model is too complex, and would comt@ many variables
for the GUI. In the second one the complexity is more in théaldes themselves
than in the network structure. In the third model, the neknamsists of a few types
of nodes that have simple and well defined relations amonly eter. However,
for each different case in the application, a different methas to be generated. It
does not make sense for this application to try to build thetevorks beforehand
ina GUL.
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3 Promedas, a Probabilistic Model for Medical Diagnostic
Decision Support

Modern-day medical diagnosis is a very complex processijiag accurate patient
data, a profound understanding of the medical literatuceraany years of clinical
experience. This situation applies particularly to intémmedicine, because it cov-
ers an enormous range of diagnostic categories. As a r@sigithal medicine is
differentiated in super-specializations.

Diagnosis is a process, by which a doctor searches for threedaisually a dis-
ease) that best explains the symptoms of a patient. Thehspaocess is sequential,
in the sense that patient symptoms suggest some initialtebe performed. Based
on the outcome of these tests, a tentative hypothesis isufated about the possi-
ble cause(s). Based on this hypothesis, subsequent testscired to confirm or
reject this hypothesis. The process may proceed in sewerations until the pa-
tient is finally diagnosed with sufficient certainty and tlaeise of the symptoms is
established.

A significant part of the diagnostic process is standardinettie form of pro-
tocols. These are sets of rules that prescribe which tegterform and in which
order, based on the patient symptoms and previous testge$thlese rules form
a decision tree, whose nodes are intermediate stages indtpeodtic process and
whose branches point to additional testing, depending erctirent test results.
The protocols are defined in each country by a committee ofeakexperts.

In the majority of the diagnoses that are encountered, tigetines are suffi-
ciently accurate to make the correct diagnosis. For thesditre” cases, a decision
support system is not needed. In 10-20 % of the cases, hawbeediagnostic
process is more difficult. As a result of the uncertainty alibe correct diagnosis
and about the next actions to perform, the decisions madéfeyeaiht physicians at
different stages of the diagnostic process do not alwayesesgnd lack "rationaliza-
tion”. In these cases, normally a particularly specializetieague or the literature
is consulted. For these difficult cases computer basedidecapport may serve as
an alternative source of information. In addition, a conepaided decision support
system can be of help by pointing to alternative diagnosatsritay be overlooked
otherwise. It may thus result in an improved and more ratined diagnostic pro-
cess, as well as higher efficiency and cost-effectiveness.

Since 1996, SNN and UMC Utrecht have been developing a aliniiagnostic
decision support system for internal medicine, called Rrdas. In this system, pa-
tient information, such as age and gender, and findings, asidymptoms, results
from physical examination and laboratory tests can be edtéfhe system then
generates patient-specific diagnostic advice in the formlit of likely diagnoses
and suggestions for additional laboratory tests that maselewant for a selected
diagnosis.

The system is intended to support diagnostics in the setifripe outpatient
clinic and for educational purposes. Its target users anergéinternists, super spe-
cialists (e.g., endocrinologists, rheumatologists)gitaterns and residents, medical



8 Wim Wiegerinck, Bert Kappen, Willem Burgers

students and others working in the hospital environmentreddly, a trial version
of the program is installed at department of internal megiéh UMC Utrecht. It
contains about 3500 diagnoses and is based on 50000 rslalibe program is
connected to the electronic patient records, so that playsican easily consult the
program without having to enter all the data manually. A tieano can be found on
www.promedas.nl

Promedas is based on a Bayesian network. In the remaindbe cfeiction we
will describe the model in further detail. We focus on the mloty part, including
certain modeling approaches, model choices and methodzciiitdte inference.
Medical details of the model are outside the scope of this@ec

3.1 Building Large Scale Probabilistic Models

For this application, in which rare diseases play an impuntale, data is insuffi-
cient to train the model. When modeling a Bayesian networkdnyd, the standard
procedure is to specify a network structure of local intBeas and to specify those
probabilities that are needed to define these interactioastgatively. For medium
sized networks (up to 50 — 100 variables), this is doablegusia methodology and
Bayesian network software tools such as discussed in stitas@c2. However, our
aim was to scale up the system to 1000’s of variables. Foetagstems it is more
difficult to keep overview, and not to get lost in the spagludttelations and interac-
tions. In addition, available medical knowledge is in gahémited to bivariate re-
lations between disease and test in terms of sensitivityspadificity. Therefore we
decided to take a more structured approach, in which we assugeneric structure
of the model. The general assumption in this structure isriblafactors influence
the probabilities of diseases and that diseases influeegertibabilities of findings
(symptoms, tests etc.). We furthermore restrict to modelshich the parameters
can be determined from the available medical knowledge\&rlzite relations. In
order to further facilitate modeling we have developed ablase in which medical
specialists can enter their knowledge in a structured ahtboacomplicated way.

In the following, we sketch the structure of the databasenmive sketch how
the Bayesian network is defined and which model choices we hrade. Finally
we sketch how a differential diagnosis is computed in thisleho

3.1.1 Database Structure

The database contains information from which the struatfitbe network can be
derived as well as its model parameters. In addition, thabdste contains meta-
information, such as information about the structure ofnfRrdas’ graphical user
interface. This involves mainly the grouping and namingrdiings and risk factors
into medical relevant categories such as complaints, palyekamination, medica-
tion, lab results and subdivisions of these. In additiorcdpsons, annotations and
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references are included. In the remainder of this subsgdtmwever, we restrict to
information that is directly relevant for the computatibmedel.
The database contains three types of variables:

1. Risk factorssuch as occupation, drug use, past and concurrent disdRis&s;
factors are coded binary (true=1/false=0).

2. Diagnosessuch as current diseases, syndromes, drug side effectg)goey;
Diagnoses are coded binary (true=1/false=0).

3. Testsor findings, such as lab tests, symptoms, physical exarnmatic. Tests
are binary or multinomial (decreased/normal/increasestigly increased, etc.).
When the discretization is not obvious because the testnsmmus by nature,
then the discretization is defined in the database with ffyieants according to
medical standards where possible. Discretization mayripe gender and age.
The state space of the tests is such that there is always omaali’ state. Binary
variables are defined such that false is the “normal” state.

Furthermore, the database contains quantifications. Témeseeeded to model
the probabilities in the Bayesian network. Quantificatioas apply to single vari-
ables, and to relations between variables. Relations casefieed between risk
factors and diagnoses and between tests and diagnosesoRetzan only be de-
fined for non-normal states, e.g., between diagnddiging true and tedt being
in “increased” state. The idea behind this is that relatimyde positive influences.
The absence of the relation between diagnddiging true and tegtin “normal”
state implies the assumption that the mere presence ofaséiséll never make the
result of a test more likely to be normal than without the diebeing present.

The database contains four types of quantifications:

1. Priors. For each diagnosid there is priorpy. This is the prior probability of
diagnosidl being true in absence of all risk factors.

2. Leaks.For each test there is a so-called lgaks of each non-normal test-state.
This leak is roughly interpreted as the prior probabilitythoé test being in state
t = sin absence of all diagnoses. In an ideal test, the resultsisal in absence
of diagnoses, so any non-normal state has zero probahilityon-ideal tests, a
leak causes positive probabilities of non-normal tesestdteaks are used e.g.,
to model the probability of a test being positive without apgnt cause.

3. Mult-factors. For each risk—diagnosis relation there is a “mult-factog; by
which the odds of the prior probability of diagnosisire multiplied in the pres-
ence of the risk factar.

4. Senseskor each test—-diagnosis relation there is one or more “spfss. A
sens relates a diagnosis to a non-normal test-state. Thhis gobability that the
presence of the diseaslecauses the testto be in states (rather than the leak
or other diseases). The “sens” is closely related to seitgjtthe probability of
a positive test given the presence of the disehéegardless the leak or other
diseases).

These quantifications can be age and gender dependent.
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Fig. 3 Network structure in the Promedas model.

3.1.2 Network Definition

The global architecture of the diagnostic model is desdriiyea diagnosis-layer that
is connected to a layer with tests. The main assumption tiffarent diagnoses
can coexist. Note that there are no nodes for gender, ageisathctors. These
are assumed to be observed. All other probabilities in thearl are conditioned
on these observations (as in e.g., (8), below). Default agemale of 55 with all
the risk-factors false. The global architecture of Pronsedasimilar to the QMR-
DT network [25]. QMR stands for Quick Medical Reference, ethis a heuristic
representation with about 600 diseases and 4000 findingsQMR-DT network,
where DT stands for Decision Theoretic, is a reformulati®a &wo-layer Bayesian
network. Main differences with Promedas are the absortioisk factors, and the
modeling of multi-valued tests in Promedas rather than ihari tests in QMR-DT.
Furthermore, Promedas is based on a different knowledge bas

Diagnoses are modeled as a prioriindependent binary Vesiatheir prior prob-
abilities (in absence of risk factors) are read from theloiade. In the case that a risk
factor is set to true, = 1, the prior of a related diagnosis is affected according to a
multiplication of prior odds,

P(d=1r=1) P(d=1|r=0)

Pd=0r=1) "YPd=1r=0)" @

wheremy is the “mult-factor” of risk factor in relation to diagnosid. This implies,
after rearranging terms
mqP(d = 1|r = 0)

PO =Y = T e~ DP@=1r=0) B

The conditional distributions of tests are modeled usingated noisy-OR and
noisy-MAX gates [21]. Both will be explained below in moretdié The motivation
to use these table parameterizations is that they are cemtdn model because
there is only one (or a few) parameter(s) for each diagntesisrelation (rather than
exponentially many as in the free form table), while on theeohand they provide a
medically reasonable model that is easy to interpret [2B]other important reason
is that inference is efficient [27] as we will discuss latethiis section.

To construct the noisy-OR and noisy-MAX, we first consides tleterministic
OR-gateOR(V|up,. .., Un). Here,v andu; are binary variables.
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1 if v=maxuo,...,U)

ORV|Uo, - Un) = {O otherwise 9)
Sov =1 (true) if any of they;’s is 1. Otherwiser = 0. Now the noisy-OR gate is
modeled as followsy, u; andd; are binary),

NoisyORv|dy,...dn) = z OR(v|u0,...,un)l|£|P(ui|di)P(uo). (10)

{Uo,...,Un}

The variableal,...,u, can be considered as latent or auxiliary variables in this
model. Furthermore, the probabiliti®$u; = 1|d; = 0) are zero in this model. The
probabilityP(up = 1) is often called the ‘leak’. The interpretation is that ne@R

is a noisy version of the deterministic OR, in which there fs#e probability that
(1) although all inputsl; = 0, the outcome is = 1 due to the leak, and (2) although
there are inputsi = 1, the outcome iy = 0 due to the fact tha®(u; = 0|d; = 1)

is non-zero. However, the more inpuds= 1, the higher the probability that the
outcome isv = 1. In Promedas, noisy-ORs are applied for binary tegtsre the
disease states amds the test result. The more diseases are present, the higher
probability of a positive test result. The required prolitibs to model the noisy-
ORs are read from the database (leaks and senses).

Now we will construct noisy-MAX. The idea is similar as theisspOR gate,
with in addition a winner-take-all mechanism. The idea & thsome diseases cause
atestresult to have a slightly increased value, and otseadis cause a test result to
have a strongly increased value, the observed test redulienétrongly increased.
To proceed, we order the states of the ggst 51 < ..., where “normal” has the
lowest order (s& = “normal”). Next, to model diseases causing the test result t
have a certain value, we define a noisy-OR ge@R, for each of the test-values
Sj > S (except for the “normal” value, since diagnoses cannoteaalues to be
normal). The outcome of a noisy-OR gates is either 1 or 0. Tieomes oNOR,
are relabeled (6+ sp and 1— s;j) and the result is eitheg or the values;.

The winner take all mechanism is modeled by the determinigtAX-gate
MAX(t|v1,...,Vn). The variable can assume all the potential values of its parent
variables. The MAX-gate is defined as

1 ift=max(vy,..., %)

0 otherwise (11)

MAX(t|v1,...,Vn) = {
Noisy-MAX tables for test®(t|d, ...ds) can be represented BYOR;'s for each of
the test-values;, having Subsetdjl,...,djnj of diagnoses that are related to test-
statet = s as parents, combined with a deterministic MAX-gate for thener-
take-all mechanism (see figure 3),

K
Ptldy,...d0) = § MAX(t|V1,...,Vk)I_IINORj(vj|dj1,...,djnj). (12)
J:

{Vlv"'va}



12 Wim Wiegerinck, Bert Kappen, Willem Burgers

Fig. 4 Testt with ordered states @ 1 < 2 < 3 are modeled as a noisy-MAX, which can itself
be modeled as the MAX of the outcomes of three noisy-OR ghtehis example, diagnosel;

are connected to binary noisy-OR gald®R;. The outcome of a noisy-OR gate is either 1 or 0.
The outcomes oNOR; are relabeled (L — 0/j) and subsequently fed into a MAX gate, which
returns the maximum value.

The interpretation of the noisy-MAX model is as follows. Baaf the diseases
has a probability to trigger the test to be in a certain stagardless of the pres-
ence or absence of other diseases. If different diseasesaharobability to trigger
the test to be in the same state, then a combination of thenesrtaks state more
likely. If different diseases trigger the test to be in difet states, then the strongest
state is observed. For instance if one disease triggersatig temperature to be
‘increased’ and another triggers the temperature to berigty increased’, then the
model assumption is that the ‘strongly increased’ tempeeawill be observed. A
drawback may be that many causes of an ‘increased’ tempenatwld in reality
have an additive effect. Other models could be designedctrjiorate such effect.
However, such models would lack the crucial computatiofi@iency of the noisy-
MAX model. Another issue that one could discuss is what to db tests that have
positive and negative states, such as ‘decreased’,ngrinateased’. Again, other
models could be designed to better incorporate the conibmaft a ‘decreased’
and an ‘increased’ effect, but this would also be at the espai computational
efficiency. In Promedas, we decided to be pragmatic and emfom ordering.

3.2 Inference

The main inference task in the application is to compute ttodbabilities of di-
agnoses given the observed values of tests and risk fattogeneral, inference
would be computationally infeasible for networks of theestf Promedas. There-
fore simplifying assumptions are introduced to make therigrice task cheaper.
One assumption is that all risk factors are assumed to be@zsén the applica-
tion, their default value is false). This excludes any utaiaty in these variables.
In this way, there will be no correlations between diagndbesugh risk factors.
Another simplification is to take only diagnoses into acdomhich are connected
to at least one test-node that is observed to be in a non-metat@. Other diagnoses
are not of interest in the task of supporting the physician.
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Fig. 5 Inference with noisy-MAX. Observed test valtie- 2 implies that the outcome o =0,
andv, = 2. The observed test value does not give any informationtahou

3.2.1 Efficient Inference in Noisy-MAX

Another assumption is the noisy-MAX model. As we mentionadier, one of the
reasons to adopt this model is that inference is more efficidrere are a several
properties of this model that make inference more efficieaut in most other condi-
tional probability models. See e.g. [27] for a more detadlad exposure of a general
class of such models.

e Decoupling of the parents of MAXIf we apply the max operator over a set of
variablesvi, where eachy; can have either valug or s, with s < ... < s, then
an outcome ma4,...,Vk) = Sj implies that allv = sp for k > j. Furthermore
vj =sj if 5; > 5. The outcome does not contain any information about the vari
ablesvy with k < j. See figure 5. This implies that we can take out the factor
MAX(t|v1,...,v) and decouple the intermediate variables as follows,

K
P(t= Sj |dl,. ..dn) = I_l NOR(vk = So|dk1, . ’dk'k)
k=j+1
i—1
X NOR<(VJ' =Sj|dj1,...,djnj) I_l NOR}(Vk|dk1,...,dknj) (13)
k=1 Vi

e Decoupling of the parents of OR with outcome 'fals@’related property is that
observing that a variable modeled by a noisy-OR gate is équs zeroy = 0,
implies that all states of the intermediate nodes in theyr®R uy,...,u, are
zero. In other words, these can be considered as observedatemove the
factorOR(v = OJup, .. .,un) and decouple the diagnoses in (10),

NoisyORv = 0|dy,...dn) = |£l P(ui =0|di)P(up =0) . (14)

e Undirected links of OR with outcome 'trueStraightforward expansion @R
leads to

OR(v= 1jug,...,Un) :1—]2L5ui0. (15)
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Fig. 6 Inference with noisy-MAX. Graphical structure of the uredited (moral) graph on the
diagnoses which results from absorbing the evidence ofrebdeest valué = 2. Left: with noisy-
MAX modeled as a free form conditional probability table tlé parents are connected. Right:
exploiting the structure of noisy-MAX, results in a much maparse representatians the aux-
iliary switch variable, see text.

In order to rewrite this expression, we define the auxiliaoteptial

W(UOaZ: 0) = _6U00 ) (16)
Y(u,z=0) = &, fori>0, a7)
Y(u,z=1) =1, (18)

wherez is an auxiliary switch variable. Note théi(ug,z = 0) is negative! With
these potentials, we can decompose@ftas a sum-product,

n
OR(V=1|U0,...,Un) = Z |_LLIJ(ui’Z) ) (19)
{zi=
and hence, using now the auxiliary potentials defined by
P(z=0) =P(up=1)—-1, (20)
p(z=1) =1, (21)
@(di,z=0) = 1—P(ui = 1|d}), (22)
(0(d|,Z= 1) =1, (23)
the noisy-OR decomposes as
n
NoisyORv = 1|ds,...,dn) = %qo(z) rlqo(di,z) . (24)
z i=

The use of these potentials in general lead to a much sméitieieesize in the
junction tree algorithm, see figure 6.

Inference in Promedas is now performed as follows. Givert afstest values,
the diagnoses nodes that are related to at least one norahtash value are se-
lected. For these diagnoses, the present risk-factorshendvidences of the test-
state-variableg; are collected. The risk-factors and test-state-variainlesrmal
statevj = sp are directly absorbed in the priors of diagnoses using thk: facr
tors and the senses in the database. The non-trivial pameafdmputation are the
test-state-variables in non-normal state= s; that are created for each non-normal
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test valuet = sj. For these variables, undirected noisy-OR structures g&4inare
constructed using senses and leaks from the databaseaRtguction tree algo-
rithm is applied to the resulting undirected model (notd thaindirected graphs,
there is no coupling of the parents as preprocessing fouthetipn tree algorithm.
In directedgraphs, there is. This coupling is known as moralization leads to
larger cliques). The posterior probabilities of the seddadiagnosis are computed
and reported as the differential diagnosis (a list of thetrposbable diagnoses) for
the case at hand.

3.3 The current application

Promedas has been further developed by Promedas B.V. ddalitnethods to fur-
ther speed up have been implemented. However, these aideotlts scope of this
paper. A live demo can be found on www.promedas.nl.

3.4 Summary

Promedas is an application for medical diagnostic decisigaport. Its primary aim
is to find a differential diagnosis based on test resultsraresis, physical examina-
tion, lab -tests, etc.) . Given the large number of varigldesonventional Bayesian
network approach is infeasible. We took a knowledge baseoaph in which the
network is compiled from a database of relations providedneglical experts. To
make computation feasible, we designed a tractable modaiheerization.

4 A Petrophysical Decision Support System

Oil and gas reservoirs are located in the earth’s crust dhdeyf several kilometers,
and when located offshore, in water depths of a few metersfeavakilometers.
Consequently, the gathering of critical information suslttee presence and type of
hydrocarbons, size of the reservoir and the physical ptigsesf the reservoir such
as the porosity of the rock and the permeability is a key dgtia the oil and gas
industry.

Pre-development methods to gather information on the eatfithe reservoirs
range from gravimetric, 2D and 3D seismic to the drilling &plration and ap-
praisal boreholes. Additional information is obtained Mha field is developed
through data acquisition in new development wells drilledrioduce hydrocarbons,
time-lapse seismic surveys and in-well monitoring of how dctual production of
hydrocarbons affects physical properties such as theymeeasd temperature. The
purpose of information gathering is to decide which resisvoan be developed
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economically, and how to adapt the means of developmenttbeke particular
nature of a reservoir.

The early measurements acquired in exploration, appraisdl development
boreholes are a crucial component of the information gathgrocess. These mea-
surements are typically obtained from tools on the end ofralimi that are lowered
into the borehole to measure the rock and fluid propertiesefdrmation. Their is
a vast range of possible measurement tools [23]. Some Gpdivery expensive
and may even risk other data acquisition options. In gersaguiring all possible
data imposes too great an economic burden on the explorappnaisal and devel-
opment. Hence data acquisition options must be exercisetudlst bearing in mind
the learnings of already acquired data and general hydvondield knowledge.
Also important is a clear understanding of what data can amhat be acquired
later and the consequences of having an incorrect unddistpof the nature of a
reservoir on the effectiveness of its development.

Making the right data acquisition decisions, as well as th& interpretation of
information obtained in boreholes forms one of the prireialsks of petrophysi-
cists. The efficiency of a petrophysicist executing herfagk is substantially in-
fluenced by the ability to gauge her/his experience to theesat hand. Efficiency
is hampered when a petrophysicists experience level isetdijly sufficient and
by the rather common circumstance that decisions to acpaité&ular types of in-
formation or not must be made in a rush, at high costs andlghaiter receiving
other information that impact on that very same decisiorstdkes are not entirely
uncommon and almost always painful. In some cases, nontedsiata is obtained
at the expense of extremely high cost, or essential data @xained at all; causing
development mistakes that can jeopardize the amount oblgdoon recoverable
from a reservoir and induce significant cost increases.

The overall effectiveness of petrophysicists is expeabeisnprove using a de-
cision support system (DSS). In practice a DSS can incrées@dtrophysicists’
awareness of low probability but high impact cases and ialexsome of the oper-
ational decision pressure.

In cooperation with Shell E&P, SNN has developed a DSS togketeon a
Bayesian network and an efficient sampler for inference.mba tasks of the ap-
plication is the estimation of compositional volume fracs in a reservoir on the
basis of measurement data. In addition it provides insigkié effect of additional
measurements. Besides an implementation of the model aridférence, the tool
contains graphical user interface in which the user can difkerent views on the
sampled probability distribution and on the effect of aidaial measurements. The
tool is currently under evaluation within Shell E&P.

In the remainder of this section, we will describe the Bagresietwork approach
for the DSS tool. We focus on our modeling and inference agghtoA more de-
tailed description of the model, in particular in relatiorthe petrophysical relevant
quantities will be published elsewhere [5].
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4.1 Probabilistic modeling

The primary aim of the model is to estimate the compositienaime fractions of
a reservoir on the basis of borehole measurements. Duedmplete knowledge,
limited amount of measurements, and noise in the measutsntieare will be un-
certainty in the volume fractions. We will use Bayesian iefece to deal with this
uncertainty.

The starting point is a model for the probability distrilmutiP(v, m) of the com-
positional volume fractions and borehole measurememts A causal argument
“The composition is given by the (unknown) volume fracti@mal the volume frac-
tions determine the distribution measurement outcomeadf ef the tools’leads
us to a Bayesian network formulation of the probabilisticd®io

Zz
P(v,m) = [ PIVPW). (25)

In this modelP(v) is the so-callegbrior, the prior probability distribution of volume
fractions before having seen any data. In principle, thergmcodes the generic ge-
ological and petrophysical knowledge and beliefs [26]. Tetc&orﬂiZ:1 P(mi|v) is
the observation modelThe observation model relates volume fraction® mea-
surement outcomas; of each of theZ toolsi. The observation model assumes that
giventhe underlying volume fractions, measurement outcomesaodifferent tools
are independent. Each term in the observation model giwepritbability density
of observing outcomey for tool i given that the composition i& Now given a set
of measurement outcome®’ of a subseObsof tools, the probability distribution
of the volume fractions can be updated in a principled waydphang Bayes’ rule

P(v|m°) — niEObSPP((nr:ElV)P(V) . (26)

The updated distribution is called tip®sterior distribution. The constant in the
denominatoP(m°®) = [, [icobsP(M°|V)P(v)dv is called thesvidence

In our modely is a 13 dimensional vector. Each component represents the vo
ume fraction of one of 13 most common minerals and fluids (wagdcite, quartz,
oil, etc.). So each component is bounded between zero andlfbeecomponents
sum up to one. In other words, the volume fractions are coaftoea simplex
SK = {v|0 <vj < 1,5,V = 1}. There are some additional physical constraints on
the distribution ofv, for instance that the total amount of fluids should not egdcee
40% of the total formation. The presence of more fluids woualdse a collapse of
the formation.

Each tool measurement gives a one-dimensional continuedus vThe relation
between composition and measurement outcome is well uodersBased on the
physics of the tools, petrophysicists have expressed te&g@ns in terms of deter-
ministic functionsf;(v) that provide the idealized noiseless measurement outcomes
of tool j given the compositiow [26]. In general, the function$; are nonlinear.
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For most tools, the noise process is also reasonably wedirstmbd — and can be
described by either a Gaussian (additive noise) or a logs&an (multiplicative
noise) distribution.

A straightforward approach to model a Bayesian network aidvel to discretize
the variables and create conditional probability tablepfrs and conditional dis-
tributions. However, due to the dimensionality of the volufraction vector, any
reasonable discretization would result in an infeasibigdatate space of this vari-
able. We therefore decided to remain in the continuous domai

The remainder of this section describes the prior and oaservmodel, as well
as the approximate inference method to obtain the posterior

4.2 The prior and the observation model

The model has two ingredients: the prior of the volume fradP(v) and the ob-
servation modelP(m;|v).

There is not much detailed domain knowledge available atimiprior distri-
bution. Therefore we decided to model the prior using coiergly parametrized
family of distributions. In our casey € SX, this lead to the Dirichlet distribution

(17, 3] ) )
Dir(vja,u) O [TV s [1-S v | . 27
ir(vla,u) J]:LVJ ( i;V> (27)

The two parameters € R, (precision) angu € SK (vector of means) can be used to
fine-tune the prior to our liking. The delta function — whialseires that the simplex
constraint holds — is put here for clarity, but is in fact radant if the model is
constraint tov € SK. Additional information, e.g. the fact that the amount ofdi
may not exceed 40% of the volume fraction can be incorpofaedultiplying the
prior by a likelihood term®(v) expressing this fact. The resulting prior is of the
form

P(v) O @(v)Dir (v|a, u) . (28)

The other ingredient in the Bayesian network are the obfervanodels. For
most tools, the noise process is reasonably well understodatan be reasonably
well described by either a Gaussian (additive noise) or a3agssian (multiplica-
tive noise) distribution. In the model, measurements ardetenl as a deterministic
tool function plus noise,

m; = fj(v) +&j, (29)

in which the functionsf; are the deterministic tool functions provided by domain
experts. For tools where the noise is multiplicative, a lags$form is applied to the
tool functionsf; and the measurement outconngs A detailed description of these
functions is beyond the scope of this paper. The nofsese Gaussian and have a
tool specific varianceesz. These variances have been provided by domain experts.
So, the observational probability models can be written as
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P(miv) O exp(—w> . (30)

4.3 Bayesian Inference

The next step is given a set of observati¢n$}, i € Obs, to compute the posterior
distribution. If we were able to find an expression for thedevice term, i.e., for the
marginal distribution of the observatiof§m°®) = [ [icobsP(M|v)P(v)dv then
the posterior distribution (26) could be written in closednfi and readily evaluated.
UnfortunatelyP(m©) is intractable and a closed-form expression does not érist.
order to obtain the desired compositional estimates weether have to resort to
approximate inference methods. Pilot studies indicatatidhmpling methods gave
the best performance.

The goal of any sampling procedure is to obtain a sell afamples{x;} that
come from a given (but maybe intractable) distributimriJsing these samples we
can approximate expectation valu@s of a functionA(x) according to

N
(A) = /X A TT(x)dX ~ %_Z‘A(xi) : (31)

For instance, if we také&(x) = x, the approximation of the medr) is the sample
mean s, x;.

An important class of sampling methods are the so-calleckMa€hain Monte
Carlo (MCMC) methods [17, 3]. In MCMC sampling a Markov chaindefined
that has an equilibrium distributiom, in such a way that (31) gives a good approx-
imation when applied to a sufficiently long chain xp, ..., xn. To make the chain
independent of the initial statg, a burn-in period is often taken into account. This
means that one ignores the fildt< N samples that come from intermediate distri-
butions and begins storing the samples once the systemdadsekthe equilibrium
distributionrt.

In our application we use the hybrid Monte Carlo (HMC) samglalgorithm
[10, 17]. HMC is a powerful class of MCMC methods that are gest for prob-
lems with continuous state spaces, such as we considersisébtion. HMC can
in principle be applied to any noise model with a continuotabpbility density, so
there is no restriction to Gaussian noise models. HMC usesilktenian dynam-
ics in combination with a Metropolis [19] acceptance pragedo find regions of
higher probability. This leads to a more efficient samplanth sampler that relies
on random walk for phase space exploration. HMC also tendsixanore rapidly
than the standard Metropolis Hastings algorithm. For tet#ithe algorithm we
refer to the literature [10, 17].

In our caseyi(v) is the posterior distributiop(v|n?) in (26). The HMC sampler
generates samples, v», ..., vy from this posterior distribution. Each of tiNesam-
ples is a full K-dimensional vector of volume fractions cwat onSX. The number
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Fig. 7 Diagrams for quartz and dolomite. Top: time traces (10 0@ tteps) of the volume frac-
tions of quartz and dolomite. Bottom: Resulting marginahability distributions of both frac-
tions.

of samples is of the order &f = 10°, which takes a few seconds on a standard PC.
Figure 7 shows an example of a chain of 10 000 states gendnathd sampler. For
visual clarity, only two components of the vectors are gldttquartz and dolomite).
The plot illustrates the multivariate character of the meitHor example, the traces
shows that the volume fractions of the two minerals tend tmbgually exclusive:
either 20% quartz, or 20% dolomite but generally not botbnirthe traces, all kind

of statistics can be derived. As an example, the resultirgddimensional marginal
distributions of the mineral volume fractions are plotted.

The performance of the method relies heavily on the qualitthe sampler.
Therefore we looked at the ability of the system to estimhg&domposition of a
(synthetic) reservoir and the ability to reproduce the ltsskor this purpose, we
set the composition to a certain value We apply the observation model to gen-
erate measuremenits®. Then we run HMC to obtain samples from the posterior
P(v|m®). Consistency is assessed by comparing results of diffeterst to each
other and by comparing them with the “ground truthi” Results of simulations
confirm that the sampler generates reproducible resultisjstent with the underly-
ing compositional vector [5]. In these simulations, we ttiidobservation model to
generate measurement data (the generating model) eqmed thservation model
that is used to compute the posterior (the inference modélalso performed sim-
ulations where they are different, in particular in theis@wed variance. We found
that the sampler is robust to cases where the variance ofethergting model is
smaller than the variance of the inference model. In thescabere the variance of
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the generating model is bigger, we found that the methodigstoup to differences
of a factor 10. After that we found that the sampler sufferedesely from local
minima, leading to irreproducible results.

4.4 Decision Support

Suppose that we have obtained a subset of measurement @sticdiyielding a
distribution P(vim®). One may subsequently ask the question which tatiould
be deployed next in order to gain as much information as plesi

When asking this question, one is often interested in a Bpscibset of minerals
and fluids. Here we assume this interest is actually in onefspeomponent. The
question then reduces to selecting the most informativésdofor a given mineral
u.

We define the informativeness of a tool as the expected dezdaincertainty in
the distribution ofv, after obtaining a measurement with that tool. Usually, euyr
is taken as a measure for uncertainty [17], so a measure aimaftiveness is the
expected entropy of the distributionaf after measurement with totl

(HuaIm®) = — [ P(mim®) [ P(vjm,m®)
x log (P (vy|m, m°)) dvydm .

(32)

Note that the information of a tool depends on the earliersueament results since
the probabilities in (32) are conditioned of.

The most informative tool for mineral is now identified as that todl which
yields in expectation the lowest entropy in the posteristriiution ofvy:

tl’j|mo = argtmin(Hu7t|m°>

In order to compute the expected conditional entropy usiktgHampling meth-
ods, we first rewrite the expected conditional entropy (82grms of quantities that
are conditioned only on the measurement outcomigs

Hualm®) = = [ [ P, mm°)
x log (P(v, m|m)) dv,dm
+ [ P(mim®) [ log(P(m|m*))dm (33

Now the HMC run yields a se¥ = {v},v),...,vl} of compositional samples
(conditioned onm®). We augment these by a skt = {m{ = fy(vl) + Elj, ey

m% = fz (V1) + Ezj} of synthetic tool values generated from these samples fwhic
are indexed byj) by applying equation (29). Subsequently, discretizendtjproba-
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bilities P(vy, m|m°) are obtained via a two-dimensional binning procedure ayer
andm for each of the potential tools The binned versions d?(v,, m|m°) (and
P(m;|m°)) can be directly used to approximate the expected conditientropy
using a discretized version of equation (33).

The outcome of our implementation of the decision suppast i® a ranking
of tools according to the expected entropies of their pastelistributions. In this
way, the user can select a tool based on a trade-off betwgmtd information
and other factors, such as deployment costs and feasibility

4.5 The Application

The application is implemented in C++ as a stand alone vensith a graphical
user interface running on a Windows PC. The application heesnlvalidated by
petrophysical domain experts from Shell E&P. The further log Shell of this ap-
plication is beyond the scope of this chapter.

4.6 Summary

This chapter described a Bayesian network application édrophysical decision
support. The observation models are based on the physias oféasurement tools.
The physical variables in this application are continugalsied. A naive Bayesian
network approach with discretized values would fail. We agmad in the continuous
domain and used the hybrid Monte Carlo algorithm for infeeen

5 Bonaparte: a Bayesian Network for Disaster Victim
Identification

Society is increasingly aware of the possibility of a massslier. Recent examples
are the WTC attacks, the tsunami, and various airplane esainsuch an event, the
recovery and identification of the remains of the victimsfigreat importance, both
for humanitarian as well as legal reasons. Disaster vidientification (DVI), i.e.,
the identification of victims of a mass disaster, is greadlgilitated by the advent
of modern DNA technology. In forensic laboratories, DNA files can be recorded
from small samples of body remains which may otherwise beentifiable. The
identification task is the match of the unidentified victinttwa reported missing
person. This is often complicated by the fact that the matzhth be made in an
indirect way. This is the case when there is no reliable esfee material of the
missing person. In such a case, DNA profiles can be taken fedatives. Since
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their profiles are statistically related to the profile of thissing person (first degree
family members share about 50% of their DNA) an indirect hatan be made.

In cases with one victim, identification is a reasonablegiitforward task for
forensic researchers. In the case of a few victims, the pupzinatch the victims
and the missing persons is often still doable by hand, ussgr@ad sheet, or with
software tools available on the internet [9]. However, ¢asgale DVI is infeasible
in this way and an automated routine is almost indispendabferensic institutes
that need to be prepared for DVI.

O

Fig. 8 The matching problem. Match the unidentified victims (blught) with reported missing
persons (red, left) based on DNA profiles of victims and retstof missing persons. DNA profiles
are available from individuals represented by solid squémeales) and circles (females).

Bayesian networks are very well suited to model the ste#iktielations of ge-
netic material of relatives in a pedigree [11]. They candalyebe applied in kinship
analysis with any type of pedigree of relatives of the miggarsons. An additional
advantage of a Bayesian network approach is that it makearthkysis tool more
transparent and flexible, allowing to incorporate othetdecthat play a role —
such as measurement error probability, missing datasstatiof more advanced
genetic markers etc.

Currently, we develop software for DVI, called BonapartdisTdevelopment
is in collaboration with NFI (Netherlands Forensic Indi#u The computational
engine of Bonaparte uses automatically generated Bayestarorks and Bayesian
inference methods, enabling to correctly do kinship anslga the basis of DNA
profiles combined with pedigree information. It is designedandle large scale
events, with hundreds of victims and missing persons. litiadd it has graphical
user interface, including a pedigree editor, for forensialgsts. Data-interfaces to
other laboratory systems (e.g., for the DNA-data input) alo be implemented.
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In the remainder of this section we will describe the Bayesiedel approach
that has been taken in the development of the applicationfoweulate the com-
putational task, which is the computation of the likelihoatlo of two hypotheses.
The main ingredient is a probabilistic modebf DNA profiles. Before discussing
the model, we will first provide a brief introduction to DNAgfiles. In the last part
of the section we describe howis modeled as a Bayesian network, and how the
likelihood ratio is computed.

5.1 Likelihood Ratio of Two Hypotheses

Assume we have a pedigree with an individP who is missing (the Missing
Person). In this pedigree, there are some family membetrfitive provided DNA
material, yielding the profiles. Furthermore there is andéntified IndividuaUl,
whose DNA is also profiled. The question isld$ = MP? To proceed, we assume
that we have a probabilistic modElfor DNA evidence of family members in a
pedigree. To compute the probability of this event, we negmbtheses to compare.
The common choice is to formulate two hypotheses. The firtsteshypothesisl;
thatindeedJ| = MP. The alternative hypothedi is thatU1 is an unrelated person
U. In both hypotheses we have two pedigrees: the first pedigrgld P and family
memberd=AM as members. The second one has ahlgs member. To compare
the hypotheses, we compute the likelihoods of the evidemee the DNA profiles
under the two hypotheses,

e UnderHp, we assume thatiP = Ul. In this caseMP is observed andll is
unobserved. The evidencelis= {DNAup + DNAsam}-

e UnderHqy, we assume thad = Ul. In this caselJ is observed an®1P is ob-
served. The evidence E= {DNA, + DNAgam}-

Under the modeP, the likelihood ratio of the two hypotheses is

_ P(E[Hp)
LR = 5 E o)

. (34)

Ifin addition a prior odd$(Hp) /P(Hg) is given, the posterior odd¥Hp|E) /P(Hd|E)
follows directly from multiplication of the prior odds aniké&lihood ratio,
P(Hp|E) _ P(E[Hp)P(Hp)

P(HlE) ~ P(E[H)P(Ha) (33)

5.2 DNA Profiles

In this subsection we provide a brief introduction on DNAfdes for kinship analy-
sis. A comprehensive treatise can be found in e.g. [6]. IndnsnDNA found in the
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nucleus of the cell is packed on chromosomes. A normal huretinas 46 chro-
mosomes, which can be organized in 23 pairs. From each painrofnosomes,
one copy is inherited from father and the other copy is irtedrfrom mother. In
22 pairs, chromosomes are homologous, i.e., they haveigatigthe same length
and contain in general the same genes ( functional fundteleenents of DNA).

These are called the autosomal chromosomes. The remainiognosome is the
sex-chromosome. Males haveX@and aY chromosome. Females have tWahro-

mosomes.

More than 99% of the DNA of any two humans of the general pdmnas
identical. Most DNA is therefore not useful for identificati However, there are
well specified locations on chromosomes where there isti@miédh DNA among
individuals. Such a variation is called a genetic markeigénetics, the specified
locations are called loci. A single location is a locus.

In forensic research, the short tandem repeat (STR) maakersurrently most
used. The reason is that they can be reliable determineddinwaii amounts of body
tissue. Another advantage is that they have a low mutati@n wehich is important
for kinship analysis. STR markers is a class of variatioas ttcur when a pattern
of two or more nucleotides is repeated. For example,

(CATQ3=CATGCATGCATG (36)

The number of repeats (which is 3 in the example) is the variation among the
population. Sometimes, there is a fractional repeat@AJ.GCAT GCAT GCAhis
would be encoded with repeat numbet= 3.2, since there are three repeats and
two additional nucleotides. The possible valuex ahd their frequencies are well
documented for the loci used in forensic research. Thesgesaand frequencies
vary between loci. To some extend they vary among subpapotabdf humans. The
STR loci are standardized. The NFI uses CODIS (Combined Difex System)
standard with 13 specific core STR loci, each on differerasarmal chromosomes.
The collection of markers yields the DNA profile. Since chomomes exist in
pairs, a profile will consist of pairs of markers. For examiplthe CODIS standard,
a full DNA profile will consist of 13 pairs, (the following nation is not common

standard)

in which each#x® is a number of repeats at a well defined logudHowever, since
chromosomes exists in pairs, there will be two allébesand“x? for each location,
one paternal — on the chromosome inherited from father — aecdhoaternal. Un-
fortunately, current DNA analysis methods cannot iderttity phase of the alleles,
i.e., whether an allele is paternal or maternal. This melaig#x!,#x?) cannot be
distinguished from(¥x2,#x1). In order to make the notation unique, we order the
observed alleles of a locus such tHat < K.

Chromosomes are inherited from parents. Each parent paseesopy of each
pair of chromosomes to the child. For autosomal chromosdinags is no (known)
preference which one is transmitted to the child. Therede ab (known) correla-
tion between the transmission of chromosomes from diftgsairs. Since chromo-
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0 o

Fig. 9 A basic pedigree with father, mother, and child. Squaresesgmt males, circles represent
females. Right: corresponding Bayesian network. Greysuadreobservable:cjp ande represents
paternal and maternal allele of individualSee text.

somes are inherited from parents, alleles are inherited frarents as well. How-
ever, there is a small probability that an allele is changedwutated. This mutation
probability is about 0.1%.

Finally in the DNA analysis, sometimes failures occur in DBA analysis
method and an allele at a certain locus drops out. In suchetbasobservation
is (Mx1,?), in which “?” is a wild card.

5.3 A Bayesian Network for Kinship Analysis

In this subsection we will describe the building blocks of ayBsian network to
model probabilities of DNA profiles of individuals in a pedig. First we observe
that inheritance and observation of alleles at different éve independent. So for
each locus we can make an independent mBgeln the model description below,
we will consider a model for a single locus, and we will sugsriheu dependency
for notational convenience.

5.3.1 Allele Probabilities

We will consider pedigrees with individualsin a pedigree, each individuahas
two parents, a fathefr(i) and a mothem(i). An exception is when a individual is a
founder. In that case it has no parents in the pedigree.

Statistical relations between DNA profiles and alleles afifg members can be
constructed from the pedigree, combined with models f@l@liransmission . On
the given locus, each individuhas a paternal alleb<-;I and an maternal allebd". f

andm stands for ‘father’ and ‘mother’. The pair of alleles is detbast = (xif ,X).
Sometimes we use superscipthich can have valuesf,m}. So each allele in the
pedigree is indexed bff, s), wherei runs over individuals angover phase$f, m).
The alleles can assunhevalues, wher@\ as well as the allele values depend on the
locus.

An allele from a founder is called ‘founder allele’. So a falen in the pedigree
has two founder alleles. The simplest model for foundeleslés to assume that
they are independent, and each follow a distribuB¢a) of population frequencies.
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This distribution is assumed to be given. In gen&@) will depend on the locus.
More advanced models have been proposed in which founddéesbtire correlated.
For instance, one could assume that founders in a pedigree émm a single
but unknown subpopulation [1]. This model assumption yigbdrections to the
outcomes in models without correlations between foundedsawback is that these
models may lead to a severe increase in required memory anplutation time. In
this chapter we will restrict ourself to models with indedent founder alleles.

If an individuali has its parents in the pedigree the allele distribution ahdnr
vidual given the alleles of its parents are as follows,

P(Xi X i)> Xm(i)) = P(x' Xt iy ) PO Xm(i)) (38)
where

1

(x Xti) = 5 P( xI |x (39)
zg,m i

1

P(xim|xm =5 P(X (40)
s=T.m

)

To explain (39) in words: individudl obtains its parental allelxqf from its father
f(i). In this process, there is a 50% chance thatgaeentalallele x;(i) of father
f(i) is transmitted and a 50% chance that thaternalallele x’f“(i) of father f (i) is
transmitted. A similar explanation applies to (40).

The probabilitiesP(xif|x§(i)) and P(xlm|x§1(i)) are given by a mutation model
P(alb), which encodes the probability that allele of the childai/hile the allele
on the parental chromosome that is transmittelol iShe precise mutation mecha-
nisms for the different STR markers are not known. There idesce that muta-
tions from father to child are in general about 10 times abalbte as mutations
from mother to child. Gender of each individual is assumebdeadnown, but for
notational convenience we suppress dependency of panedégén general, muta-
tion tends to decrease with the difference in repeat numberb|. Mutation is also
locus dependent [4].

Several mutation models have been proposed, see e.g. [8]eAdll see later,
however, the inclusion of a detailed mutation model may liesal severe increase
in required memory and computation time. Since mutatioavary rare, one could
ask if there is any practical relevance in a detailed mutatimdel. The simplest
mutation model is of course to assume the absence of musatgalb) = 5.
Such model enhances efficient inference. However, any roatatany single locus
would lead to a 100% rejection of the match, even if there i9@4 match in the
remaining markers. Mutation models are important to getesomodel tolerance
against such case. The simplest non-trivial mutation mdaluniform mutation
model with mutation ratg (not to be confused with the locus indgy,
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P(aa) =1-pu, (41)
P(alb) = u/(N-1) ifa#b. (42)

Mutation rate may depend on locus and gender.

An advantage of this model is that the required memory andpctation time
increases only slightly compared to the mutation free maddete that the popu-
lation frequency is in general not invariant under this motlee mutation makes
the frequency more flat. One could argue that this is a reafisbperty that intro-
duces diversity in the population. In practical applicatian the model, however,
the same population frequency is assumed to apply to foarndelifferent genera-
tions in a pedigree. This implies that if more unobservedrezices are included in
the pedigree to model ancestors of an individual, the liad ratio will (slightly)
change. In other words, formally equivalent pedigrees gwle (slightly) different
likelihood ratios.

5.3.2 Observations

Observations are denotedxsor xif we do not refer to an individual. The parental
origin of an allele can not be observed, so alletes= a,x™ = b yields the same
observation ag’ = b,x™ = a. We adopt the convention to write the smallest allele
first in the observationx = (a,b) < a < b. In the case of an allele loss, we write
X = (X,?) where ? stands for a wild card. We assume that the event ofede klss
can be observed (e.g. via the peak hight [6]). This event deteal byL. WithL =1
there is allele loss, and there will be a wild card ?. A full @hation is coded as
L = 0. The case of loss of two alleles is not modeled, since indhsé we simply
have no observation.

The observation model is now straightforwardly written dowithout allele
loss L = 0), allelesy results in an observation This is modeled by the determin-
istic table T

—0) = mTx=y,
POIy,L=0) = { 0 otherwise. (43)
Note that for a givery there is only onexwith x=y.
With allele loss [ = 1), we have

P(_: (a7F)|( 4 )7 = :% .
{P(E(b,Fla, L=1)=1 it azb, (44)
and
P(x= (a,F)|(a,a),L=1)=1. @s)

l.e., if one allele is lost, the allelgs, b) leads to an observatian(thenb is lost),
or to an observatiob (thena is lost). Both events have 50% probability. If both
alleles are the same, so the paii(@a), then of course is observed with 100%
probability.
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5.4 Inference

By multiplying all allele priors, transmission probaligis and observation models, a
Bayesian network of allelesand DNA profiles of individuals in a given pedigree
is obtained. Assume that the pedigree consists of a set vidodls .7 = 1,...,K
with a subset of founders”, and assume that allele losdgsare given, then this
probability reads

P({xx}s) = |_| P(Xj|x;,L; |_| P(Xi[Xf i) |1P Xi) - (46)

ies\F e

Under this model the likelihood of a given set DNA profiles caow be com-
puted. If we have observatiorgfrom a subset of individualge &, the likelihood
of the observations in this pedigree is the marginal distidn P({x} ), which is
the marginal probability

P({x}s) = Z zHPxJ|xJ, |_| P(xi X+ iy |1Px.. 47)

X< jeo i€

This computation involves the sum over all states of alleliegx; of all individuals.

In general, the allele-state space can be prohibitivedyelaFhis would make even
the junction tree algorithm infeasible if it would straifgriwvardly be applied. For-
tunately, a significant reduction in memory requirementloammchieved by “value
abstraction”: if the observed alleles in the pedigree drenal subsetA of M dif-
ferent allele values, we can abstract from all unobserdetkalalues and consider
them as a single stagelf an allele isz, it means that it has a value that is not in the
set of observed values. We now have a system in which states can assume only
M + 1 values which is generally a lot smaller thidnthe number of a priori possible
allele values. This procedure is called value abstracti@h [The procedure is ap-
plicable if for anya € A, L € {0,1}, andby,by,bs,bs & A, the following equalities
hold

P(alby) = P(alby) (48)
P(Xla,by,L) = P(x]a, b, L) (49)
(ﬂblva L) P(ﬂbzaav L) (50)

()z[bl’ b27 ) P()z[b& b4a L) (51)

If these equalities hold, then we can repl&®@/b) by P(a|z) and P(x]a,b) by
P(X]a,z) etc. in the abstracted state representation. The conditfmobability of
zthen follows from

P(zx) =1- Z\P(a|x) (52)

for all xin AUz One can also easily check that the observation probaisittatisfy
the condition. The uniform mutation model satisfies coodit{48) sinceP(alb) =
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Fig. 10 Bonaparte’s basic architecture

u/(N—1) foranya € Aand anyb ¢ A. Note that condition (48) does not necessarily
holds for a general mutation model, so value abstractiofddben not be applied.

Using value abstraction as a preprocessing step, a junicéerbased algorithm
can straightforwardly applied to compute the desirediliad. In this way, likeli-
hoods and likelihood ratios are computed for all loci, arbréed to the user.

5.5 The application

Bonaparte has been designed to facilitate large scale mgtchhe application
has a multi-user client-server based architecture, segdidts computational core
and the internal database runs on a server. All match resdtstored in internal
database. Rewind to any point in back in time is possible aviaXML and secure
https interfaces, the server connects to other systemss dae login via a web-
browser so that no additional software is needed on thetsli@ine current version
Bonaparte is now under user-validation. A live demo versidibe made available
on www.dnadvi.nl.

5.6 Summary

Bonaparte is an application of Bayesian networks for viddentification by kin-
ship analysis based on DNA profiles. The Bayesian networ&suaed to model
statistical relations between DNA profiles of differentiiduals in a pedigree. By
Bayesian inference, likelihood ratios and posterior oddbypotheses are com-
puted, which are the quantities of interest for the foreresearcher. The probabilis-
tic relations between variables are based on first pringiplgenetics. A feature of
this application is the automatic, on-the-fly derivatiomaddels from data, i.e., the
pedigree structure of a family of a missing person.
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6 Discussion

Human decision makers are often confronted with highly demgomains. They
have to deal with various sources of information and vargmsces of uncertainty.
The quality of the decision is strongly influenced by the dieci makers experience
to correctly interpret the data at hand. Computerized detisupport can help to
improve the effectiveness of the decision maker by enhgreivareness and alert-
ing the user to uncommon situations that may have high imBationalizing the
decision process may alleviate some of the decision pressur

Bayesian networks are widely accepted as a principled ndetbgy for model-
ing complex domains with uncertainty, in which differentisces of information are
to be combined, as needed in intelligent decision suppstesys. However, many
of the examples of Bayesian networks as described in litegat- models with a
few dozen of variables, each with a few states, and fixedioast— may suggest a
limitation in the expressive power of the methodology [18].

In this chapter we described three Bayesian networks fdrwedd applica-
tions. These models are based on the same principled métigydas standard
Bayesian networks, but go beyond the above mentioned tioit®s The Promedas
model has several orders of magnitudes more variables. &tmephysical model
has continuous-valued variables. The Bonaparte model #sawehe Promedas
model have non-static relations.

Fundamental differences of these models with most stariBiaydsian networks
are (1) the model development approach and (2) the opesghtimwer and flex-
ibility of the applications. Standard Bayesian networks aften developed using
off-the-shelf GUI-based software. An advantage of thisrapph is that small or
medium sized Bayesian networks can be developed quicktiiowi the need of
expertise on Bayesian networks modeling or inference #fgos. The models de-
scribed in this chapter, on the other hand, have been dea@fopm scratch, based
on first principles and with customized implementationsrdéience algorithms
(junction tree based, or approximate such as the HMC metAtd§ development
approach requires more expertise, but it has more flexilaktit is not constrained
by the development software and can better handle the \sapimblems posed by
the applications, such as the large number of variables;dhgnuous-valued vari-
ables, and on-the-fly model derivation from data, etc.

We have discussed in detail three applications of Bayesamarks. With these
applications, we aimed to illustrate the modeling powerhef Bayesian networks
that goes beyond the standard textbook applications. Thkcafions domains of
the models (medicine, petrophysics and forensics) dermaieghat Bayesian net-
works can be applied in a wide variety of domains with différg/pes of domain
requirements.

Finally, we would like to stress that the Bayesian netwodht®logy is only
one side of the model. The other side is the domain knowledb&h is maybe
even more important for the model. Therefore Bayesian nétwmdeling always
requires a close collaboration with domain experts. Andhetien, the model is of
course only one of many ingredients of an application, ssalisar-interface, data-
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management, user-acceptance etc. which are all essentielie the application a
success.
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