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Bayesian Networks for Expert Systems, Theory
and Practical Applications

Wim Wiegerinck, Bert Kappen, Willem Burgers

Abstract Bayesian network are widely accepted as models for reasoning with un-
certainty. In this chapter we focus on models that are created using domain exper-
tise only. After a short review of Bayesian networks models and common Bayesian
network modeling approaches, we will discuss in more detailthree applications of
Bayesian networks. With these applications, we aim to illustrate the modeling power
and flexibility of the Bayesian networks that goes beyond thestandard textbook ap-
plications. The first network is applied in a system for medical diagnostic decision
support. A distinguishing feature of this network is the large amount of variables in
the model. The second one involves an application for petrophysical decision sup-
port to determine the mineral content of a well based on borehole measurements.
This model differs from standard Bayesian networks by its continuous variables
and nonlinear relations. Finally, we will discuss an application for victim identifica-
tion by kinship analysis based on DNA profiles. The distinguishing feature in this
application is that Bayesian networks are generated and computed on-the-fly based
on case information.
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1 Introduction

In modeling intelligent systems for real world applications, one inevitably has to
deal with uncertainty. This uncertainty is due to the impossibility to model all the
different conditions and exceptions that can underlie a finite set of observations.
Probability theory provides the mathematically consistent framework to quantify
and to compute with uncertainty. In principle, a probabilistic model assigns a proba-
bility to each of its possible states. In models for real world applications, the number
of states is so large that a sparse model representation is inevitable. A general class
with a representation that allows modeling with many variables are the Bayesian
networks [20, 14, 7].

Bayesian networks are nowadays well established as a modeling tool for ex-
pert systems in domains with uncertainty [22]. Reasons are their powerful but con-
ceptual transparent representation for probabilistic models in terms of a network.
Their graphical representation, showing the conditional independencies between
variables, is easy to understand for humans. On the other hand, since a Bayesian net-
work uniquely defines a joint probability model, inference —drawing conclusions
based on observations — is based on the solid rules of probability calculus. This
implies that the mathematical consistency and correctnessof inference are guaran-
teed. In other words, all assumptions in the method are contained in model, i.e., the
definition of variables, the graphical structure, and the parameters. The method has
no hidden assumptions in the inference rules. This is unlikeother types of reasoning
systems such as e.g., Certainty Factors (CFs) that were usedin e.g., MYCIN — a
medical expert system developed in the early 1970s [24]. In the CF framework,
the model is specified in terms of a number of if-then-else rules with certainty fac-
tors. Furthermore, the CF framework provides prescriptions how to invert and/or
combine the if-then-else rules to do inference. These prescriptions contain implicit
conditional independence assumptions which are not immediately clear from the
model specification and has consequences in their application [13].

Probabilistic inference is the problem of computing the posterior probabilities
of unobserved model variables given the observations of other model variables. For
instance in a model for medical diagnoses, given that the patient has complaintsx
andy, what is the probability that he/she has diseasez? Inference in a probabilistic
model involve summations or integrals over possible statesin the model. In a real-
istic application the number of states to sum over can be verylarge. In the medical
example, the sum is typically over all combinations of unobserved factors that could
influence the disease probability, such as different patient conditions, risk factors,
but also alternative explanations for the complaints, etc.In general these compu-
tations are intractable. Fortunately, in Bayesian networks with a sparse graphical
structure and with variables that can assume a small number of states, efficient in-
ference algorithms exists such as the junction tree algorithm [14, 7].

The specification of a Bayesian network can be described in two parts, a qualita-
tive and a quantitative part. The qualitative part is the graph structure of the network.
The quantitative part consists of specification of the conditional probability tables
or distributions. Ideally both specifications are inferredfrom data [15]. In practice,
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however, data is often insufficient even for the quantitative part of the specifica-
tion. The alternative is to do the specification of both partsby hand, in collaboration
with domain experts. Many Bayesian networks are created in this way. Furthermore,
Bayesian networks are often developed with the use of software packages such as
Hugin (www.hugin.com) or Netica (www.norsys.com). These packages typically
contain a graphical user interface (GUI) for modeling and aninference engine based
on the junction tree algorithm for computation.

Although the networks created in this way can be quite complex, the scope of
these software packages obviously has its limitations. In this chapter we discuss
three models in which the standard approach to Bayesian modeling as outlined
above was infeasible for different reasons: the large number of variables in the first
model, the need to model continuous-valued variables in thesecond model, and the
need to create models on-the-fly from data in the third application.

The first model has been developed for an application for medical diagnostic de-
cision support (Promedas, in collaboration with UMC Utrecht). The main function-
ality of the application is to list the most probable diseases given the patient-findings
(complaints, tests, physical examinations) that are entered. The system is aimed to
support diagnosis in general internal medicine, covering alarge medical domain
with several specializations. However, a considerable level of detail at which the
disease areas are modeled is essential for the system to be ofpractical use. For this
application, this means that the model should contain 1000’s of diseases and a factor
10 more of relations between diseases and findings. With suchnumbers of variables
and relations, the standard modeling approach is infeasible.

The second model has been developed for an application for petrophysical deci-
sion support (in collaboration with SHELL E&P). The main function of this applica-
tion is to provide a probability distribution of the mineralcomposition of a potential
reservoir based on remote borehole measurements. In the underlying model, the
number of variables is limited. However, variables are continuous valued. One of
them represents the volume fractions of 13 minerals, and is therefore a 13-D contin-
uous variable. Any sensible discretization in a standard Bayesian network approach
would lead to a blow up of the state space. Due to nonlinearities and constraints, a
Bayesian network with linear-Gaussian distributions [3] is also not a solution.

Finally, we will discuss an application for victim identification by kinship analy-
sis based on DNA profiles (Bonaparte, in collaboration with NFI). Victims should be
matched with missing persons in a pedigree of family members. In this application,
the model follows from Mendelian laws of genetic inheritance and from principles
in DNA profiling. Inference needs some preprocessing but is otherwise reasonably
straightforward. In this application, however, the challenge is that the model struc-
ture depends on the family structure of the missing person. This structure will differ
from case to case and a standard approach with a static network is obviously insuf-
ficient. In this application, modeling is implemented in theengine. The application
generates Bayesian networks on-the-fly based on case information. Next, it does the
required inferences for the matches.

The chapter is organized as follows. First, we will provide ashort review of
Bayesian networks in section 2. Next, in sections 3, 4 and 5 wewill discuss the three
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applications. In particular we will discuss the underlyingBayesian network models
and the modeling approaches at a rather detailed level. Furthermore we will discuss
the inference methods that we applied whenever they deviatefrom the standard
junction tree approach. In section 6, we will end with discussion and conclusion.

2 Bayesian Networks

In this section, we first give a short and rather informal review of the theory of
Bayesian networks (subsection 2.1). Furthermore in subsection 2.2, we briefly dis-
cuss Bayesian networks modeling techniques, and in particular the typical approach
that is taken in most Bayesian network applications. We briefly discuss pro’s and
con’s of this approach, and in particular why this approach does not work in the
applications that we will discuss in the later sections.

2.1 Bayesian Network Theory

To introduce notation, we start by considering a joint probability distribution, or
probabilistic model,P(X1; : : : ;Xn) of n stochastic variablesX1; : : : ;Xn. VariablesXj

can be in statex j . A state, or value, is a realization of a variable. We use shorthand
notation

P(X1 = x1; : : : ;Xn = xn) = P(x1; : : : ;xn) (1)

to denote the probability (in continuous domains: the probability density) of vari-
ablesX1 in statex1, variableX2 in statex2 etc.

A Bayesian network is a probabilistic modelP on a finite directed acyclic graph
(DAG). For each nodei in the graph, there is a random variableXi together with a
conditional probability distributionP(xi jxπ(i)), whereπ(i) are the parents ofi in the
DAG, see figure 1. The joint probability distribution of the Bayesian network is the
product of the conditional probability distributions

P(x1; : : : ;xn) = n

∏
i=1

P(xi jxπ(i)) : (2)

Since any DAG can be ordered such thatπ(i)� 1; : : : i�1 and any joint distribu-
tion can be written as

P(x1; : : : ;xn) = n

∏
i=1

P(xi jxi�1; : : : ;x1) ; (3)

it can be concluded that a Bayesian network assumes

P(xi jxi�1; : : : ;x1) = P(xi jxπ(i)) : (4)
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Fig. 1 DAG representing a Bayesian networkP(x1)P(x2jx1)P(x3)P(x4jx1)P(x5jx2;x3;x4)P(x6jx3)
In other words, the model assumes: given the values of the direct parents of a vari-
ableXi, this variableXi is independent of all its other predecessing variables in the
graph.

Since a Bayesian network is a probabilistic model, one can compute marginal dis-
tributions and conditional distributions by applying the standard rules of probability
calculus. For instance, in a model with discrete variables,the marginal distribution
of variableXi is given by

P(xi) =∑
x1

: : : ∑
xi�1

∑
xi+1

: : :∑
xN

P(x1; : : : ;xN) : (5)

Conditional distributions such asP(xi jx j) are obtained by the division of two
marginal distributions

P(xi jx j) = P(xi ;x j)
P(x j) : (6)

The bottleneck in the computation is the sum over combinations of states in (5). The
number of combinations is exponential in the number of variables. A straightforward
computation of the sum is therefore only feasible in models with a small number of
variables. In sparse Bayesian networks with discrete variables, efficient algorithms
that exploit the graphical structure, such as the junction tree algorithm [16, 14, 7]
can be applied to compute marginal and conditional distributions. In more general
models, exact inference is infeasible and approximate methods such as sampling
have to be applied [17, 3].

2.2 Bayesian Network Modeling

The construction of a Bayesian network consists of decidingabout the domain, what
are the variables that are to be modeled, and what are the state spaces of each of the
variables. Then the relations between the variables have tobe modeled. If these
are to be determined by hand (rather than by data), it is a goodrule of thumb to
construct a Bayesian network from cause to effect. Start with nodes that represent
independent root causes, then model the nodes which they influence, and so on until
we end at the leaves, i.e., the nodes that have no direct influence on other nodes.



6 Wim Wiegerinck, Bert Kappen, Willem Burgers

Fig. 2 Screen shot of part of the ’Alarm network’ in the BayesBuilder GUI

Such a procedure often results in sparse network structuresthat are understandable
for humans [22].

Often, models are constructed using Bayesian network software such as the ear-
lier mentioned packages. With the use of a graphical user interface (GUI), nodes
can be created. The nodes represent the variables in the system. Typically, vari-
ables can assume only values from a finite set. When a node is created, it can
be linked to other nodes, under the constraint that there areno directed loops in
the network. Finally — or during this process — the table of conditional proba-
bilities are defined, often by educated guesses, and sometimes inferred from data.
Many Bayesian networks that are found in literature fall into this class, see e.g.,
www.norsys.com/netlibrary/. In figure 2, a part of the ALARMnetwork as repre-
sented in BayesBuilder (www.snn.ru.nl/) is plotted. The ALARM network was orig-
inally designed as a network for monitoring patients in intensive care [2]. It consists
of 37 variables, each with 2, 3, or 4 states. It can be considered as a relatively large
member of this class of models. An advantage of the GUI based approach is that a
small or medium sized Bayesian network, i.e., with up to a fewdozen of variables,
where each variable can assume a few states, can be developedquickly, without the
need of expertise on Bayesian networks modeling or inference algorithms.

In the next sections we will discuss three Bayesian networksfor real world appli-
cations that fall outside the class of models that have been built using these model-
ing tools. The main reason is that the graphical user interface has no added value for
these models. The first model is too complex, and would contain too many variables
for the GUI. In the second one the complexity is more in the variables themselves
than in the network structure. In the third model, the network consists of a few types
of nodes that have simple and well defined relations among each other. However,
for each different case in the application, a different network has to be generated. It
does not make sense for this application to try to build thesenetworks beforehand
in a GUI.
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3 Promedas, a Probabilistic Model for Medical Diagnostic
Decision Support

Modern-day medical diagnosis is a very complex process, requiring accurate patient
data, a profound understanding of the medical literature and many years of clinical
experience. This situation applies particularly to internal medicine, because it cov-
ers an enormous range of diagnostic categories. As a result,internal medicine is
differentiated in super-specializations.

Diagnosis is a process, by which a doctor searches for the cause (usually a dis-
ease) that best explains the symptoms of a patient. The search process is sequential,
in the sense that patient symptoms suggest some initial tests to be performed. Based
on the outcome of these tests, a tentative hypothesis is formulated about the possi-
ble cause(s). Based on this hypothesis, subsequent tests are ordered to confirm or
reject this hypothesis. The process may proceed in several iterations until the pa-
tient is finally diagnosed with sufficient certainty and the cause of the symptoms is
established.

A significant part of the diagnostic process is standardizedin the form of pro-
tocols. These are sets of rules that prescribe which tests toperform and in which
order, based on the patient symptoms and previous test results. These rules form
a decision tree, whose nodes are intermediate stages in the diagnostic process and
whose branches point to additional testing, depending on the current test results.
The protocols are defined in each country by a committee of medical experts.

In the majority of the diagnoses that are encountered, the guidelines are suffi-
ciently accurate to make the correct diagnosis. For these ”routine” cases, a decision
support system is not needed. In 10–20 % of the cases, however, the diagnostic
process is more difficult. As a result of the uncertainty about the correct diagnosis
and about the next actions to perform, the decisions made by different physicians at
different stages of the diagnostic process do not always agree and lack ”rationaliza-
tion”. In these cases, normally a particularly specializedcolleague or the literature
is consulted. For these difficult cases computer based decision support may serve as
an alternative source of information. In addition, a computer aided decision support
system can be of help by pointing to alternative diagnoses that may be overlooked
otherwise. It may thus result in an improved and more rationalized diagnostic pro-
cess, as well as higher efficiency and cost-effectiveness.

Since 1996, SNN and UMC Utrecht have been developing a clinical diagnostic
decision support system for internal medicine, called Promedas. In this system, pa-
tient information, such as age and gender, and findings, suchas symptoms, results
from physical examination and laboratory tests can be entered. The system then
generates patient-specific diagnostic advice in the form ofa list of likely diagnoses
and suggestions for additional laboratory tests that may berelevant for a selected
diagnosis.

The system is intended to support diagnostics in the settingof the outpatient
clinic and for educational purposes. Its target users are general internists, super spe-
cialists (e.g., endocrinologists, rheumatologists, etc.), interns and residents, medical
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students and others working in the hospital environment. Currently, a trial version
of the program is installed at department of internal medicine in UMC Utrecht. It
contains about 3500 diagnoses and is based on 50000 relations. The program is
connected to the electronic patient records, so that physicians can easily consult the
program without having to enter all the data manually. A livedemo can be found on
www.promedas.nl

Promedas is based on a Bayesian network. In the remainder of the section we
will describe the model in further detail. We focus on the modeling part, including
certain modeling approaches, model choices and methods to facilitate inference.
Medical details of the model are outside the scope of this section.

3.1 Building Large Scale Probabilistic Models

For this application, in which rare diseases play an important role, data is insuffi-
cient to train the model. When modeling a Bayesian network byhand, the standard
procedure is to specify a network structure of local interactions and to specify those
probabilities that are needed to define these interactions quantitatively. For medium
sized networks (up to 50 – 100 variables), this is doable using the methodology and
Bayesian network software tools such as discussed in subsection 2.2. However, our
aim was to scale up the system to 1000’s of variables. For larger systems it is more
difficult to keep overview, and not to get lost in the spaghetti of relations and interac-
tions. In addition, available medical knowledge is in general limited to bivariate re-
lations between disease and test in terms of sensitivity andspecificity. Therefore we
decided to take a more structured approach, in which we assume a generic structure
of the model. The general assumption in this structure is that risk factors influence
the probabilities of diseases and that diseases influence the probabilities of findings
(symptoms, tests etc.). We furthermore restrict to models in which the parameters
can be determined from the available medical knowledge of bivariate relations. In
order to further facilitate modeling we have developed a database in which medical
specialists can enter their knowledge in a structured and not too complicated way.

In the following, we sketch the structure of the database. Then we sketch how
the Bayesian network is defined and which model choices we have made. Finally
we sketch how a differential diagnosis is computed in this model.

3.1.1 Database Structure

The database contains information from which the structureof the network can be
derived as well as its model parameters. In addition, the database contains meta-
information, such as information about the structure of Promedas’ graphical user
interface. This involves mainly the grouping and naming of findings and risk factors
into medical relevant categories such as complaints, physical examination, medica-
tion, lab results and subdivisions of these. In addition descriptions, annotations and



Bayesian Networks for Expert Systems, Theory and PracticalApplications 9

references are included. In the remainder of this subsection, however, we restrict to
information that is directly relevant for the computational model.

The database contains three types of variables:

1. Risk factorssuch as occupation, drug use, past and concurrent diseases;Risk
factors are coded binary (true=1/false=0).

2. Diagnosessuch as current diseases, syndromes, drug side effects, pregnancy;
Diagnoses are coded binary (true=1/false=0).

3. Testsor findings, such as lab tests, symptoms, physical examination etc. Tests
are binary or multinomial (decreased/normal/increased/strongly increased, etc.).
When the discretization is not obvious because the test is continuous by nature,
then the discretization is defined in the database with cut-off points according to
medical standards where possible. Discretization may depend on gender and age.
The state space of the tests is such that there is always one “normal” state. Binary
variables are defined such that false is the “normal” state.

Furthermore, the database contains quantifications. Theseare needed to model
the probabilities in the Bayesian network. Quantificationscan apply to single vari-
ables, and to relations between variables. Relations can bedefined between risk
factors and diagnoses and between tests and diagnoses. Relations can only be de-
fined for non-normal states, e.g., between diagnosisd being true and testt being
in “increased” state. The idea behind this is that relationscode positive influences.
The absence of the relation between diagnosisd being true and testt in “normal”
state implies the assumption that the mere presence of a disease will never make the
result of a test more likely to be normal than without the disease being present.

The database contains four types of quantifications:

1. Priors. For each diagnosisd there is priorpd. This is the prior probability of
diagnosisd being true in absence of all risk factors.

2. Leaks.For each test there is a so-called leakpt=s of each non-normal test-state.
This leak is roughly interpreted as the prior probability ofthe test being in state
t = s in absence of all diagnoses. In an ideal test, the results is normal in absence
of diagnoses, so any non-normal state has zero probability.In non-ideal tests, a
leak causes positive probabilities of non-normal test states. Leaks are used e.g.,
to model the probability of a test being positive without apparent cause.

3. Mult-factors.For each risk–diagnosis relation there is a “mult-factor”mdr by
which the odds of the prior probability of diagnosisd are multiplied in the pres-
ence of the risk factorr.

4. Senses.For each test–diagnosis relation there is one or more “sens”pdt=s. A
sens relates a diagnosis to a non-normal test-state. This isthe probability that the
presence of the diseased causes the testt to be in states (rather than the leak
or other diseases). The “‘sens” is closely related to sensitivity, the probability of
a positive test given the presence of the diseased (regardless the leak or other
diseases).

These quantifications can be age and gender dependent.
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Fig. 3 Network structure in the Promedas model.

3.1.2 Network Definition

The global architecture of the diagnostic model is described by a diagnosis-layer that
is connected to a layer with tests. The main assumption is that different diagnoses
can coexist. Note that there are no nodes for gender, age and risk-factors. These
are assumed to be observed. All other probabilities in the network are conditioned
on these observations (as in e.g., (8), below). Default caseis a male of 55 with all
the risk-factors false. The global architecture of Promedas is similar to the QMR-
DT network [25]. QMR stands for Quick Medical Reference, which is a heuristic
representation with about 600 diseases and 4000 findings. The QMR-DT network,
where DT stands for Decision Theoretic, is a reformulation as a two-layer Bayesian
network. Main differences with Promedas are the absorptionof risk factors, and the
modeling of multi-valued tests in Promedas rather than the binary tests in QMR-DT.
Furthermore, Promedas is based on a different knowledge base.

Diagnoses are modeled as a priori independent binary variables. Their prior prob-
abilities (in absence of risk factors) are read from the database. In the case that a risk
factor is set to true,r = 1, the prior of a related diagnosis is affected according to a
multiplication of prior odds,

P(d= 1jr = 1)
P(d= 0jr = 1) = mdr

P(d= 1jr = 0)
P(d= 1jr = 0) ; (7)

wheremrd is the “mult-factor” of risk factorr in relation to diagnosisd. This implies,
after rearranging terms

P(d= 1jr = 1) = mrdP(d = 1jr = 0)
1+(mrd�1)P(d= 1jr = 0) : (8)

The conditional distributions of tests are modeled using so-called noisy-OR and
noisy-MAX gates [21]. Both will be explained below in more detail. The motivation
to use these table parameterizations is that they are convenient to model because
there is only one (or a few) parameter(s) for each diagnosis–test relation (rather than
exponentially many as in the free form table), while on the other hand they provide a
medically reasonable model that is easy to interpret [25]. An other important reason
is that inference is efficient [27] as we will discuss later inthis section.

To construct the noisy-OR and noisy-MAX, we first consider the deterministic
OR-gateOR(vju0; : : : ;un). Here,v andui are binary variables.



Bayesian Networks for Expert Systems, Theory and PracticalApplications 11

OR(vju0; : : : ;un) =�1 if v= max(u0; : : : ;uk)
0 otherwise

: (9)

So v= 1 (true) if any of theui ’s is 1. Otherwisev= 0. Now the noisy-OR gate is
modeled as follows (v, ui anddi are binary),

NoisyOR(vjd1; : : :dn) = ∑fu0;:::;ungOR(vju0; : : : ;un) n

∏
i=1

P(ui jdi)P(u0) : (10)

The variablesu0; : : : ;un can be considered as latent or auxiliary variables in this
model. Furthermore, the probabilitiesP(ui = 1jdi = 0) are zero in this model. The
probabilityP(u0 = 1) is often called the ‘leak’. The interpretation is that noisy-OR
is a noisy version of the deterministic OR, in which there is afinite probability that
(1) although all inputsdi = 0, the outcome isv= 1 due to the leak, and (2) although
there are inputsdi = 1, the outcome isv= 0 due to the fact thatP(ui = 0jdi = 1)
is non-zero. However, the more inputsdi = 1, the higher the probability that the
outcome isv= 1. In Promedas, noisy-ORs are applied for binary tests:di are the
disease states andv is the test result. The more diseases are present, the higherthe
probability of a positive test result. The required probabilities to model the noisy-
ORs are read from the database (leaks and senses).

Now we will construct noisy-MAX. The idea is similar as the noisy-OR gate,
with in addition a winner-take-all mechanism. The idea is that if some diseases cause
a test result to have a slightly increased value, and other diseases cause a test result to
have a strongly increased value, the observed test result will be strongly increased.
To proceed, we order the states of the tests0 < s1 < :: :sK , where “normal” has the
lowest order (sos0 = “normal”). Next, to model diseases causing the test result to
have a certain value, we define a noisy-OR gateNORj for each of the test-values
sj > s0 (except for the “‘normal” value, since diagnoses cannot cause values to be
normal). The outcome of a noisy-OR gates is either 1 or 0. The outcomes ofNORj

are relabeled (0! s0 and 1! sj ) and the result is eithers0 or the valuesj .
The winner take all mechanism is modeled by the deterministic MAX-gate

MAX(tjv1; : : : ;vn). The variablet can assume all the potential values of its parent
variables. The MAX-gate is defined as

MAX(tjv1; : : : ;vn) =�1 if t = max(v1; : : : ;vk)
0 otherwise

(11)

Noisy-MAX tables for testsP(tjd1; : : :dn) can be represented byNORj ’s for each of
the test-valuessj , having subsetsd j1; : : : ;d jn j of diagnoses that are related to test-
statet = sj as parents, combined with a deterministic MAX-gate for the winner-
take-all mechanism (see figure 3),

P(tjd1; : : :dn) = ∑fv1;:::;vKgMAX(tjv1; : : : ;vk) K

∏
j=1

NORj(v j jd j1; : : : ;d jn j ) : (12)
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Fig. 4 Testt with ordered states 0< 1 < 2< 3 are modeled as a noisy-MAX, which can itself
be modeled as the MAX of the outcomes of three noisy-OR gates.In this example, diagnosesdi j

are connected to binary noisy-OR gatesNORj . The outcome of a noisy-OR gate is either 1 or 0.
The outcomes ofNORj are relabeled (0=1! 0= j) and subsequently fed into a MAX gate, which
returns the maximum value.

The interpretation of the noisy-MAX model is as follows. Each of the diseases
has a probability to trigger the test to be in a certain state,regardless of the pres-
ence or absence of other diseases. If different diseases have a probability to trigger
the test to be in the same state, then a combination of them makes this state more
likely. If different diseases trigger the test to be in different states, then the strongest
state is observed. For instance if one disease triggers the body temperature to be
‘increased’ and another triggers the temperature to be ‘strongly increased’, then the
model assumption is that the ‘strongly increased’ temperature will be observed. A
drawback may be that many causes of an ‘increased’ temperature would in reality
have an additive effect. Other models could be designed to incorporate such effect.
However, such models would lack the crucial computational efficiency of the noisy-
MAX model. Another issue that one could discuss is what to do with tests that have
positive and negative states, such as ‘decreased’,’normal’, ’increased’. Again, other
models could be designed to better incorporate the combination of a ‘decreased’
and an ‘increased’ effect, but this would also be at the expense of computational
efficiency. In Promedas, we decided to be pragmatic and enforce an ordering.

3.2 Inference

The main inference task in the application is to compute the probabilities of di-
agnoses given the observed values of tests and risk factors.In general, inference
would be computationally infeasible for networks of the size of Promedas. There-
fore simplifying assumptions are introduced to make the inference task cheaper.
One assumption is that all risk factors are assumed to be observed (in the applica-
tion, their default value is false). This excludes any uncertainty in these variables.
In this way, there will be no correlations between diagnosesthrough risk factors.
Another simplification is to take only diagnoses into account which are connected
to at least one test-node that is observed to be in a non-normal state. Other diagnoses
are not of interest in the task of supporting the physician.
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Fig. 5 Inference with noisy-MAX. Observed test valuet = 2 implies that the outcome ofv3 = 0,
andv2 = 2. The observed test value does not give any information about v1.

3.2.1 Efficient Inference in Noisy-MAX

Another assumption is the noisy-MAX model. As we mentioned earlier, one of the
reasons to adopt this model is that inference is more efficient. There are a several
properties of this model that make inference more efficient than in most other condi-
tional probability models. See e.g. [27] for a more detailedand exposure of a general
class of such models.� Decoupling of the parents of MAX.If we apply the max operator over a set of

variablesvi , where eachvi can have either values0 or si , with s0 < :: : < sK , then
an outcome max(v1; : : : ;vK) = sj implies that allvk = s0 for k> j. Furthermore
v j = sj if sj > s0. The outcome does not contain any information about the vari-
ablesvk with k < j. See figure 5. This implies that we can take out the factor
MAX(tjv1; : : : ;vk) and decouple the intermediate variables as follows,

P(t = sj jd1; : : :dn) = K

∏
k= j+1

NORk(vk = s0jdk1; : : : ;dknk)� NORk(v j = sj jd j1; : : : ;d jn j ) j�1

∏
k=1

∑fvkgNORj(vkjdk1; : : : ;dknj ) (13)� Decoupling of the parents of OR with outcome ’false’.A related property is that
observing that a variable modeled by a noisy-OR gate is equalto be zero,v= 0,
implies that all states of the intermediate nodes in the noisy-OR u0; : : : ;un are
zero. In other words, these can be considered as observed. Wecan remove the
factorOR(v= 0ju0; : : : ;un) and decouple the diagnoses in (10),

NoisyOR(v= 0jd1; : : :dn) = n

∏
i=1

P(ui = 0jdi)P(u0 = 0) : (14)� Undirected links of OR with outcome ’true’.Straightforward expansion ofOR
leads to

OR(v= 1ju0; : : : ;un) = 1� n

∏
i=0

δui0 : (15)
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Fig. 6 Inference with noisy-MAX. Graphical structure of the undirected (moral) graph on the
diagnoses which results from absorbing the evidence of observed test valuet = 2. Left: with noisy-
MAX modeled as a free form conditional probability table allthe parents are connected. Right:
exploiting the structure of noisy-MAX, results in a much more sparse representation.z is the aux-
iliary switch variable, see text.

In order to rewrite this expression, we define the auxiliary potentialψ

ψ(u0;z= 0) = �δu00 ; (16)

ψ(ui;z= 0) = δui0 for i > 0; (17)

ψ(ui;z= 1) = 1 ; (18)

wherez is an auxiliary switch variable. Note thatψ(u0;z= 0) is negative! With
these potentials, we can decompose theORas a sum-product,

OR(v= 1ju0; : : : ;un) = ∑fzg n

∏
i=0

ψ(ui ;z) ; (19)

and hence, using now the auxiliary potentials defined by

φ(z= 0) = P(u0 = 1)�1 ; (20)

φ(z= 1) = 1 ; (21)

φ(di ;z= 0) = 1�P(ui = 1jdi) ; (22)

φ(di ;z= 1) = 1 ; (23)

the noisy-OR decomposes as

NoisyOR(v= 1jd1; : : : ;dn) = ∑fzgφ(z) n

∏
i=1

φ(di ;z) : (24)

The use of these potentials in general lead to a much smaller clique-size in the
junction tree algorithm, see figure 6.

Inference in Promedas is now performed as follows. Given a set of test values,
the diagnoses nodes that are related to at least one non-normal test value are se-
lected. For these diagnoses, the present risk-factors and the evidences of the test-
state-variablesv j are collected. The risk-factors and test-state-variablesin normal
statev j = s0 are directly absorbed in the priors of diagnoses using the mult fac-
tors and the senses in the database. The non-trivial part of the computation are the
test-state-variables in non-normal statev j = sj that are created for each non-normal
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test valuet = sj . For these variables, undirected noisy-OR structures as in(24) are
constructed using senses and leaks from the database. Standard junction tree algo-
rithm is applied to the resulting undirected model (note that in undirected graphs,
there is no coupling of the parents as preprocessing for the junction tree algorithm.
In directedgraphs, there is. This coupling is known as moralization andleads to
larger cliques). The posterior probabilities of the selected diagnosis are computed
and reported as the differential diagnosis (a list of the most probable diagnoses) for
the case at hand.

3.3 The current application

Promedas has been further developed by Promedas B.V. Additional methods to fur-
ther speed up have been implemented. However, these are outside the scope of this
paper. A live demo can be found on www.promedas.nl.

3.4 Summary

Promedas is an application for medical diagnostic decisionsupport. Its primary aim
is to find a differential diagnosis based on test results (anamnesis, physical examina-
tion, lab -tests, etc.) . Given the large number of variables, a conventional Bayesian
network approach is infeasible. We took a knowledge base approach in which the
network is compiled from a database of relations provided bymedical experts. To
make computation feasible, we designed a tractable model parameterization.

4 A Petrophysical Decision Support System

Oil and gas reservoirs are located in the earth’s crust at depths of several kilometers,
and when located offshore, in water depths of a few meters to afew kilometers.
Consequently, the gathering of critical information such as the presence and type of
hydrocarbons, size of the reservoir and the physical properties of the reservoir such
as the porosity of the rock and the permeability is a key activity in the oil and gas
industry.

Pre-development methods to gather information on the nature of the reservoirs
range from gravimetric, 2D and 3D seismic to the drilling of exploration and ap-
praisal boreholes. Additional information is obtained while a field is developed
through data acquisition in new development wells drilled to produce hydrocarbons,
time-lapse seismic surveys and in-well monitoring of how the actual production of
hydrocarbons affects physical properties such as the pressure and temperature. The
purpose of information gathering is to decide which reservoirs can be developed
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economically, and how to adapt the means of development bestto the particular
nature of a reservoir.

The early measurements acquired in exploration, appraisaland development
boreholes are a crucial component of the information gathering process. These mea-
surements are typically obtained from tools on the end of a wireline that are lowered
into the borehole to measure the rock and fluid properties of the formation. Their is
a vast range of possible measurement tools [23]. Some options are very expensive
and may even risk other data acquisition options. In generalacquiring all possible
data imposes too great an economic burden on the exploration, appraisal and devel-
opment. Hence data acquisition options must be exercised carefully bearing in mind
the learnings of already acquired data and general hydrocarbon field knowledge.
Also important is a clear understanding of what data can and cannot be acquired
later and the consequences of having an incorrect understanding of the nature of a
reservoir on the effectiveness of its development.

Making the right data acquisition decisions, as well as the best interpretation of
information obtained in boreholes forms one of the principle tasks of petrophysi-
cists. The efficiency of a petrophysicist executing her/histask is substantially in-
fluenced by the ability to gauge her/his experience to the issues at hand. Efficiency
is hampered when a petrophysicists experience level is not yet fully sufficient and
by the rather common circumstance that decisions to acquireparticular types of in-
formation or not must be made in a rush, at high costs and shortly after receiving
other information that impact on that very same decision. Mistakes are not entirely
uncommon and almost always painful. In some cases, non essential data is obtained
at the expense of extremely high cost, or essential data is not obtained at all; causing
development mistakes that can jeopardize the amount of hydrocarbon recoverable
from a reservoir and induce significant cost increases.

The overall effectiveness of petrophysicists is expected to improve using a de-
cision support system (DSS). In practice a DSS can increase the petrophysicists’
awareness of low probability but high impact cases and alleviate some of the oper-
ational decision pressure.

In cooperation with Shell E&P, SNN has developed a DSS tool based on a
Bayesian network and an efficient sampler for inference. Themain tasks of the ap-
plication is the estimation of compositional volume fractions in a reservoir on the
basis of measurement data. In addition it provides insight in the effect of additional
measurements. Besides an implementation of the model and the inference, the tool
contains graphical user interface in which the user can takedifferent views on the
sampled probability distribution and on the effect of additional measurements. The
tool is currently under evaluation within Shell E&P.

In the remainder of this section, we will describe the Bayesian network approach
for the DSS tool. We focus on our modeling and inference approach. A more de-
tailed description of the model, in particular in relation to the petrophysical relevant
quantities will be published elsewhere [5].
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4.1 Probabilistic modeling

The primary aim of the model is to estimate the compositionalvolume fractions of
a reservoir on the basis of borehole measurements. Due to incomplete knowledge,
limited amount of measurements, and noise in the measurements, there will be un-
certainty in the volume fractions. We will use Bayesian inference to deal with this
uncertainty.

The starting point is a model for the probability distributionP(v;m) of the com-
positional volume fractionsv and borehole measurementsm. A causal argument
“The composition is given by the (unknown) volume fractions, and the volume frac-
tions determine the distribution measurement outcomes of each of the tools”leads
us to a Bayesian network formulation of the probabilistic model,

P(v;m) = Z

∏
i=1

P(mi jv)P(v) : (25)

In this model,P(v) is the so-calledprior, the prior probability distribution of volume
fractions before having seen any data. In principle, the prior encodes the generic ge-
ological and petrophysical knowledge and beliefs [26]. Thefactor∏Z

i=1P(mi jv) is
the observation model. The observation model relates volume fractionsv to mea-
surement outcomesmi of each of theZ tools i. The observation model assumes that
giventhe underlying volume fractions, measurement outcomes of the different tools
are independent. Each term in the observation model gives the probability density
of observing outcomemi for tool i given that the composition isv. Now given a set
of measurement outcomesmo of a subsetObsof tools, the probability distribution
of the volume fractions can be updated in a principled way by applyingBayes’ rule,

P(vjmo) = ∏i2ObsP(mo
i jv)P(v)

P(mo) : (26)

The updated distribution is called theposterior distribution. The constant in the
denominatorP(mo) = R

v ∏i2ObsP(mo
i jv)P(v)dv is called theevidence.

In our model,v is a 13 dimensional vector. Each component represents the vol-
ume fraction of one of 13 most common minerals and fluids (water, calcite, quartz,
oil, etc.). So each component is bounded between zero and one. The components
sum up to one. In other words, the volume fractions are confined to a simplex
S

K = fvj0� v j � 1;∑k vk = 1g. There are some additional physical constraints on
the distribution ofv, for instance that the total amount of fluids should not exceed
40% of the total formation. The presence of more fluids would cause a collapse of
the formation.

Each tool measurement gives a one-dimensional continuous value. The relation
between composition and measurement outcome is well understood. Based on the
physics of the tools, petrophysicists have expressed theserelations in terms of deter-
ministic functionsf j (v) that provide the idealized noiseless measurement outcomes
of tool j given the compositionv [26]. In general, the functionsf j are nonlinear.
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For most tools, the noise process is also reasonably well understood — and can be
described by either a Gaussian (additive noise) or a log-Gaussian (multiplicative
noise) distribution.

A straightforward approach to model a Bayesian network would be to discretize
the variables and create conditional probability tables for priors and conditional dis-
tributions. However, due to the dimensionality of the volume fraction vector, any
reasonable discretization would result in an infeasible large state space of this vari-
able. We therefore decided to remain in the continuous domain.

The remainder of this section describes the prior and observation model, as well
as the approximate inference method to obtain the posterior.

4.2 The prior and the observation model

The model has two ingredients: the prior of the volume fractionsP(v) and the ob-
servation modelP(mj jv).

There is not much detailed domain knowledge available aboutthe prior distri-
bution. Therefore we decided to model the prior using conveniently parametrized
family of distributions. In our case,v 2 S

K , this lead to the Dirichlet distribution
[17, 3]

Dir (vjα;µ) ∝
K

∏
j=1

v
αµ j�1
j δ

 
1� K

∑
i=1

vi

! : (27)

The two parametersα 2R+ (precision) andµ 2 S
K (vector of means) can be used to

fine-tune the prior to our liking. The delta function — which ensures that the simplex
constraint holds — is put here for clarity, but is in fact redundant if the model is
constraint tov 2 S

K . Additional information, e.g. the fact that the amount of fluids
may not exceed 40% of the volume fraction can be incorporatedby multiplying the
prior by a likelihood termΦ(v) expressing this fact. The resulting prior is of the
form

P(v) ∝ Φ(v)Dir (vjα;µ) : (28)

The other ingredient in the Bayesian network are the observation models. For
most tools, the noise process is reasonably well understoodand can be reasonably
well described by either a Gaussian (additive noise) or a log-Gaussian (multiplica-
tive noise) distribution. In the model, measurements are modeled as a deterministic
tool function plus noise,

mj = f j (v)+ξ j ; (29)

in which the functionsf j are the deterministic tool functions provided by domain
experts. For tools where the noise is multiplicative, a log transform is applied to the
tool functionsf j and the measurement outcomesmj . A detailed description of these
functions is beyond the scope of this paper. The noisesξ j are Gaussian and have a
tool specific varianceσ2

j . These variances have been provided by domain experts.
So, the observational probability models can be written as
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P(mi jv) ∝ exp

 � (mj � f j(v))2
2σ2

j

! : (30)

4.3 Bayesian Inference

The next step is given a set of observationsfmo
i g, i 2Obs, to compute the posterior

distribution. If we were able to find an expression for the evidence term, i.e., for the
marginal distribution of the observationsP(mo) = R

v ∏i2ObsP(mo
i jv)P(v)dv then

the posterior distribution (26) could be written in closed form and readily evaluated.
UnfortunatelyP(mo) is intractable and a closed-form expression does not exist.In
order to obtain the desired compositional estimates we therefore have to resort to
approximate inference methods. Pilot studies indicated that sampling methods gave
the best performance.

The goal of any sampling procedure is to obtain a set ofN samplesfxig that
come from a given (but maybe intractable) distributionπ . Using these samples we
can approximate expectation valueshAi of a functionA(x) according tohAi= Z

x
A(x)π(x)dx� 1

N

N

∑
i=1

A(xi) : (31)

For instance, if we takeA(x) = x, the approximation of the meanhxi is the sample
mean1

N ∑N
i=1xi .

An important class of sampling methods are the so-called Markov Chain Monte
Carlo (MCMC) methods [17, 3]. In MCMC sampling a Markov chainis defined
that has an equilibrium distributionπ , in such a way that (31) gives a good approx-
imation when applied to a sufficiently long chainx1;x2; : : : ;xN. To make the chain
independent of the initial statex0, a burn-in period is often taken into account. This
means that one ignores the firstM �N samples that come from intermediate distri-
butions and begins storing the samples once the system has reached the equilibrium
distributionπ .

In our application we use the hybrid Monte Carlo (HMC) sampling algorithm
[10, 17]. HMC is a powerful class of MCMC methods that are designed for prob-
lems with continuous state spaces, such as we consider in this section. HMC can
in principle be applied to any noise model with a continuous probability density, so
there is no restriction to Gaussian noise models. HMC uses Hamiltonian dynam-
ics in combination with a Metropolis [19] acceptance procedure to find regions of
higher probability. This leads to a more efficient sampler than a sampler that relies
on random walk for phase space exploration. HMC also tends tomix more rapidly
than the standard Metropolis Hastings algorithm. For details of the algorithm we
refer to the literature [10, 17].

In our case,π(v) is the posterior distributionp(vjmo
i ) in (26). The HMC sampler

generates samplesv1;v2; : : : ;vN from this posterior distribution. Each of theN sam-
ples is a full K-dimensional vector of volume fractions constraint onS

K . The number
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Fig. 7 Diagrams for quartz and dolomite. Top: time traces (10 000 time steps) of the volume frac-
tions of quartz and dolomite. Bottom: Resulting marginal probability distributions of both frac-
tions.

of samples is of the order ofN = 105, which takes a few seconds on a standard PC.
Figure 7 shows an example of a chain of 10 000 states generatedby the sampler. For
visual clarity, only two components of the vectors are plotted (quartz and dolomite).
The plot illustrates the multivariate character of the method: for example, the traces
shows that the volume fractions of the two minerals tend to bemutually exclusive:
either 20% quartz, or 20% dolomite but generally not both. From the traces, all kind
of statistics can be derived. As an example, the resulting one dimensional marginal
distributions of the mineral volume fractions are plotted.

The performance of the method relies heavily on the quality of the sampler.
Therefore we looked at the ability of the system to estimate the composition of a
(synthetic) reservoir and the ability to reproduce the results. For this purpose, we
set the composition to a certain valuev�. We apply the observation model to gen-
erate measurementsmo. Then we run HMC to obtain samples from the posterior
P(vjmo). Consistency is assessed by comparing results of differentruns to each
other and by comparing them with the “ground truth”v�. Results of simulations
confirm that the sampler generates reproducible results, consistent with the underly-
ing compositional vector [5]. In these simulations, we tookthe observation model to
generate measurement data (the generating model) equal to the observation model
that is used to compute the posterior (the inference model).We also performed sim-
ulations where they are different, in particular in their assumed variance. We found
that the sampler is robust to cases where the variance of the generating model is
smaller than the variance of the inference model. In the cases where the variance of



Bayesian Networks for Expert Systems, Theory and PracticalApplications 21

the generating model is bigger, we found that the method is robust up to differences
of a factor 10. After that we found that the sampler suffered severely from local
minima, leading to irreproducible results.

4.4 Decision Support

Suppose that we have obtained a subset of measurement outcomesmo, yielding a
distributionP(vjmo). One may subsequently ask the question which toolt should
be deployed next in order to gain as much information as possible?

When asking this question, one is often interested in a specific subset of minerals
and fluids. Here we assume this interest is actually in one specific componentu. The
question then reduces to selecting the most informative tool(s) t for a given mineral
u.

We define the informativeness of a tool as the expected decrease of uncertainty in
the distribution ofvu after obtaining a measurement with that tool. Usually, entropy
is taken as a measure for uncertainty [17], so a measure of informativeness is the
expected entropy of the distribution ofvu after measurement with toolt,hHu;t jmoi � �Z

P(mt jmo)Z P(vujmt ;mo)� log(P(vujmt ;mo))dvudmt : (32)

Note that the information of a tool depends on the earlier measurement results since
the probabilities in (32) are conditioned onmo.

The most informative tool for mineralu is now identified as that toolt� which
yields in expectation the lowest entropy in the posterior distribution ofvu:

t�ujmo = argmin
t

hHu;t jmoi
In order to compute the expected conditional entropy using HMC sampling meth-

ods, we first rewrite the expected conditional entropy (32) in terms of quantities that
are conditioned only on the measurement outcomesmo,hHu;t jmoi=�Z Z

P(vu;mt jmo)� log(P(vu;mt jmo))dvudmt+ Z
P(mt jmo)Z log(P(mt jmo))dmt : (33)

Now the HMC run yields a setV = fv j
1;v j

2; : : : ;v j
Kg of compositional samples

(conditioned onmo). We augment these by a setM = fmj
1 = f1(v j) + ξ j

1 ; : : : ;
mj

Z = fZ(v j)+ ξ j
Zg of synthetic tool values generated from these samples (which

are indexed byj) by applying equation (29). Subsequently, discretized joint proba-
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bilities P(vu;mt jmo) are obtained via a two-dimensional binning procedure overvu

andmt for each of the potential toolst. The binned versions ofP(vu;mt jmo) (and
P(mt jmo)) can be directly used to approximate the expected conditional entropy
using a discretized version of equation (33).

The outcome of our implementation of the decision support tool is a ranking
of tools according to the expected entropies of their posterior distributions. In this
way, the user can select a tool based on a trade-off between expected information
and other factors, such as deployment costs and feasibility.

4.5 The Application

The application is implemented in C++ as a stand alone version with a graphical
user interface running on a Windows PC. The application has been validated by
petrophysical domain experts from Shell E&P. The further use by Shell of this ap-
plication is beyond the scope of this chapter.

4.6 Summary

This chapter described a Bayesian network application for petrophysical decision
support. The observation models are based on the physics of the measurement tools.
The physical variables in this application are continuous-valued. A naive Bayesian
network approach with discretized values would fail. We remained in the continuous
domain and used the hybrid Monte Carlo algorithm for inference.

5 Bonaparte: a Bayesian Network for Disaster Victim
Identification

Society is increasingly aware of the possibility of a mass disaster. Recent examples
are the WTC attacks, the tsunami, and various airplane crashes. In such an event, the
recovery and identification of the remains of the victims is of great importance, both
for humanitarian as well as legal reasons. Disaster victim identification (DVI), i.e.,
the identification of victims of a mass disaster, is greatly facilitated by the advent
of modern DNA technology. In forensic laboratories, DNA profiles can be recorded
from small samples of body remains which may otherwise be unidentifiable. The
identification task is the match of the unidentified victim with a reported missing
person. This is often complicated by the fact that the match has to be made in an
indirect way. This is the case when there is no reliable reference material of the
missing person. In such a case, DNA profiles can be taken from relatives. Since
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their profiles are statistically related to the profile of themissing person (first degree
family members share about 50% of their DNA) an indirect match can be made.

In cases with one victim, identification is a reasonable straightforward task for
forensic researchers. In the case of a few victims, the puzzle to match the victims
and the missing persons is often still doable by hand, using aspread sheet, or with
software tools available on the internet [9]. However, large scale DVI is infeasible
in this way and an automated routine is almost indispensablefor forensic institutes
that need to be prepared for DVI.

?

?

?

?

Fig. 8 The matching problem. Match the unidentified victims (blue,right) with reported missing
persons (red, left) based on DNA profiles of victims and relatives of missing persons. DNA profiles
are available from individuals represented by solid squares (males) and circles (females).

Bayesian networks are very well suited to model the statistical relations of ge-
netic material of relatives in a pedigree [11]. They can directly be applied in kinship
analysis with any type of pedigree of relatives of the missing persons. An additional
advantage of a Bayesian network approach is that it makes theanalysis tool more
transparent and flexible, allowing to incorporate other factors that play a role —
such as measurement error probability, missing data, statistics of more advanced
genetic markers etc.

Currently, we develop software for DVI, called Bonaparte. This development
is in collaboration with NFI (Netherlands Forensic Institute). The computational
engine of Bonaparte uses automatically generated Bayesiannetworks and Bayesian
inference methods, enabling to correctly do kinship analysis on the basis of DNA
profiles combined with pedigree information. It is designedto handle large scale
events, with hundreds of victims and missing persons. In addition, it has graphical
user interface, including a pedigree editor, for forensic analysts. Data-interfaces to
other laboratory systems (e.g., for the DNA-data input) will also be implemented.
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In the remainder of this section we will describe the Bayesian model approach
that has been taken in the development of the application. Weformulate the com-
putational task, which is the computation of the likelihoodratio of two hypotheses.
The main ingredient is a probabilistic modelP of DNA profiles. Before discussing
the model, we will first provide a brief introduction to DNA profiles. In the last part
of the section we describe howP is modeled as a Bayesian network, and how the
likelihood ratio is computed.

5.1 Likelihood Ratio of Two Hypotheses

Assume we have a pedigree with an individualMP who is missing (the Missing
Person). In this pedigree, there are some family members that have provided DNA
material, yielding the profiles. Furthermore there is an Unidentified IndividualUI ,
whose DNA is also profiled. The question is, isUI = MP? To proceed, we assume
that we have a probabilistic modelP for DNA evidence of family members in a
pedigree. To compute the probability of this event, we need hypotheses to compare.
The common choice is to formulate two hypotheses. The first isthe hypothesisH1

that indeedUI =MP. The alternative hypothesisH0 is thatUI is an unrelated person
U . In both hypotheses we have two pedigrees: the first pedigreehasMP and family
membersFAM as members. The second one has onlyU as member. To compare
the hypotheses, we compute the likelihoods of the evidence from the DNA profiles
under the two hypotheses,� Under Hp, we assume thatMP = UI . In this case,MP is observed andU is

unobserved. The evidence isE = fDNAMP+DNAFAMg.� UnderHd, we assume thatU =UI . In this case,U is observed andMP is ob-
served. The evidence isE = fDNAU +DNAFAMg.

Under the modelP, the likelihood ratio of the two hypotheses is

LR= P(EjHp)
P(EjHd) : (34)

If in addition a prior oddsP(Hp)=P(Hd) is given, the posterior oddsP(HpjE)=P(HdjE)
follows directly from multiplication of the prior odds and likelihood ratio,

P(HpjE)
P(HdjE) = P(EjHp)P(Hp)

P(EjHd)P(Hd) : (35)

5.2 DNA Profiles

In this subsection we provide a brief introduction on DNA profiles for kinship analy-
sis. A comprehensive treatise can be found in e.g. [6]. In humans, DNA found in the
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nucleus of the cell is packed on chromosomes. A normal human cell has 46 chro-
mosomes, which can be organized in 23 pairs. From each pair ofchromosomes,
one copy is inherited from father and the other copy is inherited from mother. In
22 pairs, chromosomes are homologous, i.e., they have practically the same length
and contain in general the same genes ( functional functional elements of DNA).
These are called the autosomal chromosomes. The remaining chromosome is the
sex-chromosome. Males have anX and aY chromosome. Females have twoX chro-
mosomes.

More than 99% of the DNA of any two humans of the general population is
identical. Most DNA is therefore not useful for identification. However, there are
well specified locations on chromosomes where there is variation in DNA among
individuals. Such a variation is called a genetic marker. Ingenetics, the specified
locations are called loci. A single location is a locus.

In forensic research, the short tandem repeat (STR) markersare currently most
used. The reason is that they can be reliable determined fromsmall amounts of body
tissue. Another advantage is that they have a low mutation rate, which is important
for kinship analysis. STR markers is a class of variations that occur when a pattern
of two or more nucleotides is repeated. For example,(CATG)3 =CATGCATGCATG: (36)

The number of repeatsx (which is 3 in the example) is the variation among the
population. Sometimes, there is a fractional repeat, e.g.CATGCATGCATGCA, this
would be encoded with repeat numberx = 3:2, since there are three repeats and
two additional nucleotides. The possible values ofx and their frequencies are well
documented for the loci used in forensic research. These ranges and frequencies
vary between loci. To some extend they vary among subpopulations of humans. The
STR loci are standardized. The NFI uses CODIS (Combined DNA Index System)
standard with 13 specific core STR loci, each on different autosomal chromosomes.

The collection of markers yields the DNA profile. Since chromosomes exist in
pairs, a profile will consist of pairs of markers. For examplein the CODIS standard,
a full DNA profile will consist of 13 pairs, (the following notation is not common
standard)

x̄= (1x1;1x2);(2x1;2x2); : : : ;(13x1;13x2) ; (37)

in which eachµxs is a number of repeats at a well defined locusµ . However, since
chromosomes exists in pairs, there will be two allelesµx1 andµx2 for each location,
one paternal — on the chromosome inherited from father — and one maternal. Un-
fortunately, current DNA analysis methods cannot identifythe phase of the alleles,
i.e., whether an allele is paternal or maternal. This means that(µx1;µ x2) cannot be
distinguished from(µx2;µx1). In order to make the notation unique, we order the
observed alleles of a locus such thatµx1 � µx2.

Chromosomes are inherited from parents. Each parent passesone copy of each
pair of chromosomes to the child. For autosomal chromosomesthere is no (known)
preference which one is transmitted to the child. There is also no (known) correla-
tion between the transmission of chromosomes from different pairs. Since chromo-
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paternal and maternal allele of individualj . See text.

somes are inherited from parents, alleles are inherited from parents as well. How-
ever, there is a small probability that an allele is changed or mutated. This mutation
probability is about 0.1%.

Finally in the DNA analysis, sometimes failures occur in theDNA analysis
method and an allele at a certain locus drops out. In such a case the observation
is (µx1;?), in which “?” is a wild card.

5.3 A Bayesian Network for Kinship Analysis

In this subsection we will describe the building blocks of a Bayesian network to
model probabilities of DNA profiles of individuals in a pedigree. First we observe
that inheritance and observation of alleles at different loci are independent. So for
each locus we can make an independent modelPµ . In the model description below,
we will consider a model for a single locus, and we will suppress theµ dependency
for notational convenience.

5.3.1 Allele Probabilities

We will consider pedigrees with individualsi. In a pedigree, each individuali has
two parents, a fatherf (i) and a motherm(i). An exception is when a individual is a
founder. In that case it has no parents in the pedigree.

Statistical relations between DNA profiles and alleles of family members can be
constructed from the pedigree, combined with models for allele transmission . On
the given locus, each individuali has a paternal allelexf

i and an maternal allelexm
i . f

andmstands for ‘father’ and ‘mother’. The pair of alleles is denoted asxi =(xf
i ;xm

i ).
Sometimes we use superscriptswhich can have valuesf f ;mg. So each allele in the
pedigree is indexed by(i;s), wherei runs over individuals andsover phases( f ;m).
The alleles can assumeN values, whereN as well as the allele values depend on the
locus.

An allele from a founder is called ‘founder allele’. So a founder in the pedigree
has two founder alleles. The simplest model for founder alleles is to assume that
they are independent, and each follow a distributionP(a) of population frequencies.
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This distribution is assumed to be given. In generalP(a) will depend on the locus.
More advanced models have been proposed in which founder alleles are correlated.
For instance, one could assume that founders in a pedigree come from a single
but unknown subpopulation [1]. This model assumption yieldcorrections to the
outcomes in models without correlations between founders.A drawback is that these
models may lead to a severe increase in required memory and computation time. In
this chapter we will restrict ourself to models with independent founder alleles.

If an individuali has its parents in the pedigree the allele distribution of anindi-
vidual given the alleles of its parents are as follows,

P(xi jxf (i);xm(i)) = P(xf
i jxf (i))P(xm

i jxm(i)) ; (38)

where

P(xf
i jxf (i)) = 1

2 ∑
s= f ;mP(xf

i jxs
f (i)) ; (39)

P(xm
i jxm(i)) = 1

2 ∑
s= f ;mP(xm

i jxs
m(i)) : (40)

To explain (39) in words: individuali obtains its parental allelexf
i from its father

f (i). In this process, there is a 50% chance that theparentalallele xf
f (i) of father

f (i) is transmitted and a 50% chance that thematernalallelexm
f (i) of father f (i) is

transmitted. A similar explanation applies to (40).
The probabilitiesP(xf

i jxs
f (i)) and P(xm

i jxs
m(i)) are given by a mutation model

P(ajb), which encodes the probability that allele of the child isa while the allele
on the parental chromosome that is transmitted isb. The precise mutation mecha-
nisms for the different STR markers are not known. There is evidence that muta-
tions from father to child are in general about 10 times as probable as mutations
from mother to child. Gender of each individual is assumed tobe known, but for
notational convenience we suppress dependency of parent gender. In general, muta-
tion tends to decrease with the difference in repeat numbersja�bj. Mutation is also
locus dependent [4].

Several mutation models have been proposed, see e.g. [8]. Aswe will see later,
however, the inclusion of a detailed mutation model may leadto a severe increase
in required memory and computation time. Since mutations are very rare, one could
ask if there is any practical relevance in a detailed mutation model. The simplest
mutation model is of course to assume the absence of mutations, P(ajb) = δa;b.
Such model enhances efficient inference. However, any mutation in any single locus
would lead to a 100% rejection of the match, even if there is a 100% match in the
remaining markers. Mutation models are important to get some model tolerance
against such case. The simplest non-trivial mutation modelis a uniform mutation
model with mutation rateµ (not to be confused with the locus indexµ),
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P(aja) = 1�µ ; (41)

P(ajb) = µ=(N�1) if a 6= b : (42)

Mutation rate may depend on locus and gender.
An advantage of this model is that the required memory and computation time

increases only slightly compared to the mutation free model. Note that the popu-
lation frequency is in general not invariant under this model: the mutation makes
the frequency more flat. One could argue that this is a realistic property that intro-
duces diversity in the population. In practical applications in the model, however,
the same population frequency is assumed to apply to founders in different genera-
tions in a pedigree. This implies that if more unobserved references are included in
the pedigree to model ancestors of an individual, the likelihood ratio will (slightly)
change. In other words, formally equivalent pedigrees willgive (slightly) different
likelihood ratios.

5.3.2 Observations

Observations are denoted as ¯xi , or x̄ if we do not refer to an individual. The parental
origin of an allele can not be observed, so allelesxf = a;xm = b yields the same
observation asxf = b;xm = a. We adopt the convention to write the smallest allele
first in the observation: ¯x= (a;b) , a� b. In the case of an allele loss, we write
x̄= (x;?) where ? stands for a wild card. We assume that the event of an allele loss
can be observed (e.g. via the peak hight [6]). This event is modeled byL. With L= 1
there is allele loss, and there will be a wild card ?. A full observation is coded as
L = 0. The case of loss of two alleles is not modeled, since in thatcase we simply
have no observation.

The observation model is now straightforwardly written down. Without allele
loss (L = 0), allelesy results in an observation ¯y. This is modeled by the determin-
istic table

P(x̄jy;L = 0) =�1 if x̄= ȳ ;
0 otherwise.

(43)

Note that for a giveny there is only one ¯x with x̄= ȳ.
With allele loss (L= 1), we have(

P(x̄= (a;F)j(a;b);L = 1) = 1
2

P(x̄= (b;F)j(a;b);L = 1) = 1
2

if a 6= b ; (44)

and
P(x̄= (a;F)j(a;a);L = 1) = 1 : (45)

I.e., if one allele is lost, the alleles(a;b) leads to an observationa (thenb is lost),
or to an observationb (thena is lost). Both events have 50% probability. If both
alleles are the same, so the pair is(a;a), then of coursea is observed with 100%
probability.



Bayesian Networks for Expert Systems, Theory and PracticalApplications 29

5.4 Inference

By multiplying all allele priors, transmission probabilities and observation models, a
Bayesian network of allelesx and DNA profiles of individuals ¯x in a given pedigree
is obtained. Assume that the pedigree consists of a set of individualsI = 1; : : : ;K
with a subset of foundersF , and assume that allele lossesL j are given, then this
probability reads

P(fx̄;xgI ) =∏
j

P(x̄ j jx j ;L j) ∏
i2I nF P(xi jxf (i);xm(i)) ∏

i2F P(xi) : (46)

Under this model the likelihood of a given set DNA profiles cannow be com-
puted. If we have observations ¯x j from a subset of individualsj 2 O , the likelihood
of the observations in this pedigree is the marginal distribution P(fx̄gO), which is
the marginal probability

P(fx̄gO) =∑
x1

: : :∑
xK

∏
j2OP(x̄ j jx j ;L j) ∏

i2I nF P(xi jxf (i);xm(i)) ∏
i2F P(xi) : (47)

This computation involves the sum over all states of allele pairsxi of all individuals.
In general, the allele-state space can be prohibitively large. This would make even

the junction tree algorithm infeasible if it would straightforwardly be applied. For-
tunately, a significant reduction in memory requirement canbe achieved by “value
abstraction”: if the observed alleles in the pedigree are all in a subsetA of M dif-
ferent allele values, we can abstract from all unobserved allele values and consider
them as a single statez. If an allele isz, it means that it has a value that is not in the
set of observed valuesA. We now have a system in which states can assume only
M+1 values which is generally a lot smaller thanN, the number of a priori possible
allele values. This procedure is called value abstraction [12]. The procedure is ap-
plicable if for anya2 A, L 2 f0;1g, andb1;b2;b3;b4 62 A, the following equalities
hold

P(ajb1) = P(ajb2) (48)

P(x̄ja;b1;L) = P(x̄ja;b2;L) (49)

P(x̄jb1;a;L) = P(x̄jb2;a;L) (50)

P(x̄jb1;b2;L) = P(x̄jb3;b4;L) (51)

If these equalities hold, then we can replaceP(ajb) by P(ajz) and P(x̄ja;b) by
P(x̄ja;z) etc. in the abstracted state representation. The conditional probability of
z then follows from

P(zjx) = 1� ∑
a2A

P(ajx) (52)

for all x in A[z. One can also easily check that the observation probabilities satisfy
the condition. The uniform mutation model satisfies condition (48) sinceP(ajb) =
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µ=(N�1) for anya2A and anyb 62A. Note that condition (48) does not necessarily
holds for a general mutation model, so value abstraction could then not be applied.

Using value abstraction as a preprocessing step, a junctiontree-based algorithm
can straightforwardly applied to compute the desired likelihood. In this way, likeli-
hoods and likelihood ratios are computed for all loci, and reported to the user.

5.5 The application

Bonaparte has been designed to facilitate large scale matching. The application
has a multi-user client-server based architecture, see fig.10. Its computational core
and the internal database runs on a server. All match resultsare stored in internal
database. Rewind to any point in back in time is possible. Viaan XML and secure
https interfaces, the server connects to other systems. Users can login via a web-
browser so that no additional software is needed on the clients. The current version
Bonaparte is now under user-validation. A live demo versionwill be made available
on www.dnadvi.nl.

5.6 Summary

Bonaparte is an application of Bayesian networks for victimidentification by kin-
ship analysis based on DNA profiles. The Bayesian networks are used to model
statistical relations between DNA profiles of different individuals in a pedigree. By
Bayesian inference, likelihood ratios and posterior odds of hypotheses are com-
puted, which are the quantities of interest for the forensicresearcher. The probabilis-
tic relations between variables are based on first principles of genetics. A feature of
this application is the automatic, on-the-fly derivation ofmodels from data, i.e., the
pedigree structure of a family of a missing person.
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6 Discussion

Human decision makers are often confronted with highly complex domains. They
have to deal with various sources of information and varioussources of uncertainty.
The quality of the decision is strongly influenced by the decision makers experience
to correctly interpret the data at hand. Computerized decision support can help to
improve the effectiveness of the decision maker by enhancing awareness and alert-
ing the user to uncommon situations that may have high impact. Rationalizing the
decision process may alleviate some of the decision pressure.

Bayesian networks are widely accepted as a principled methodology for model-
ing complex domains with uncertainty, in which different sources of information are
to be combined, as needed in intelligent decision support systems. However, many
of the examples of Bayesian networks as described in literature — models with a
few dozen of variables, each with a few states, and fixed relations — may suggest a
limitation in the expressive power of the methodology [18].

In this chapter we described three Bayesian networks for real-world applica-
tions. These models are based on the same principled methodology as standard
Bayesian networks, but go beyond the above mentioned limitations. The Promedas
model has several orders of magnitudes more variables. The petrophysical model
has continuous-valued variables. The Bonaparte model as well as the Promedas
model have non-static relations.

Fundamental differences of these models with most standardBayesian networks
are (1) the model development approach and (2) the operational power and flex-
ibility of the applications. Standard Bayesian networks are often developed using
off-the-shelf GUI-based software. An advantage of this approach is that small or
medium sized Bayesian networks can be developed quickly, without the need of
expertise on Bayesian networks modeling or inference algorithms. The models de-
scribed in this chapter, on the other hand, have been developed from scratch, based
on first principles and with customized implementations of inference algorithms
(junction tree based, or approximate such as the HMC method). This development
approach requires more expertise, but it has more flexibility as it is not constrained
by the development software and can better handle the various problems posed by
the applications, such as the large number of variables, thecontinuous-valued vari-
ables, and on-the-fly model derivation from data, etc.

We have discussed in detail three applications of Bayesian networks. With these
applications, we aimed to illustrate the modeling power of the Bayesian networks
that goes beyond the standard textbook applications. The applications domains of
the models (medicine, petrophysics and forensics) demonstrate that Bayesian net-
works can be applied in a wide variety of domains with different types of domain
requirements.

Finally, we would like to stress that the Bayesian network technology is only
one side of the model. The other side is the domain knowledge,which is maybe
even more important for the model. Therefore Bayesian network modeling always
requires a close collaboration with domain experts. And even then, the model is of
course only one of many ingredients of an application, such as user-interface, data-
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management, user-acceptance etc. which are all essential to make the application a
success.
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