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This thesis deals with the metabolome screening of blood plasma and cerebrospinal 

fluid (CSF) by Nuclear Magnetic Resonance (NMR). The main focus is the biomarker 

discovery in Multiple Sclerosis (MScl) disease by means of NMR and pattern recognition 

methods. Moreover the disentanglement of CSF samples handling for metabolic 

measurements by NMR and variations in metabolites concentration identified by NMR in 

CSF of “healthy” individuals are presented. This thesis consists of 7 chapters. 

In the introductory Chapter 1, various aspects of metabolome screening of biofluids by 

Nuclear Magnetic Resonance (NMR) and chemometric analysis are reviewed. 

Specifically, attention is paid to data acquisition, data pretreatment and preprocessing 

and multivariate analysis of metabolic data. The chapter gives also an overview of 

current developments in and status of biomarker discovery by means of NMR and 

pattern recognition techniques with emphasis on CSF biomarker research for MScl 

disease.   

In chapter 2 CSF sample handling procedures are presented, including a stability study 

of metabolites identified by NMR in human CSF. To mimic the probable procedure 

occurring in the clinic, CSF was left at room temperature for up to 120 minutes before 

freezing and storing it in -80oC. The changes of metabolites concentration were then 

investigated. 

Chapter 3 covers the analysis of CSF samples of “healthy” human individuals, i.e. 

without neurological disease. In this part, the biological variation of metabolites 

measurable by NMR and other analytical methods is shown. These biological variations 

in “healthy” individuals form a base line for detecting significant fluctuations in disease 

inflicted individuals. Inter-individual fluctuations in metabolite concentrations in the 

“healthy” individuals are compared with analytical variations and found to be much 
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smaller. In addition, the variation in CSF metabolites abundances in gender and group’s 

age is demonstrated.  

In Chapter 4 a metabolic biomarker study on CSF from pre-clinical animal model of 

MScl, namely Experimental Autoimmune Encephalomyelitis (EAE) is investigated. The 

aim was to establish the metabolic profile of CSF of EAE-affected rats (representing 

neuroinflammation, a crucial part of early stage of MScl) and to detect the metabolic 

markers related to neuroinflammation. In order to find disease specific markers the NMR 

spectra were analyzed with two different chemometric techniques.   

Chapter 5 portrays the analysis of blood plasma and CSF of EAE-affected rats. In this 

study both biofluids were measured by NMR spectroscopy. The obtained NMR spectra 

were subsequently joined by means of a mid-level data fusion scheme. Moreover, in this 

chapter a new approach for multi-class classification is presented. 

Chapter 6 brings up a novel approach for data fusion, which is then applied to 

metabolomic CSF datasets from patients suffering from MScl disease. In this study two 

different analytical platforms, namely NMR and Gas Chromatography-Mass 

Spectrometry, were used to generate metabolic profiles of CSF. The approach shown in 

this study consists of concatenating NMR and GC-MS data in kernel space.  

Lastly, chapter 7 briefly summarizes the findings of the research described in this 

thesis, followed by some perspectives on future research.  
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ABSTRACT 
Metabolomics is the discipline where endogenous and exogenous metabolites are 

assessed, identified and quantified in different biological samples. Metabolites are 

crucial components of biological system and highly informative about its functional state, 

due to their closeness to functional endpoints and to the organism’s phenotypes. 

Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry, is one 

of the main metabolomics analytical platforms. The technological developments in the 

field of NMR spectroscopy have enabled the identification and quantitative measurement 

of the many metabolites in a single sample of biofluids in a non-targeted and non-

destructive manner. Combination of NMR spectra of biofluids and pattern recognition 

methods has driven forward the application of metabolomics in the field of biomarker 

discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers 

or defining pathological status, has been growing exponentially as evidenced by the 

number of published papers. In this review, we describe the developments in data 

acquisition and multivariate analysis of NMR-based metabolomics data, with particular 

emphasis on the metabolomics of Cerebrospinal Fluid and biomarker discovery in 

Multiple Sclerosis. 
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1.1 INTRODUCTION 
The terms metabonomics 1 and metabolomics 2 appeared at the end of the 90’s and 

early 2000’s, respectively 1, 3. They describe, in broad terms, the study of the 

metabolome, which was first defined as the collective set of metabolites produced or 

present in a biosystem 3, 4. Nowadays, metabonomics and metabolomics are often used 

interchangeably 4, 5, although their exact definitions are slightly different. The most often 

cited definition of metabonomics is the one proposed in 1999 in Xenobiotica 1: 

‘Metabonomics is defined as the quantitative measurement of the dynamic multi-

parametric metabolic response of living systems to pathophysiological stimuli or genetic 

modification’. For Metabolomics a very similar definition is often used 4: ‘The study of the 

quantitative complement of metabolites in a biological system and changes in metabolite 

concentrations or fluxes related to genetic or environmental perturbations. Studies are 

typically holistic in nature though targeted studies are also encompassed in the term 

metabolomics’. Since, metabolomics and metabonomics terms are in practice often 

utilized indifferently the analytical and modeling procedures are the same and therefore 

in the rest of the paper we will employ the term metabolomics. 
Metabolomics is a strongly developing field as evident from the exponentially growing 

number of papers. With a doubling time of circa three and half years, approximately 

1420 papers were published in 2011 to which NMR and Mass Spectrometry equally 

contribute about one-third (as defined in Web of Science with keywords [metabolom* or 

metabonom*]. For comparison, the field of proteomics is about twice as large with about 

3600 published papers in 2011. Metabolomics’ approaches have developed in many 

areas of biomedical research, such as toxicology studies, nutritional effects, metabolic 

consequences of genetic modifications, inborn errors of metabolism, diabetes, cancer 

diagnostics, and diagnosing of neurological diseases 6-14. The metabolic profiling was 

first reported in the literature in 1950 but the first progresses were slow until it became a 

separate scientific area15. To date there has been increasing emphasis on obtaining 

spectral “fingerprints” or metabolic profiles that can be correlated with phenotype 2, 16. 

Metabolomics is a reflection of genetic factors and metabolites are often defined as the 

functional endpoint. The closeness of the metabolism to an organism’s phenotypes 
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causes that it will be affected by disease and thus it is relevant to measure metabolites. 

Moreover, the flux of metabolites is measured in seconds in comparison to turnover in 

proteome which is measured in minutes to hours 17. This shorter response time allows 

one to use the metabolomics as indicator of environmental perturbations. This is one of 

the reason why van der Greef et al. described metabolomics as a promising tool for 

clinical systems biology to detect early metabolic perturbations, even before the 

appearance of disease symptoms 18. A single metabolite can be a substrate for a 

number of different enzymes, causing linkage of metabolites through complex pathways. 

This linkage makes difficult to assess the consequence of changes in mRNA products 

and proteins, but at the same time metabolites and their concentrations may report on 

changes in both mRNA and proteins 7, 19. This is another reason why studying disease 

from the metabolic point of view is very attractive. Moreover, only 2766 metabolites (i.e. 

small molecules, <1500Da) are estimated to be derived from men 7 and many 

metabolites are species independent. Therefore, they could form the basis of 

translational studies, i.e. biomarkers that are found in preclinical studies and can be 

applied more directly during clinical studies. Metabolomics can be used either as a 

targeted or a non-targeted analysis of endogenous and exogenous metabolites for 

biomarker discovery 20. According to the official National Institutes of Health, a 

biomarker is defined as ‘characteristic that is objectively measured and evaluated as an 

indicator of normal biologic processes, pathogenic processes, or pharmacologic 

responses to a therapeutic intervention’ 21. The Food and Drug Administration defines a 

valid biomarker as: ‘A biomarker that is measured in an analytical test system with well 

established performance characteristics and for which there is an established scientific 

framework or body of evidence that elucidates the physiologic, toxicologic, 

pharmacologic, or clinical significance of the test results 22. Biomarker is defined as a 

laboratory measurement that is an indicator of diseased processes and also the risk of 

the appearance. For instance, magnetic resonance imaging measures in Alzheimer’s 

disease or in Multiple Sclerosis (MScl) and positron emission tomographic scanning of 

dopamine transporters in Parkinson’s disease are such markers 23. Obviously, 

metabolites or metabolic profiles can be utilized as biomarkers 4, 24. Indeed, metabolic 

biomarkers provide, because of their objective nature, an attractive and valuable tool for 
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accurate diagnose of diseases. Metabolic profiles can be particularly valuable to 

determine when a healthy state becomes dysfunctional in the early stage of the disease 

and provide new possibilities for preventing therapies.  

Metabolomics’ approaches have spread in many areas of biomedical research and 

therefore increasing number metabolic biomarkers are established 4, 8, 25. The 

identification of biochemical biomarkers in biofluids for Central Nervous System (CNS) 

disorders has been the aim of many metabolomics studies 11, 25-33. Presently, the clinical 

diagnostic of most neurological diseases is performed based on the identification of a 

variety of symptoms. However, it is very often difficult to identify individuals at risk or 

establish rapidly a definite diagnosis. This is mostly due to the complexity of CNS 

diseases and to the fact that the ethiopathogenesis of most such diseases is very often 

unclear. CNS diseases are likely to arise from deregulations of several genes, leading to 

complex alterations in protein and/or metabolite profiles, but also changes in 

environmental conditions may affect these profiles. All these aspects reflect the 

complexity of the CNS malfunctions34. Therefore, there is an increasing need to learn 

more about CNS diseases at the molecular systems level, to understand at this level the 

changes that can contribute to pathogenesis of these disorders.  

In metabolic biomarker discovery, an important issue is how to extract relevant 

information from the data, i.e. from the metabolic profiles of biofluids. All data produced 

in metabolomics are highly multivariate. Therefore the use of chemometrics is required 

to find trends or significant information in the data, i.e. relevant metabolites. In 

chemometrics different multivariate methods for data exploration, visualization, 

classification and prediction are available. The empirical models constructed on 

experimental data can subsequently be used for biological interpretation and prediction.  

Nowadays, proton Nuclear Magnetic Resonance (1H-NMR), Gas Chromatography-Mass 

Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) are 

well-established powerful analytical methods for generating metabolomics profiles. For 

the analysis of complex, biological samples like biofluids, these techniques have their 

advantages and disadvantages. For instance, GC-MS requires derivatization, which 

lengthens the sample preparation time.  In general LC-MS and GC-MS need more time 

consuming sample preparation. On the other hand, GC-MS and LC-MS yield a higher 
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sensitivity than NMR and therefore may detect metabolites that are present in a 

concentration below the detection limit of 1H-NMR. On the other hand 1H-NMR requires 

limited sample preparation, is un-targeted, quantitative (absolute), non-destructive, 

reproducible and unbiased 35. 1H-NMR may detect compounds that are too volatile for 

GC, while metabolites without proton (phosphoric acid) are not detected by 1H-NMR.  

We focus in this review on the recent developments in metabolic profiling of 

Cerebrospinal Fluid (CSF) by 1H NMR (and to some extent also blood and urine) aimed 

at identification of biochemical biomarkers for CNS disorders, in particular MScl. Our 

choice of NMR as analytical method was guided by the fact that it is a robust and 

reliable technique for metabolomics application and it allows for detecting a wide range 

of different types of metabolites simultaneously 36. Plasma and urine are historically the 

two biofluids widely used and described for metabolomics application 37-41. Many 

protocols for sampling and measuring of these biofluids can be found 36, 41-43. Metabolic 

profiling of CSF by means of NMR has been performed to find diagnostic biomarkers for 

a number of neurological diseases 17, 32, 33, 44, 45. However, only recently comprehensive 

protocols for metabolic (and proteomic) profiling of CSF have been established 46-48.  

In this review we present comprehensive outlines of data acquisition, data preprocessing 

and data analysis of NMR-based metabolomics data for CSF and discuss its application 

to CSF biomarker discovery for MScl.  

This review covers four main aspects, namely: 

 analytical, i.e. samples preparation and measurements (section 2) 

 data preprocessing (section 3) 

 data analysis, statistical analysis (section 4) 

 biomarker discovery by means of NMR and pattern recognition with focus on CSF 

and MScl (section 5 and 6) 

The first part of the review focuses on recent developments in preparing and measuring 

the metabolic profiles of different biofluids, namely blood plasma, urine and CSF via 

NMR. In this part, the recently established protocol for measurement of the 

metabolomics profiles of CSF is described and discussed. In the next part, the crucial 

steps involved in data preprocessing are described. The third part details the 

multivariate data analysis. The most common pattern recognition methods used in 
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metabolomics are discussed. Also, current progress in data fusion is described. In the 

fourth part, the determination of absolute metabolite concentration and their variations in 

CSF of healthy controls is brought up. In this fourth part, the review centers further on 

providing an overview of recent developments in the application of NMR and pattern 

recognition methods in metabolic biomarker discovery for MScl. 
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1.2 NMR of BIOFLUIDS 

High-resolution NMR spectroscopy is a quantitative and non-destructive technique. It is 

a robust and reliable analytical method with paramount reproducibility and repeatability 
35. In metabolomics studies either biofluids, cell or tissues extracts are used as main 

samples for metabolic fingerprints. Biofluids like urine, blood plasma or serum, CSF are 

the most common investigated samples in metabolomics studies. Most of these biofluids 

can be obtained quite easily with minimal invasion. Moreover, a high sampling frequency 

can be achieved 42. In the late 1960s the developments of Fourier transform NMR 

spectroscopy and next in the 1970s the implementation of superconducting magnets 

permitted the beginning of the application of NMR spectroscopy for the metabolite 

profiling of biofluids. The first real applications of NMR to the analysis of biofluids, dates 

to early 1980s 49-51. Further NMR technical improvements in the 1990s, namely stronger 

magnetic fields and introduction of cryo-cooled NMR probes, have led to an enormous 

boost in NMR sensitivity; the signal to noise ratio of ethylbenzene was circa 800:1 at the 

then highest fields of 600 MHz versus circa 8000:1 for 800 MHz nowadays. Today, the 

detection limit of metabolite concentration is of the order of μM. Although, the sensitivity 

has increased enormously and still improves, it remains a weak point compared to MS. 

Recent developments in spin hyperpolarisation via dynamic-nuclear polarization (DNP) 

or para-hydrogen-induced hyperpolarisation (PHIP) hold great promises in resolving this 

backlog 52, 53. Furthermore, the increase in field strength has tremendously improved the 

resolution. Today, metabolomics is an exponentially growing field in which NMR together 

with MS each contribute about equally. A very important benefit of NMR spectroscopy 

for metabolic profiling is that it is quantitative and does not require time-consuming 

sample preparation steps, like separation or derivatization. Moreover, it does not require 

a-prior knowledge about compounds present in a sample and is thus ideally suited for 

non-targeted profiling.  
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1.2.1 Sampling and NMR sample preparation 
Urine, blood plasma and blood serum are the most commonly used biofluids in 

metabolomics studies, because they contain hundreds to thousands metabolites and 

they both can be obtained in relatively non-invasive manner 36, 54-59.  Another biofluid, 

CSF, is widely used in metabolomics studies of neurological disease 28, 32, 33. In contrast 

to plasma and urine its sampling is much more invasive.31  A number of other biofluids 

like amniotic fluid 60, 61, bile 62, 63, seminal fluid 64-66, saliva 67-69 have been also 

investigated. 

Biological samples should be collected under strict conditions. Usually blood is collected 

by venipuncture into standard vials containing either ethylene diamine tetra acetate 

(EDTA) or lithium heparin as anti-coagulant.  One has to remember that when EDTA is 

used extra resonances can be observed in the NMR spectrum. This is due to formation 

of complexes between EDTA and ions Ca2+ and Mg2+ which are present in plasma 51.  

Plasma and serum can be measured directly with minimal sample preparation. Dilution 

of plasma or serum is recommended, since it reduces the sample’s viscosity and 

releases plasma-protein bound metabolites  

Proteins can be removed before NMR measurements by either organic solvent 

precipitation or by ultra-filtration using a 10kDa molecular weight cut off filter 70.  

However, a recent comparison of organic solvent precipitation with ultrafiltration has 

demonstrated that ultra-filtration was superior for metabolic NMR measurement 71, 72. 

Before usage, the filter has to be cleaned from glycerol, which is present in many 

commercially available filters, by centrifugating it with water. The effect of protein 

removal on the 1H-NMR spectrum of blood plasma is shown in Figure 1. For urine 

samples addition of sodium azide is required to control bacterial growth. Detailed 

procedures to collect, store and measure biofluids such as blood or serum, urine have 

been provided in the literature as guidance 36, 42. 

The pH of samples has a significant influence on the chemical shifts observed in the 

NMR spectrum. Therefore, it is important to control the pH of the biofluid sample. In the 

literature pH 7.2 and 2.5 have been mostly used 33, 73, 74. A very popular and fast method 

to adjust pH is addition of a phosphate buffer stock solution made up in D2O at pH 7.0 or 

7.4 36. Manual adjustment of pH using NaOH and HCl is another possibility 75, 76. In 
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section 1.2.3, we present a detailed protocol for the metaboloic sampling and profiling of 

CSF by NMR. 

 
Figure 1. The 500 MHz 1H-NMR spectrum of blood plasma sample: (a) before, and (b) after 

protein removal. 

 

A very important advantage of NMR is absolute quantification77. The linear response of 

NMR experiment is the key benefit of NMR over other analytical methods. The signal 

intensities observed in NMR spectrum are directly proportional to the concentration (i.e. 

molar amount) of that nucleus in the sample 77, 78. In order to obtain absolute 

concentration of metabolites detected by NMR, usually the addition of internal standards 

is used. The reference compound used for concentration reference as well as for 

chemical shift (δ=0.00) is usually the sodium salt of 3-trimethylsilylpropionic acid-d4 

(TSP-d4) with deuterated methylene groups. Other references standards are 2,2-
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dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) or for organic solvent 

trimethylsilane (TMS). Another internal reference standard, 4,4-dimethyl-4-silapentane-

1-ammonium trifluoroacetate has been proposed by Alum et al. as promising universal 

for metabolic profiling 79. Akoka et al. have introduced a synthetic electronic reference 

signal, Electronic REference To access In vivo Concentrations (ERETIC), for 

quantification purpose 80. Similar approach, QUANTification by Artificial Signal, has been 

recently introduced by Farrant et al.81. In these methods an internal standard is claimed 

to be not required.  The standard way of quantifying compounds in NMR spectrum is 

integrating the different NMR resonances and comparing them to the area of the internal 

standard. Another possibility is spectral deconvolution, available for instance in 

MestReNova 82, where global spectral deconvolution is applied automatically to whole 

NMR spectrum.  In the Chenomx NMR Suite software the spectral signatures (singlets, 

doublets, triplets etc.), i.e. the peak shapes, of a compound from an internal database of 

reference spectra is fitted to the experimental NMR spectrum 83. In contrast, peak 

integration is very sensitive to baseline distortions. Moreover even slightly overlapping 

resonances cannot be reliably quantified. Peak-shape fitting, like in Chenomx, is not 

affected by baseline distortions and still efficient when some of the resonances and/or 

part of a resonance overlap with that of another compound, the peak shape can still be 

fitted with reasonable accuracy and the concentration of the compound reliably 

determined. 

Usually, 5-mm diameter NMR tubes are used for NMR measurements. There are also 

much smaller NMR tubes with diameter of 1-3 mm 84 or a microscale SHIGEMI  tube33 in 

which a reduced sample size is compensated by solid glass beneath the level of sample. 

Recently NMR on small biofluid sample size (600nL) was investigated, where 

microfluidic stripline resonator was used to measure 1H-NMR spectrum of human CSF 
85. 

The number of observed metabolites in biofluids largely depends on the magnetic field 

strength of NMR spectrometer. Therefore, working at the highest available magnetic 

field is recommended. Generally, 500 or 600 MHz NMR instruments are used in 

metabolomics studies, because these fields are easily accessed 16, 32, 67. However, the 

use of 800 or 900 MHz has been reported 33, 47. 
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1.2.2 Measurements and spectral pre-treatment 
The detection limit for bodyfluid NMR spectroscopy depends on many factors such as 

field strength, number of protons contributing to a resonance and a region of the 

spectrum where the resonance is observed.  In general the detection limit is in the low 

micromolar range in the less crowded regions of the spectrum 86. There are two 

experimental issues in NMR of biofluids. The first one is connected to accurate solvent 

suppression. Even though very effective methods like excitation sculpting 87 or 

WATERGATE 88 exist, the simple presaturation is the prevalent one. The second 

experimental issue is associated with distinction between small molecular weight 

metabolites (typically <1500Da) and macromolecules. Macromolecules produce broad 

resonances due to limited rotational diffusion and short T2 relaxation times, causing 

difficulties in spectral interpretation. To overcome these problems, 1D nuclear 

Overhauser effect spectroscopy with presaturation (1D NOESY-presat) 89, 90 and the 1D 

Carr-Purcell-Meiboom-Gill (CPMG) 91 are two pulse sequences used for metabolic 

profiling. 1D NOESY has become the most popular sequence for NMR-based metabolic 

analysis. This is mostly due to high quality of water suppression with little calibration and 

consistency in obtained spectra. CPMG as special pulse sequence is used to remove 

broad proteins signals if they have not been taken away before NMR measurement.  

In metabolomics studies of biofluids beside 1D 1H-NMR homonuclear 2D J-resolved is 

also very often used 92. Moreover 2D J-resolved spectra increase identification of 

biochemical substances. Other 2D NMR spectroscopy, such as correlation spectroscopy 

(COSY) 93 and total correlation spectroscopy (TOCSY) experiments 94 give spin-spin 

coupling connectivities. They provide information on which hydrogens in a molecule are 

close in chemical bond term. 2D NMR spectroscopy is mostly performed for better 

signals assignment. 

The NMR data are typically processed by Fourier Transformation (FT). Before FT 

apodization and zero filling of Free Induction Decay (FID) is performed. The phase is 

then corrected to obtain absorption line shape. For spectral pre-treatment several 

commercial and free licensed software packages are available, such as PERCH 95, , 

Chenomx NMR Suite 83, MestReNova 82  and the algorithm AutoFit 96. They all provide a 
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number of functions involving spectral pre-treatment, metabolite identifications and 

quantification.  

 

1.2.3 Metabolic protocol of CSF 
CSF is a colourless and crystal-clear fluid that surrounds the brain and spinal cord and 

thus protecting them from immunological and mechanical damage. The main 

composition of CSF is water (around 99%), proteins, nutrients needed for metabolism 

and electrolytes. CSF is also responsible for removing waste from surrounding tissues. 

CSF is constantly produced at rate of circa 500ml per day and its turnover is around 4 

times per day 28. 

CSF is normally sampled via lumbar puncture between the L4 and L5 vertebrae. CSF, 

directly after collection, should be centrifuged to remove all cellular elements. It has 

been shown that several metabolites concentrations were affected in porcine CSF when 

residual white blood cells were present 97. Therefore, it is crucial to not only assess that 

CSF is free of erythrocytes but also white blood cells. After sampling CSF samples 

should be stored in -80oC. This storing temperature assures that the metabolic 

composition is not affected. It has been shown that storing CSF in -20oC causes 

activation of a number of chemical processes, which influence the metabolite 

concentrations 98. Another contradictory study has demonstrated insignificant 

quantitative changes in human CSF after freezing in -20oC and subsequent thawing 48. It 

has further been demonstrated that keeping CSF samples at room temperature for a 

limited (hour) does not affect metabolite composition in human CSF to any great extent. 

Analysis of the impact of a delay in storage of CSF has revealed that out of 93 unique 

identified metabolites, only the concentration of erythronic acid has been elevated 

significantly with increased time left at room temperature 46. Another significant aspect is 

connected to pH of CSF, which is naturally poorly buffered. The CSF pH rises drastically 

upon standing and storing in -20oC 98, 99. This rapid increase may be explained by 

evaporization of CO2.  

CSF in comparison to blood plasma has a relatively low protein concentration 

(<500mg/l). Therefore prior to NMR analysis they are not always removed. In the 

literature, NMR measurements on both native 29, 100-102 and deproteinized samples have 
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been reported 47, 73. In our experience, the presence of protein does not affect the 

measured metabolite concentration to a large extent. If sufficient volume of CSF is 

available, the buffer solution solvated in a mixture of water and D2O consists of TSP, 

mM sodium azide (NaN3) and mM sodium phosphate dibasic dehydrate 

(Na2HPO4•2H2O) are added prior NMR measurements. If CSF sample is deproteinized 

and snap-frozen it is first reconstituted in D2O and next buffer solution with TSP and 

NaN3 are added. The amount of CSF that can be collected in one sampling is often not 

sufficient for measuring it with standard 5 mm NMR-tube. For instance, rat’s brain is 

rather small and only a small volume of CSF can be collected (~100 uL). In that situation 

CSF samples can be diluted and measured in SHIGEMI tube33 or in 1 mm NMR-tube 
103. One should keep in mind that using small volume tube does not mean an increase in 

sensitivity of low abundant metabolites. 

An up-to-date protocol for 1H NMR metabolomic CSF sampling and sample preparation 

is available in Rosenling et al. 46.  

 

 

1.3 DATA PREPROCESSING 
Data preprocessing is an intermediate step between raw spectra and data analysis.  The 

main objective of data preprocessing is to transform the data in such way that the 

samples in the dataset are more comparable in order to ease and improve the data 

analysis.  The crucial role of data preprocessing was pointed and discussed in many 

publications104-107. For NMR spectra preprocessing usually involves, baseline correction, 

alignment, binning, normalization and scaling.   

 

1.3.1 Baseline correction 
Usually, the first step of data preprocessing is the baseline removal. Baseline distortions 

affect not only the statistical analysis but also the quantification of the metabolites. 

These distortions can be corrected in many different ways; usually an automated 

baseline correction is applied.  Currently the most popular methods are based on 

polynomial-fitting such as iterative polynomial fitting 108, robust estimation procedure 
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implemented in Chenomx NMR Suite 109, locally weighted scatterplot smoothing 

(Lowess) fit 110. Asymmetric Least Squares 111 is a method that uses a different 

constraint for baseline correction. It tries to estimate the baseline by fitting a regression 

curve to a spectrum using a penalized least square approach. Baseline can also be 

corrected by using B-splines, B-splines with Penalization (i.e. P-splines) 112 or by 

applying mixture models 113. 

After baseline correction spectral regions not populated with by endogenous metabolites 

are often removed. Therefore, the spectrum outside the window 0.2-10.0 ppm is 

frequently removed. Another region of the spectrum that is usually excluded belongs to 

solvent water. Although suppression techniques are used for water, the remaining signal 

dominates in the spectrum. Moreover the variance contained in water signal is not of 

interest and might interfere with data analysis. In metabolomics of biofluids water signal 

dominates the spectrum between 4.7 ppm and 5.0 ppm.  In case of urine spectra the 

signal of urea, which is very close to the water signal, is excluded. Urea beside water is 

the most concentrated metabolite in urine. Moreover it is not quantitative, because 

protons from urea exchange with water and other exchangeable protons and thus the 

peak intensity varies with quality of water suppression as well as with pH. In CSF and 

plasma spectra no additional exclusion regions are necessary.  

 

1.3.2 Alignment 
One of the most frustrating problems with NMR profiles, from a multivariate data 

analysis point of view, is the presence of peak shifts between different spectra 104. These 

variations obscure the discovery of patterns in the spectra 114-116. Shifts can be due to 

instrumental factors, changes of the pH and temperature, changes of salt concentration, 

overall dilution and relative concentration of specific ions. All these parameters influence 

peaks shifts, although not all peaks are affected to the same extend. Recently Cloarec et 

al. 117 and Giskeodegard et al. 118 have shown that peaks shifts can be beneficial for 

discriminating groups if the locations of peaks are systematically different in studied 

groups. However it is not yet possible to trace back these differences into a single factor. 

Therefore an essential step in preprocessing is to adjust the peaks shifts, i.e. alignment 

or warping. NMR spectra are usually first aligned by spectral referencing. This simple, 
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global method for peaks alignment sets the internal reference signal of each spectrum to 

0 ppm. This type of alignment removes only global shifts and is not sufficient, because in 

NMR mostly local shifts are observable 119. The effect of different alignment methods for 

NMR spectra on classification results is presented by Giskeodegard et al. 118.  

Interval correlated shifting (icoshift) was proposed for NMR spectra 120. In this warping 

method spectra are divided into different length segments and aligned to the 

corresponding segments of a reference spectrum. Warping is performed by shifting 

sideways the segments so as to maximize the correlation between segments. This is 

done by calculating the cross-correlation between the segments by a fast Fourier 

transform which allows for simultaneously aligning all spectra segments of spectra. 

Another segmented warping method is Correlation Optimized Warping (COW) 121, 122 

which also divides spectra into segments but of equal size. By linear stretching and 

compressing it aligns the segments with the segments of a reference spectrum. The 

objective is to maximize the overall correlation between two spectra. COW was originally 

proposed for the alignment of chromatographic data, however it has been successfully 

applied to NMR spectra 46, 123. Peak alignment by beam search was made for NMR 

signals 124. This method also divides spectra into segments but warps them by both 

shifting and stretching/compressing to maximize their respective correlation. Wu et al. 

have proposed fast iterative warping algorithm, i.e. fuzzy warping, for urine NMR 

spectral data 125. This warping procedure tries to establish correspondence between the 

most intense peaks in the spectra to be aligned.  

Recently a method for aligning NMR spectra, called hierarchical Cluster-based Peak 

Alignment (CluPA), has been proposed by Vu et al. 126. The algorithm builds hierarchical 

cluster tree from peaks of reference and target spectra. It aligns two spectra using this 

tree. Several others warping methods have been proposed to remove complex 

misalignments 127-129. It is important to mention that warping may affect peaks area and 

thus quantification. Therefore absolute quantification should be performed on unaligned 

spectra.  Figure 2 shows a set of 82 NMR spectra before and after baseline correction 

(via ALS) and alignment (via COW).  
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Figure 2. Example of NMR spectra: a) before baseline correction and alignment; b) after 

baseline and alignment. 
 

1.3.3 Binning 

For multivariate analysis of NMR metabolic data either quantitative or scored integrals of 

specific spectral peaks is used 130, 131. An NMR spectrum, after excluding certain signals 

(e.g. water, internal reference, urea), contains approximately 22000 data point 

(variables).  Therefore in order to reduce the data dimensionality binning (also called 

bucketing) is commonly used. One has to keep in mind that binning reduces the spectral 

resolution. In binning the spectra are divided into segments (so called bins or buckets) 

and the total area within each bin is calculated to represent the original spectrum. 



30 

 

Therefore some minor peaks shifts can be removed by spectral binning. There are many 

types of spectral binning. However the most common type of spectral binning is an 

equidistant binning of 0.04 ppm. This indicates that every spectrum is divided into evenly 

spaced integral regions with spectral width of 0.04 ppm 105, 106, 132. The disadvantage of 

equal size binning is the lack of flexibility of the boundaries. If a peak is split between 

two bins, this peak frequency may significantly influence the data analysis. In order to 

prevent peaks being split by the boundaries of bins, methods which are based on non-

equidistance spacing have been proposed, e.g. adaptive-intelligent binning (AI-binning) 
133, Gaussian binning 134, adaptive binning using wavelet transform 135 and Dynamic 

adaptive binning136. These methods take into account peak positions and thus to focus 

on a better peak definition. Therefore it is possible to obtain binning where one bin 

covers only complete peaks. In Figure 3 an example of two types of spectral binning is 

presented, i.e. AI-binning and equidistance binning (0.04 ppm). 

 
Figure 3.  An example of AI-binning and equal sized binning performed on a fragment of NMR 

spectrum. 
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1.3.4 Normalization scaling and transformation 
This step of preprocessing tries to account for variations of the overall concentrations of 

samples. The main aim is to make all the samples comparable with each other by for 

instance removing or minimizing total amount of material per samples or metabolite 

dilution. This is particularly relevant for urine studies where the variations of overall 

concentrations of samples are very distinctive and can vary by orders of magnitude 50. 

Other inter-sample variations such as different relaxation or variations in RF pulse 

calibration can be corrected by normalization. Typically normalization is a multiplication 

of every row (i.e. every NMR spectrum) by a constant 105. This constant can be 

computed in many different ways. The standard method, integral normalization, 

normalizes the individual spectra to constant total integrated intensity across the whole 

profile 137.  Integral normalization is also referred as constant sum normalization 105. For 

NMR spectra of urine the normalization using the creatinine peak area as reference is 

common practice 138, 139. There are other normalization methods as well, for instance 

probabilistic quotient normalization (PQ) 140, “histogram” normalization 141, group 

aggregating normalization (GAN) 142.  

 

Metabolites can range in concentration over many orders of magnitude. Moreover the 

variation in metabolites level is often linked to concentration in such way that higher 

concentration metabolites have higher variation 104. This causes that such metabolites 

have the highest influence on results of e.g. Principal Component Analysis (PCA) or 

Partial Least Squares (PLS). Therefore it is important to scale metabolites intensities 

before analysis to avoid selection of the most abundant metabolites as significant.  

A number of scaling methods are commonly used, namely meancentering, autoscaling, 

pareto scaling, range scaling, vast scaling, level scaling  104, 105, 143. Meancentering 

adjusts for differences between high-concentrated and low-concentrated metabolites by 

converting all values to vary around zero instead of around mean of metabolite level. It is 

not sufficient if in the data there are sub-populations with different variability 

(heteroscedastic data). Meancentering is usually used in combination with other scaling 

methods. Autoscaling scales all metabolites to unit variance and therefore the data is 

analyzed on the correlations basis instead of covariances. One has to be careful to use 
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this scaling for noisy data. Indeed autoscaling increases the influence of noisy variables.  

Pareto scaling is an intermediate option.  It uses the square root of standard deviation as 

scaling factor instead of the standard deviation. This scaling method stays closer to real 

measurement but it is sensitive to large changes in the data.  In range scaling the 

difference between the minimal and the maximal concentration of each metabolite is 

used as scaling factor. All metabolites in the data become equally important after 

applying ranges scaling. It is important to remember that range scaling is sensitive to 

outliers Because only two values are used to calculate the range. Level scaling focuses 

on relative response by using mean as scaling factor. It is suitable for use when large 

relative changes are of interest. Vast scaling can be considered as extension of 

autoscaling. It focuses at stable metabolites, i.e. the one having small variations.  

Besides scaling methods there are several transformation approaches, like log transform 
143 or the Box-Cox transformation 144 which can be used as preprocessing step. The 

Box-Cox transformation is a parametric preprocessing technique which decreases the 

effect of non-normality and heteroscedasticity. The last methodology described here is 

log transformation, which is nonlinear conversion of data. Large values are reduced in 

the data set relatively more than the small values. Log transformation removes 

heteroscedasticy from data if relative standard deviation is constant.  
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1.4 DATA ANALYSIS 

1.4.1 Unsupervised analysis 
Multivariate statistical methods provide an expert means of analyzing and maximizing 

information recovery from complex NMR data. Precise inspection of NMR data and 

integration of individual peaks can give valuable information on biochemical changes. 

After preprocessing the next stage is to analyse the data. The first step of data analysis 

is to explore and discover the overall structure of the data, find trends and groupings in 

the data. This stage of data analysis is based on blind unsupervised methods, i.e. those 

that do not assume any prior knowledge. These methods allow for an unbiased view of 

the data. There are several unsupervised methods available, among them PCA, robust-

PCA, Hierarchical cluster analysis (HCA), K-means. 

 

PCA is the workhorse 145 in multivariate analysis and is probably the most commonly 

used multivariate statistical analysis in metabolomics 139, 146-148. It was invented by 

Pearson in 1901 149. PCA converts the multidimensional data space into a low-

dimensional model plane. This technique expresses most of the variance within a data 

set using a smaller number of factors, so called Principal Components (PC’s). Each PC 

is a linear combination of the original variables whereby each successive PC explains 

the maximum amount of variance, which was not accounted for by the previous PCs. 

Each PC is orthogonal to the other PCs and therefore exhibits different information. The 

variation in spectral data is described by a few PCs, compared to the number of original 

variables. Usually NMR spectra of 300 bins each can be summarized by a few new 

Principal Components (PC’s). Moreover it enables to find trends, groupings, at to an 

extend outliers in the data. 

Conversion of the original data set by PCA results in two matrices known as scores and 

loadings. Scores are the new coordinates for the samples. In a scores plot, each point 

represents a single spectrum.  It provides a summary of all spectra and shows how they 

are related to each other. Hence, the points that are close to each other have similar 

profiles. On the contrary, objects that lie far away are characterized by different 

properties. The PC loadings describe the way in which the old variables are linearly 
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combined to new variables (PC’s) and indicate which variables have the greatest 

contribution in transforming to the new variables. In the loading plot the relation among 

measured variables is shown. An important feature is that the directions in the score plot 

correspond to direction in the loading plot. Thus, any spectral clustering observed on the 

score plot is interpreted by examination of the loadings.  

Presence of outliers affects all least squares methods, which are commonly used in 

multivariate data analysis. Therefore outliers detection is very essential. PCA can be 

used for outliers detection, however it can detect only certain type of outliers, i.e. good 

leverage objects (lying far away from the majority of objects). It cannot detect the 

orthogonal outliers, since after projecting them into PCA space they fall into cloud of 

data majority. Therefore robust-PCA should rather be used for outliers detection. Up till 

now, many robust versions of classical estimators have been proposed and their 

description can be found in 150. Matlab implementation of robust-PCA can be found in 
151, 152. 

HCA is another unsupervised method which is widely used in modeling of metabolic 

data 153-155. This method has the ability to group samples according to their similarity. 

HCA requires the choice of two input functions, namely the metric to be used as 

similarity between metabolic profiles (e.g. Euclidian, Mahalanobis or Minkowski 

distances) and the so-called linkage function (e.g. single, average complete or Ward’s) 
156, 157. The choice of similarity metric and linkage have influence on the clustering 

structure. The HCA clusters the data forming a tree called dendrogram. In order to use 

HCA for classification, one has to decide the similarity cut-off, which divides the 

dendrogram into separate clusters. The main drawback of HCA is that it does not 

provide the information about the reason for a certain clustering. This means that HCA 

does not reveal which metabolites are responsible for the differences between clusters.  

K-means is clustering approach has become extensively used in post-genomics, 

especially in analysis of transcriptomic data 156, 158-160. Despite the popularity of k-means 

in many areas, in metabolomics it has not been widely applied. This might be due to the 

fact that there is no associated visualization or diagnostic tool. Although, recent 

applications involving the k-means for metabolomics data have been demonstrated 154, 

161.  
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Lately a method called statistical correlation spectroscopy (STOCSY) 162, 163 has been 

developed to increase the information recovery from complex 1D-NMR metabolomics 

spectra. This method is based on the correlation matrix computed from 1D-NMR 

spectra. The correlation is calculated between all intensities in a set of NMR spectra. In 

this way the connections between signals from molecules that fluctuate in concentration 

between samples can be generated.  By plotting the correlation matrix a graphical 

representation of samples spectra set comparable to that of a 2D correlation NMR 

experiment performed on one sample, namely total correlation spectroscopy (TOCSY).  

STOCSY is combined with supervised techniques to provide the link between relevant 

metabolites 117, 162. STOCSY has been utilized for identification of drug metabolites in 

human urine164. Application of STOCSY to NMR data coupled with Liquid 

Chromatography arising from complex biological mixture has been demonstrated by 

Smith et al. 165. STOCSY approach can be applied to 1D as well as to 2D data and to 

homo or heteronuclear spectral data. Heterospectroscopic-STOCSY takes into account 

a correlation between two different experimental data 166, 167.  

Recently a combination of STOCSY and HCA has been developed, namely cluster 

analysis statistical spectroscopy (CLASSY) 168. This approach has advantages over 

STOCSY, because correlations between the peaks from the same molecule are 

detected with higher accuracy.  

 

1.4.2 Supervised analysis 
Supervised techniques make use of a priori known structure. They use this knowledge to 

learn patterns and rules to predict new data. In these methods the relation between a 

matrix of predictors (i.e. NMR spectra) and a matrix or vector of responses (e.g. class 

membership or enzyme activity) is learnt. Regression is an example of supervised 

approach. In regression the responses are usually continuous parameters, e.g. age, 

blood pressure. Another major type of supervised method is classification in which 

responses are discrete and represented as class membership. In classification one 

searches for a rule that classify the objects into one of several classes. It is important to 

mention that regression and classification are closely related, since most regression 

methods can be used as classification approach. A very important aspect of 
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classification method is validation. Supervised methods are very powerful but it is often 

possible to construct a model which fits the data perfectly, giving 100% correct 

classification even if there is no real relation in the data. This is mostly caused by the 

high dimensionality of the metabolomics data (i.e. there are too many degrees of 

freedom with which the response can be predicted). Therefore validation of the model is 

a very crucial step in classification methods and will be discussed in the section entitled 

Validation. A wide range of methods has been used in metabolomics; here we focus on 

a few of them, i.e. on discriminant techniques. The advantage of these methods is to 

provide information about those variables that indicate differences between two or more 

classes. Therefore they are popular in metabolomics for biomarker discovery studies. 
 

One of the most widely used classification method is Partial Least Squares Discriminant 

Analysis (PLS-DA), which is an alternative of the regression version of this technique, 

namely PLS 169, 170. This technique, similarly to PCA, is a latent variable approach. It 

assumes that the data can be well approximated by a low dimensional subspace, i.e. by 

latent variables, which are assumed to be linear combinations of the original variables. A 

PLS-DA model can be expressed by: 

Model of X: X=TPT + E       
Model of Y: Y=UQT + F   (1) 

where X is an (n x m) matrix of predictors, Y is an (n x p) matrix of responses, T and U 

are an (n x l) matrices of projections of X (the X score) and Y (the Y scores), 

respectively, P and Q are, (m x l) and (p x l) loading matrices, respectively and matrices 

E and F are the error terms, and T indicates transposition. 

The PSL-DA model can be expressed as well as: 

Y=Xb+r     (2) 

Where, X is data matrix, y a vector of group memberships, b a vector of regression 

coefficients and r a vector of model residuals. 

In Figure 4 it is shown how PCA and the PLS-DA model is obtained. As can be seen the 

first PC is constructed in the direction of highest variance in the data, while the first LV in 

the direction explaining the between-class variation of the objects.  
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Figure 4. An illustration of PCA and PLS-DA model for simulated data containing 4 classes 

(pink, red, green and blue circles). 
 

PLS-DA is a latent variable method, therefore it is possible to project the data into this 

new space, showing the relation between samples and variables. PLS-DA is well suited 

for highly correlated variables. Moreover PLS-DA can be used for two classes modeling, 

as well as when more than two classes are available, and then it is called PLS2-DA. In 

metabolomics it has been used in many applications 9, 32, 33, 58, 171.  

The recent modification of PLS-DA is orthogonal PLS-DA (OPLS-DA) 172 in which the 

model is split into two parts. The systematic variations in X are split into two parts, i.e. 

one that is linearly related to response and one that is linearly uncorrelated to response 

(orthogonal).  In that way only variation related to response are used to model it. The 

OPLS-DA model contains two modeled variations, namely the response-predictive 
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(related variation TpCT
p) and the response-orthogonal (ToPT

o). The OPLS-DA model can 

be expressed as: 

Model X:  X=ToPT
o + TpPT

p + E 
Model of Y: Y=TpCT

p + F 

In terms of prediction power OPLS-DA and PLS-DA are comparable (for the same 

amount of latent variable). However in terms of interpretability the OPLS-DA has 

advantages over standard PLS-DA, since the irrelevant variation is filtered out.  This 

variation unrelated to response is often called structured noise and is caused by 

differences between subjects (e.g. different diet, age, gender). OPLS-DA similarly to 

PLS-DA has been successfully applied to many metabolomics data 117, 162, 173. One has 

to be aware of that OPLS-DA never outperforms PLS-DA 174. Moreover it has been 

shown by Kemsley and Tapp that the splitting of PLS models into y-related and y-

unrelated parts can be obtained from the factorization proposed by Martens 175, 176. It is 

important to mention that this is restricted to PLS1, i.e. when one y-response is 

available. 

 

In the field of pattern recognition methods many other discriminant techniques are 

available to analyze metabolomics datasets. However metabolomic data contain highly 

collinear variables, usually with many more variables than samples. This causes 

problems with many standard pattern recognition methods, e.g. Linear Discriminant 

Analysis (LDA) and Quadratic Discriminant Analysis (QDA) 156, 177-179. Therefore in order 

to use them for metabolomics data special adaptations for high-dimensional data have 

to be undertaken. One possibility is to perform data reduction on beforehand by means 

of PCA. This method is then called Principal Component Discriminant Analysis (PCDA) 
180, 181. Lately a modification of the standard Canonical Variates Analysis (CVA) method 

to cope with collinear high-dimensional data has been developed, namely extended 

CVA (ECVA)  182. This approach can be used as a supervised compression method and 

be used in combination with LDA as a classifier a tool for classification and 

discrimination of collinear data is obtained. LDA is applied to the canonical variates 
obtained from ECVA. This new method was recently used for extracting and 

compressing the information contained in metabolomics and proteomic datasets183 . 
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1.4.2.1 Variable selection  
In metabolomics data many variables are irrelevant or redundant for classification 

purpose and therefore the number of variables can be reduced with minor loss of 

information. It is common to apply variable selection methods to obtain a small panel of 

variables that are related to the response. Variable selection generally improves the 

model accuracy and/or reduction of the model complexity; moreover it can also be 

relevant for reducing the risk of overfitting. It is not straightforward to find a subset of 

relevant variables. An optimal variable selection approach is to perform all combinations 

and select the best subset. This is however rarely doable because of computational 

reasons. Moreover the chance of overfitting is much bigger if the number of variables is 

much higher than the number of samples.  Many variable selection techniques exist. 

They work in different ways and have been developed for many different applications 184.  

The simplest variable selection technique is a univariate approach, where every variable 

is evaluated individually. In these methods statistical values are calculated for each 

variable after testing (e.g. t-statistics) the differences between two classes. The 

disadvantage of these methods is that it is relatively easy to get high correlation by pure 

chance for high-dimensional datasets. To avoid such situation and to control false 

discovery rate multiple testing correction is needed 185, 186. On the contrary to proteomics 

in the metabolomics field these univariate variable selection methods are not very 

popular 48, 187, 188. 

Other popular techniques in metabolomics are multivariate 189-193. Many are incorporated 

with the PLS algorithm (e.g. uninformative variable elimination PLS 194, 195, Cross-model 

Validation PLS 196, 197, backward selection method for PLS 198, iterative PLS 199, interval 

PLS 200, selectivity ratio plot 201. A recent tutorial by Anderssen and Bro gives an 

overview of many variable selection methods with focus on regression-based calibration 

models 202. Analysis of Variance-Principal Component Analysis can also be used for 

variable selection, as well as for classification 203. It has been successfully applied to 

metabolomics data 33.  
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1.4.2.2 Validation of models 
As was mentioned earlier validation is a very important aspect of classification. Note that 

validation is also essential from biological point of view. Properly validated statistical 

models give confidence to the findings (i.e. relevant metabolites). This is significant if the 

results from statistical analysis are used later, for instance in clinical application. If there 

are many more variables than samples it is possible to find by chance a perfect model 

that fits data 204. Therefore it is obligatory to check the model for its predictive ability. 

There are several options for validating a model for predictive performance196, 205, 206. 

Cross-validation and double cross-validation are the preferable ones. Permutation is 

another way of validating the classification model. However validation by an external test 

sets provides a means to establish a more reliable predictive performance of the 

classification model. In order to obtain training and test set the data are partitioned by 

using different approach, e.g. the Duplex algorithm207, Kennard-and-Stone 208, 209 or 

random selection. The test set is then used to validate the classification model. 

Validation can be also performed using a completely new set of samples, coming from 

independent new experiment. This kind of validation is the ultimate one, because it 

allows one to test the outcomes of analysis on different population. Unfortunately such 

validation is rarely applied.  

 

1.4.2.3 Non-linear methods 
Biological processes are very often following a non-linear response. This is due to the 

complex interactions occurring in the many levels of biological organization. Some 

external factors (e.g. diet, medications) may produce metabolic effects that are not 

linearly related to group differences 210. Therefore a number of characteristics in 

metabolic data argue for the consideration of non-linear pattern recognition methods. 

Among many non-linear techniques that have been developed in machine learning and 

pattern recognition area, we will discuss a particular class of non-linear models, i.e. 

kernel-based models (namely Support Vector Machines (SVM) and kernel-PLS). 

Kernel-based models require a kernel transformation which is used beforehand to map 

objects into high dimensional space, called the feature space. By mapping the original 

space of size (n x p, where n is the number of samples and p is the number of variables) 
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into the feature space a kernel matrix is obtained of size (n x n). There are many kernel 

functions that can be used and the choice of kernel transformation is user dependent. 

The kernel matrix is required to be positive semi-definite and there are many kernel 

functions which fulfils this requirement 211. The simplest kernel function is the dot product 

of the data matrix. Another commonly used kernel function is the radial basic function, 

which has a tuning parameter related to the width of the Gaussian. It is important to 

optimize this parameter, since its value has influence on the predictive ability of the 

classification model. An Important aspect of any kernel-based method is the loss of 

variable information (due to the kernel transformation). As mentioned above the kernel 

matrix is of size (n x n, where n is the number of samples).  This causes that the 

information regarding the original input variables is vanished and direct interpretation of 

kernel-based-models is not possible. This weakness of kernel-based-methods was 

recently solved by Krooshof et al. 212 by applying a procedure, based on the non-linear 

biplot principle described by Gower 213. 

 

Note that after kernel transformation any of the above discussed method can be applied. 

Therefore PLS-DA as well as OPLS-DA can be applied to the kernel matrix, leading to 

K-PLS 214, 215 and KO-PLS 216. Another kernel-based method, SVM was introduced in 

the early nineties by Vapnik and coworkers 217. SVM is a powerful, supervised method, 

used for binary classification. This state-of-the-art technique first maps the objects into 

feature space then tries to find a hyperplane which separates the data into its two 

classes. SVM uses a set of objects, so called support vectors, which span the range of 

the separating hyperplane. Kernel-based methods have been applied in many areas 

also in metabolomics studies 218-222.  

 

1.4.3 Data fusion 
It is common to study a single system, for instance a disease, by using different 

analytical platforms. Therefore in the last decade data concatenation or data fusion has 

become widespread in the field of metabolomics. Data fusion is an approach that 

combines data from different sources into a single and more complete description. Each 

analytical technology demonstrates different strengths and limitations regarding its 
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capability to distinguish between different biological conditions or to measure 

metabolites, depending upon factors such as sensitivity, sample preparation, analytical 

stability, and analytical reproducibility. The joint use of two or more analytical 

technologies gives then a more robust strategy for data analysis than the use of a single 

platform.  

Different strategies for data fusion have been described by Hall et al. 223. Three 

approaches for concatenating data can be distinguished, namely low-level, mid-level 

and high-level 224, 225. In low-level fusion, different data sources are concatenated at the 

data level. All measured variables (or absolute metabolite concentrations) are put next to 

each other. This strategy is the simplest and the most straightforward. In the mid-level 

fusion, data from different sources are first treated separately for pre-processing and 

variable selection. Next the most optimal set of variables are concatenated into a single 

set. Note that datasets can be combined at the latent variables level. In high-level data 

fusion, different model responses (for instance prediction for each available data set) are 

joined to produce a final response. In high-level data fusion the individual results are 

usually weighted 226. This kind of data fusion has two pitfalls, first interpretation of the 

model results is difficult and second it does not take into account correlation between 

measurements in different data sources. In low-level and midlevel data fusion the 

information about relevant metabolites can be easily determined. The choice of strategy 

for data fusion depends on the goal of the study 227. The overview of different intra and 

inter-omics data integration can be found in 228. 

It is also possible to fuse the datasets in a kernel space. In this approach the different 

sources of data are first mapped into a kernel space. The obtained kernel matrixes are 

then concatenated by linear combination 123, 229. This kernel fusion falls outside the 

range of the classical low-, mid- and high-level fusion. 

It is possible to perform data integration on pathway level.  Using known metabolic 

pathway, data from multiple omics platforms are incorporated. This provides a more 

global investigation of a studied problem. 
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1.5 METABOLOMICS ANALYSIS of CSF by NMR 
Metabolomics plays significant role in the discovery of biomarkers (or risk factors) 

connected with particular disorders. Many metabolomic studies are based on animal 

models, where inter-animal variations are limited, or directly in humans. The 

concentrations and fluxes of individual metabolites are the final product of interactions 

between gene, protein and cellular environment. Thus information delivered by 

metabolomics is complementary to other omics related fields. The metabolic fingerprints 

of biofluids obtained by NMR contain many signals related to both genetic and 

environmental contributions 4, 24, 230. An important benefit of metabolic profiling for 

biomarker discovery is that metabolites are defined chemicals irrespective of species, 

genotype. Because many metabolites are not dependent on species, they can form the 

basis for translational study, i.e. biomarkers that are found in preclinical (animal) studies 

can be applied during clinical studies. A single biomarker found in metabolomics will not 

capture the complex process underlying a disease. Therefore, it is common practice to 

look at the perturbations in biological pathways and networks. This allows overall 

understanding of the metabolism and/or metabolic dynamics associated with the 

disease. Biomarker discovery is not a small task and typically requires years of 

validation before the clinical application phase is reached. An ideal biomarker should be 

sensitive, predictive, measureable in an easy accessible biofluid and cost effective 231. 

The relevance of metabolomics is reflected by the fact that  over 95% of diagnostic 

clinical assays look for small molecules, 89% of known drugs are small molecules, 50 % 

of all drugs are derived from pre-existing metabolites, and 30% of identified genetic 

disorders involve disease of small molecules metabolism 15. A number of complex 

diseases result from a chronic imbalance of normal metabolism (e.g. cancer or type 2 

diabetes) 232. Therefore, metabolomics can be useful for finding biomarkers of 

pathological states.  

 

1.5.1 Metabolomics profile of CSF of “healthy” control 
The number of studies that use CSF for finding new metabolic biomarkers has been 

increasing. However, only a limited number of works focused on inspecting variations 
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occurring in CSF of individuals with no neurological disorders (i.e. “healthy” control). 

Nevertheless, it is very important to establish a comprehensive list of metabolites 

detectable in CSF and the corresponding variations.  A proper understanding of 

biological fluctuation of metabolites concentrations in CSF of subjects considered as 

neurologically normal is crucial for trustworthy interpretation of the results in biomarker 

discovery studies. It is important to investigate if the variations between control and 

disease are caused by disease and not by inter-individual fluctuations. In the study of 

Jukarainen et al. 1H-NMR has been used to obtain the absolute quantification of 

metabolites in CSF of 45 neurological controls 233. The neurological controls chosen in 

the study consisted of patients examined for various neuropsychiatric symptoms, such 

as depression or headache but who did not give any signs of dementia and chronic 

neurological disease. The authors detected large inter-individual variations in 

metabolites concentration. In another study, Wishart et al. investigated the absolute 

concentration of metabolites identified in CSF by NMR and mass spectrometry in 35 

individuals screened for meningitis 234. Similar to the previous study they found 

considerable inter-individual variations. Wishart et al. reported that “normal” 

concentrations for many metabolites can vary by more than 50%. Moreover, they 

concluded that NMR appears to be the most suitable method for performing non-

targeted metabolic profiling of CSF. Metabolic profile of CSF of controls has been 

investigated by Kolokolova et al. 48. In this study, NMR was used to quantify in total 25 

metabolites identified in human CSF. The absolute metabolites concentrations in CSF of 

controls were compared to metabolites level of patients suffering from motor neuron 

disease and ischemic stroke. The final findings indicated that patients with ischemic 

stroke had higher concentration for 19 CSF metabolites in comparison to controls. 

In a recent comprehensive study by Stoop et al., 47CSF samples of patients without 

neurological disease were investigated. Broad analysis of metabolite and protein 

concentrations, biological variation and analytical variations has been investigated in 32 

human CSF samples by means of NMR and MS. Moreover, the effects of age and 

gender on biological variations were also addressed and found to be insignificant. 

Biological variations of metabolites identified by NMR and/or MS are reported to 

fluctuate from 15 % to 70% for the majority of metabolites. The analytical variations were 
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smaller than the biological variation in all cases. For NMR analysis the biological 

variation ranged from 8% to 53%, while the analytical error was between 2% and 9% for 

all metabolites. It should be pointed out that the biological variation found in Stoop et al. 

study was lower than in study published by Wishart et al. 232. This difference is mostly 

due to the type of CSF samples used. The biological variations of CSF of “healthy 

controls” were also compared with fluctuations occurring in CSF of subjects with 

neurological diseases. Most interestingly, for a significant number of metabolites, the 

biological variation in diseased subjects are similar to that of normal controls, indicating 

that part of the CSF metabolome is more influenced by inter-individual differences and 

that the contribution of the diseases is only minor. Overall, it can be concluded that an 

understanding of the biological variation of metabolites in CSF of neurologically normal 

individuals is critical for a trustworthy interpretation of biomarker discovery studies for 

CNS disorders.  

 

1.5.2. Metabolomics biomarkers by means of NMR  
One promise of NMR is the identification of biomarkers in biofluids for early diagnosis. 

Metabolomics has the potential to show early biochemical changes in disease and thus 

gives a chance to develop biomarkers that can trigger early interventions (i.e. before 

symptoms are observable). Metabolic profiling of blood plasma, urine and CSF by 

means of NMR and chemometrics has been used effectively in clinical research for the 

studying a wide range of diseases. For instance plasma or serum samples have been 

used to evaluate lipids metabolism in obese patients 235, to detect pancreatic cancer 6 

and to detect coronary heart disease and predict the severity of this disease 236. While 

urine samples have been used to detect inborn metabolic diseases 14, the efficacy of 

immunosuppressant in renal transplant 237, for investigation of physiological 

perturbations during radiation sickness 56, bladder cancer 238, the effect of acute 

cysteamine supplementation 239 and dysfunction in peroxisomal proliferation 240. More 

examples of using NMR for identifications of potential biomarkers in cancer, heart 

disease, diabetes, neurological disease and asthma can be found in the following 

references 4, 6, 8, 32, 241-244. Each of these metabolic profiling studies was able to describe 
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an accurate relationship between the biofluid metabolic spectral patterns and a disease 

state in humans.  

Finally, CSF has been used for studying a variety of neurological diseases, e.g. the 

detection of meningitis 245 and ventriculitis 246, Huntington disease 103. Metabolic profiling 

of CSF has been conducted to distinguish first-onset schizophrenia patients from healthy 

controls 26. CSF was also utilized to diagnose differentially viral, bacterial meningitis and 

tuberculosis in children247. Using an NMR-based metabolomics approach, it has been 

possible to investigate HIV-1-infected individuals, who are known to be susceptible to 

neuropsychological dysfunction166. In the study by Blasco et al. NMR-based 

metabolomic profiling of CSF in combination with PCA was used to find biomarkers of 

early amyotrophic lateral sclerosis 11. Another recent study used NMR spectroscopy to 

identify CSF biomarkers for early diagnosis of Alzheimer’s disease 27.  

 
1.6 METABOLOMICS BIOMARKER STUDIES in MScl 
MScl is a common disease of CNS which is an inflammatory, presumably autoimmune 

disease in which the fatty myelin sheaths which surrounds the axons of the brain and 

spinal cord are damaged, leading to demyelization. MScl can usually be diagnosed 

based on clinical examination, CSF analysis, observation from MRI and patient's history. 

Nevertheless, often, abnormalities found in the CSF and supported by MRI findings are 

not specific and sufficient enough. Many diseases can mimic conditions characteristic for 

MScl causing a rate of misdiagnosis of approximately 5%. An overview about different 

diagnosis in MScl can be found in 248-252. Recently, new diagnostics criteria for MScl 

have been introduced 253. Two factors, genetic and environmental, have influence on the 

risk and course of MScl. However, there is still uncertainty on aetiology and 

pathogenesis of MScl. MScl lesions are rarely biopsied. Therefore, there is an urgent 

need for new biological markers measured in CSF to better diagnose MScl. Many efforts 

have been made to develop such a better diagnostic for this heterogeneous disease 254.  
Magnetic Resonance Techniques, 1H-NMR and Magnetic Resonance Imaging and 

Spectroscopy (MRI/MRS), are commonly used to investigate MScl disease. 1H-NMR is 

used to obtain metabolic profiles characteristic of distinct MScl manifestations, while 
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MRI/MRD is mostly employed for looking at plaques and lesions in the brain. In spite of 
1H in vivo Magnetic Resonance Spectroscopy (MRS) has been widely used to 

investigate the metabolic alterations occurring in the brain of MScl patients 255-260, it is 

important to notice that there are limited amount of studies where CSF of MScl is 

investigated by NMR. 1H in vivo MRS spectra of MScl revealed increased lactate, 

choline, inositol and acetate level and decreased concentration of N-acetylaspartae, 

CSF is mostly used to study metabolic malfunctions occurring in MScl patients. 

However, there are some studies where blood plasma and urine are used to find 

metabolic differences between MScl patients and controls 32, 261. MScl can be studied 

either in pre-clinical models, e.g. the Experimental Autoimmune Encephalomyelitis 

(EAE) model or directly in humans. Until now there are only three studies reported 

where CSF of EAE animals is investigated by means of NMR 33, 183, 262. We focus on the 

studies where 1H-NMR of CSF was utilized. 

Glucose concentrations have been measured in the CSF of MScl patients for diagnostic 

purpose before metabolomics was used to investigate MScl. Later it turned out that in 

most MScl patients the glucose concentration was normal 28.  Presently various clinical 

and pre-clinical metabolic studies have been carried out to characterize MScl. The first 

NMR studies of metabolic profile of CSF of MScl patients consisted of finding the 

differences between MScl patients and controls without using pattern recognition 

methods. Most of the NMR-based studies focus on absolute metabolite concentrations 

or ratios. One of the first NMR study of metabolic profiles of CSF of MScl patients was 

published by Lynch et al. in 1993, where a relatively big group size was investigated, i.e. 

30 MScl patients and 27 controls 263. In this study an unidentified N-methyl compound 

was found in MScl patients and increased acetate level and decreased formate 

concentration in comparison to controls. Few years later Nicoli et al. 30 have reported 

significant change in concentrations of several unidentified resonances in NMR spectra 

of CSF in MScl patients. Moreover, they found that some metabolites are slightly 

modified in MScl patients, i.e. increased lactate and fructose concentrations, decreased 

creatinine and phenylalanine concentrations. They reported as well that metabolic profile 

of CSF does not allow one to differentiate relapsing-remitting MScl and primary 

progressive MScl. This study 30 did not confirm the reduced formate level reported by 
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Lynch et al. Simone et al. 264 report increased ratios of lactate/creatine and 

acetate/creatine and reduced ratio of formate/creatine. Minor differences in lactate and 

acetate ratios were detected between RR-MScl and chronic progressive MScl. Later 

Simone et al. 265 have shown that the increased ratio of lactate/creatine is directly 

related to elevated level of lactate of demyelinating MScl plaques. In contrast to previous 

findings, in the study of Aasly et al. 266 the level of lactate in MScl patients was found to 

be down regulated.  

Next a study where NMR was used to find markers of MScl in CSF was published by 

Lutz et al. in 2007 45. A highly homogenous patient group was used to characterize 

metabolic profile of MScl patients with and without inflammatory plaques. They 

demonstrated that there is a correlation between β-hydroxyisobutyrate (BHIB) 267 

concentration and the presence of active inflammatory plaques. Lactate and BHIB 

concentrations were found to be elevated in CSF of MScl patients. In the same study, 

differences between clinically isolated syndromes (CIS) without any inflammatory 

plaques and controls were investigated. Small differences in fructose concentration were 

discovered. Lutz et al. 45 have shown PCA results obtained for different metabolites 

concentration. This is the first study, where pattern recognition methods are applied to 

NMR spectra of CSF of MScl patients. The PCA score plots demonstrate some groups 

clustering but hampered by some overlapping.  

In Sinclair et al. 32, the potential of CSF NMR spectroscopy is combined with supervised 

analysis to find differences among MScl, idiopathic intracranial and hypertension 

patients. This is the first study where relative metabolite concentrations are investigated 

instead of absolute ones. By using PLS-DA, the sensitivity and specificity for MScl group 

was 83% and 53%, respectively. These results indicate that the obtained classification 

model is not specific enough for MScl, since almost half of the other patients were 

classified as MScl. Several significant changes in metabolites concentration in MScl 

patients were found, namely elevated levels of 2-aminobutyrate, 1,3-dimethylurrate, 

glutamate and acetate, and reduced levels of oxaloacetate, citrate, alanine and 3-

hydroxybutyrate. 

Another study applying pattern recognition, namely decision-tree-fuzzy classifier, by 

Aymerich et al. 245 investigated differences in metabolic profile of RR-MScl (8 patients), 
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PP-MScl (7 patients) and patients with other neurological disease (7 individuals. They 

focus on spectral regions with poor signal to noise ratio (i.e. between 6.0 and 9.7ppm). 

Excellent classification efficiency for cross validation was obtained.  Due to the small 

groups size they did not present classification accuracy for independent test set. The 

relevant metabolites are not specified. The results presented by Aymerich et al. are 

promising, but it should be kept in mind that the study was performed on a small patient 

group.   

In the last study described here, a novel approach for data fusion is applied to 

metabolomics datasets coming from patients suffering from MScl disease 123. In this 

study, metabolic profiles of MScl patients are compared with CIS patients. The K-PLS-

DA was used as classification model. The overall correct classification obtained for K-

PLS-DA model of NMR data was 92.86% for the test set (one MScl sample was 

classified as CIS).  A number of metabolites have been found as changing during 

progression of disease, e.g. the levels of lactate and of valine both increase, while the 

concentration of glutamine and citrate is reduced with disease progression. The high 

level of correct classification is very promising.  However, the limitation is the relatively 

small number of studied patients (26 for MScl and 20 for CIS) and obviously, before 

usage in clinical practice, validation studies with larger number of patients is needed.  

To summarize, the changes in several metabolites concentration in CSF were identified 

as related to MScl. Elevated lactate level and reduced acetate level in CSF of MScl 

patients were found in most studies. However, there was only one study where lactate 

concentration was found as being down regulated in CSF of MScl patients. Creatinine, 

oxaloacetate, alanine, citrate, glutamine and 3-hydroxybutyrate and phenylalanine 

concentrations have been reported to be decreased in CSF of MScl patients, while 2-

aminobutyrate, 1,3-dimethylurrate and glutamate elevated. Interestingly, reduced 

alanine and citrate concentrations have been found in CSF of EAE affected animals 33.  
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1.7 CONCLUSIONS 
In this review, a complete overview of the main steps involved in acquiring NMR spectra 

of biofluids, data preprocessing and modeling of NMR metabolic profiles is given. We 

have described the most commonly used techniques for acquiring NMR spectra of 

biofluids and presented an NMR-based metabolomics for CSF. Moreover different steps 

of data preprocessing and data analysis are described.  
Metabolomics represents a major and rapidly evolving field.  The development of NMR 

experiments allows for accurate measuring of many metabolites in different biofluids. 

The versatility of NMR has enabled this analytical technique to make valuable 

contributions to biomarker discovery in metabolomics field of biofluids. The application of 

NMR to the study of MScl disease is increasing. We have demonstrated several studies 

where several differences in the biochemical composition of CSF between MScl patients 

and controls were found. However, there are some discrepancies between the findings. 

There are several reasons why the results may differ. The most straightforward one may 

originate from the various sample preparations and acquisition methods.  Another 

reason is connected to variation in CSF composition which may be dependent on the 

MScl patients used in the study.  

Biomarker discovery by means of NMR of CSF in combination with pattern recognition 

techniques is likely to make an increasing contribution in uncovering disease 

mechanisms of complex neurological disease, like MScl. Collectively, NMR and pattern 

recognition methods offer great promise for the identification of clinically relevant 

biomarkers.  

 

 

 

 

 

 

 

 



51 

 

ACKNOWLEDGEMENTS 
This work was performed within the framework of Dutch Top Institute Pharma, project 

“The CSF proteome / metabolome as primary biomarker compartment for CNS 

disorders” (project nr. D4-102). 



52 

 

REFERENCES 

1. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic 
responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological 
NMR spectroscopic data. Xenobiotica 1999, 29, (11), 1181-1189. 
2. Fiehn, O., Metabolomics - the link between genotypes and phenotypes. Plant Molecular Biology 
2002, 48, (1-2), 155-171. 
3. Oliver, S. G.; Winson, M. K.; Kell, D. B.; Baganz, F., Systematic functional analysis of the yeast 
genome. Trends in Biotechnology 1998, 16, (9), 373-378. 
4. Dunn, W. B.; Goodacre, R.; Neyses, L.; Mamas, M., Integration of metabolomics in heart disease 
and diabetes research: current achievements and future outlook. Bioanalysis 2011, 3, (19), 2205-2222. 
5. Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E., Metabonomics:a platform for studing drug 
toxicity and gene function. Nature Reviews Drug Discovery 2002 1, 153-161. 
6. Beger, R. D.; Schnackenberg, L. K.; Holland, R. D.; Li, D. H.; Dragan, Y., Metabonomic models of 
human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2006, 2, (3), 
125-134. 
7. Ellis, D. I.; Dunn, W. B.; Griffin, J. L.; Allwood, J. W.; Goodacre, R., Metabolic fingerprinting as a 
diagnostic tool. Pharmacogenomics 2007, 8, (9), 1243-1266. 
8. Gowda, G. A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D., Metabolomics-based 
methods for early disease diagnostics. Expert Review of Molecular Diagnostics 2008, 8, (5), 617-33. 
9. Hori, S.; Nishiumi, S.; Kobayashi, K.; Shinohara, M.; Hatakeyama, Y.; Kotani, Y.; Hatano, N.; 
Maniwa, Y.; Nishio, W.; Bamba, T.; Fukusaki, E.; Azuma, T.; Takenawa, T.; Nishimura, Y.; Yoshida, M., A 
metabolomic approach to lung cancer. Lung Cancer 2011, 74, (2), 284-292. 
10. Beckonert, O.; Keun, H. C.; Ebbels, T. M. D.; Bundy, J. G.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., 
Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, 
serum and tissue extracts. Nature Protocols 2007, 2, (11), 2692-2703. 
11. Blasco, H.; Corcia, P.; Moreau, C.; Veau, S.; Fournier, C.; Vourc'h, P.; Emond, P.; Gordon, P.; 
Pradat, P. F.; Praline, J.; Devos, D.; Nadal-Desbarats, L.; Andres, C. R., (1)H-NMR-Based Metabolomic 
Profiling of CSF in Early Amyotrophic Lateral Sclerosis. PLoS One 2010, 5, (10). 
12. Bogdanov, M.; Matson, W. R.; Wang, L.; Matson, T.; Saunders-Pullman, R.; Bressman, S. S.; Beal, 
M. F., Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 2008, 131, 389-
396. 
13. Coen, M.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., NMR-based metabolic profiling and 
metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology 2008, 
21, (1), 9-27. 
14. Constantinou, M. A.; Papakonstantinou, E.; Spraul, M.; Sevastiadou, S.; Costalos, C.; Koupparis, 
M. A.; Shulpis, K.; Tsantili-Kakoulidou, A.; Mikros, E., H-1 NMR-based metabonomics for the diagnosis of 
inborn errors of metabolism in urine. Analytica Chimica Acta 2005, 542, (2), 169-177. 
15. Goldsmith, P.; Fenton, H.; Morris-Stiff, G.; Ahmad, N.; Fisher, J.; Prasad, K. R., Metabonomics: A 
Useful Tool for the Future Surgeon. Journal of Surgical Research 2010, 160, (1), 122-132. 
16. Bernini, P.; Bertini, I.; Luchinat, C.; Nepi, S.; Saccenti, E.; Schafer, H.; Schutz, B.; Spraul, M.; 
Tenori, L., Individual Human Phenotypes in Metabolic Space and Time. Journal of Proteome Research 
2009, 8, (9), 4264-4271. 
17. Dunn, W. B.; Broadhurst, D. I.; Atherton, H. J.; Goodacre, R.; Griffin, J. L., Systems level studies of 
mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance 
spectroscopy. Chem Soc Rev 2011, 40, (1), 387-426. 



53 

 

18. van der Greef, J.; Stroobant, P.; van der Heijden, R., The role of analytical sciences medical 
systems biology. Current Opinion in Chemical Biology 2004, 8, (5), 559-565. 
19. Alm, E.; Arkin, A. P., Biological networks. Current Opinion in Structural Biology 2003, 13, (2), 193-
202. 
20. Nicholson, J. K.; Lindon, J. C., Systems biology: Metabonomics. Nature 2008, 455, (7216), 1054-6. 
21. Atkinson, A. J.; Colburn, W. A.; DeGruttola, V. G.; DeMets, D. L.; Downing, G. J.; Hoth, D. F.; 
Oates, J. A.; Peck, C. C.; Schooley, R. T.; Spilker, B. A.; Woodcock, J.; Zeger, S. L.; Grp, B. D. W., Biomarkers 
and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology & 
Therapeutics 2001, 69, (3), 89-95. 
22. Industry Guidance Information on Recalls of FDA Regulated Products 
http://www.fda.gov/Safety/Recalls/IndustryGuidance/default.htm.  
23. Katz, R., Biomarkers and surrogate markers: an FDA perspective. NeuroRx 2004, 1, (2), 189-95. 
24. Griffin, J. L., The Cinderella story of metabolic profiling: does metabolomics get to go to the 
functional genomics ball? Philosophical Transactions of the Royal Society B-Biological Sciences 2006, 361, 
(1465), 147-161. 
25. Holmes, E.; Tsang, T. M.; Tabrizi, S. J., The application of NMR-based metabonomics in 
neurological disorders. NeuroRx 2006, 3, (3), 358-72. 
26. Holmes, E.; Tsang, T. M.; Huang, J. T. J.; Leweke, F. M.; Koethe, D.; Gerth, C. W.; Nolden, B. M.; 
Gross, S.; Schreiber, D.; Nicholson, J. K.; Bahn, S., Metabolic profiling of CSF: Evidence that early 
intervention may impact on disease progression and outcome in schizophrenia. Plos Medicine 2006, 3, 
(8), 1420-+. 
27. Kork, F.; Holthues, J.; Hellweg, R.; Jankowski, V.; Tepel, M.; Ohring, R.; Heuser, I.; Bierbrauer, J.; 
Peters, O.; Schlattmann, P.; Zidek, W.; Jankowski, J., A Possible New Diagnostic Biomarker in Early 
Diagnosis of Alzheimer's Disease. Current Alzheimer Research 2009, 6, (6), 519-524. 
28. Lutz, N. W.; Cozzone, P. J., Metabolic Profiling in Multiple Sclerosis and Other Disorders by 
Quantitative Analysis of Cerebrospinal Fluid Using Nuclear Magnetic Resonance Spectroscopy. Current 
Pharmaceutical Biotechnology 2011, 12, (7), 1016-1025. 
29. Lutz, N. W.; Maillet, S.; Nicoli, F.; Viout, P.; Cozzone, P. J., Further assignment of resonances in 1H 
NMR spectra of cerebrospinal fluid (CSF). FEBS Lett 1998, 425, (2), 345-51. 
30. Nicoli, F.; VionDury, J.; ConfortGouny, S.; Maillet, S.; Gastaut, J. L.; Cozzone, P. J., Cerebrospinal 
fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution 
proton magnetic resonance spectroscopy. Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences 
De La Vie-Life Sciences 1996, 319, (7), 623-631. 
31. Paues, J.; Strom, J. O.; Eriksson, L.; Theodorsson, A., Tuberculous meningitis with positive cell-
count in lumbar puncture CSF though negative cell-count from ventricular drainage CSF. J Infect 2011, 
62, (5), 404-5. 
32. Sinclair, A. J.; Viant, M. R.; Ball, A. K.; Burdon, M. A.; Walker, E. A.; Stewart, P. M.; Rauz, S.; 
Young, S. P., NMR-based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases-
-a diagnostic tool? NMR Biomed 2010, 23, (2), 123-32. 
33. Smolinska, A.; Attali, A.; Blanchet, L.; Ampt, K.; Tuinstra, T.; van Aken, H.; Suidgeest, E.; van Gool, 
A. J.; Luider, T.; Wijmenga, S. S.; Buydens, L. M., NMR and pattern recognition can distinguish 
neuroinflammation and peripheral inflammation. J Proteome Res 2011, 10, (10), 4428-38. 
34. Quinones, M. P.; Kaddurah-Daouk, R., Metabolomics tools for identifying biomarkers for 
neuropsychiatric diseases. Neurobiology of Disease 2009, 35, (2), 165-76. 
35. Dumas, M. E.; Maibaum, E. C.; Teague, C.; Ueshima, H.; Zhou, B. F.; Lindon, J. C.; Nicholson, J. K.; 
Stamler, J.; Elliott, P.; Chan, Q.; Holmes, E., Assessment of analytical reproducibility of H-1 NMR 



54 

 

spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. 
Analytical Chemistry 2006, 78, (7), 2199-2208. 
36. Beckonert, O.; Keun, H. C.; Ebbels, T. M.; Bundy, J.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., 
Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, 
serum and tissue extracts. Nat Protoc 2007, 2, (11), 2692-703. 
37. Makinen, V. P.; Soininen, P.; Forsblom, C.; Parkkonen, M.; Ingman, P.; Kaski, K.; Groop, P. H.; Ala-
Korpela, M., 1H NMR metabonomics approach to the disease continuum of diabetic complications and 
premature death. Mol Syst Biol 2008, 4, 167. 
38. Odunsi, K.; Wollman, R. M.; Ambrosone, C. B.; Hutson, A.; McCann, S. E.; Tammela, J.; Geisler, J. 
P.; Miller, G.; Sellers, T.; Cliby, W.; Qian, F.; Keitz, B.; Intengan, M.; Lele, S.; Alderfer, J. L., Detection of 
epithelial ovarian cancer using 1H-NMR-based metabonomics. Int J Cancer 2005, 113, (5), 782-8. 
39. Tukiainen, T.; Tynkkynen, T.; Makinen, V. P.; Jylanki, P.; Kangas, A.; Hokkanen, J.; Vehtari, A.; 
Grohn, O.; Hallikainen, M.; Soininen, H.; Kivipelto, M.; Groop, P. H.; Kaski, K.; Laatikainen, R.; Soininen, P.; 
Pirttila, T.; Ala-Korpela, M., A multi-metabolite analysis of serum by 1H NMR spectroscopy: early 
systemic signs of Alzheimer's disease. Biochem Biophys Res Commun 2008, 375, (3), 356-61. 
40. Makinen, V. P.; Forsblom, C.; Thorn, L. M.; Waden, J.; Gordin, D.; Heikkila, O.; Hietala, K.; 
Kyllonen, L.; Kyto, J.; Rosengard-Barlund, M.; Saraheimo, M.; Tolonen, N.; Parkkonen, M.; Kaski, K.; Ala-
Korpela, M.; Groop, P. H., Metabolic phenotypes, vascular complications, and premature deaths in a 
population of 4,197 patients with type 1 diabetes. Diabetes 2008, 57, (9), 2480-7. 
41. Ala-Korpela, M., Critical evaluation of 1H NMR metabonomics of serum as a methodology for 
disease risk assessment and diagnostics. Clin Chem Lab Med 2008, 46, (1), 27-42. 
42. Keun, H. C.; Athersuch, T. J., Nuclear magnetic resonance (NMR)-based metabolomics. Methods 
Mol Biol 2011, 708, 321-34. 
43. Lindon, J. C.; Nicholson, J. K., Analytical technologies for metabonomics and metabolomics, and 
multi-omic information recovery. Trends in Analytical CHemistry 2008, 27, (3), 194-204. 
44. Chiasserini, D.; Di Filippo, M.; Candeliere, A.; Susta, F.; Orvietani, P. L.; Calabresi, P.; Binaglia, L.; 
Sarchielli, P., CSF proteome analysis in multiple sclerosis patients by two-dimensional electrophoresis. 
European Journal of Neurology 2008, 15, (9), 998-1001. 
45. Lutz, N. W.; Viola, A.; Malikova, I.; Confort-Gouny, S.; Audoin, B.; Ranjeva, J. P.; Pelletier, J.; 
Cozzone, P. J., Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in 
cerebrospinal fluid. PLoS One 2007, 2, (7), e595. 
46. Rosenling, T.; Stoop, M. P.; Smolinska, A.; Muilwijk, B.; Coulier, L.; Shi, S. N.; Dane, A.; Christin, C.; 
Suits, F.; Horvatovich, P. L.; Wijmenga, S. S.; Buydens, L. M. C.; Vreeken, R.; Hankemeier, T.; van Gool, A. 
J.; Luider, T. M.; Bischoff, R., The Impact of Delayed Storage on the Measured Proteome and 
Metabolome of Human Cerebrospinal Fluid. Clinical Chemistry 2011, 57, (12), 1703-1711. 
47. Stoop, M. P.; Coulier, L.; Rosenling, T.; Shi, S.; Smolinska, A. M.; Buydens, L.; Ampt, K.; Stingl, C.; 
Dane, A.; Muilwijk, B.; Luitwieler, R. L.; Sillevis Smitt, P. A.; Hintzen, R. Q.; Bischoff, R.; Wijmenga, S. S.; 
Hankemeier, T.; van Gool, A. J.; Luider, T. M., Quantitative proteomics and metabolomics analysis of 
normal human cerebrospinal fluid samples. Mol Cell Proteomics 2010, 9, (9), 2063-75. 
48. Kolokolova, T. N.; Savel'ev, O. Y.; Sergeev, N. M.; Shpigun, O. A.; Sokolov, K. V.; Skvortsova, V. I., 
Nuclear magnetic resonance spectroscopy in solving the analytical problems of medicine: Analysis of 
cerebrospinal fluid. Journal of Analytical Chemistry (Translation of Zhurnal Analiticheskoi Khimii) 2010, 
65, (10), 1073-1081. 
49. Nicholson, J. K.; O'Flynn, M. P.; Sadler, P. J.; Macleod, A. F.; Juul, S. M.; Sonksen, P. H., Proton-
nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic 
subjects. Biochem J 1984, 217, (2), 365-75. 



55 

 

50. Nicholson, J. K.; Wilson, I. D., High-Resolution Proton Magnetic-Resonance Spectroscopy of 
Biological-Fluids. Progress in Nuclear Magnetic Resonance Spectroscopy 1989, 21, 449-501. 
51. Nicholson, J. K.; Buckingham, M. J.; Sadler, P. J., High resolution 1H n.m.r. studies of vertebrate 
blood and plasma. The Biochemical journal 1983, 211, (3), 605-15. 
52. Hamans, B. C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S. S.; Tessari, M., NMR at earth's 
magnetic field using para-hydrogen induced polarization. Journal of Magnetic Resonance 2011, 212, (1), 
224-228. 
53. Adams, R. W.; Aguilar, J. A.; Atkinson, K. D.; Cowley, M. J.; Elliott, P. I. P.; Duckett, S. B.; Green, G. 
G. R.; Khazal, I. G.; Lopez-Serrano, J.; Williamson, D. C., Reversible Interactions with para-Hydrogen 
Enhance NMR Sensitivity by Polarization Transfer. Science 2009, 323, (5922), 1708-1711. 
54. Potts, B. C. M.; Deese, A. J.; Stevens, G. J.; Reily, M. D.; Robertson, D. G.; Theiss, J., NMR of 
biofluids and pattern recognition: assessing the impact of NMR parameters on the principal component 
analysis of urine from rat and mouse. Journal of Pharmaceutical and Biomedical Analysis 2001, 26, (3), 
463-476. 
55. Lindon, J. C.; Nicholson, J. K.; Holmes, E.; Everett, J. R., Metabonomics: Metabolic processes 
studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance 2000, 12, (5), 289-320. 
56. Khan, A. R.; Rana, P.; Tyagi, R.; Kumar, I. P.; Devi, M. M.; Javed, S.; Tripathi, R. P.; Khushu, S., NMR 
spectroscopy based metabolic profiling of urine and serum for investigation of physiological 
perturbations during radiation sickness. Metabolomics 2011, 7, (4), 583-592. 
57. Tyagi, R.; Rana, P.; Khan, A. R.; Bhatnagar, D.; Devi, M. M.; Chaturvedi, S.; Tripathi, R. P.; Khushu, 
S., Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. J Appl 
Toxicol 2011, 31, (7), 663-70. 
58. Rocha, C. M.; Carrola, J.; Barros, A. S.; Gil, A. M.; Goodfellow, B. J.; Carreira, I. M.; Bernardo, J.; 
Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I. F., Metabolic Signatures of Lung Cancer in Biofluids: NMR-
Based Metabonomics of Blood Plasma. Journal of Proteome Research 2011, 10, (9), 4314-4324. 
59. Diaz, S. O.; Pinto, J.; Graca, G.; Duarte, I. F.; Barros, A. S.; Galhano, E.; Pita, C.; Almeida, M. D.; 
Goodfellow, B. J.; Carreira, I. M.; Gil, A. M., Metabolic Biomarkers of Prenatal Disorders: An Exploratory 
NMR Metabonomics Study of Second Trimester Maternal Urine and Blood Plasma. Journal of Proteome 
Research 2011, 10, (8), 3732-3742. 
60. Graca, G.; Duarte, I. F.; Goodfellow, B. J.; Barros, A. S.; Carreira, I. M.; Couceiro, A. B.; Spraul, M.; 
Gil, A. M., Potential of NMR Spectroscopy for the study of human amniotic fluid. Analytical Chemistry 
2007, 79, (21), 8367-8375. 
61. Graca, G.; Duarte, I. F.; Goodfellow, B. J.; Carreira, I. M.; Couceiro, A. B.; Domingues, M. D.; 
Spraul, M.; Tseng, L. H.; Gil, A. M., Metabolite profiling of human amniotic fluid by hyphenated nuclear 
magnetic resonance spectroscopy. Analytical Chemistry 2008, 80, (15), 6085-6092. 
62. Gowda, G. A. N.; Shanaiah, N.; Cooper, A.; Maluccio, M.; Raftery, D., Bile Acids Conjugation in 
Human Bile Is Not Random: New Insights from (1)H-NMR Spectroscopy at 800 MHz. Lipids 2009, 44, (6), 
527-535. 
63. Gowda, G. A.; Shanaiah, N.; Cooper, A.; Maluccio, M.; Raftery, D., Visualization of Bile 
Homeostasis Using (1)H-NMR Spectroscopy as a Route for Assessing Liver Cancer. Lipids 2009, 44, (1), 27-
35. 
64. DeFeo, E. M.; Wu, C. L.; McDougal, W. S.; Cheng, L. L., A decade in prostate cancer: from NMR to 
metabolomics. Nature Reviews Urology 2011, 8, (6), 301-311. 
65. Jordan, K. W.; Cheng, L. L., NMR-based metabolomics approach to target biomarkers for human 
prostate cancer. Expert Review of Proteomics 2007, 4, (3), 389-400. 



56 

 

66. Maher, A. D.; Cloarec, O.; Patki, P.; Craggs, M.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., Dynamic 
Biochemical Information Recovery in Spontaneous Human Seminal Fluid Reactions via (1)H NMR Kinetic 
Statistical Total Correlation Spectroscopy. Analytical Chemistry 2009, 81, (1), 288-295. 
67. Bertram, H. C.; Eggers, N.; Eller, N., Potential of Human Saliva for Nuclear Magnetic Resonance-
Based Metabolomics and for Health-Related Biomarker Identification. Analytical Chemistry 2009, 81, 
(21), 9188-9193. 
68. Wei, J. E.; Xie, G. X.; Zhou, Z. T.; Shi, P.; Qiu, Y. P.; Zheng, X. J.; Chen, T. L.; Su, M. M.; Zhao, A. H.; 
Jia, W., Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer 
2011, 129, (9), 2207-2217. 
69. Bertram, H. C.; Eggers, N.; Eller, N., Potential of human saliva for nuclear magnetic resonance-
based metabolomics and for health-related biomarker identification. Analytical chemistry 2009, 81, (21), 
9188-93. 
70. Issaq, H. J.; Van, Q. N.; Waybright, T. J.; Muschik, G. M.; Veenstra, T. D., Analytical and statistical 
approaches to metabolomics research. J Sep Sci 2009, 32, (13), 2183-99. 
71. Tiziani, S.; Emwas, A. H.; Lodi, A.; Ludwig, C.; Bunce, C. M.; Viant, M. R.; Gunther, U. L., Optimized 
metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem 
2008, 377, (1), 16-23. 
72. Daykin, C. A.; Foxall, P. J.; Connor, S. C.; Lindon, J. C.; Nicholson, J. K., The comparison of plasma 
deproteinization methods for the detection of low-molecular-weight metabolites by (1)H nuclear 
magnetic resonance spectroscopy. Anal Biochem 2002, 304, (2), 220-30. 
73. Wevers, R. A.; Engelke, U.; Wendel, U.; Dejong, J. G. N.; Gabreels, F. J. M.; Heerschap, A., 
Standardized Method for High-Resolution H-1-Nmr of Cerebrospinal-Fluid. Clinical Chemistry 1995, 41, 
(5), 744-751. 
74. Lehnert, W.; Hunkler, D., Possibilities of Selective Screening for Inborn-Errors of Metabolism 
Using High-Resolution H-1-Ft-Nmr Spectrometry. European Journal of Pediatrics 1986, 145, (4), 260-266. 
75. Slupsky, C. M.; Rankin, K. N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A. M.; Saude, E. J.; Lix, B.; 
Adamko, D. J.; Shah, S.; Greiner, R.; Sykes, B. D.; Marrie, T. J., Investigations of the effects of gender, 
diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry 2007, 79, (18), 
6995-7004. 
76. Viant, M. R.; Ludwig, C.; Rhodes, S.; Guenther, U. L.; Allaway, D., Validation of a urine 
metabolome fingerprint in dog for phenotypic classification. Metabolomics 2007, 3, (4), 453-463. 
77. Pauli, G. F.; Jaki, B. U.; Lankin, D. C., Quantitative 1H NMR: development and potential of a 
method for natural products analysis. Journal of natural products 2005, 68, (1), 133-49. 
78. Lane, S.; Boughtflower, B.; Mutton, I.; Paterson, C.; Farrant, D.; Taylor, N.; Blaxill, Z.; Carmody, C.; 
Borman, P., Toward single-calibrant quantification in HPLC. A comparison of three detection strategies: 
evaporative light scattering, chemiluminescent nitrogen, and proton NMR. Analytical chemistry 2005, 77, 
(14), 4354-65. 
79. Alum, M. F.; Shaw, P. A.; Sweatman, B. C.; Ubhi, B. K.; Haselden, J. N.; Connor, S. C., 4,4-dimethyl-
4-silapentane-1-ammonium trifluoroacetate (DSA), a promising universal internal standard for NMR-
based metabolic profiling studies of biofluids, including blood plasma and serum. Metabolomics 2008, 4, 
(2), 122-127. 
80. Akoka, S.; Barantin, L.; Trierweiler, M., Concentration measurement by proton NMR using the 
ERETIC method. Analytical Chemistry 1999, 71, (13), 2554-2557. 
81. Farrant, R. D.; Hollerton, J. C.; Lynn, S. M.; Provera, S.; Sidebottom, P. J.; Upton, R. J., NMR 
quantification using an artificial signal. Magnetic Resonance in Chemistry 2010, 48, (10), 753-762. 
82. Research, M. http://mestrelab.com/. (January 2012),  



57 

 

83. Weljie, A. M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C. M., Targeted profiling: quantitative 
analysis of 1H NMR metabolomics data. Analytical Chemistry 2006, 78, (13), 4430-42. 
84. Verwaest, K. A.; Vu, T. N.; Laukens, K.; Clemens, L. E.; Nguyen, H. P.; Van Gasse, B.; Martins, J. C.; 
Van der Linden, A.; Dommisse, R., (1)H NMR based metabolomics of CSF and blood serum: A metabolic 
profile for a transgenic rat model of Huntington disease. Biochimica Et Biophysica Acta-Molecular Basis 
of Disease 2011, 1812, (11), 1371-1379. 
85. Bart, J.; Kolkman, A. J.; Oosthoek-de Vries, A. J.; Koch, K.; Nieuwland, P. J.; Janssen, H.; van 
Bentum, P. J. M.; Ampt, K. A. M.; Rutjes, F. P. J. T.; Wijmenga, S. S.; Gardeniers, H.; Kentgens, A. P. M., A 
Microfluidic High-Resolution NMR Flow Probe. Journal of the American Chemical Society 2009, 131, (14), 
5014-+. 
86. Wevers, R. A.; Engelke, U.; Heerschap, A., High-resolution 1H-NMR spectroscopy of blood plasma 
for metabolic studies. Clin Chem 1994, 40, (7 Pt 1), 1245-50. 
87. Hwang, T. L.; Shaka, A. J., Water Suppression That Works - Excitation Sculpting Using Arbitrary 
Wave-Forms and Pulsed-Field Gradients. Journal of Magnetic Resonance Series A 1995, 112, (2), 275-279. 
88. Piotto, M.; Saudek, V.; Sklenar, V., Gradient-Tailored Excitation for Single-Quantum Nmr-
Spectroscopy of Aqueous-Solutions. Journal of Biomolecular Nmr 1992, 2, (6), 661-665. 
89. Neuhaus, D.; Ismail, I. M.; Chung, C. W., ''FLIPSY'' - A new solvent-suppression sequence for 
nonexchanging solutes offering improved integral accuracy relative to 1D NOESY. Journal of Magnetic 
Resonance Series A 1996, 118, (2), 256-263. 
90. McKay, R. T., How the 1D-NOESY Suppresses Solvent Signal in Metabonomics NMR Spectroscopy: 
An Examination of the Pulse Sequence Components and Evolution. Concepts in Magnetic Resonance Part 
A 2011, 38A, (5), 197-220. 
91. Meiboom, S.; Gill, D., Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. 
Review of Scientific Instruments 1958, 29, (8), 688-691. 
92. Aue, W. P.; Karhan, J.; Ernst, R. R., Homonuclear Broad-Band Decoupling and 2-Dimensional J-
Resolved Nmr-Spectroscopy. Journal of Chemical Physics 1976, 64, (10), 4226-4227. 
93. Aue, W. P.; Bartholdi, E.; Ernst, R. R., 2-Dimensional Spectroscopy - Application to Nuclear 
Magnetic-Resonance. Journal of Chemical Physics 1976, 64, (5), 2229-2246. 
94. Braunschweiler, L.; Ernst, R. R., Coherence Transfer by Isotropic Mixing - Application to Proton 
Correlation Spectroscopy. Journal of Magnetic Resonance 1983, 53, (3), 521-528. 
95. Software, P. N. http://perchnmrsoftware.com.  
96. Mercier, P.; Lewis, M. J.; Chang, D.; Baker, D.; Wishart, D. S., Towards automatic metabolomic 
profiling of high-resolution one-dimensional proton NMR spectra. Journal of Biomolecular NMR 2011, 49, 
(3-4), 307-323. 
97. Rosenling, T.; Slim, C. L.; Christin, C.; Coulier, L.; Shi, S.; Stoop, M. P.; Bosman, J.; Suits, F.; 
Horvatovich, P. L.; Stockhofe-Zurwieden, N.; Vreeken, R.; Hankemeier, T.; Gool, A. J.; Luider, T. M.; 
Bischoff, R., The Effect of Preanalytical Factors on Stability of the Proteome and Selected Metabolites in 
Cerebrospinal Fluid (CSF). Journal of Proteome Research 2009, 8, (12), 5511-5522. 
98. Wuolikainen, A.; Hedenstrom, M.; Moritz, T.; Marklund, S. L.; Antti, H.; Andersen, P. M., 
Optimization of procedures for collecting and storing of CSF for studying the metabolome in ALS. 
Amyotrophic Lateral Sclerosis 2009, 10, (4), 229-U8. 
99. Cunniffe, J. G.; WhitbyStrevens, S.; Wilcox, M. H., Effect of pH changes in cerebrospinal fluid 
specimens on bacterial survival and antigen test results. Journal of Clinical Pathology 1996, 49, (3), 249-
253. 
100. Maillet, S.; Vion-Dury, J.; Confort-Gouny, S.; Nicoli, F.; Lutz, N. W.; Viout, P.; Cozzone, P. J., 
Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic 
resonance spectroscopy. Brain Res Brain Res Protoc 1998, 3, (2), 123-34. 



58 

 

101. Sweatman, B. C.; Farrant, R. D.; Holmes, E.; Ghauri, F. Y.; Nicholson, J. K.; Lindon, J. C., 600 MHz 
1H-NMR spectroscopy of human cerebrospinal fluid: effects of sample manipulation and assignment of 
resonances. J Pharm Biomed Anal 1993, 11, (8), 651-64. 
102. Commodari, F.; Arnold, D. L.; Sanctuary, B. C.; Shoubridge, E. A., 1H NMR characterization of 
normal human cerebrospinal fluid and the detection of methylmalonic acid in a vitamin B12 deficient 
patient. NMR Biomed 1991, 4, (4), 192-200. 
103. Verwaest, K. A.; Vu, T. N.; Laukens, K.; Clemens, L. E.; Nguyen, H. P.; Van Gasse, B.; Martins, J. C.; 
Van Der Linden, A.; Dommisse, R., (1)H NMR based metabolomics of CSF and blood serum: a metabolic 
profile for a transgenic rat model of Huntington disease. Biochimica et Biophysica Acta 2011, 1812, (11), 
1371-9. 
104. Ebbels, T. M.; Lindon, J. C.; Coen, M., Processing and modeling of nuclear magnetic resonance 
(NMR) metabolic profiles. Methods Mol Biol 2011, 708, 365-88. 
105. Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J. K.; Lindon, J. C., Scaling and normalization effects 
in NMR spectroscopic metabonomic data sets. Anal Chem 2006, 78, (7), 2262-7. 
106. De Meyer, T.; Sinnaeve, D.; Van Gasse, B.; Rietzschel, E.-R.; De Buyzere, M. L.; Langlois, M. R.; 
Bekaert, S.; Martins, J. C.; Van Criekinge, W., Evaluation of standard and advanced preprocessing 
methods for the univariate analysis of blood serum 1H-NMR spectra. Anal. Bioanal. Chem. 2010, 398, (4), 
1781-1790. 
107. Zhang, S.; Zheng, C.; Lanza, I. R.; Nair, K. S.; Raftery, D.; Vitek, O., Interdependence of signal 
processing and analysis of urine 1H NMR spectra for metabolic profiling. Anal Chem 2009, 81, (15), 6080-
8. 
108. Gan, F.; Ruan, G. H.; Mo, J. Y., Baseline correction by improved iterative polynomial fitting with 
automatic threshold. Chemometrics and Intelligent Laboratory Systems 2006, 82, (1-2), 59-65. 
109. Chang, D.; Banack, C. D.; Shah, S. L., Robust baseline correction algorithm for signal dense NMR 
spectra. Journal of Magnetic Resonance 2007, 187, (2), 288-292. 
110. Xi, Y.; Rocke, D. M., Baseline correction for NMR spectroscopic metabolomics data analysis. BMC 
bioinformatics 2008, 9, 324. 
111. Eilers, P. H. C., A perfect smoother. Analytical Chemistry 2003, 75, (14), 3631-3636. 
112. Eilers, P. H. C.; Marx, B. D., Flexible smoothing with B-splines and penalties. Statistical Science 
1996, 11, (2), 89-102. 
113. de Rooi, J. J.; Eilers, P. H. C., Mixture models for baseline estimation. Chemometrics and 
Intelligent Laboratory System 2011. 
114. Defernez, M.; Colquhoun, I. J., Factors affecting the robustness of metabolite fingerprinting using 
H-1 NMR spectra. Phytochemistry 2003, 62, (6), 1009-1017. 
115. Witjes, H.; van den Brink, M.; Melssen, W. J.; Buydens, L. M. C., Automatic correction of peak 
shifts in Raman spectra before PLS regression. Chemometrics and Intelligent Laboratory Systems 2000, 
52, (1), 105-116. 
116. Vogels, J. T. W. E.; Tas, A. C.; Venekamp, J.; VanderGreef, J., Partial linear fit: A new NMR 
spectroscopy preprocessing tool for pattern recognition applications. Journal of Chemometrics 1996, 10, 
(5-6), 425-438. 
117. Cloarec, O.; Dumas, M. E.; Trygg, J.; Craig, A.; Barton, R. H.; Lindon, J. C.; Nicholson, J. K.; Holmes, 
E., Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift 
variability and improved visualization of biomarker changes in H-1 NMR spectroscopic metabonomic 
studies. Analytical Chemistry 2005, 77, (2), 517-526. 
118. Giskeodegard, G. F.; Bloemberg, T. G.; Postma, G.; Sitter, B.; Tessem, M. B.; Gribbestad, I. S.; 
Bathen, T. F.; Buydens, L. M., Alignment of high resolution magic angle spinning magnetic resonance 
spectra using warping methods. Anal Chim Acta 2010, 683, (1), 1-11. 



59 

 

119. Giskeodegard, G. F.; Bloemberg, T. G.; Postma, G.; Sitter, B.; Tessem, M. B.; Gribbestad, I. S.; 
Bathen, T. F.; Buydens, L. M. C., Alignment of high resolution magic angle spinning magnetic resonance 
spectra using warping methods. Analytica Chimica Acta 2010, 683, (1), 1-11. 
120. Savorani, F.; Tomasi, G.; Engelsen, S. B., icoshift: A versatile tool for the rapid alignment of 1D 
NMR spectra. Journal of Magnetic Resonance 2010, 202, (2), 190-202. 
121. Nielsen, N. P. V.; Carstensen, J. M.; Smedsgaard, J., Aligning of single and multiple wavelength 
chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of 
Chromatography A 1998, 805, (1-2), 17-35. 
122. Tomasi, G.; van den Berg, F.; Andersson, C., Correlation optimized warping and dynamic time 
warping as preprocessing methods for chromatographic data. Journal of Chemometrics 2004, 18, (5), 
231-241. 
123. Smolinska, A.; Blanchet, L.; Coulier, L.; Ampt, K. A. M.; Luider, T.; Hintzen, R. Q.; Wijmenga, S. S.; 
Buydens, L. M. C., Interpretation and Visualization of Non-Linear Data Fusion in Kernel Space: Study on 
Metabolomic Characterization of Progression of Multiple Sclerosis. PLoS ONE 2012, 7, (6), e38163. 
124. Lee, G. C.; Woodruff, D. L., Beam search for peak alignment of NMR signals. Analytica Chimica 
Acta 2004, 513, (2), 413-416. 
125. Wu, W.; Daszykowski, M.; Walczak, B.; Sweatman, B. C.; Connor, S. C.; Haseldeo, J. N.; Crowther, 
D. J.; Gill, R. W.; Lutz, M. W., Peak alignment of urine NMR spectra using fuzzy warping. Journal of 
Chemical Information and Modeling 2006, 46, (2), 863-875. 
126. Vu, T. N.; Valkenborg, D.; Smets, K.; Verwaest, K. A.; Dommisse, R.; Lemiere, F.; Verschoren, A.; 
Goethals, B.; Laukens, K., An integrated workflow for robust alignment and simplified quantitative 
analysis of NMR spectrometry data. BMC Bioinformatics 2011, 12. 
127. Bloemberg, T. G.; Gerretzen, J.; Wouters, H. J. P.; Gloerich, J.; van Dael, M.; Wessels, H. J. C. T.; 
van den Heuvel, L. P.; Eilers, P. H. C.; Buydens, L. M. C.; Wehrens, R., Improved parametric time warping 
for proteomics. Chemometrics and Intelligent Laboratory Systems 2010, 104, (1), 65-74. 
128. Forshed, J.; Schuppe-Koistinen, I.; Jacobsson, S. P., Peak alignment of NMR signals by means of a 
genetic algorithm. Analytica Chimica Acta 2003, 487, (2), 189-199. 
129. Veselkov, K. A.; Lindon, J. C.; Ebbels, T. M. D.; Crockford, D.; Volynkin, V. V.; Holmes, E.; Davies, D. 
B.; Nicholson, J. K., Recursive Segment-Wise Peak Alignment of Biological (1)H NMR Spectra for Improved 
Metabolic Biomarker Recovery. Analytical Chemistry 2009, 81, (1), 56-66. 
130. Gartland, K. P.; Beddell, C. R.; Lindon, J. C.; Nicholson, J. K., Application of pattern recognition 
methods to the analysis and classification of toxicological data derived from proton nuclear magnetic 
resonance spectroscopy of urine. Mol Pharmacol 1991, 39, (5), 629-42. 
131. Gartland, K. P.; Sanins, S. M.; Nicholson, J. K.; Sweatman, B. C.; Beddell, C. R.; Lindon, J. C., 
Pattern recognition analysis of high resolution 1H NMR spectra of urine. A nonlinear mapping approach 
to the classification of toxicological data. NMR Biomed 1990, 3, (4), 166-72. 
132. Izquierdo-Garcia, J. L.; Villa, P.; Kyriazis, A.; del Puerto-Nevado, L.; Perez-Rial, S.; Rodriguez, I.; 
Hernandez, N.; Ruiz-Cabello, J., Descriptive review of current NMR-based metabolomic data analysis 
packages. Progress in Nuclear Magnetic Resonance Spectroscopy 2011, 59, (3), 263-270. 
133. de Meyer, T.; Sinnaeve, D.; Van Gasse, B.; Tsiporkova, E.; Rietzschel, E. R.; De Buyzere, M. L.; 
Gillebert, T. C.; Bekaert, S.; Martins, J. C.; Van Criekinge, W., NMR-based characterization of metabolic 
alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry 2008, 
80, (10), 3783-3790. 
134. Anderson, P. E.; Reo, N. V.; DelRaso, N. J.; Doom, T. E.; Raymer, M. L., Gaussian binning: a new 
kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics 2008, 4, 
(3), 261-272. 



60 

 

135. Davis, R. A.; Charlton, A. J.; Godward, J.; Jones, S. A.; Harrison, M.; Wilson, J. C., Adaptive binning: 
An improved binning method for metabolomics data using the undecimated wavelet transform. 
Chemometrics and Intelligent Laboratory Systems 2007, 85, (1), 144-154. 
136. Anderson, P. E.; Mahle, D. A.; Doom, T. E.; Reo, N. V.; DelRaso, N. J.; Raymer, M. L., Dynamic 
adaptive binning: an improved quantification technique for NMR spectroscopic data. Metabolomics 
2011, 7, (2), 179-190. 
137. Spraul, M.; Neidig, P.; Klauck, U.; Kessler, P.; Holmes, E.; Nicholson, J. K.; Sweatman, B. C.; 
Salman, S. R.; Farrant, R. D.; Rahr, E.; Beddell, C. R.; Lindon, J. C., Automatic Reduction of Nmr 
Spectroscopic Data for Statistical and Pattern-Recognition Classification of Samples. Journal of 
Pharmaceutical and Biomedical Analysis 1994, 12, (10), 1215-1225. 
138. Fauler, G.; Leis, H. J.; Huber, E.; Schellauf, C.; Kerbl, R.; Urban, C.; Gleispach, H., Determination of 
homovanillic acid and vanillylmandelic acid in neuroblastoma screening by stable isotope dilution GC-MS. 
J Mass Spectrom 1997, 32, (5), 507-14. 
139. Holmes, E.; Foxall, P. J.; Nicholson, J. K.; Neild, G. H.; Brown, S. M.; Beddell, C. R.; Sweatman, B. 
C.; Rahr, E.; Lindon, J. C.; Spraul, M.; et al., Automatic data reduction and pattern recognition methods 
for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological 
states. Anal Biochem 1994, 220, (2), 284-96. 
140. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H., Probabilistic quotient normalization as robust 
method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. 
Anal Chem 2006, 78, (13), 4281-90. 
141. Torgrip, R. J. O.; Aberg, K. M.; Alm, E.; Schuppe-Koistinen, I.; Lindberg, J., A note on normalization 
of biofluid 1D H-1-NMR data. Metabolomics 2008, 4, (2), 114-121. 
142. Dong, J. Y.; Cheng, K. K.; Xu, J. J.; Chen, Z.; Griffin, J. L., Group aggregating normalization method 
for the preprocessing of NMR-based metabolomic data. Chemometrics and Intelligent Laboratory 
Systems 2011, 108, (2), 123-132. 
143. van den Berg, R. A.; Hoefsloot, H. C. J.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J., 
Centering, scaling, and transformations: improving the biological information content of metabolomics 
data. Bmc Genomics 2006, 7. 
144. Sakia, R. M., The Box-Cox Transformation Technique - a Review. Statistician 1992, 41, (2), 169-
178. 
145. Jackson, T. E., A Users guide to Principal Components. Wiley: New York, 1991. 
146. Beckwith-Hall, B. M.; Nicholson, J. K.; Nicholls, A. W.; Foxall, P. J.; Lindon, J. C.; Connor, S. C.; 
Abdi, M.; Connelly, J.; Holmes, E., Nuclear magnetic resonance spectroscopic and principal components 
analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol 1998, 11, 
(4), 260-72. 
147. el-Deredy, W., Pattern recognition approaches in biomedical and clinical magnetic resonance 
spectroscopy: a review. NMR Biomed 1997, 10, (3), 99-124. 
148. Holmes, E.; Nicholls, A. W.; Lindon, J. C.; Connor, S. C.; Connelly, J. C.; Haselden, J. N.; Damment, 
S. J.; Spraul, M.; Neidig, P.; Nicholson, J. K., Chemometric models for toxicity classification based on NMR 
spectra of biofluids. Chem Res Toxicol 2000, 13, (6), 471-8. 
149. Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical 
Magazine A: Physics of Condensed Matter: Defects and Mechanical Properties 1901, 2, (6), 559-572. 
150. Daszykowski, M.; Kaczmarek, K.; Stanimirova, I.; Vander Heyden, Y.; Walczak, B., Robust SIMCA-
bounding influence of outliers. Chemometrics and Intelligent Laboratory Systems 2007, 87, (1), 95-103. 
151. Daszykowski, M.; Serneels, S.; Kaczmarek, K.; Van Espen, P.; Croux, C.; Walczak, B., TOMCAT: A 
MATLAB toolbox for multivariate calibration techniques. Chemometrics and Intelligent Laboratory 
Systems 2007, 85, (2), 269-277. 



61 

 

152. Verboven, S.; Hubert, M., LIBRA: a MATLAB library for robust analysis. Chemometrics and 
Intelligent Laboratory Systems 2005, 75, (2), 127-136. 
153. Kim, H. K.; Saifullah; Khan, S.; Wilson, E. G.; Kricun, S. D. P.; Meissner, A.; Goraler, S.; Deelder, A. 
M.; Choi, Y. H.; Verpoorte, R., Metabolic classification of South American Ilex species by NMR-based 
metabolomics. Phytochemistry 2010, 71, (7), 773-784. 
154. Cuperlovic-Culf, M.; Belacel, N.; Cuif, A. S.; Chute, I. C.; Ouellette, R. J.; Burton, I. W.; Karakach, T. 
K.; Walter, J. A., NMR metabolic analysis of samples using fuzzy K-means clustering. Magnetic Resonance 
in Chemistry 2009, 47, S96-S104. 
155. Mahle, D. A.; Anderson, P. E.; DelRaso, N. J.; Raymer, M. L.; Neuforth, A. E.; Reo, N. V., A 
generalized model for metabolomic analyses: application to dose and time dependent toxicity. 
Metabolomics 2011, 7, (2), 206-216. 
156. Webb, A., Statistical Pattern Recognition. John Wiley & Sons Ltd.: 2002. 
157. Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification. Jogn Wiley & Sons Inc.: New York, 
2000. 
158. von Luxburg, U., A tutorial on spectral clustering. Statistics and Computing 2007, 17, (4), 395-
416. 
159. Raman, B.; McKeown, C. K.; Rodriguez, M., Jr.; Brown, S. D.; Mielenz, J. R., Transcriptomic 
analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 2011, 11, 134. 
160. Moulos, P.; Papadodima, O.; Chatziioannou, A.; Loutrari, H.; Roussos, C.; Kolisis, F. N., A 
transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular 
mechanisms targeting tumor cell growth and survival. BMC Med Genomics 2009, 2, 68. 
161. Hageman, J. A.; van den Berg, R. A.; Westerhuis, J. A.; Hoefsloot, H. C. J.; Smilde, A. K., Bagged K-
means clustering of metabolome data. Critical Reviews in Analytical Chemistry 2006, 36, (3-4), 211-220. 
162. Holmes, E.; Cloarec, O.; Nicholson, J. K., Probing latent biomarker signatures and in vivo pathway 
activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: 
Application to HgCl2 toxicity. Journal of Proteome Research 2006, 5, (6), 1313-1320. 
163. Cloarec, O.; Dumas, M. E.; Craig, A.; Barton, R. H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; 
Lindon, J. C.; Holmes, E.; Nicholson, J., Statistical total correlation spectroscopy: An exploratory approach 
for latent biomarker identification from metabolic H-1 NMR data sets. Analytical Chemistry 2005, 77, (5), 
1282-1289. 
164. Holmes, E.; Loo, R. L.; Cloarec, O.; Coen, M.; Tang, H. R.; Maibaum, E.; Bruce, S.; Chan, Q.; Elliott, 
P.; Stamler, J.; Wilson, I. D.; Lindon, J. C.; Nicholson, J. K., Detection of urinary drug metabolite 
(Xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) 
spectroscopy. Analytical Chemistry 2007, 79, (7), 2629-2640. 
165. Smith, L. M.; Maher, A. D.; Cloarec, O.; Rantalainen, M.; Tang, H. R.; Elliott, P.; Stamler, J.; Lindon, 
J. C.; Holmes, E.; Nicholson, J. K., Statistical correlation and projection methods for improved information 
recovery from diffusion-edited NMR spectra of biological samples. Analytical Chemistry 2007, 79, (15), 
5682-5689. 
166. Maher, A. D.; Cysique, L. A.; Brew, B. J.; Rae, C. D., Statistical Integration of (1)H NMR and MRS 
Data from Different Biofluids and Tissues Enhances Recovery of Biological Information from Individuals 
with HIV-1 infection. Journal of Proteome Research 2011, 10, (4), 1737-1745. 
167. Coen, M.; Hong, Y. S.; Cloarec, O.; Rhode, C. M.; Reily, M. D.; Robertson, D. G.; Holmes, E.; 
Lindon, J. C.; Nicholson, J. K., Heteronuclear H-1-P-31 statistical total correlation NMR spectroscopy of 
intact liver for metabolic biomarker assignment: Application to galactosamine-induced hepatotoxicity. 
Analytical Chemistry 2007, 79, (23), 8956-8966. 
168. Robinette, S. L.; Veselkov, K. A.; Bohus, E.; Coen, M.; Keun, H. C.; Ebbels, T. M. D.; Beckonert, O.; 
Holmes, E. C.; Lindon, J. C.; Nicholson, J. K., Cluster Analysis Statistical Spectroscopy Using Nuclear 



62 

 

Magnetic Resonance Generated Metabolic Data Sets from Perturbed Biological Systems. Analytical 
Chemistry 2009, 81, (16), 6581-6589. 
169. Wold, S.; Sjostrom, M.; Eriksson, L., PLS-regression: a basic tool of chemometrics. Chemometrics 
and Intelligent Laboratory Systems 2001, 58, (2), 109-130. 
170. Hoskuldsson, A., PLS regression methods. Journal of Chemometrics 1988, 2, 211-228. 
171. Gu, H. W.; Pan, Z. Z.; Xi, B. W.; Asiago, V.; Musselman, B.; Raftery, D., Principal component 
directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry 
data in metabolomics: Application to the detection of breast cancer. Analytica Chimica Acta 2011, 686, 
(1-2), 57-63. 
172. Trygg, J.; Wold, S., Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 
2002, 16, (3), 119-128. 
173. Coen, M.; Hong, Y. S.; Clayton, T. A.; Rohde, C. M.; Pearce, J. T.; Reily, M. D.; Robertson, D. G.; 
Holmes, E.; Lindon, J. C.; Nicholson, J. K., The mechanism of galactosamine toxicity revisited; A 
metabonomic study. Journal of Proteome Research 2007, 6, (7), 2711-2719. 
174. Tapp, H. S.; Kemsley, E. K., Notes on the practical utility of OPLS. Trac-Trends in Analytical 
Chemistry 2009, 28, (11), 1322-1327. 
175. Kemsley, E. K.; Tapp, H. S., OPLS filtered data can be obtained directly from non-orthogonalized 
PLS1. Journal of Chemometrics 2009, 23, (5-6), 263-264. 
176. Martens, H.; Naes, T., Multivariate Calibration (2nd edn.). Wiley: Chichester, 1989. 
177. Vandeginste, B. G. M.; Massart, D. L.; Buydens, L. M. C.; Jong, S. D.; Lewi, P. J.; Smeyers-Verbeke, 
J., Handbook of Chemometrics and Qualimerics: Part B. Elsevier: Amsterdam, 1998. 
178. Fisher, R. A., Use of multiple measurements in taxonomic problems. Ann.Eugen. 1936, 7, 179-
188. 
179. Krzanowski, W. J., Principles of Multivariate Analysis (Revised edn). New York, 2000. 
180. Xu, C. J.; Hoefsloot, H. C. J.; Smilde, A. K., To aggregate or not to aggregate high-dimensional 
classifiers. Bmc Bioinformatics 2011, 12. 
181. Schoonen, W. G. E. J.; Kloks, C. P. A. M.; Ploemen, J. P. H. T. M.; Smit, M. J.; Zandberg, P.; 
Horbach, G. J.; Mellema, J. R.; Thijssen-VanZuylen, C.; Tas, A. C.; van Nesselrooij, J. H. J.; Vogels, J. T. W. 
E., Uniform procedure of H-1 NMR analysis of rat urine and toxicometabonomics part II: comparison of 
NMR profiles for classification of hepatotoxicity. Toxicological Sciences 2007, 98, (1), 286-297. 
182. Norgaard, L.; Bro, R.; Westad, F.; Engelsen, S. B., A modification of canonical variates analysis to 
handle highly collinear multivariate data. Journal of Chemometrics 2006, 20, (8-10), 425-435. 
183. Blanchet, L.; Smolinska, A.; Attali, A.; Stoop, M. P.; Ampt, K. A.; van Aken, H.; Suidgeest, E.; 
Tuinstra, T.; Wijmenga, S. S.; Luider, T.; Buydens, L. M., Fusion of metabolomics and proteomics data for 
biomarkers discovery: case study on the experimental autoimmune encephalomyelitis. BMC 
Bioinformatics 2011, 12, (1), 254. 
184. Abrahamsson, C.; Johansson, J.; Sparen, A.; Lindgren, F., Comparison of different variable 
selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics and 
Intelligent Laboratory Systems 2003, 69, (1-2), 3-12. 
185. Benjamini, Y.; Hochberg, Y., Controlling the False Discovery Rate - a Practical and Powerful 
Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995, 57, 
(1), 289-300. 
186. Han, B.; Kang, H. M.; Eskin, E., Rapid and Accurate Multiple Testing Correction and Power 
Estimation for Millions of Correlated Markers. Plos Genetics 2009, 5, (4). 
187. Broadhurst, D. I.; Kell, D. B., Statistical strategies for avoiding false discoveries in metabolomics 
and related experiments. Metabolomics 2006, 2, (4), 171-196. 



63 

 

188. Chadeau-Hyam, M.; Ebbels, T. M. D.; Brown, I. J.; Chan, Q.; Stemler, J.; Huang, C. C.; Daviglus, M. 
L.; Ueshima, H.; Zhao, L. C.; Holmes, E.; Nicholson, J. K.; Elliott, P.; De Iorio, M., Metabolic Profiling and 
the Metabolome-Wide Association Study: Significance Level For Biomarker Identification. Journal of 
Proteome Research 2010, 9, (9), 4620-4627. 
189. Wehrens, R.; Franceschi, P.; Vrhovsek, U.; Mattivi, F., Stability-based biomarker selection. 
Analytica Chimica Acta 2011, 705, (1-2), 15-23. 
190. Whitley, D., A Genetic Algorithm Tutorial. Statistics and Computing 1994, 4, (2), 65-85. 
191. Lloyd, G. R.; Wongravee, K.; Silwood, C. J. L.; Grootveld, M.; Brereton, R. G., Self Organising Maps 
for variable selection: Application to human saliva analysed by nuclear magnetic resonance spectroscopy 
to investigate the effect of an oral healthcare product. Chemometrics and Intelligent Laboratory Systems 
2009, 98, (2), 149-161. 
192. Rajalahti, T.; Kvalheim, O. M., Multivariate data analysis in pharmaceutics: A tutorial review. 
International Journal of Pharmaceutics 2011, 417, (1-2), 280-290. 
193. Cao, D. S.; Wang, B.; Zeng, M. M.; Liang, Y. Z.; Xu, Q. S.; Zhang, L. X.; Li, H. D.; Hu, Q. N., A new 
strategy of exploring metabolomics data using Monte Carlo tree. Analyst 2011, 136, (5), 947-954. 
194. Centner, V.; Massart, D. L.; de Noord, O. E.; de Jong, S.; Vandeginste, B. M.; Sterna, C., 
Elimination of uninformative variables for multivariate calibration. Anal Chem 1996, 68, (21), 3851-8. 
195. Daszykowski, M.; Wu, W.; Nicholls, A. W.; Ball, R. J.; Czekaj, T.; Walczak, B., Identifying potential 
biomarkers in LC-MS data. Journal of Chemometrics 2007, 21, (7-9), 292-302. 
196. Anderssen, E.; Dyrstad, K.; Westad, F.; Martens, H., Reducing over-optimism in variable selection 
by cross-model validation. Chemometrics and Intelligent Laboratory Systems 2006, 84, (1-2), 69-74. 
197. Gidskehaug, L.; Anderssen, E.; Alsberg, B. K., Cross model validation and optimisation of bilinear 
regression models. Chemometrics and Intelligent Laboratory Systems 2008, 93, (1), 1-10. 
198. Fernandez Pierna, J. A.; Abbas, O.; Baeten, V.; Dardenne, P., A Backward Variable Selection 
method for PLS regression (BVSPLS). Anal Chim Acta 2009, 642, (1-2), 89-93. 
199. Osborne, S. D.; Jordan, R. B.; Kunnemeyer, R., Method of wavelength selection for partial least 
squares. Analyst 1997, 122, (12), 1531-1537. 
200. Norgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J. P.; Munck, L.; Engelsen, S. B., Interval partial 
least-squares regression (iPLS): A comparative chemometric study with an example from near-infrared 
spectroscopy. Applied Spectroscopy 2000, 54, (3), 413-419. 
201. Rajalahti, T.; Arneberg, R.; Berven, F. S.; Myhr, K. M.; Ulvik, R. J.; Kvalheim, O. M., Biomarker 
discovery in mass spectral profiles by means of selectivity ratio plot. Chemometrics and Intelligent 
Laboratory Systems 2009, 95, (1), 35-48. 
202. Andersen, C. M.; Bro, R., Variable selection in regression-a tutorial. Journal of Chemometrics 
2010, 24, (11-12), 728-737. 
203. de Haan, J. R.; Wehrens, R.; Bauerschmidt, S.; Piek, E.; van Schaik, R. C.; Buydens, L. M. C., 
Interpretation of ANOVA models for microarray data using PCA. Bioinformatics 2007, 23, (2), 184-190. 
204. Brereton, R. G., Consequences of sample size, variable selection, and model validation and 
optimisation, for predicting classification ability from analytical data. Trac-Trends in Analytical Chemistry 
2006, 25, (11), 1103-1111. 
205. Westerhuis, J. A.; Hoefsloot, H. C. J.; Smit, S.; Vis, D. J.; Smilde, A. K.; van Velzen, E. J. J.; van 
Duijnhoven, J. P. M.; van Dorsten, F. A., Assessment of PLSDA cross validation. Metabolomics 2008, 4, (1), 
81-89. 
206. Faber, N. M.; Rajko, R., How to avoid over-fitting in multivariate calibration - The conventional 
validation approach and an alternative. Analytica Chimica Acta 2007, 595, (1-2), 98-106. 
207. Snee, R. D., Validation of regression models: Methods and examples. Technometrics 1977, 19, 
(4), 415-428. 



64 

 

208. Kennard, R. W., Computer Aided Design of Experiments. Technometrics 1968, 10, (2), 423-&. 
209. Kennard, R. W.; Stone, L. A., Computer Aided Design of Experiments. Technometrics 1969, 11, 
(1), 137-&. 
210. Lindon, J. C.; Nicholson , J. K.; Holmes, E., The Handbook of Metabonomics and Metabolomics. 
Elsevier: Amsterdam, 2007. 
211. Shawe-Taylor, J.; Cristianini, N., Kernel Methods for Pattern Analysis. Cambridge University Press: 
Canbridge, 2004. 
212. Krooshof, P. W. T.; Ustun, B.; Postma, G. J.; Buydens, L. M. C., Visualization and Recovery of the 
(Bio)chemical Interesting Variables in Data Analysis with Support Vector Machine Classification. 
Analytical Chemistry 2010, 82, (16), 7000-7007. 
213. Gower, J. C.; Harding, S. A., Nonlinear Biplots. Biometrika 1988, 75, (3), 445-455. 
214. Walczak, B.; Massart, D. L., The radial basis functions - Partial least squares approach as a flexible 
non-linear regression technique. Analytica Chimica Acta 1996, 331, (3), 177-185. 
215. Walczak, B.; Massart, D. L., Application of Radial Basis Functions - Partial Least Squares to non-
linear pattern recognition problems: Diagnosis of process faults. Analytica Chimica Acta 1996, 331, (3), 
187-193. 
216. Fonville, J. M.; Bylesjo, M.; Coen, M.; Nicholson, J. K.; Holmes, E.; Lindon, J. C.; Rantalainen, M., 
Non-linear modeling of (1)H NMR metabonomic data using kernel-based orthogonal projections to latent 
structures optimized by simulated annealing. Analytica Chimica Acta 2011, 705, (1-2), 72-80. 
217. Vapnik, V., Statistical Learning Theory. John Willey & Sons: New York, 1998. 
218. Lin, X. H.; Wang, Q. C.; Yin, P. Y.; Tang, L.; Tan, Y. X.; Li, H.; Yan, K.; Xu, G. W., A method for 
handling metabonomics data from liquid chromatography/mass spectrometry: combinational use of 
support vector machine recursive feature elimination, genetic algorithm and random forest for feature 
selection. Metabolomics 2011, 7, (4), 549-558. 
219. Lin, X.; Zhang, Y.; Ye, G.; Li, X.; Yin, P.; Ruan, Q.; Xu, G., Classification and differential metabolite 
discovery of liver diseases based on plasma metabolic profiling and support vector machines. Journal of 
Separation Science 2011, 34, (21), 3029-36. 
220. Mu, F.; Unkefer, C. J.; Unkefer, P. J.; Hlavacek, W. S., Prediction of metabolic reactions based on 
atomic and molecular properties of small-molecule compounds. Bioinformatics 2011, 27, (11), 1537-45. 
221. Yetukuri, L.; Tikka, J.; Hollmen, J.; Oresic, M., Functional prediction of unidentified lipids using 
supervised classifiers. Metabolomics 2010, 6, (1), 18-26. 
222. Henneges, C.; Bullinger, D.; Fux, R.; Friese, N.; Seeger, H.; Neubauer, H.; Laufer, S.; Gleiter, C. H.; 
Schwab, M.; Zell, A.; Kammerer, B., Prediction of breast cancer by profiling of urinary RNA metabolites 
using Support Vector Machine-based feature selection. BMC Cancer 2009, 9. 
223. Hall, D. L.; Llinas, J., An introduction to multisensor data fusion. Proceedings of the Ieee 1997, 85, 
(1), 6-23. 
224. Roussel, S.; Bellon-Maurel, V.; Roger, J. M.; Grenier, P., Fusion of aroma, FT-IR and UV sensor 
data based on the Bayesian inference. Application to the discrimination of white grape varieties. 
Chemometrics and Intelligent Laboratory Systems 2003, 65, (2), 209-219. 
225. Smilde, A. K.; van der Werf, M. J.; Bijlsma, S.; van der Werff-van-der Vat, B. J. C.; Jellema, R. H., 
Fusion of mass spectrometry-based metabolomics data. Analytical Chemistry 2005, 77, (20), 6729-6736. 
226. Hall, D. L.; McMullen, S. A. H., Mathematical techniques in multisensor data fusion. Boston, 2004. 
227. Hall, D. L.; Garga, A. K., Pitfalls in Data Fusion (and How to Avoid Them). In Proceedings of the 
2nd International Conference on Information Fusion – FUSION’99 1999, 1, 429-436. 
228. Richards, S. E.; Dumas, M. E.; Fonville, J. M.; Ebbels, T. M. D.; Holmes, E.; Nicholson, J. K., Intra- 
and inter-omic fusion of metabolic profiling data in a systems biology framework. Chemometrics and 
Intelligent Laboratory Systems 2010, 104, (1), 121-131. 



65 

 

229. Yu, C.; Tranchevent, L. C.; De Moor, B.; Moreau, Y., Kernel-based Data Fusion for Machine 
Learning. Methods and applications in Bioinformatics and Text mining. Springer: Berlin, 2011. 
230. Barton, R. H., A decade of advances in metabonomics. Expert Opinion on Drug Metabolism and 
Toxicology 2011, 7, (2), 129-136. 
231. van Gool, A. J.; Henry, B.; Sprengers, E. D., From biomarker strategies to biomarker activities and 
back. Drug Discovery Today 2010, 15, (3-4), 121-6. 
232. Wishart, D. S., Proteomics and the human metabolome project. Expert Review of Proteomics 
2007, 4, (3), 333-335. 
233. Jukarainen, N. M.; Korhonen, S. P.; Laakso, M. P.; Korolainen, M. A.; Niemitz, M.; Soininen, P. P.; 
Tuppurainen, K.; Vepsalainen, J.; Pirttila, T.; Laatikainen, R., Quantification of H-1 NMR spectra of human 
cerebrospinal fluid: a protocol based on constrained total-line-shape analysis. Metabolomics 2008, 4, (2), 
150-160. 
234. Wishart, D. S.; Lewis, M. J.; Morrissey, J. A.; Flegel, M. D.; Jeroncic, K.; Xiong, Y. P.; Cheng, D.; 
Eisner, R.; Gautam, B.; Tzur, D.; Sawhney, S.; Bamforth, F.; Greiner, R.; Li, L., The human cerebrospinal 
fluid metabolome. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life 
Sciences 2008, 871, (2), 164-173. 
235. Griffin, J. L.; Nicholls, A. W., Metabolomics as a functional genomic tool for understanding lipid 
dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 2006, 7, (7), 1095-1107. 
236. Brindle, J. T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J. K.; Bethell, H. W. L.; Clarke, S.; 
Schofield, P. M.; McKilligin, E.; Mosedale, D. E.; Grainger, D. J., Rapid and noninvasive diagnosis of the 
presence and severity of coronary heart disease using 1H-NMR-based metabonomics (vol 8, pg 1439, 
2002). Nature Medicine 2003, 9, (4), 477-477. 
237. Holmes, E.; Foxall, P. J.; Nicholson, J. K., Proton NMR analysis of plasma from renal failure 
patients: evaluation of sample preparation and spectral-editing methods. Journal of Pharmaceutical and 
Biomedical Analysis 1990, 8, (8-12), 955-8. 
238. Hyndman, M. E.; Mullins, J. K.; Bivalacqua, T. J., Metabolomics and bladder cancer. Urol Oncol 
2011, 29, (5), 558-61. 
239. Liu, G. M.; Wang, Y.; Wang, Z. S.; Cai, J. Y.; Lv, X. Z.; Zhou, A. G., Metabolomic studies on the 
biochemical profile of urine from rats with acute cysteamine supplementation. Metabolomics 2011, 7, 
(4), 536-541. 
240. Ringeissen, S.; Connor, S. C.; Thakkar, H.; Sweatman, B. C.; Hodson, M. P.; Hutton, K. A.; Kenny, S. 
P.; McGill, P.; Nunez, D. J.; Haselden, J. N.; Waterfield, C. J., Identification of potential non-invasive 
biomarkers of peroxisome proliferation in the rat. Toxicology 2004, 194, (3), 246-247. 
241. Fonville, J. M.; Maher, A. D.; Coen, M.; Holmes, E.; Lindon, J. C.; Nicholson, J. K., Evaluation of 
Full-Resolution J-Resolved (1)H NMR Projections of Biofluids for Metabonomics Information Retrieval 
and Biomarker Identification. Analytical Chemistry 2010, 82, (5), 1811-1821. 
242. Serkova, N. J.; Standiford, T. J.; Stringer, K. A., The Emerging Field of Quantitative Blood 
Metabolomics for Biomarker Discovery in Critical Illnesses. American Journal of Respiratory and Critical 
Care Medicine 2011, 184, (6), 647-655. 
243. Carraro, S.; Rezzi, S.; Reniero, F.; Heberger, K.; Giordano, G.; Zanconato, S.; Guillou, C.; Baraldi, E., 
Metabolomics applied to exhaled breath condensate in childhood asthma. American Journal of 
Respiratory and Critical Care Medicine 2007, 175, (10), 986-990. 
244. Jiang, N.; Yan, X.; Zhou, W.; Zhang, Q.; Chen, H.; Zhang, Y.; Zhang, X., NMR-based metabonomic 
investigations into the metabolic profile of the senescence-accelerated mouse. Journal of Proteome 
Research 2008, 7, (9), 3678-86. 



66 

 

245. Aymerich, F. X.; Alonso, J.; Cabanas, M. E.; Comabella, M.; Sobrevilla, P.; Rovira, A., Decision tree 
based fuzzy classifier of (1)H magnetic resonance spectra from cerebrospinal fluid samples. Fuzzy Sets 
and Systems 2011, 170, (1), 43-63. 
246. Coen, M.; O'Sullivan, M.; Bubb, W. A.; Kuchel, P. W.; Sorrell, T., Proton nuclear magnetic 
resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clinical Infectious 
Diseases 2005, 41, (11), 1582-90. 
247. Subramanian, A.; Gupta, A.; Saxena, S.; Gupta, A.; Kumar, R.; Nigam, A.; Kumar, R.; Mandal, S. K.; 
Roy, R., Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in 
children. NMR in Biomedicine 2005, 18, (4), 213-225. 
248. Fadil, H.; Kelley, R. E.; Gonzalez-Toledo, E., Differential diagnosis of multiple sclerosis. 
International Review of Neurobiology 2007, 79, 393-422. 
249. Rolak, L. A.; Fleming, J. O., The differential diagnosis of multiple sclerosis. Neurologist 2007, 13, 
(2), 57-72. 
250. Gasperini, C., Differential diagnosis in multiple sclerosis. Neurological Sciences 2001, 22 Suppl 2, 
S93-7. 
251. Alpini, D.; Caputo, D.; Pugnetti, L.; Giuliano, D. A.; Cesarani, A., Vertigo and multiple sclerosis: 
aspects of differential diagnosis. Neurological Sciences 2001, 22 Suppl 2, S84-7. 
252. Scolding, N., The differential diagnosis of multiple sclerosis. Journal of Neurology, Neurosurgery 
and Psychiatry 2001, 71 Suppl 2, ii9-15. 
253. Schaffler, N.; Kopke, S.; Winkler, L.; Schippling, S.; Inglese, M.; Fischer, K.; Heesen, C., Accuracy of 
diagnostic tests in multiple sclerosis--a systematic review. Acta Neurologica Scandinavica 2011, 124, (3), 
151-64. 
254. Tumani, H.; Hartung, H. P.; Hemmer, B.; Teunissen, C.; Deisenhammer, F.; Giovannoni, G.; Zettl, 
U. K.; Grp, B. S., Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiology of Disease 2009, 35, 
(2), 117-127. 
255. Mader, I.; Roser, W.; Kappos, L.; Hagberg, G.; Seelig, J.; Radue, E. W.; Steinbrich, W., Serial 
proton MR spectroscopy of contrast-enhancing multiple sclerosis plaques: absolute metabolic values 
over 2 years during a clinical pharmacological study. AJNR: American Journal of Neuroradiology 2000, 21, 
(7), 1220-7. 
256. Wattjes, M. P.; Harzheim, M.; Lutterbey, G. G.; Bogdanow, M.; Schild, H. H.; Traber, F., High field 
MR imaging and 1H-MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis: 
correlation between metabolic alterations and diagnostic MR imaging criteria. Journal of Neurology 
2008, 255, (1), 56-63. 
257. Wattjes, M. P.; Harzheim, M.; Lutterbey, G. G.; Klotz, L.; Schild, H. H.; Traber, F., Axonal damage 
but no increased glial cell activity in the normal-appearing white matter of patients with clinically 
isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. 
AJNR: American Journal of Neuroradiology 2007, 28, (8), 1517-22. 
258. Zaaraoui, W.; Rico, A.; Audoin, B.; Reuter, F.; Malikova, I.; Soulier, E.; Viout, P.; Le Fur, Y.; 
Confort-Gouny, S.; Cozzone, P. J.; Pelletier, J.; Ranjeva, J. P., Unfolding the long-term pathophysiological 
processes following an acute inflammatory demyelinating lesion of multiple sclerosis. Magnetic 
Resonance Imaging 2010, 28, (4), 477-486. 
259. Blinkenberg, M.; Mathiesen, H. K.; Tscherning, T.; Jonsson, A.; Svarer, C.; Holm, S.; Sellebjerg, F.; 
Paulson, O. B.; Hanson, L. G.; Sorensen, P. S., Cerebral metabolism, magnetic resonance spectroscopy 
and cognitive dysfunction in early multiple sclerosis: an exploratory study. Neurological Research 2012, 
34, (1), 52-8. 



67 

 

260. Davie, C. A.; Hawkins, C. P.; Barker, G. J.; Brennan, A.; Tofts, P. S.; Miller, D. H.; McDonald, W. I., 
Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994, 117 ( Pt 
1), 49-58. 
261. t’Hart, B. A.; Vogels, J. T.; Spijksma, G.; Brok, H. P.; Polman, C.; van der Greef, J., 1H-NMR 
spectroscopy combined with pattern recognition analysis reveals characteristic chemical pattern in 
urines of MS patients and non-human primates with MS-like disease. Journal of the Neurological Sciences 
2003  212, (1-2), 21-30. 
262. Smolinska, A.; Posma, J. M.; Blanchet, L.; Ampt, K. A.; Attali, A.; Tuinstra, T.; Luider, T.; Doskocz, 
M.; Michiels, P. J.; Girard, F. C.; Buydens, L. M.; Wijmenga, S. S., Simultaneous analysis of plasma and CSF 
by NMR and hierarchical models fusion. Analytical and bioanalytical chemistry 2012, 403, (4), 947-59. 
263. Lynch, J.; Peeling, J.; Auty, A.; Sutherland, G. R., Nuclear magnetic resonance study of 
cerebrospinal fluid from patients with multiple sclerosis. Can J Neurol Sci 1993, 20, (3), 194-8. 
264. Simone, I. L.; Federico, F.; Trojano, M.; Tortorella, C.; Liguori, M.; Giannini, P.; Picciola, E.; Natile, 
G.; Livrea, P., High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison 
with biochemical changes in demyelinating plaques. Journal of the Neurological Sciences 1996, 144, (1-2), 
182-190. 
265. Simone, I. L.; Tortorella, C.; Federico, F.; Liguori, M.; Lucivero, V.; Giannini, P.; Carrara, D.; 
Bellacosa, A.; Livrea, P., Axonal damage in multiple sclerosis plaques: a combined magnetic resonance 
imaging and H-1-magnetic resonance spectroscopy study. Journal of the Neurological Sciences 2001, 182, 
(2), 143-150. 
266. Aasly, J.; Garseth, M.; Sonnewald, U.; Zwart, J. A.; White, L. R.; Unsgard, G., Cerebrospinal fluid 
lactate and glutamine are reduced in multiple sclerosis. Acta Neurologica Scandinavica 1997, 95, (1), 9-
12. 
267. Lutz, N. W.; A., V.; Malikova, I.; Confort-Gouny, S.; Ranjeva, J. P.; Cozzone, P. J., A branched-chain 
organic acid linked to multiple sclerosis:First identification by NMR spectroscopy of CSF. Biochemical and 
Biophysical Research Communications 2007, 354, (1), 16-164. 

 

 

 



 

 



 

69 
 

 

 

 

 

 

 

 

 

THE IMPACT OF DELAYED STORAGE ON THE MEASURED 

PROTEOME AND METABOLOME OF HUMAN CEREBROSPINAL 

FLUID (CSF) 
 

 

 

 

 

 

T. Rosenling, M. P. Stoop, A. Smolinska, B. Muilwijk, L. Coulier, S. Shi, A. Dane, C. Christin, F. Suits, P. 
L. Horvatovich, S. S. Wijmenga, L. M.C. Buydens., R. Vreeken, T. Hankemeier, A. J. van Gool, T. M. 
Luider and R. Bischoff 

Clinical Chemistry (2011), 57(12), pp. 1703-11 



 

70 
 

ABSTRACT 
BACKGROUND: Cerebrospinal fluid is in close contact with diseased areas in 

neurological disorders and is therefore an important source of material in the search for 

molecular biomarkers. CSF is withdrawn from patients in a clinical setting where sample 

handling might not always be adequate in view of proteomics and metabolomics studies. 

To study the effect of a time delay between sampling and freezing, we have performed a 

combined proteomics and metabolomics study.  

METHODS: CSF was left for 0, 30 and 120 min at room temperature directly after 

sample collection and centrifugation/removal of the cell pellet. CSF samples were 

analyzed at five separate laboratories using five different analytical platforms. The 

techniques used for proteome analysis were nanoLC Orbitrap-MS and chipLC QTOF-

MS after tryptic digestion. Metabolome analysis was performed by NMR, GC-MS, and 

LC-MS. Targeted analyses of Cystatin C and Albumin were performed by LC-MS/MS in 

the selected reaction monitoring mode. 

RESULTS: Our results show that storage of CSF at room temperature after 

centrifugation does not lead to significant changes in the measured proteome and 

metabolome except for two peptides and one metabolite 2,3,4-trihydrobutanoic acid 

among 5780 identified peptides and 93 identified metabolites. A sensitive protein 

stability marker, Cystatin C, was not affected.  

CONCLUSIONS: The measured proteome/metabolome profile of centrifuged, human 

CSF with all cells removed is stable at room temperature for up to two hours. This gives 

the laboratory personnel at the collection site sufficient time to aliquot samples before 

freezing and storage at -80 °C. 
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2.1 INTRODUCTION 
Conditions during the journey of a biological sample from the clinical collection site to the 

analytical research laboratory might not always be adequate for subsequent proteomics 

and metabolomics analyses, especially in cases where the sample collection was not 

originally performed with these large-scale analyses in mind. In order to detect reliable 

molecular biomarkers it is imperative to handle biological fluids according to 

standardized procedures and to evaluate the effect of pre-analytical parameters on the 

final result to avoid artifacts 1, 2. Earlier studies on urine, plasma and cerebrospinal fluid 

(CSF) have shown that sample handling can affect the stability of proteins as well as 

metabolites 3-11. Sample handling according to standardized procedures is also 

important when trying to compare results between different laboratories 12-14. In the 

search for molecular biomarkers related to disorders of the central nervous system, CSF 

is the most promising bio-fluid because of its close contact to the affected tissue 13, 15-20. 

In this study we analyzed a set of human CSF samples in order to assess protein and 

metabolite stability at room temperature after a low-speed centrifugation step to remove 

cells. To cover a wide range of proteins and metabolites, the results from a number of 

analytical platforms comprising LC-MS, GC-MS and NMR were combined. 
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2.2 MATERIALS and METHODS 
2.2.1 Sample set  
Six human CSF samples were obtained from the Department of Neurology at the 

Erasmus University Medical Center (Rotterdam, The Netherlands). The CSF samples 

were collected as part of routine clinical examination of patients with various symptoms 

(Table 1). All samples were withdrawn via lumbar puncture between the 3rd and 4th 

lumbar vertebrae using a Spinocan needle (0.90 × 88 mm). The Medical Ethical 

Committee of the Erasmus University Medical Center (Rotterdam, The Netherlands) 

approved the study protocol and all patients gave their informed consent. Samples were 

centrifuged (10 min at 956 g) within five minutes after collection to remove cells. Aliquots 

were directly snap-frozen in liquid nitrogen or left at room temperature for 30 and 120 

min before snap freezing and storage at -80 °C. Routine CSF diagnostics including total 

protein and albumin concentration measurements as well as intrathecal cell count were 

performed and absence of hemoglobin and apolipoprotein B100 was assured to 

eliminate the possibility that samples were contaminated with blood. Sample H1 was 

analyzed by the chipLC QTOF-MS and the nanoLC Orbitrap-MS/MS platforms only. 

Samples H2 - H6 were analyzed by all platforms. Protein digestion for proteomic 

analysis was performed as previously described 21. Before analysis on each platform the 

samples were exposed to two freeze-thaw cycles. 
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Table 1. Description of CSF samples used for stability studies.1 

Sample Age Gender Diagnosis Protein 
conc. 
(mg/L) 

Albumine 
conc. 
(mg/L) 

Clinic 

Albumine 
conc. 
(mg/L) 

SRM2 

# Cells/ μL 
(after 

centrifugation) 

H1 49 M Migraine 415 193 192.3 0 

H2 56 M Idiopathic 

intracranial 

hypertension 

472 247 237.5 0 

H3 69 F Headache 395 236 221.0 0 

H4 48 M Idiopathic 

intracranial 

hypertension 

436 241 225.6 0 

H5 29 F Clinical isolated 

syndrome 

(Neuromyelitis 

optica) 

387 226 213.9 0 

H6 38 F Epilepsy 381 184 194.2 0 

1 Sample H1 was only analyzed with respect to proteomics 
2 Average over 3 time points (supplementary Table S4). 

 

 

2.2.2 ChipLC QTOF-MS proteomic analysis 

Half a microliter trypsin-digested CSF was randomly injected in quintuplicate with 0.5 μL 

digested QC samples (pooled CSF spiked with cytochrome C; Fluka, part # 30396, final 

concentration: 375 fmol/μL) and blanks injected between every 10th sample for LC-MS 

analysis on an Agilent chipLC QTOF-MS system as reported previously 21. Enrichment 

and separation was done using an LC chip (G4240-63001 SPQ110, Agilent 

Technologies [separation column: 150 mm × 75 μm Zorbax 300SB-C18, 5 μm; trap 

column: 160 nL Zorbax 300SB-C18, 5 μm]). The LC separations were carried out as 

described earlier using the following gradient:  80 min linear gradient from 3 to 40% B; 
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10 min linear gradient from 40 to 50% B; 10 min linear gradient from 50 to 3% B 21. MS 

analysis was performed under the following conditions; mass range: 200-2000 m/z in 

profile mode, acquisition rate: 1 spectrum/s, fragmentor voltage: 175 V, skimmer 

voltage: 65 V, OCT 1 RF Vpp: 750 V. The spray voltage was ~1800 V and the drying 

gas (N2) was 6 L/min at a temperature of 325 ºC. Mass correction was done for each 

spectrum using internal standards (methyl stearate m/z: 299.294457 and HP-1221 m/z: 

1221.990637) evaporating from a wetted wick inside the spray chamber. Reproducibility 

was monitored on selected cytochrome C peaks in the QC samples. Mass difference 

between theoretical and measured values was within +/- 4 ppm. The selected peaks 

showed a peak area RSD of less than +/- 20% and a retention time (RT) RSD of less 

than 2%. 

Data was processed using a pipeline developed in C++ as previously described 21, 22. 

MzData.XML data were converted to ASCII format over a mass range of 200 to 1600 

m/z (no multiply charged peptide ions were detected outside this range), a retention time 

range of 3 to 80 min (peptide elution range) and an intensity threshold of 300 counts. A 

double cross validated Nearest Shrunken Centroid (NSC) algorithm was applied to the 

complete peak matrix; the NSC comparison gives a cross validation error between 0 and 

1 depending on the shrinkage value, where 1 implies that class assignment is incorrect, 

0.5 that class assignment is random and 0 that class assignment is correct 23. NSC 

selected features were compared by univariate statistical analysis (Student’s t-test with 

Bonferroni correction for multiple comparisons) and ANOVA (Microsoft Excel 2007 and 

SPSS 16.0). Features were considered significantly different based on a p-value below 

0.05 (T0 vs. T120 and T0 vs. T30) in at least five out of six samples (T0 vs. T120 and T0 

vs. T30). Each discriminatory feature was analyzed by targeted tandem MS for 

identification. Principal component analysis (PCA) 24 was applied to the complete peak 

matrix (10 000 peaks) as well as to the NSC-selected features (MatLab, R2009a). For 

visualization, box and whisker plots were created in Origin 7.0. 
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2.2.3 Nano LC ORBITRAP-MS/MS SHOTGUN proteomics analysis 
Trypsin-digested CSF samples were injected in random order and analyzed by MS/MS 

(shotgun approach) on an Ultimate 3000 nano LC system (Dionex, the Netherlands) 

online coupled to a hybrid linear ion trap/Orbitrap mass spectrometer (LTQ Orbitrap XL; 

Thermo Fisher Scientific, Bremen, Germany) as previously described 21. 

Data files were analyzed and pre-processed using the Progenesis LC-MS software 

package (Nonlinear Dynamics, United Kingdom). Retention times were aligned and the 

intensities of the ions were normalized. To assess inter-patient variability all identified 

peaks were analyzed by PCA. All identified peaks were also analyzed by the NSC 

algorithm for classification 23. Peptides were analyzed for differential abundance 

between the groups by ANOVA. P-values below 0.01 were considered significant.  

All MS/MS spectra were searched against the UniProt/SwissProt database (version 

57.6, taxonomy: Homo sapiens, 20070 sequences) using Mascot (version 2.2.06). 

Search parameters were; parent ion tolerance: 2 ppm, amino acid modifications: 

carbamidomethylation of cysteine (fixed) and oxidation of methionine (variable).  
 

2.2.4 Nano LC-MS/MS Analyses in the selected reaction monitoring (SRM) mode  

Trypsin-digested CSF samples were spiked with known concentrations of stable isotope-

labeled peptide standards corresponding to sequences 427-434 (FQNALLVR) of human 

serum albumin and 52-62 (ALDFAVGEYNK) of human cystatin C for quantitation by 

Selected Reaction Monitoring (SRM) (supplementary Table S1 and S2).  

Chromatographic separation of spiked CSF digests, was performed on an Ultimate 3000 

nano LC system (Dionex). One microliter of spiked CSF digest was loaded onto a C18 

trap column (PepMap C18, 300 μm ID x 5mm, 5 μm particle size and 100 Å pore size; 

Dionex, the Netherlands) and washed for 5 min at a flow rate of 20 μL/min 0.1% TFA in 

H2O. Next, the trap column was switched in line with the analytical column (PepMap 

C18, 75 μm ID x 150 mm, 3 μm particle size and 100 Å pore size; Dionex). Peptides 

were eluted at a flow rate of 300 nL/min with the following gradient: 0-45% solvent B in 

30 min, solvent A (H2O/acetonitrile (ACN) 98/2 (v/v), 0.1% formic acid (FA)) and solvent 

B (H2O/ACN 20/80 (v/v), 0.1% FA). The separation of the peptides was monitored at 214 

nm. 
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SRM detection was performed by means of a triple quadrupole tandem mass 

spectrometer (4000 QTRAP; AB SCIEX, Concord, Ontario, Canada) in the positive ion 

mode. As technical control for the measurements, a single spiked CSF digest was 

measured after every 6th run. A technical control for the enzymatic digestion (one 

sample digested at three separate times) was included in this quantitative analysis. Data 

Analysis was performed using the SRM data analysis program Skyline (version 0.7) 25, 

using the ratio of the analyte peptide to the known concentration of the spiked 

isotopically labelled internal peptide standard to calculate the concentrations of the 

original peptides. For the cystatin C peptide the average of both fragment ion ratios was 

used for the determination of the protein concentration. A paired, two-sided t-test was 

used to test for differences in peptide concentrations between time points.  
 

2.2.5 GC-MS metabolomics analysis 
CSF samples were treated with an oximation reagent followed by silylation prior to GC-

MS analysis 21, 26. Each sample was injected twice in random order and analyzed on an 

Agilent 6890 gas chromatograph coupled to an Agilent 5973 quadrupole mass 

spectrometer as described earlier 21.  

Peaks were characterized by retention time and m/z ratio and identified by comparison 

with a spectral data base (TNO) 21. All detected metabolites were analyzed by PCA. A 

two tailed Student’s t-test was applied to all known metabolites (T0 vs. T30 and T0 vs. 

T120). Metabolites with a p-value below 0.05 were considered significantly affected by 

storage time. 
 

2.2.6 NMR metabolomics analysis 
Samples were randomized prior to sample preparation and analysis. Fifty microliters of 

CSF were diluted in 200 μL of D2O (99.99 % D). Twenty-five μL of 8.8 mM TSP-d4 (3-

(Trimethylsilyl)propionic acid-d4 sodium salt, 99 % D) stock solution in D2O were added 

to 250 μL CSF to a final concentration of 0.8 mM TSP as internal standard and as 

chemical shift reference (δ0.00). The TSP-d4 stock solution was prepared from dry TSP-

d4. The pH was adjusted (7.0 – 7.1) by adding phosphate buffer (9.7 μL of a 1 M stock 

solution) to a final concentration of 35 mM 27. Finally the sample (284.7 μL) was 
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transferred to a SHIGEMI microcell NMR tube for measurements. Each sample was 

analyzed once. 

1D 1H NMR spectra were acquired on an 800 MHz Inova (Varian) system equipped with 

a 5 mm triple-resonance, Z-gradient HCN cold-probe.  Suppression of water was 

achieved using WATERGATE (delay: 85 s) 28. For each spectrum 256 scans of 18000 

data points were accumulated with a spectral width of 9000 Hz. The acquisition time for 

each scan was 2 s. An 8 s relaxation delay was employed between scans. Prior to 

spectral analysis, all acquired Free Induction Decays (FIDs) were zero-filled to 32000 

data points, multiplied with a 0.3 Hz line broadening function, Fourier transformed and 

manually phased. Calibration of the chemical shift scale was done on the external 

reference standard TSP-d4 by using ACD/SpecManager software (Advanced Chemistry 

Development Inc., Toronto, Canada). Spectra were transformed to MatLab, version 7.6 

(R2008b) (Mathworks, Natick, MA) for further analysis.  

NMR spectral data was preprocessed by baseline correction using the Asymmetric 

Least Squares method 29 and aligned with the Correlation Optimized Warping (COW) 

method 30. Each spectrum was divided (along the chemical shift axis) into equally sized 

bins (0.04 ppm) and each data point was averaged over each bin. The areas of the bins 

were summed to provide an integral so that the intensities of the peaks in such defined 

spectral regions were extracted. Each NMR spectrum was reduced to 210 variables, 

calculated by integrating regions of equal width (0.04 ppm) corresponding to the regions 

of δ0.7-9. To remove effects of variation in water resonance suppression, spectral 

regions between δ4.4-5.4 were removed. All spectra thus reduced were normalized to 

unit area. 

The data was further processed by supervised vast scaling, in order to determine group-

specific scaling factors 31. To visualize possible systematic variation, grouping, trends 

and outliers, PCA was applied to the entire data set.  To remove biological (patient-to-

patient) variation, data was further mean-centered per patient and vast-scaled (see 

supplementary Fig. S1). 
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2.2.7 LC-MS/MS amino acid analysis  
CSF samples were prepared in triplicate as previously described (21). One microliter of 

each reaction mixture was injected in duplicate on an ACQUITY UPLCTM system 

(Waters Chromatography B.V., Etten-Leur, The Netherlands) coupled to a Quattro 

Premier Xe tandem quadrupole mass spectrometer (Waters Corporation) operated 

under the MassLynx data acquisition software (version 4.1; Waters). Quantification and 

pre-analysis of the data was done using LC-QuanLynx (Waters) and Microsoft Excel 

2003, respectively. The complete set of amino acids in all samples was examined by 

PCA. The data was analyzed by a two-tailed Student’s t-test (T0 vs. T30 and T0 vs. 

T120) and amino acids with p-values below 0.05 were considered discriminatory. 
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2.3 RESULTS 
2.3.1 Proteomics analysis  

The Orbitrap-MS/MS shotgun analysis resulted in a list of 55421 peaks out of which 

5780 peptides were identified. All identified peptides from the Orbitrap-MS/MS data and 

the 10000 most intense QTOF-MS peaks (complete peak matrix) were used for 

unsupervised multivariate statistical analysis (PCA). No trend with respect to delay 

before storage was visible (Fig. 1A and 2A). PCA showed that biological variation was 

more prominent than the effect of delay time, since data points clustered according to 

the individual patients rather than according to time points (Fig. 1B-D and 2B-D).  

 

 
Figure 1. Multivariate statistical analysis (PCA) of the 10.000 most intense peaks selected from 

the chipLC QTOF-MS proteomic data (quintuplicate sample analysis).  There is no separation 

based on time between sampling and freezing (T0 [▼] / T30 [ ٭] / T120 [O]), while data from 

individual samples cluster together indicating that the inter-individual differences are larger than 

those related to time. (A) All samples. (B) Samples H2 (٭) and H5 (■). (C) Samples H1 (+) and 

H6 (▲). (D) Samples H3 (x) and H4 (♦). 

 

Comparison of the Orbitrap-MS/MS data by ANOVA according to delay time resulted in 

only 56 peaks with a p-value below 0.01, which is well below 554, the number of peaks 
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that would receive this p-value when comparing samples containing no differences (null 

hypothesis). NSC analysis pointed also to only random differences between the time 

groups with a cross validation error of 0.5. This lead to the conclusion that there was no 

significant discrimination between the samples stored at -80 °C immediately after 

centrifugation and samples left at room temperature for 30 or 120 min prior to being 

frozen and stored based on the observed peptides.  

 

 
Figure 2. Multivariate statistical analysis (PCA) of 5780 identified peaks from nanoLC Orbitrap-

MS/MS proteomic data (single sample analyses). There is no separation based on time between 

sampling and freezing (T0 [▼] / T30 [٭] / T120 [O]), while data from individual samples cluster 

together indicating that the inter-individual differences are larger than those related to time. (A) 

All samples, (B) Samples H2 [٭]) and H5 (■). (C) Samples H1 (+) and H6 (▲). (D) Samples H3 

(x) and H4 (♦) 

 

NSC analysis of the QTOF-MS data confirmed that differences between T0 and T120 

were random, with a double cross validation error of 0.5. Comparison of T0 versus T30 

by NSC reached a minimal average cross validation error of 0.34. PCA on the NSC-
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selected peaks (T0 vs. T30) from the QTOF data showed no clear discrimination but a 

weak tendency of clustering according to time groups (Fig. 3A). 
 

 
Figure 3. Multivariate statistical analysis by PCA based on NSC-selected peaks derived from 

chipLC QTOF-MS proteomics data (T0 [▼] vs. T30 [٭]). (B and C) and univariate statistical 

analysis of two peaks that decreased significantly with respect to delay time between CSF 

sampling and freezing at room temperature. Data are represented as box and whisker plots with 

significant p-values marked (p < 5 x 10-5) (T0 vs. T30 and T0 vs. T120). (A) PCA of NSC-

selected peaks for T0 vs. T30. (B) Peak at m/z: 656.335 that decreased significantly after 30 and 

120 min at room temperature. (C) Peak at m/z 736.383 that decreased significantly after 30 and 

120 min at room temperature. The statistical analysis was based on two-tailed Students t-tests 

with Bonferroni correction of the combined data from five repetitive analyses of six human CSF 

samples (H1-H6). 

 

The concentration of two proteins in CSF, albumin and cystatin C, were determined by 

targeted mass spectrometric analysis in the SRM mode. These proteins are exemplary 

of the vast majority of CSF proteins, which we found to remain unchanged after 120 min 

at room temperature. Albumin was chosen as it represents the largest part of CSF total 
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protein, a parameter that is often used in CSF-based clinical diagnostics, and Cystatin C 

was chosen as a protein that is sensitive to storage conditions1, 2 .  Concentrations of 

cystatin C and albumin were calculated based on the measured ratios of the 

corresponding spiked isotopically labeled internal peptide standards to their biological 

counterparts, confirming that variation between different time points was not statistically 

significant (supplementary Tables S3 and S4). The measured concentrations of both 

proteins were both found to agree with reported CSF concentrations 32, 33.The albumin 

concentrations measured by SRM were also in agreement with albumin concentrations 

measured by standard clinical chemistry techniques (Table 1). Additionally, trypsin 

cleavage efficiency was assessed by monitoring the release of a tag from the lysine end 

of the cystatin C peptide during the regular digestion procedure. After overnight 

digestion the entire peak in the LC-MS data corresponding to the peptide including the 

tag had completely disappeared, indicating that complete digestion had taken place. The 

observed relative standard deviation for the cystatin C measurements was below 10% 

and those for albumin were less than 4%. Technical variability with sample pre-treatment 

was below 4% and without sample pre-treatment less than 2% (Table 2). 
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Table 2. Relative standard deviation (RSD) of SRM measurements of cystatin C and albumin. 

Relative standard deviations of protein concentrations in individual patients are slightly higher 

than technical controls (measuring a single sample multiple times). Average RSD for cystatin C 

in the 6 patient samples ± 2SD = 6.25 ± 4.99. Average RSD for albumin in the 6 patient samples 

± 2SD = 2.40 ± 0.66. 

Sample No. of samples 
RSD cystatin C 

(%) 

RSD albumin 

(%) 

H 1 3 5.20 2.19 

H 2 3 6.62 1.78 

H 3 3 7.72 3.13 

H 4 3 7.55 3.05 

H 5 3 9.15 2.59 

H 6 3 2.72 1.51 

Technical variation sample pre-
treatment 

3 3.74 2.34 

Technical variation mass 
spectrometry measurement 

4 0.82 1.74 

 
 

2.3.2 Metabolomics analysis 

GC-MS analysis quantified 88 metabolites, of which 67 were assigned to known 

compounds based on spectral libraries. This analysis was complemented by targeted 

LC-MS of 19 natural amino acids. NMR analysis identified and quantified 51 metabolites. 

Thirteen of the metabolites were detected by all three methods, 24 were detected by 

GC-MS and NMR, 14 by GC-MS and LC-MS and 16 by NMR and LC-MS. In total 93 

unique identified metabolites were quantified. PCA of the data from the different 

analytical platforms showed that clustering occurs primarily according to the individual 

patients rather than to the time points when all data are considered (Fig. 4A-C). 

Meancentering the NMR data per patient and vast scaling showed further that there is 

no variation in the metabolome according to delay time (supplementary Fig. S1). The 
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absolute metabolite concentrations identified by NMR can be found in supplementary 

material. Statistical analysis revealed that the concentration of 2,3,4-trihydrobutanoic 

acid (erythronic acid, threonic acid), detected by GC-MS (Fig. 4D) increased in all 

samples with increasing delay time at room temperature. In sample H2 the increase of 

this metabolite was extremely high after 120 minutes. Non-parametric ANOVA (Kruskal-

Wallis) showed that discrimination between T0 and T120 was significant (p < 5 x 10-3).  
 
 

 

Figure 4. Statistical analysis of metabolomics data derived from human CSF (patients H2-H6). 

Multivariate statistical analysis by PCA based on all detected metabolites and univariate 

statistical analysis (Kruskal-Wallis non-parametric ANOVA) of 2,3,4-trihydroxybutanoic acid (T0 

vs. T120; (*) p < 5 x 10-3). (A) GC-MS (90 metabolites, duplicate sample analysis). (B) NMR (51 

metabolites, single analysis), (C) LC-MS targeting 19 natural amino acids (sextuplicate analysis) 

and (D) 2,3,4-trihydroxybutanoic acid ((*) p < 5 x 10-3). 
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2.3 DISCUSSION 
We present a study of the stability of the measured proteome and metabolome of human 

CSF when leaving samples at room temperature for up to 2 h between lumbar puncture 

and storage at -80 °C to mimic delayed storage in clinical routine practice. 

Unsupervised multivariate statistical analysis (PCA) showed that patient-to-patient 

variation is most prominent overriding variation that is due to delay time. Following 

variable selection based on pre-classification of the samples according to delay time, we 

found that only two peptides and one metabolite changed significantly over time from 

amongst approximately 6000 detected peptides and 93 identified and quantified 

metabolites. Our results demonstrate that human CSF prepared according to the 

described procedure is suitable for proteomics and metabolomics analysis even when 

left at room temperature for 2 hours provided that all cells have been removed by 

centrifugation. Quantitation of albumin and cystatin C by targeted mass spectrometry in 

the SRM mode using stable isotope labeled internal standard peptides confirmed that 

there is no statistically significant difference over two hours of delay time. 

Another study on the stability of the proteome in CSF at room temperature pointed in the 

same direction, with the detection of only two polypeptides that changed after storage 33. 

These samples were, however, contaminated with blood since both polypeptides were 

derived from hemoglobin. Another study showed that blood contamination decreases the 

stability of the CSF proteome 11 corroborating our earlier results 21. Metabolomics 

revealed increased levels of 2,3,4-trihydroxybutanoic acid after storage at room 

temperature. This increase may be caused by oxidative degradation of ascorbic acid 32, 

34, 35 as ascorbic acid levels were slightly decreased with increased time at room 

temperature (statistically not significant).  Interestingly, 2,3,4-trihydroxybutanoic acid 

decreased in CSF containing white blood cells 21, which might be due to further 

metabolism of the acid by enzymes released from white blood cells. The concentration 

of 2,3,4-trihydroxybutanoic acid was too low for NMR detection.  

The biological variability of metabolites and proteins is another important factor when 

designing biomarker studies. A study from our team showed that biological variation of 
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some proteins and peptides in CSF can exceed 100% which limits their potential as 

biomarker candidates 36. 

In conclusion, we assessed the stability of CSF with respect to delay time using five 

different analytical platforms. Overall we observed only minor changes in either peptides 

(two out of approximately 6000) or metabolites (one out of 93). Earlier studies showed 

that blood or white blood cell contamination reduces CSF stability considerably, 

emphasizing the importance of the initial centrifugation step. As we did not add 

antioxidants, we cannot draw conclusions about oxygen-sensitive metabolites such as 

the catecholamines. The observed increase in 2,3,4-trihydroxybutanoic acid over time 

indicates, however, that oxygen-sensitive metabolites require additional protective 

measures during sample preparation and storage. 
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ABSTRACT 

The analysis of cerebrospinal fluid (CSF) is employed in biomarker discovery studies for 

various neurodegenerative central nervous system disorders. However, little is known 

about variation of CSF proteins and metabolites between patients without neurological 

disorders, a baseline for a large number of CSF compounds appears to be lacking. To 

analyze the variation in CSF protein and metabolite abundances in a number of well-

defined individual samples of patients undergoing routine, non-neurological, surgical 

procedures we determined the variation of various proteins and metabolites by multiple 

analytical platforms.  

A total of 126 common proteins were assessed for biological variations between 

individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed 

(RSDs ranged from 18% to 148%), for both high abundant and low abundant proteins. 

Technical variation was between 15% and 30% for all 126 proteins. Metabolomics 

analysis was performed by means of GC-MS and NMR and amino acids were 

specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 

metabolites. Interestingly, the variation in the metabolome appears to be much more 

limited compared to the proteome, as the observed RSDs ranged from 12% to 70%. 

Technical variation was below 20% for almost all metabolites.   

Consequently, an understanding of the biological variation of proteins and metabolites in 

CSF of neurologically normal individuals appears to be essential for reliable 

interpretation of biomarker discovery studies for central nervous system disorders, 

because such results may be influenced by natural inter-individual variations. Therefore 

proteins and metabolites with high variation between individuals ought to be assessed 

with caution as candidate biomarkers because at least part of the difference observed 

between the diseased individuals and the controls will not be caused by the disease, but 

rather by the natural biological variation between individuals.  
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3.1 INTRODUCTION 
The analysis of cerebrospinal fluid (CSF) is indispensable in the diagnosis and 

understanding of various neurodegenerative central nervous system (CNS) disorders 1-3. 

CSF is a fluid that has different functions, such as the protection of the brain to forces 

from outside, transport of biological substances and excretion of toxic and waste 

substances. It is in close contact with the extracellular fluid of the brain. Therefore, the 

composition of CSF can reflect biological processes of the brain 4. By characterization of 

the proteome and metabolome of CSF better insight in, for example, the pathogenesis of 

CNS disorders may be achieved; as for many of these disorders the aetiology is still 

unclear.  

CSF is produced in the ventricles of the brain and in the subarachnoidal spaces. 

Humans normally produce around 500 mL of CSF each day, and the total volume of 

CSF at a given time is approximately 150 mL. CSF reflects the composition of blood 

plasma although the concentrations of most proteins and metabolites in CSF are lower. 

However, individual proteins and metabolites can act differently. Active transport from 

blood and secretion from the brain contribute to the specific composition of CSF. This 

composition can be disturbed in neurological disorders 5, 6. Since CNS specific proteins 

and metabolites are typically low in abundance compared to blood, this change in 

composition is more likely to be found in CSF, because in blood the higher abundant 

plasma proteins can completely mask the signal of the lower abundant proteins. Also, if 

the disease markers do not cross the blood-brain-barrier (BBB), then CSF is the only 

viable biofluid source. CSF might therefore be an excellent source for biomarker 

discovery for CNS disorders, following the hypothesis that neurological diseases induce 

alterations in CSF protein and metabolite levels.  

Analysis of metabolites in CSF has been common practice in clinical chemistry for 

decades to analyse biomarkers for inborn errors of metabolism. The approaches used 

are either metabolite profiling of CSF using NMR 7, or targeted analysis of one or a few 

metabolites using specific analytical methods 8. Metabolomics includes the analysis of 

metabolites in biofluids by NMR or MS-based approaches, i.e. LC-MS or GC-MS. 

Several metabolite profiling studies were carried out on CSF using NMR, some of which 

were published only recently 9, 10. Surprisingly, very few metabolomics studies using MS-
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based methods have been performed on CSF yet 11, 12. One of the reasons is the fact 

that the human CSF metabolome has not been characterized very well yet. Many CSF 

metabolites remain unidentified and for those that have been identified there is not much 

known about normal concentration ranges. A systematic categorization of the CSF 

metabolome is necessary and expected to be beneficial for future biomarker discoveries. 

Recently Wishart et al. made a good start in exploring the human CSF metabolome. 

Computer-aided literature survey resulted in 308 detectable metabolites in human CSF 
13.  

The CSF proteome has been characterized to a much larger extent than the CSF 

metabolome and is currently topic of investigations in several research groups 

worldwide. Recently, studies have been published with numerous identities and 

quantities of CSF proteins. Pan and co-workers were able to identify 2.594 proteins in 

well-characterized pooled human CSF samples using strict proteomics criteria with a 

combination of LTQ-FT and MALDI TOF/TOF equipment 14. Also they were able to 

quantify several proteins using a targeted LC MALDI TOF/TOF approach 15. Hu and co-

workers have studied the intra- and inter-individual variation in human CSF, and found 

large variations in protein concentrations in six patients by means of 2D-gel 

electrophoresis 16, focussing mainly on the variations within individuals at two different 

time-points. Although only a limited number of proteins was analyzed, the variation 

between the time-points was profound, exceeding 200% for seven proteins. 

 Unique CSF biomarkers may contribute to a deeper understanding of the mechanisms 

of CNS disorders. However, for this assumption to come true, there are still challenges 

ahead. Even though CSF is not as complex as blood (almost missing the cellular part 

and the clotting system present in blood), it is expected to consist of thousands of 

organic- and non-organic salts, sugars, lipids and proteins. A large part of the CSF 

consists of a few high abundant metabolites and proteins, which hamper, if no 

precautions are undertaken, the identification and quantification of metabolites and 

proteins that occur in lower amounts. The analysis of the CSF metabolome is 

complicated due to the diverse chemical nature of metabolites and the lower 

concentration of metabolites compared to blood. Analytical method development is still 

required as it is not possible to identify the entire range of CSF metabolites with one 
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single analytical method. Though in proteome research efforts have been made to 

quantify proteins, metabolomics studies up to now do not provide quantitative 

information or only give information for the most abundant metabolites.  

Another challenge is the sample amount obtained by lumbar puncture to collect CSF. 

Lumbar puncture is an invasive method that is not performed as frequently as blood 

sampling. However, often after the analysis of various clinical parameters only a limited 

amount of CSF sample is available for biomarker discovery. Metabolomics studies are 

hampered by limited CSF sample amount. Therefore analytical methods are required 

that are suitable to handle relative small sample volumes.   

The main objective of this study was firstly to analyze the variation in CSF protein and 

metabolite abundances in a number of well-defined individual samples by multiple 

analytical platforms. Secondly, the goal was to integrate metabolomics and proteomics 

and to present biological variations in metabolite and protein abundances and compare 

these with technical variations with the currently employed analytical methods. The 

results will facilitate and increase the application of CSF for future biomarker discovery 

studies in the field of neurodegenerative diseases and neuro-oncology. 
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3.2 EXPERIMENTAL PROCEDURE 
3.2.1 CSF sampling 
CSF samples were obtained by lumbar puncture in the Erasmus University Medical 

Centre (Rotterdam, the Netherlands). An experienced medical doctor selected ten 

samples, which were taken from patients receiving spinal anaesthesia prior to non-

neurological surgery. These subjects had no neurological diseases, were not using any 

medication and were considered to have neurologically normal CSF. Immediately after 

sampling, the CSF samples were centrifuged (10 minutes at 3.000 rpm) to discard 

cellular elements. The samples were subsequently used for routine CSF diagnostics. 

This included quantification of total protein concentration by routine clinical chemistry 

measurements and quantification of the cell count (< 5 white blood cells per mL). The 

remaining volume of the samples was aliquoted and stored at –80°C immediately after 

centrifugation. As a standard procedure the samples were checked for blood 

contamination, and any sample in which a hemoglobin or apolipoprotein B100 peptide 

was identified with a significant score by nanoLC-Orbitrap MS was excluded from the 

study. 

For pooling of the samples (n=10), the originally obtained samples were thawed on ice 

and 0.75 mL from each of the samples was joined, resulting in a 7.5 mL pooled CSF 

sample. This pooled CSF sample was vortexed for 30 seconds and then subdivided into 

75 portions of 100 μL in sterile cryogenic vials (Nalgene Nunc Int., Rochester, NY, USA). 

The portions were immediately frozen at –80 °C. The characteristics of the pooled 

sample are described in Table 1. This pooled sample was used to assess the technical 

variation in the proteomics experiments by measuring it five times. For the 

measurements of the individual patients only nine CSF samples were used because 

there was insufficient volume of one sample.  

The 28 CSF samples from the validation sample set were also taken by an experienced 

anesthesiologist from patients receiving spinal anaesthesia prior to non-neurological 

surgery, but these samples were taken at another hospital (Sint Franciscus Gasthuis 

(Rotterdam, the Netherlands)). These subjects had no neurological diseases, were not 

using any medication and were considered to have neurologically normal CSF.  
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Table 1. Details on the pooled sample, including gender, average age and average protein 

concentration. 

Gender Male 8; Female 2 
Mean age (years) 51 (SD = 14) 

Total protein concentration (g/L) 0.4 (SD = 0.1) 
Glucose concentration (mmol/L) 3.3 (SD = 0.3) 

 

The CSF samples used in the experimental sample set were selected by an experienced 

neurologist and taken from patients undergoing tests for clinical diagnosis. These 

samples, taken from multiple sclerosis and headache patients were subjected to the 

same, strict post-sampling procedure as the samples mentioned previously. In these 

samples no significant difference in protein concentration between the two groups was 

observed, so there was no leakage in the blood-CSF barrier. All CSF samples used in 

this study were taken in the morning at approximately 10 AM. The Medical Ethical 

Committees of the Erasmus University Medical Centre in Rotterdam, The Netherlands, 

and the Sint Franciscus Gasthuis in Rotterdam, The Netherlands, approved the study 

protocol and all study participants gave written consent. The average age and protein 

concentration of the samples in all three sample sets is listed in Table 2 and age, gender 

and protein concentration of the individual samples is listed in the Supplementary 

Material. 

 

Table 2. Details on the three sample sets: the original sample set (n=9), the validation sample 

set (n=28), and the experimental sample sets (n=36/42). Age and protein concentration values 

are averages (standard deviation in brackets). The gender, age and protein concentration of all 

individual patients is listed in the Supplementary Material. 

 
Original 

sample set 
Validation 
sample set 

Experimental 
sample set 
proteomics 

Experimental 
sample set 

metabolomics 
Gender 7M / 2F 13M / 15F 13M / 23F 23M / 19F 

Age (years) 51.0 (14.8) 44.5 (14.5) 41.7 (10.8) 43.5 (12.8) 
Protein 

concentration 
(g/L) 

0.39 (0.12) 0.37 (0.11) 0.38 (0.11) 0.38 (0.13) 

 



98 
 

3.2.2 Proteomics 
3.2.2.1 Sample preparation for nanoLC-Orbitrap MS and MALDI-FT-ICR MS 
For measurement of proteins in CSF, samples were enzymatically digested with trypsin 

to obtain peptides. An amount of 50 μL Rapigest (Waters, Milford, USA) in 50 mM 

ammonium bicarbonate and 1 μL 100 mM DTT was added to 50 μL CSF. The mixture 

was heated at 60°C for 30 minutes, upon which it was cooled down to room temperature 

in approximately 20 minutes. Iodoacetamide (5 μL of 0.3 M solution) was added and this 

mixture was left for 30 minutes in dark at room temperature. Trypsin was added (10 μL, 

0.1 mg/mL) and all samples, processed in one batch, were incubated overnight at 37°C. 

To stop digestion, 2 μL of a 50% TFA/50% water solution was added. The sample was 

then incubated for 45 minutes at 37°C. 

 

3.2.2.2 NanoLC-Orbitrap MS analysis 
These measurements were carried out on a Ultimate 3000 nanoLC system (Dionex, 

Germering, Germany) online coupled to a hybrid linear ion trap / Orbitrap MS (LTQ 

Orbitrap XL; Thermo Fisher Scientific, Bremen, Germany). Five μL digest were loaded 

on to a C18 trap column (C18 PepMap, 300μm ID x 5mm, 5μm particle size, 100 Å pore 

size; Dionex, Amsterdam, The Netherlands) and desalted for 10 minutes using a flow 

rate of 20 μL /min 0.1% TFA. Then the trap column was switched online with the 

analytical column (PepMap C18, 75 μm ID x 150 mm, 3 μm particle and 100 Å pore size; 

Dionex, Amsterdam, The Netherlands) and peptides were eluted with following binary 

gradient of solvent A and B: 0% - 25% solvent B in 120 min and 25% - 50% solvent B in 

further 60 minutes, where solvent A consist of 2% acetonitrile and 0.1% formic in water 

and solvent B consists of 80% acetonitrile and 0.08% formic acid in water. Column flow 

rate was set to 300 nL/min. For MS detection a data dependent acquisition method was 

used: high resolution survey scan from 400 – 1800 Th. was performed in the Orbitrap 

(value of target of automatic gain control AGC 106, resolution 30,000 at 400 m/z; lock 

mass was set to 445.120025 u (protonated (Si(CH3)2O)6) 17). Based on this survey scan 

the 5 most intensive ions were consecutively isolated (AGC target set to 104 ions) and 

fragmented by collision-activated dissociation (CAD) applying 35% normalized collision 

energy in the linear ion trap. After precursors were selected for MS/MS, they were 
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excluded for further MS/MS spectra for 3 minutes. Proteins were identified using the 

Bioworks 3.2 (peak picking by Extract_msn, default settings) software package (Thermo 

Fisher Scientific, Bremen, Germany), and SEQUEST (Thermo Fisher Scientific, Bremen, 

Germany), taking the HUPO criteria, with XC scores of 1.8, 2.2 and 3.75 for single, 

double and triple charged ions, respectively, into account. The used database was the 

SwissProt-database (version 56.0, human taxonomy (20069 entries)). 

Carboxymethylation of cysteine (+57.021 u) as fixed and oxidation of methionine 

(+15.996 u) as variable modifications and tryptic cleavage were considered. The number 

of allowed missed cleavages was 2, the mass tolerance for precursor ions was 10 ppm 

and for fragment ions 0.5 Da. The cut-off for mass differences with the theoretical mass 

of the identified peptides was set at 2 ppm. 

The Orbitrap data was subsequently analysed using the Progenesis LC-MS software 

package (version 2.5, Nonlinear Dynamics, Newcastle-upon-Tyne, United Kingdom), in 

which the LC runs were aligned and the biological variation between the samples was 

calculated to assess variation between individuals in this data set. A S/N > 4 and the 

presence of at least 3 isotope peaks per peptide were used as a minimum threshold for 

quantitation. Variation was assessed by comparing the area-under-the-curve of all 

peptides of a protein. The mean area-under-the-curve, corrected for the total ion current, 

of all peptides of a protein was compared between the individuals, and the relative 

standard deviation (RSD) of this value was considered to be the inter-individual variation 

(listed as RSD (in percentages) in the supplementary material). Technical variation was 

assessed by performing the same comparison on the five replicas of the pooled sample.  

 

3.2.2.3 MALDI-FT-ICR MS analysis 
The CSF samples were handled according to the same protocol we reported previously 
18, in which the samples were tryptically digested and desalted using C18 material. 

Using a 2,5-dihydroxybenzoic acid matrix the samples were all measured manually on 

an APEX IV Qe 9.6 Tesla MALDI-FT-ICR mass spectrometer (Bruker Daltonics, 

Billarica, USA), using a multishot accumulation as recommended by Mize et al., Moyer 

et al., and O’Connor et al. 19-21. External mass calibration was applied using a quadratic 

equation. Quantitative MALDI-FT-ICR has previously been applied to quantify HIV-1 
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protease inhibitors in cell lysates 22 as well as peptides in CSF 18, indicating that 

quantitative MALDI-FT-ICR methods are readily applicable, which is due to the fact that 

variation in peak height in MALDI-FT-ICR mass spectrometry is much more reproducible 

than in, for example, MALDI-TOF mass spectrometry. The sum of the height of 14 

omnipresent albumin peaks of each sample was then compared to albumin 

concentrations obtained by routine clinical chemistry measurements. Standard 

deviations of the peak height of the albumin peaks were between 9-16% for all 14 

albumin peaks.  

 

3.2.2.4 Biological variation in an experimental setting  
To compare the results on the variation of protein abundances found in the 

neurologically normal individual CSF samples to an experimental setting, an identical 

experiment was performed on a larger set of samples. A total of 36 CSF samples, taken 

from patients with either multiple sclerosis or headaches, was used. It must be noted 

that these samples, especially those of the multiple sclerosis patients, originate from 

people suffering from neurological problems. Hence the variation in protein abundance, 

like for example immunoglobulin levels, which are known to be elevated in neuro-

inflammatory diseases such as multiple sclerosis 23-25, is potentially far more extensive 

than in the nine well-defined individuals measured previously. 

 
3.2.3 Metabolomics 
3.2.3.1 GC-MS analysis 
Human CSF samples from the original sample set (60 μL) were deproteinized by adding 

250 μL methanol and subsequently centrifuged for 10 min at 10000 rpm. Human CSF 

samples from the validation sample set (100 μL) were deproteinized by adding 400 μL 

methanol. The supernatant was dried under N2 followed by derivatization with methyl-N-

(trimethylsilyl)-trifluoroacetamide (MSTFA) in pyridine similar to Koek et al. 26. During the 

different steps in the sample work-up, i.e. prior to deproteinization, derivatization and 

injection, different (deuterated) internal standards were added at a level of approx. 20 

ng/μL. The final volume was 45 μL for the original sample set and 135 μL for the 

validation sample set and 1 μL aliquots of the derivatized samples were injected in 
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splitless mode on a HP5-MS 30 m x 0.25 mm x 0.25 μm capillary column (Agilent 

Technologies, Palo Alto, USA) using a temperature gradient from 70oC to 320oC at a 

rate of 5oC/min. GC-MS analysis was performed using an Agilent 6890 gas 

chromatograph coupled to an Agilent 5973 mass selective detector (Agilent 

Technologies, Palo Alto, USA). Detection was carried out using MS detection in electron 

impact mode and full scan monitoring mode (m/z 15-800). The electron impact for the 

generation of ions was 70 eV. 

Sample work-up was carried out in duplicate for the original sample set. For the 

validation sample set samples were injected in duplicate. For both sample sets a pooled 

human CSF sample was analyzed in sextuplicate to determine the analytical error in the 

analysis of metabolites by GC-MS. Data-pre-processing was carried out by composing 

target lists of peaks detected in the samples based on retention time and mass spectra 

and these peaks were integrated for all samples. All peak areas were subsequently 

normalized using internal standards. The resulting target lists were used for further 

statistical analysis. Identities were assigned based on the presence of identical mass 

spectra in an in-house database. 

 

3.2.3.2 LC-MS/MS analysis 
To 10 μL of human CSF sample, 10 μL of an internal standard solution containing 
13C15N-amino acids was added followed by addition of 100 μL of MeOH. The mixture 

was vortexed for 10 s and centrifuged at 10.000 rpm for 10 min at 10 ºC. The 

supernatant was dried under N2. The residues were dissolved in 80 μL borate buffer (pH 

8.5) and after 10 s vortexing 20 μL of AQC reagent (Waters, Etten-Leur, The 

Netherlands) was added and the mixture was vortexed immediately. The samples were 

heated 10 min at 55ºC. After cooling down, a 1μL sample of the reaction mixture was 

injected into the UPLC-MS/MS system. 

An ACQUITY UPLCTM system with autosampler (Waters, Milford, USA) was coupled 

online with a Quattro Premier XE Tandem quadrupole mass spectrometer (Waters, 

Milford, USA) and was used in positive-ion electrospray mode. The instrument was 

operated under Masslynx data acquisition software (version 4.1; Waters). The samples 

were analyzed by UPLC-MS/MS using a AccQ-TagTM Ultra 100 mm x 2.1 mm (1.7μm 
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particle size) column (Waters, Milford, USA). A binary gradient system of water – eluent 

A (10:1, v/v) (AccQ Tag, Waters) and 100% eluent B (AccQ Tag, Waters), was used. 

Elution of the analytes was achieved by ramping the percentage of eluent B from 0.1 to 

90.0 in approx. 9.5 minutes using a combination of both linear and convex profiles. The 

flow-rate was 0.7 mL/min. the column temperature was maintained at 60ºC and the 

temperature of the autosampler tray was set to 10ºC. After each injection the injection 

needle was washed with 200 μL strong wash solvent (95% ACN), and 600μL weak wash 

solvent (5% ACN). 

The Quattro Premier XE was used in the positive-ion electrospray mode and all analytes 

were monitored in Selective Reaction Monitoring (SRM) using nominal mass resolution 

(FWHM 0.7 amu).  Next to the derivatisation reagent all amino acids were selectively 

monitored via the transition from the protonated molecule of the AccQ-Tag derivative to 

the common fragment at m/z 171. Collision energy and collision gas (Ar) pressure were 

22eV and 2.5 mbar, respectively. The complete chromatogram was divided into 6 time 

windows, restricting the number of SRM transitions to follow and allowing quantitative 

information to be gathered in each segment. Acquired data was evaluated using 

Quantlynx (Waters, Milford, USA). All samples were analyzed in duplicate. 

Data pre-processing was carried out by calculating the concentration of 18 amino acids 

in all samples by peak integration, followed by normalization using relevant internal 

standards and quantification using external calibration curves. The analytical variation 

was determined from the duplicate analysis of the samples using weighted regression 27, 

28  

 

3.2.3.3 NMR analysis 

CSF samples from the original sample set (280 L) were centrifuged (2000g, 15 

minutes) using a filter with a cut-off of 10 kDa (Centrisart I 13239-E) to remove proteins. 

Next, 25 μL of 8.8 mM TSP-d4 stock solution in D2O was added to 250 μL filtrated CSF 

to a final concentration of 0.8 mM TSP. The pH of the filtrated CSF was adjusted to 

around 7 (7.0 – 7.1) by adding phosphate buffer (9.7 μL 1M, to a final concentration of 

35 mM). The final CSF NMR sample (284.7 μL) was then transferred to a Shigemi 

microcell NMR tube for NMR measurements (called non-diluted CSF samples). For the 
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validation sample set, samples (100 μL) were first diluted with 270 μL D2O before 

protein removal. 

As a duplicate, for establishing the analytical variation, 100 L of CSF of the individuals 

was diluted into 180 L D20 and subsequently worked up as described above (called 

further on diluted CSF samples).    

The 1D 1H NMR spectra of diluted and non-diluted CSF samples were acquired on an 

800 MHz Inova or 600 MHz (Varian Inc., Palo Alto, USA) system equipped with either a 

5 mm triple-resonance, XYZ-gradient HCN room-temperature probe or a 5 mm triple-

resonance, Z-gradient HCN cold-probe, respectively. Suppression of water was 

achieved by using WATERGATE (delay: 85 s) 29 or presaturation. For each 1D 1H 

NMR spectrum 512 scans of 18K data points were accumulated with a spectral width of 

9000 Hz. The acquisition time for each scan was 2 s. Between scans an 8 s relaxation 

delay was employed. Prior to spectral analysis, all acquired Free Induction Decays 

(FIDs) were zero-filled to 64K data points, multiplied with a 0.3 Hz line broadening 

function, Fourier transformed and manually phase - and baseline corrected by using 

ACD/SpecManager software. Spectra were subsequently transformed to the Chenomx 

NMR Suite Professional software package version 5.1 for further analysis 30. Metabolite 

identification and quantification were done by using the 800 MHz library of metabolite 

NMR spectra from the Chenomx NMR Suite 5.1 (pH 6-8) for the original sample set 

(Chenomx NMR Suite 6.1 for the validation sample set). The metabolite spectra in the 

library are predicted based on a database of pure compound spectra acquired using 

particular pulse sequence and acquisition parameters, e.g. the tn-noesy-presaturation 

pulse sequence with 4s acquisition time and 1s of recycle delay. The Chenomx NMR 

Suite software fits the spectral signatures (singlets, doublets, triplets etc.), i.e. the peak 

shapes, of a compound from an internal database of reference spectra to the 

experimental NMR spectrum. The resonance assignments derived from the Chenomx 

NMR Suite software were further checked against literature spectra. For quantification, 

Chenomx NMR Suite 5.1 uses the concentration of the known reference signal as 

calibration (in this case TSP-d4).  
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The analytical variation on the individual metabolite concentrations was determined from 

the NMR analysis of the dilute and non-dilute CSF samples, completely independently, 

and the quintuplicate measurement of the diluted CSF sample of one individual.  

 

3.2.3.4 Biological variation in an experimental setting  
To assess the results on the variation of metabolite abundances found in original and 

validation sample set, i.e. neurologically normal CSF, an identical experiment was 

performed using GC-MS on a set of 42 human CSF samples (100 μL), taken from 

patients with multiple sclerosis and other (inflammatory) neurological diseases.  
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3.3 RESULTS 
3.3.1 Proteomics 
None of the CSF samples was contaminated with plasma, as according to the criteria 

set hemoglobin and apolipoprotein B100 were not identified in any of the samples. All 

sequenced peptides and identified proteins are listed in the supplementary material 

(including the number of unique peptides per protein and the sequence coverage for all 

proteins identified with two or more peptides).  

Using MALDI-FT-ICR mass spectrometry we analysed the height of albumin peptide 

peaks of the nine samples of the original sample set and their correlation to albumin 

concentration levels in CSF as measured by routine clinical chemistry diagnostics. The 

sum of the height of 14 omnipresent albumin peaks showed positive correlation to the 

values measured by clinical chemistry (R2 = 0.919). These values (median: 0.219 g/L, 

range 0.097-0.403 g/L) clearly show a large variation between individuals, which was 

also apparent from the differences in height of the peaks measured by MALDI-FT-ICR 

(Figure 1). The area under the curve of all peptides identified to be part of albumin in the 

ESI-Orbitrap experiments was also plotted against the albumin concentration, showing 

good correlation (R2 = 0.971). Relative standard deviations (RSD) were comparable for 

all three methods (43.7% for clinical chemistry, 66.7% for MALDI-FT-ICR and 39.1% for 

ESI-Orbitrap).  
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Figure 1. Correlation between the measured albumin concentration by clinical chemistry 

diagnostics and the sum of the height of 14 omnipresent albumin peaks as measured by MALDI-

FT-ICR (R2 = 0.919) and by ESI-Orbitrap (R2 = 0.971). 

 

A total of 126 proteins, all identified by multiple peptides and present in all nine normal 

CSF samples, was analysed in the nine individual CSF samples by ESI-Orbitrap to 

assess the variance in protein abundances in CSF, based on the averages of peak 

heights of all the peptides of a single protein. The RSD ranged from 18% to 148% 

(median: 43%) in peak height. The far greater part of the examined proteins (119 of 126, 

i.e. 94.4%) showed lower than 100% RSD in average peptide peak height per protein 

between the nine individual CSF samples. These results were subsequently tested in 

two larger sample sets, a validation set (28 samples) and an experimental sample set 

(36 samples), in which similar profiles for the variation in protein abundance, based on 

the averages of the area-under-the-curve of the peptides in the ESI-Orbitrap, was 
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observed (Figure 2). In this figure the variation (in RSD (%)) for all proteins is plotted for 

all three data sets, and the protein-numbers used here are the same as in the 

Supplementary Material. The slightly lower RSD’s found for the validation sample set are 

at least partially due to the fact that a longer nanoLC column (50 cm) was used and 

consequently more peptides were measured per protein. Using these data the 

correlation of the individual protein variations between the datasets was calculated. This 

resulted in an R2 of 0.94 for the correlation between the original dataset and the 

validation dataset, and an R2 of 0.66 for the correlation between the original dataset and 

the experimental dataset. This is a strong indication that the same proteins have a high 

inter-individual variation in the healthy CSF patients in both the original and the 

validation sample set, but that this is quite different in the experimental sample set of 

patients with known neurological disorders. In the original sample set the 126 proteins 

were observed in all 9 normal control samples, but in the experimental sample set 11 

proteins were not observed in all 36 samples. This may indicate a greater variance in the 

experimental samples, while in the validation sample set the variation is slightly lower 

than in the original sample set. In the experimental sample set, the RSD in peptide 

abundance per protein ranged from 30% to 182% (median: 91%). The greater variation 

in the experimental sample set is at least partially due to the sample choice for this set of 

samples. As referenced earlier, in multiple sclerosis it is known that immunoglobulins are 

elevated and since this sample set contained both multiple sclerosis CSF samples and 

samples from patients with headaches it is not surprising to note that many of the 

proteins with the highest RSD between individuals are all immunoglobulin types and 

proteins related to inflammatory response, which were indeed elevated in the multiple 

sclerosis samples. In essence, in the normal controls we observed the biological 

variation between the individuals, whereas in the experimental sample set both the 

biological variation as well as the disease-related variation was observed.  
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Figure 2. The proteins sorted by the variation in the original samples paired to the variation in 

the validation samples and the experimental samples. A trend is clearly visible, but due to the 

nature of the experimental samples (multiple sclerosis and headaches), the immunoglobulins do 

not correspond with the overall trend, which is to be expected considering the well-known 

inflammatory component of multiple sclerosis. Numbers on x-axis correlate to protein numbers 

mentioned in Supplementary Material. 

 

Although all three sample sets are distinct, a number of similarities can be observed. In 

the sample sets, there is a clear division that can be seen between proteins whose 

abundances vary highly among individuals and proteins that show a much more limited 

variation between individuals. Among the proteins that showed limited variation between 

individual CSF samples were serotransferrin (25% RSD in the original sample set, 18% 

RSD in the validation sample set and 50% RSD in the experimental sample set), 

tetranectin (21%, 18% and 52%, respectively), and gelsolin (24%, 19% and 58%, 

respectively). Proteins with high variation between individuals in all three sample sets 

included cadherin-13 (82% RSD in the original sample set, 60% RSD in the validation 

sample set and 143% RSD in the experimental sample set), contactin-2 (124%, 80% 
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and 156%, respectively), and haptoglobin (135%, 84% and 182%, respectively). The full 

list of variations between the individuals for the 126 proteins can be found in the 

Supplementary Material. 

Gender and age related inter-individual variations were assessed in the validation 

sample set. In this sample set the number of males and females was roughly equal (13 

males and 15 females) and we defined 3 different age groups (below 35 years of age, 

between 35 and 50 years of age and above 50 years of age). Although both parameters 

(gender and age) appear to influence the variation, their influence appears limited 

(complete list of individual protein variations specified for age-group and gender is listed 

in the Supplementary Material). The inter-individual variation in protein abundance 

appears slightly larger in females than in males, especially in proteins that have a high 

inter-individual variation, but this is not exclusively the case as there are also proteins of 

which the variation is higher in males. The same is true for the inter-individual variation 

of the proteins when comparing age groups. The variation seems slightly larger in the 

oldest age group, again most clearly for the proteins with the highest inter-individual 

variation. But, as with age, this is not exclusively so, as there are also proteins that have 

a higher inter-individual variation in the group of patients below age 35 (full list of age 

and gender variation in Supplementary Material (Figures S1 and S2)). T-test show 1.6% 

and 3.2% of the proteins to be significantly different based on variation of their RSD 

between males and females and between the age groups, respectively (p<0.01, 

Supplementary Material). 

Total abundance of most of the measured proteins was slightly higher in males than in 

females, and with regards to age the abundance of most of the measured proteins was 

highest in the oldest patient group of the validation sample set. 
 
3.3.2 Metabolomics 
Three different analytical methods were applied to analyse the individual as well as the 

pooled CSF samples. The methods included untargeted GC-MS and NMR methods and 

a targeted LC-MS/MS method specifically for amino acids. 

First a small set of CSF samples, i.e. original sample set consisting of 9 samples for GC-

MS, 8 for LC-MS/MS and 5 for NMR, was analyzed by the three methods followed by a 
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larger set of samples, i.e. validation sample set consisting of 28 samples for GC-MS and 

27 samples for NMR and LC-MS/MS. The original sample set was used to have a quick 

screen of what type of metabolites could be detected and to have a rough idea of 

biological variation and analytical error. However, for reliable data with respect to 

biological variation as well as possible gender and age effect and comparison of the 

three methods, the validation sample set was used.      Analysis of original samples CSF 

with GC-MS resulted in a list of 108 metabolites of which 93 could be identified (see 

Supplementary Material). The unknown metabolites covered both metabolites that were 

observed in other biofluids, i.e. plasma and/or urine, as well as metabolites that seemed 

to be specific for CSF. The metabolites detected by GC-MS cover many different 

compound classes, i.e. amino acids, organic acids, nucleosides, fatty acids, mono- and 

disaccharides. Of the 93 identified metabolites, some were only present in trace 

amounts and were therefore not used for further analysis. Interestingly, all identified 

metabolites were observed in all samples. The analytical variation for each metabolite 

was determined from the repeated (n=6) analysis of the pooled CSF sample. Results 

show that the analytical variation (< 20%) was less than the biological variation for all 

metabolites (15 to 85%) (see Supplementary Material). The concentration or relative 

peak area for each metabolite in the pooled human CSF sample is given in 

Supplementary Material. As expected, the average concentrations and relative peak 

areas found for the 9 individual CSF samples were very similar to that of the pooled 

human CSF sample.  

Next, the validation sample set was analyzed by GC-MS using a somewhat different 

sample work-up including different sample volumes leading to a less concentrated 

extracts. As a result some of the low abundant compounds could not be detected. In 

total 68 metabolites could be detected and most of them were also detected in the 

original sample set. The biological variation of these 68 metabolites ranged from 7 to 

214%, while the analytical error ranged from 1 to 36% and in all cases the analytical 

error was equal or less than the biological variation (see Table 3 and Supplementary 

Material). The biological variation for the metabolites observed with GC-MS in the 

validation sample set shows a normal distribution, as can be deduced from Figure 3.  
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Figure 3. Metabolites detected by GC-MS in both the validation (blue) as well as the 

experimental (red) sample set, sorted by variation in the validation samples paired to the 

variation in the experimental samples. A trend is visible, but due to the nature of the 

experimental samples (multiple sclerosis and other neurological disorders), a number of 

metabolites do not correspond with the overall trend and show significantly higher biological 

variation. Numbers on x-axis correlate to metabolite numbers mentioned in Supplementary 

Material. 

 

Multivariate data analysis using PCA (principal component analysis) showed that overall 

biological variation was dominant over age and gender effects (see Figures S3 and S4 

in the Supplementary Material).   
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Table 3. Metabolites detected by GC-MS, NMR and LC-MS/MS in the validation  

sample set and their biological variation. 

Metabolite 
GC-MS 

RSD (%) 
n=28 

LC-MS 
RSD (%) 

n=27 

NMR 
RSD (%) 

n=27 
1,5-anhydro-D-Glucitol 34     
1-methylhistidine     49 
1-monopalmitoylglycerol 30     
1-monostearoylglycerol 19     
2,3-dihydroxybutanoic acid 28     
2,4-dihydroxybutanoic acid 26     
2-aminobutyric acid 22   28 
2-hydroxybutanoic acid 35   29 
2-hydroxyisovaleric acid 24   30 
2-piperidinon 113     
3,4-dihydroxybutanoic acid 54     
3-hydroxybutanoic acid 106   15 
3-hydroxyisovaleric acid 31   15 
3-hydroxypropanoic acid 14     
3-methylhistidine     143 
Acetic acid     52 
Acetoacetic acid 38   26 
Acetone     20 
Aconitic acid     28 
Alanine 28 32 27 
Arabinose 19     
Arginine   25 19 
Ascorbic acid 25     
Asparagine   22   
C16:0 Fatty acid 23     
C18:0 Fatty acid 7     
C18:1 fatty acid 58     
Cholesterol 30     
Choline     24 
Citric acid 18   15 
Citrulline   34   
Creatine     15 
Creatinine 63   17 
Dimethylamine     25 
Erythronic acid 28     
Formic acid     19 
Fructose 38   24 
Fucose 17     
Galactitol     23 
Gluconic acid 26     
Glucose 12   12 
Glutamic acid 30     
Glutamine   14 18 
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Glyceric acid 14     
Glycerol 16     
Glycerol-galactopyranoside 22     
Glycine 35 30 24 
Glycolic acid 13     
Histidine   16 15 
Inositol 68     
Inositol related compound 26     
Iso-citric acid 21     
Iso-leucine 36 30 25 
Lactic acid 13   14 
Leucine 22 27 26 
Lysine 43 22 16 
Mannitol 26     
Mannose 17     
Meso-erythrytol 16     
Methanol     21 
Methionine 57 34 31 
Myo-inositol 19   25 
Ornithine 46     
Phenylalanine 19 23 30 
Phosphoric acid 214     
Phosphorylethanolamine 47     
Proline 45 49   
Pseudo uridine 21     
Pyroglutamic acid 31     
Pyruvic acid 28   23 
Quinic acid 90     
Ribitol 30     
Ribonic acid 26     
Ribose 12     
Serine 36 17   
sn-Glycerol-3-Phosphate 48     
Succinic acid     23 
Sucrose 64     
Threonic acid 33     
Threonine 38 27 20 
Trimethylamine-N-oxide     18 
Tryptophan   24   
Tyrosine   30 27 
Urea 28     
Uric acid 69     
Valine 33 28 28 
Xanthine     86 
Xylonic acid 45     
Xylose 82     
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For the experimental sample set of 42 human CSF samples from patients having 

neurological diseases a similar profile for the variation in metabolite level could be 

observed as for the validation sample set from neurologically normal individuals (see 

Figure 3 and Supplementary Material). A number of metabolites show a significantly 

higher RSD for the experimental samples, which is most probably due to the 

heterogeneity of the experimental CSF samples, as discussed in the proteomics section. 

Metabolites that show significantly higher RSDs for the experimental samples are 3,4-

dihydroxybutanoic acid, fructose, ascorbic acid, glyceric acid, pyruvic acid and 2-

aminobutyric acid. However there is no clear relation between these metabolites and the 

neurological disease in the experimental sample set.  

For NMR only five individual CSF samples were analysed in the original sample set due 

to limited available sample volumes. Analysis of the CSF samples by NMR resulted in a 

list of 51 metabolites of which 41 could be quantified (see Supplementary Material). All 

metabolites observed with NMR were detected in all samples. The biological variation 

ranged from 8 to 53% while the analytical error was between 3 and 9 % for all 

metabolites (Supplementary Material). The concentrations found for the pooled CSF 

sample were very similar to that of the averages of the individual samples.  

The 27 CSF samples in the validation sample set were analyzed by NMR using 

somewhat different conditions, i.e. more diluted and 600 MHz instead of 800 MHz. 

However, the same set of metabolites could be quantified in these samples, except for 

urea. In this sample set the biological variation ranged from 12 to 143% which is 

somewhat higher compared to the original sample set (see Table 3 and Supplementary 

material). The analytical error is in the same range as observed for the original sample 

set, i.e. 2 to 9%. PCA on the NMR data did not show any significant age or gender effect 

(see Figures S5 and S6 in Supplementary Material).   

Of the 41 metabolites quantified by NMR in the validation sample set, 21 were also 

detected by GC-MS. Some of the more volatile metabolites, like acetone and methanol, 

can only be analyzed by NMR, showing that despite the overlap, NMR and GC-MS are 

complementary techniques. Furthermore, NMR can detect a number of metabolites that 

are difficult to analyze by GC-MS, because they cannot be derivatized, like choline, or 

they can give unstable derivatives, like arginine. On the other hand, a range of 
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metabolites was only observed by GC-MS and not by NMR. In most cases these 

metabolites either have no proton signal, e.g. uric acid and phosphoric acid, or the 

concentration is below the detection limit of NMR, e.g. dihydroxybutanoic acids and 

proline. 

The absolute concentrations of amino acids in eight individual CSF samples of the 

original sample set were determined by a targeted LC-MS/MS. One of the individual 

CSF samples was omitted due to technical failure. The analytical error is less than the 

biological variation for all amino acids. The biological variation ranges from 28 to 52% 

while the analytical error is less than 12% (see Supplementary Material). Despite the 

differences between samples, all amino acids were present in every individual sample. 

Again, it can be seen that the concentrations found for the pooled CSF sample were 

very similar to that of the averages of the individual samples. Glutamic acid and aspartic 

acid could not be quantified in a reliable way in the CSF samples. 

Analysis of the same amino acids in the 27 samples of the validation sample set resulted 

in similar biological variation, i.e. 14 to 49%, and analytical error, i.e. 1 to 9% (see Table 

3 and Supplementary Material). PCA showed no significant age or gender effects (see 

Figures S7 and S8 in Supplementary Material).  

Most of the amino acids analyzed by LC-MS/MS were also detected either by GC-MS or 

NMR. However, one of the advantages of the targeted LC-MS/MS method is the low 

sample volume required for analysis, i.e. 10 μl vs. 60-100 μl for NMR and GC-MS, 

respectively. 

Comparison of the RSD of metabolites that could be analyzed with more than one of the 

analytical methods, as shown in Table 3, shows that on average the biological variation 

of a metabolite is similar for different methods. Deviations occur mainly for low abundant 

metabolites, like 3-hydroxybutanoic acid, and metabolites that show relative high 

analytical errors for certain methods, e.g. creatinine with GC-MS. 

 



116 
 

3.3 DISCUSSION 

In this study, we investigated metabolite and protein identities, and their abundances 

and inter-individual variations in abundance in CSF by analyzing a unique and well-

defined set of CSF samples and a corresponding pooled CSF sample. Here we have 

strictly defined criteria to exclude blood contaminated CSF. These criteria warrant that at 

a certain threshold no contamination is observed, however contamination not exceeding 

this threshold can still exist and cannot be ruled out.   

Combination of three different analytical techniques for metabolites used in this study 

resulted in a list of about 89 identified metabolites in CSF that can routinely be analyzed, 

which is about a third of the metabolites in CSF present in the human metabolome 

database 30. It is expected that many of the metabolites that are not detected by NMR 

and GC-MS are low abundant metabolites, i.e. neurotransmitters, steroids, eicosanoids, 

for which more specific, targeted methods are required 31-33. However, these methods 

often require significant amounts of CSF and should therefore only be used in 

metabolomics studies when there is evidence that these metabolites are of importance 

and/or when enough sample volume is available. Furthermore, some metabolites are 

(almost) absent in normal controls and are only detectable in diseased persons 7.  
All endogenous metabolites detected with the three analytical methods in this study 

were observed in all individual CSF samples. This implies that the qualitative metabolite 

composition of CSF in normal controls is relatively similar between individuals. This is 

generally also observed for plasma of healthy persons in contrary to urine, which is more 

influenced by dietary intake. 

With NMR and LC-MS/MS it was possible to determine the absolute concentration of 

metabolites. This in contrast to GC-MS for which metabolites can only be quantified 

when either internal standards or calibration curves for each metabolite are used, which 

is practically not feasible and therefore this method, like many other non-targeted 

methods, is used to measure relative differences in metabolite concentrations between 

groups or individuals. The absolute concentrations determined by LC-MS/MS and NMR 

agree well with values reported in literature (13, 34-36). For example, comparison of the 

concentrations of metabolites detected by NMR with values determined by Wishart et al. 

(13) and literature values referred to in this paper show that in most cases the values fall 
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within the same concentration range (see Supplementary Material). Furthermore, the 

concentrations of metabolites determined by more than one method in the validation 

sample set are also in good agreement.  

Although the study of Hu et al. 16 mainly focussed on the variation of specific protein 

abundances within individuals, they concluded that inter-individual variation is far more 

extensive than intra-individual variation. Yet in that study two different stages of 

Alzheimer’s disease were included, which could potentially influence the levels of protein 

variation between individuals. Here we examined well-defined CSF samples taken from 

patients without neurological disorders, and also found profound differences in protein 

abundances between individuals. Characterization of variation of CSF levels of amyloid 

beta 34 and apolipoprotein E 35 in patients with Alzheimer’s disease have been 

published, but this is the first attempt to characterize a large number of proteins in CSF 

of patients without neurological afflictions. Some proteins, such as serotransferrin and 

fibulin-1 appear to be more constant than others with regards to abundance levels in 

CSF, as these showed only limited variations in both the sample set of nine non-

neurological individuals and the validation set as well as in the experimental sample set. 

Other proteins, such as contactin-2 and cadherin-13, showed large variations in 

abundance levels in all three data sets, while proteins related to inflammatory response 

showed the largest variation in the experimental sample set (Figure 2). This is, in all 

likelihood, due to the well-known neuroinflammatory component of multiple sclerosis 36-

38, because the abundance of neuroinflammatory proteins was far higher in the multiple 

sclerosis samples. This was most obvious in the primary progressive multiple sclerosis 

patients, so the increased variance of immunoglobulin proteins in this data set is likely 

due to this group of samples as this type of multiple sclerosis is characterized by 

continuous inflammation in the central nervous system, which would result in higher 

concentrations of inflammation-related proteins.  

Additionally, it must be noted that the proteins with high inter-individual variation were 

not only low abundant proteins, but also high abundant proteins such as haptoglobin, 

indicating that these high variations were not caused by measuring at the limit of the 

detection capabilities of the machines. Proteins specific to the central nervous system 

appear to be more variable between individuals than proteins that originate from blood. 
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The majority of the central nervous system specific proteins have high inter-individual 

variations, like for example neurotrimin and neuroserpin, whereas a large number of the 

proteins from blood show low inter-individual variation, such as serotransferrin and 

ceruloplasmin. However, there are also blood specific proteins that display high inter-

individual variation, like haptoglobin. 

Matching biological samples for age, gender and protein concentration is an essential 

step in biomarker research. However, in the validation sample set we observed that 

proteins with high inter-individual variance were influenced by gender and age only in a 

limited way. A good example of this is apolipoprotein E, a protein that is reported to be 

present at lower concentrations in CSF of patients with Alzheimer’s disease, regardless 

of age and gender variability 35. Here we found a similar RSD (23-29%) for all variables 

(gender and age-group) tested, suggesting a limited influence of both age and gender 

on the inter-individual protein abundance of apolipoprotein E. 

Although all metabolites detected were present in all individual samples the 

concentration of metabolites differed strongly between individuals. For all metabolites 

the analytical variation was significantly less than the biological variation. The biological 

variation was not caused in a significant way by age or gender. The biological variation 

in this study is about 15% for 70% for the majority of the metabolites which is lower than 

was observed by Wishart et al. 13, but very similar to the variation reported in the recent 

study of Crews et al. 39. The main difference between the two studies is the type of CSF 

sample that was used, i.e. persons without neurological disorders vs. patients screened 

for meningitis. Therefore, it can be concluded that the biological variation for normal 

controls is, as expected, less than for neurologically diseased individuals.   

Lactic acid and glucose, two high abundant metabolites that can be detected by both 

NMR and GC-MS, show relatively low biological variation, i.e. < 20%, as well as some 

medium abundant metabolites like citric acid and glutamine (Table 3). In general most 

medium abundant compounds show RSD < 30%. Most compounds that show high 

biological variation are relatively low abundant, e.g. proline, 1- and 3-methylhistidine, 

xanthine. Even more interesting is the fact that some low abundant metabolites 

observed with GC-MS show low biological variation, like 3-hydroxypropionic acid, 

arabinose, fucose, glyceric acid, glycerol, glycolic acid, ribose, while others show very 
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high biological variation, e.g. 3-hydroxybutanoic acid, 2-piperidon, inositol, phosphoric 

acid, sucrose, uric acid and xylose (see Table 3). Both types of metabolites include 

organic acids and carbohydrates and there is yet no clear biological reason why some 

metabolites in this study show much higher biological variation than others. The 

biological variation of the experimental sample set of 42 human CSF samples showed a 

similar trend as the nine CSF samples, although for a number of metabolites the 

biological variation was significantly higher (Figure 3). The latter can of course be 

attributed to the different diseases of the subjects that might lead to general differences 

in metabolite levels. Metabolites that showed a significant higher biological variation in 

the experimental samples could not be directly related to neurological disorders. Further 

analysis of the data of the experimental samples is necessary in order to find relations 

between metabolites and the different types of neurological disorders present in the 

samples set, including the different stages of multiple sclerosis. More interestingly, for a 

significant number of metabolites, the biological variation in diseased subjects are 

similar to that of normal controls, indicating that part of the CSF metabolome is more 

influenced by person to person differences and that the contribution of the diseases is 

only minor.  

The biological variation of metabolites that were detected by more than one analytical 

method, showed in general good agreement (see Table 3). Amino acids determined by 

LC-MS/MS and NMR showed in general <10% difference in RSD and the same was 

true, with some exceptions, for metabolites analyzed by both GC-MS and NMR.  

The work discussed above showed that metabolomics, i.e. non-targeted analysis of as 

many metabolites as possible, of CSF is possible with a combination of analytical 

techniques currently available. Depending on the amount of CSF available and existing 

knowledge with respect to the biological question that has to be answered, a 

combination of non-targeted and targeted analytical methods is preferred to cover 

different classes of metabolites ranging from high to low abundant metabolites. The 

metabolites that were detected in CSF seemed to be quite similar between normal 

controls although the concentration of metabolites can differ between individuals up to 

60% depending on the specific metabolite.  
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3.4 CONCLUDING REMARKS  
From the previous discussion we conclude that for most proteins the biological variation 

in two sets of normal control CSF samples, i.e. patients without any significant 

neurological disorders, appears to be limited, e.g. serotransferrin with RSD 25% (original 

sample set) and 18% (validation sample set), which includes a technical variation of 

approximately 20%. The majority of the identified proteins show lower than 60% RSD. 

However, for 28% of the identified proteins the RSD is above 60% and for a limited 

number of proteins (5% of total) the inter-individual variation is extensive (RSD > 100%, 

original sample set). The results of extensive inter-individual variation for 5% of the 

identified proteins is not limited to low abundant proteins but also several high abundant 

proteins shows extensive biological variation, e.g. haptoglobin with RSD of 135% in the 

original sample set (Table 4).  

 
Table 4. Proteins with high and low biological variation in normal control CSF samples (original 

sample set). 

Low variation between individuals High variation between individuals 

Accession number, 
protein 

Biological 
variation 

(%) 

Technical 
variation 

(%) 

Accession number, 
protein 

Biological 
variation 

(%) 

Technical 
variation 

(%) 
P01011, Alpha-1-
antichymotrypsin 26 17 Q9BYH1, Seizure 

6-like protein 102 21 

P07339, Cathepsin 
D 26 17 

Q8TCZ2, Voltage-
dependent calcium 

channel subunit 
alpha-2/delta-1 

103 19 

P23142, Fibulin-1 27 16 P54764, Ephrin 
type-A receptor 4 107 19 

P02774, Vitamin 
D-binding protein 29 21 Q02246, Contactin-

2 124 19 

P17900, 
Ganglioside GM2 

activator 
29 23 P00738, 

Haptoglobin 135 28 

P02749, Beta-2-
glycoprotein 30 18 Q86YZ3, Hornerin 148 28 
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Metabolomics analysis on the same CSF samples showed that the biological variation 

for most CSF metabolites is limited especially compared to the proteomics results. Only 

a few metabolites were observed with a biological RSD > 70%. However, within the 

group of metabolites that could be quantified with the different analytical methods, 

substantial differences in RSDs could be observed between individual metabolites. For 

example, glucose, a high abundant metabolite, showed a RSD of only 12% while for 

acetic acid a RSD of 52% was observed.  

These results show that for CSF biomarker discovery research, it is essential to have an 

understanding of the biological variation between normal controls, because observation 

of differential abundance between controls and diseased individuals must necessarily be 

weighed against known inter-individual variations in normal controls. Proteins and 

metabolites showing high RSD in healthy CSF ought to be assessed with caution as 

candidate biomarker, since a large part of the observed difference will not be due to the 

disease under investigation, but to the natural biological variation between individuals. 
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ABSTRACT 
Multiple Sclerosis (MScl) is a neurodegenerative disease of the CNS, associated with 

chronic neuroinflammation. Cerebrospinal fluid (CSF), being in closest interaction with 

CNS, was used to profile neuroinflammation in order to discover disease-specific 

markers. We used the commonly accepted animal model for the neuroinflammatory 

aspect of MScl: the Experimental Autoimmune/Allergic Encephalomyelitis (EAE). An 

combination of advanced 1H-NMR spectroscopy and pattern recognition methods, was 

used to establish the metabolic profile of CSF of EAE-affected rats (representing 

neuroinflammation) and of two control groups (healthy and peripherally inflamed) to 

detect specific markers for early neuroinflammation. We found that the CSF metabolic 

profile for neuroinflammation is distinct from healthy and peripheral inflammation and 

characterized by changes in concentrations of metabolites such as creatine, arginine 

and lysine. Using these disease specific markers we were able to detect early stage 

neuroinflammation, with high accuracy in a second independent set of animals. This 

confirms the predictive value of these markers. These findings from the EAE model may 

help to develop a molecular diagnosis for the early stage MScl in humans. 
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4.1 INTRODUCTION 

Multiple Sclerosis (MScl) is a chronic progressive inflammatory, presumably 

autoimmune disease of the human central nervous system (CNS) in which the fatty 

myelin sheaths which surround the axons of the neurons of the brain and spinal cord are 

damaged, leading to demyelination.1 MScl is one of the most common neurological 

diseases and usually starts in early adulthood and progresses to serious neurological 

disability. It has an enormous impact on the health care system and economy of different 

countries.  Currently, MScl afflicts approximately one million people worldwide and the 

total cost of MScl has been estimated at 12.5 billion € per year.2, 3 

The animal model of MScl, the Experimental Autoimmune/Allergic Encephalomyelitis 

(EAE) model,4-9 has become an important tool for understanding the human disease. 

EAE is a cell-mediated experimental autoimmune disorder of the CNS and shares its 

clinical expression and pathological picture with that of MScl. For instance, the Lewis 

rats in which neuroinflammation is induced by means of Myelin Basic Protein (MBP), as 

in our study here, display a typical disease curve resembling that of the beginning of 

MScl Relapsing-Remitting type (RR-MScl). RR-MScl is the most common type of the 

early stage of MScl. EAE is therefore a useful model for the neuroinflammatory aspect of 

MScl. Note that EAE does not mimic neurodegeneration and widespread demyelination 

seen in MScl.10 In EAE demyelination might be present in the ventral root exit and dorsal 

root entry zone of the spinal cord or even absent. Also, EAE is monophasic, whereas 

MScl has a random relapsing-remitting or chronic progressive pattern.11 It is worth 

mentioning that EAE has led to development of the hypothesized immunological basis of 

MScl pathology.12 Moreover, the EAE has been instrumental in discovering and 

developing three of the six currently approved therapies for MScl that diminish its 

symptoms: Copaxone, Mitoxantrone, and Natalizumab.13, 14 For instance, Mitoxantrone, 

a known cancer drug, was tested in EAE and found to have positive effects, which led to 

its use in relapsing-remitting MScl, slowing its progression into secondary progressive 

MScl.15  

Unambiguous current clinical diagnosis of MScl remains difficult, particularly in its early 

stage, due to the complexity of its pathology and the similarities of these pathologies to 

that of other neurological diseases/inflammations. Diagnosis in an early stage is 
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important as early intervention appears beneficial to slow down the long-term 

progression of the disease.16 A molecular biomarker derived for neuroinflammation in 

the animal model EAE may form a first step towards such an early diagnosis. 

The main objective of this study is to find in the cerebrospinal fluid (CSF) of EAE 

induced Lewis rats metabolic markers of neuroinflammation and to differentiate 

neuroinflammation from peripheral inflammation. For this a controlled animal study was 

set-up, with a healthy control group, a group injected with inflammatory ‘booster’ 

(Complete Freund Adjuvant emulsion, CFA) to induce peripheral inflammation and a 

group injected with CFA and in addition MBP to induce neuroinflammation. Disease 

progression was monitored and CSF samples were collected at two different time points. 

To analyze the metabolic profile of the CSF we used an untargeted and unbiased 

biomarker discovery approach in which high-field 1D 1H-NMR is combined with pattern 

recognition methods. To our knowledge, this is the first study applying 1H-NMR to 

analyze rat CSF in the EAE model. A fact that very few rat CSF metabolite studies have 

been done by NMR is likely due to the limited amount of CSF in rodents. This is not a 

standard procedure to use such little sample volume in NMR. High quality data could be 

obtained using only 10 μL of CSF, thanks to the use of advanced NMR including high-

field and cryo-probe technology.  

We found that the CSF metabolic profile for neuroinflammation is distinct from that of 

healthy and peripheral inflammation. The metabolites, identified as specific for 

neuroinflammation, were investigated in a second independent set of animals for the 

prediction of the early stage of neuroinflammation. The validation of the findings with an 

external experiment is often acclaimed but rarely practiced in a single study. These 

disease specific markers, detected in the animal model, may lead to a better 

understanding of the metabolism underlying neuroinflammation and help to develop a 

molecular diagnosis for the early stage of MScl in humans.   
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4.2 MATERIALS AND METHODS 
4.2.1 Experimental design of EAE models 
The Experimental Autoimmune/Allergic Encephalomyelitis (EAE) is one of the most 

intensively examined and best characterized animal models of autoimmune disease 9. 

EAE shares similarities with MScl. Although the EAE model does not mimic all aspects 

of MScl, this rodent disease model is an excellent experimental system for 

understanding aspects of the MScl disease.  

The first set of male Lewis rats (Harlan Laboratories B.V., the Netherlands) was 

inoculated on Day 0 as previously described.17 Briefly, a 100 μL saline based emulsion 

containing 50 uL Complete Freund Adjuvant H37 RA (CFA, Difco Laboratories, Detroit, 

MI), 500 μL Mycobacterium tuberculosis type H37RA (Difco) and 20 μg guinea pig 

myelin basic protein (MBP) was injected subcutaneously in the pad of the left hind paw 

of isoflurane anaesthetized animals. CFA was injected for boosting of the immune 

system, while MBP was injected for induction of neuroinflammation. Next to these MBP 

challenged rats, referred to as the EAE group (or neuroinflamed group), two control 

groups were included: a group of animals receiving the same emulsion without MBP 

(CFA group = peripheral inflammation) and a healthy group undergoing anesthesia only 

(healthy control). Each group consisted of 30 animals. In each group half of the animals 

was sacrificed to collect CSF on Day 10 (Day of onset in EAE group) and the other half 

on Day 14 (peak of disease in EAE group). The typical progression of disease is shown 

in Figure 1a, while the design of the first EAE experiment is summarized in Table 1. 
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Figure 1. (a) EAE disease progression. (b) The average neurological score screened for group 

“N14”.  The vertical bars indicate standard error of the mean; (c) 1H-800 MHz NMR spectrum of 

rat CSF. Vertical lines indicate the bins; (d) PCA score plot of the 1H-NMR spectra of rat CSF. 

 

Animals were kept under normal housing conditions with water and food and libitum, 

weighing between 175 and 225 grams at the start of the experiment. Animals were 

group housed per 3 and cages were randomized across treatments and disease 

duration. 

A second set of male Lewis rats was used to perform another EAE experiment, one year 

after the first one. The animals were inoculated with CFA and/or MBP as described 

above. The experimental design, the amount of animals (i.e. 15 animals per group) and 

settings of this model were similar to the first one. The experimental design and the 
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number of animals per group are summarized in Table 1S in the supplementary 

material.  

 

Table 1. Experimental Design of EAE model; “n” indicates number of rats (samples) for each 

group.  

Treatment Day 0 Group description Day 10 Day 14 

Anesthesia only Healthy C10 
n=15 

C14 
n=15 

CFA Peripheral inflammation P10 
n=15 

P14 
n=15 

CFA+MBP Neuroinflammation + peripheral inflammation N10* 
n=15 

N14** 
n=15 

*1 sample was discarded due to blood contamination 

**3 samples were discarded due to blood contamination 

 

4.2.3 Data acquisition and analysis  
 

4.2.3.1 Neurological scores 
Disease symptoms and weights of all animals from both EAE models were recorded 

daily. The following scores for motor dysfunctions were used: 0, healthy animal with 

normal curling reflex at the tail; 1, paralysis of the tip of the tail; 2, loss of muscle tone at 

the base of the tail; 3, low posture of hind limbs; 4, instability at hips; 5, partial hind limb 

paralysis; 6, complete hind limb paralysis; 7, paralysis include midriff; 8, quadriplegia; 9, 

moribund; 10, death due to EAE (supplementary material). All experimental procedures 

were approved by Abbott’s Institutional Animal Care and Use Committee. 

 
4.2.3.2 CSF sampling, sample preparation and data acquisition  
On Day 10 and 14, animals were euthanized with CO2/O2. Terminal CSF samples were 

obtained by direct insertion of an insulin syringe needle (Myjector, 29G x 1/2") via the 
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arachnoid membrane into the Cisterna Magna. For this purpose a skin incision was 

made followed by a horizontal incision in the musculus trapezius pars descendens to 

reveal the arachnoid membrane. A maximum volume of 60 μL of CSF was collected per 

animal. Each sample was centrifuged within 20 min after sampling, for 10 min at 2000g 

at 4°C. After centrifugation the supernatants were stored at -80   ْ◌ C for further analysis. 

Previous experiments have shown that collecting up to 60 μL using this technique under 

these conditions provides hemoglobin-free CSF samples as measured by ESI-Orbitrap 

(unpublished data). As an additional check fresh samples, supernatant and pellet size 

were visually scored for hemolysis and samples were discarded if positive. 

From the set of 90 samples from the first EAE experiment (Table 1) 4 were 

contaminated with blood therefore they were excluded from the measurements. A set of 

86 CSF samples were prepared and measured as described below.  

10μL of rat CSF were thawed at room temperature and 240 μL D2O (99.96 at.%D) were 

added to the biofluid in order to obtain sufficient amount of sample for the NMR 

measurement. TSP-d4 (Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 ) (99 at.%D) was 

used as internal standard for chemical shift reference (δ 0.00 ppm). For the latter, 25μL 

of 8.8 mM TSP-d4 stock solution in D2O was added to 250 μL of rat CSF to a final 

concentration of 0.8 mM TSP. The TSP-d4 stock was prepared by weighing in dry TSP-

d4. The pH of the CSF was adjusted to around 7 (7.0 – 7.1) by adding phosphate buffer 

(9.7 μL 1M, to a final concentration of 35 mM). The final CSF NMR sample (284.7 μL) 

was then transferred to a SHIGEMI microcell tube for measurements. 

The 1D 1H NMR spectra of rat CSF samples were acquired on an 800 MHz Inova 

(Varian) system equipped with a 5 mm triple-resonance, Z-gradient HCN cold-probe.  

Suppression of water was achieved by using WATERGATE (delay: 85 s).18 For each 

1D 1H NMR spectrum 512 scans were accumulated with a spectral width of 9000 Hz 

resulting in a total of 18K points. The acquisition time for each scan was 2s. Between 

scans, a 8s relaxation delay was employed. Prior to spectral analysis, all acquired Free 

Induction Decays (FIDs) were zero-filled to 32K data points, multiplied with a 0.3 Hz line 

broadening function, Fourier transformed, manually phased and the TSP internal 

reference peak was set to 0 ppm - by using ACD/SpecManager software version 11.0.19 

All 86 rat CSF spectra were acquired and preprocessed as described above. However 
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due to high line broadening of the internal standard (TSP) four spectra were not included 

in spectral analysis. In total 82 spectra were subsequently transferred to Matlab, version 

7.6 (R2008b) (Mathworks, Natick, MA) for further analysis.  

The preparation and data acquisition of CSF samples from the second EAE experiment 

is described in the supplementary material.  

 

4.2.3.3 Preprocessing of NMR spectra  
The NMR spectral data was preprocessed, which typically involves baseline correction, 

alignment, binning, normalization and scaling.  Baseline correction of NMR spectra was 

performed by applying Asymmetric Least Squares method.20  Fluctuation in 

experimental conditions like sample temperature, pH, ionic strength can lead to chemical 

shift variations, therefore NMR spectra were aligned by using improved parametric time 

warping (I-PTW).21 A further problem is the high dimensionality of the data (circa 10000 

variables). It is common to apply binning to this kind of data, which reduces the number 

of variables. To perform proper spectral bucketing we used adaptive intelligent binning.22 

The chemical shift range  0.75 – 4.15 was used for the binning procedure because it 

contained relevant information. Next, spectral resonances corresponding to one 

metabolite were summed and regrouped in one bin. This procedure was applied to the 

resonances where no overlapping was present and it led to 153 bins in total. To make 

spectra comparable between different samples, the final step of preprocessing consisted 

of integral normalization and supervised vast scaling applied to the binned data.23  

 

4.2.3.4 Metabolites identification and quantification 
Metabolite identification was carried out by using the 800 MHz library of metabolite NMR 

spectra from the Chenomx NMR Suite 5.1 (pH 6-8). The library of metabolite spectra is 

obtained based on a database of pure compound spectra acquired using a particular 

pulse sequence and acquisition parameters, the tn-noesy-presaturation pulse sequence 

with 4s acquisition time and 1s of recycle delay.24 The Chenomx NMR Suite software fits 

the spectral signatures (singlets, doublets, triplets etc), i.e. the peak shapes, of a 

compound from an internal database of reference spectra to the experimental NMR 

spectrum.  
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For quantification, that is determination of the concentrations of individual metabolites, 

Chenomx NMR Suite 5.1 uses the concentration of the known reference signal as 

calibration (in this case TSP-d4). Note that Chenomx approach is that peak shapes are 

fitted to the experimental ones.  In contrast, peak integration, which is often employed 

for quantification, is very sensitive to baseline distortions and even slightly overlapping 

resonances cannot reliably be integrated. Peak-shape fitting, like employed in Chenomx, 

is instead not much affected by base-line distortions. Moreover, even when some of the 

resonances and/or part of a resonance signature (triplet etc.) of a compound overlap 

with that of another compound, the peak shape can still be fitted with reasonable 

accuracy and the concentration of the compound reliably determined. 

 

4.2.3.5 Data analysis strategy 
Explorative analysis, by means of Principal Component Analysis (PCA),25 was used first 

in order to extract and display the systematic variation in the data. 

The strategy for multivariate supervised analysis, using Discriminant Analysis by 

Projection on Latent Structures (PLS-DA) 26 was designed in accordance with the 

experimental design summarized in Table 1. The data contain three main groups 

(healthy control “C10” and “C14”, peripheral inflammation “P10” and “P14” and mixture 

of neuroinflammation and peripheral inflammation “N10” and “N14”) in two time points 

(Day 10 and Day 14). The two time points (Day 10 and Day 14) were analyzed 

separately and we always differentiated between two groups. We have used PLS-DA, 

since it gives more interpretable results and it enabled us to observe the influence of 

single effects (i.e. peripheral inflammation, neuroinflammation or disease-progression) 

on the CSF metabolic profile. 

To corroborate the results we used another supervised method, ANalysis Of VAriance-

Principal Component Analysis (ANOVA-PCA). The analysis was performed on each time 

point separately as well as on the two time points combined.  Variables (metabolites) 

differentially profiled across groups of interest were selected based on regression 

coefficients in PLS-DA and on ANOVA-PCA, Hotelling T2 statistic with p-value inferior 

than 0.05).27   
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4.2.3.6 Model construction and validation 
PLS-DA is a variation of PLS.28 PLS-DA uses the group information to maximize the 

separation between groups of observations. It is currently widely used in metabolomics 

because of its ability to cope with high correlations between variables. In PLS-DA a 

linear model is constructed according to equation 1: 

 

y=Xb + r  (1) 

 

Where, X is a dataset matrix, y a vector of group memberships, b a vector of regression 

coefficient and r a vector of model residuals. The regression coefficients reflect the 

relative importance of the variables in the PLS-DA model. We divided the data into a 

training and a test set using the Duplex algorithm29 in such a way that the number of 

samples in the training set was equal for every considered group. The amount of 

samples in the test set was equal to at least 25% of the total number of samples but not 

more than 30%. To prevent model overfitting we applied the cross model validation 

(CMV) procedure, introduced by Anderssen et al. and Gidskehaug et al. 30, 31 in which 

double cross validation procedures are included for model optimization, the variable 

selection based on jack-knifing and final model performance assessment. All MATLAB 

routines for performing variable selection can be found in this reference.31 

Finally, all PLS-DA models were validated with the independent test set.  For every 

considered model the specificity and sensitivity of the test set were calculated. The final 

PLS-DA model was applied to the whole dataset if the accuracy of the independent test 

set was satisfactory (i.e. above 90% of correct classification). 

In order to predict the class labels (Ŷ) of validation set the scaled spectra (Xnew) have to 

be multiply by regression coefficient (b) obtained from PLS-DA model (i.e. Ŷ=Xnewb). 

Please keep in mind that scaling performed on validation set applied all necessary 

parameters (i.e. mean and standard deviation) from training set.   

 

4.2.3.7ANOVA-PCA  
Previously we showed that this approach allows identifying the relevant variables to 

distinguish groups.27 In this study the main factors are the metabolites effect (M) and the 
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treatments effect (T) (groups) plus a random dimension linked to the individual 

variations. The ANOVA model is given in equation 2: 

Xijk=μ + +Mi + Tj + MTij + eijk  (2)  

 

Where μ is a general mean, e is the error term and MTij indicates the interactions 

between main effects. The interaction between metabolites and treatments, i.e. groups, 

(MTij) is of highest interest because it reflects the influence of the different treatments on 

the intensity of metabolites when all others effects are averaged out. Therefore PCA is 

performed on the matrix of interaction effects to identify metabolites that contribute to 

this interaction. If the treatment (j) is relevant for the metabolite (i), the interaction MTij is 

significantly different from zero. 

 

4.2.3.8 Heat map and correlation network map  
In order to represent the relevant metabolites concentrations in groups “C14”, “P10” and 

“N14” we generated a heat map from NMR metabolomics data. The heat map is a 

graphical representation of NMR data in two-dimensional map, where the metabolites 

concentrations are illustrated as colors. Every concentration value was standardized 

according to the reference group (healthy group “C14”), i.e. by subtracting mean and 

dividing by the standard deviation of healthy controls. In that way the metabolites 

concentrations are expressed in values of standard deviation from the control group.  

The concentration of a certain metabolite does not fluctuate independently, but may be 

correlated and change with the others metabolites. To examine the level of observed 

changes among metabolites we calculated the Spearman’s correlation between relative 

metabolites concentrations in groups “C14” and “N14”, as well in groups “P10” and 

“N14”. Spearman correlation calculates the correlation of the ranks for metabolites 

concentrations, given in equation 3. 
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Where, Cr is a Spearman’s correlation, di is a difference between ranks of each sample 

on the two metabolites, n is the number of samples. 
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Extreme variations in concentration values have less influence on the Spearman 

correlation than on the Pearson’s correlation. The calculated correlations are then 

transferred to Graphviz 1.01 for network map visualization (http://www.graphviz.org). 

In the network map two metabolites are connected with a link if their correlation 

coefficient is relevant, i.e. exceeds a given threshold. The correlation between 

metabolites concentrations was significant if its value was superior than 0.7 and p-value 

was inferior than 0.05. 

 



 140 

4.3 RESULTS 
4.3.1 Overview of the available data  
86 NMR spectra were measured, while 82 spectra were included in further analysis. An 

example of a 1H-NMR spectrum of rat CSF is shown in Figure 1c in the chemical shift 

region between 0.8 and 2.7 ppm. This region contains several signals from carboxylic 

acids and amino acids protons. Some of the metabolites are named in Figure 1c. For the 

analysis the NMR spectra were divided into 153 bins, which contain resonances of 33 

identified metabolites and some unidentified signals. The identified metabolites are listed 

in the supplementary material. The information concerning the second EAE model can 

be found in the supplementary material.  

The average neurological scores and standard deviations for group “N14” are shown in 

Figure 1b, the information of each individual animal is listed in the supplementary 

material. As can be observed the animals showed motor dysfunction at day 11. The 

average day of onset was 11.56 (+/- 0.2). This means that on average, animals were 

disabled for a period of 2.4 days (+/- 0.2) at the sampling day. In group “N14” only one 

animal showed disease duration shorter than 2 days (onset on day 13). The maximum 

score reached was on average 4.5 (+/- 0.2). Six animals showed a maximum score 

above this average. The average peak day (as defined by the first day of maximum 

score per individual animal) was 13.3 (+/-0.2). An idea would be to use the neurological 

scores for regression purpose for groups “N10” and “N14”. However all animals in group 

“N10” had neurological scores equal zero, while animals in group “N14” quite spread 

values from 0 till 6. This would cause an artificial compactness of samples from group 

“N10”, while group “N14” very spread. This would lead to biased PLS results. Therefore 

the neurological scores were not used. 

 

4.3.2 Explorative analysis by PCA  
Before performing pattern recognition, the spectra of 82 rat CSF samples were checked 

for outliers. In total 3 spectra were detected as outliers and were removed from the final 

analysis. Figure 1d shows the PCA score plot of the total dataset (79 vast scaled 

spectra). This plot shows that the samples belonging to group “N14” are clearly 

separated from the others samples along PC2. It also reveals that a large source of 
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variance in the data does not correspond to the available groups. No clear grouping is 

present since most of the groups overlap. With PCA only, we are not able to distinguish 

all analyzed groups. Therefore we needed to use more dedicated methods. 

4.3.3 Supervised multivariate analysis by PLS-DA and ANOVA-PCA 
 

4.3.3.1 PLS-DA of 1H-NMR CSF data 
PLS-DA models of the 1H-NMR spectra were performed to extract information on the 

metabolic effects of the different group treatments as presented in Table 1.  In Table 2S 

in the supplementary material the specificity, sensitivity, the correct classification rate for 

the test set and the total number of variables in the PLS-DA models are presented. 

Metabolites that contributed significantly to the group separation are listed in Table 3S in 

the supplementary materials. The results of these PLS-DA models urged us to revise the 

assumed effects for some groups of Table 1. The summary of the particular effects 

investigated by the different PLS-DA models is presented in Table 4S in the 

supplementary materials. As the first part of supervised analysis the comparison 

between “C10” and “C14” has been performed in order to find the metabolites that 

represent metabolic evolution over days. Later, this information was used to check if any 

of the discriminating metabolites are related to metabolic variation over time. In the 

remaining of this paragraph a detailed analysis of the results of the different models is 

given. 

The score plots of final PLS-DA models are presented in Figures 2a-2e. Note that score 

plots are used only for illustration purpose not determine the classification of PLS-DA 

model. 

Effect of neuroinflammation and peripheral inflammation 

The PLS-DA model for groups “C10” versus “N10” allows one to study the combined 

effect of neuroinflammation and peripheral inflammation.  This model has a high 

prediction ability of 100% for the independent test set. The area under the curve (93.4%) 

indicates that group “C10” and group “N10” are well separated and the PLS-DA has a 

high model performance. The CSF metabolic profile of the EAE-affected group can thus 

without a doubt be differentiated from the metabolic profile of the healthy group.  
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Figure 2. PLS-DA score plots derived from 1H-NMR spectra of rat CSF belonging to: (a) groups 

“C10” and “N10”. The amount of Y explained variance for two latent variables was equal to 

87.9%. (b) groups “P10” and “N10”. The amount of explained variance in Y for two latent 

variables was equal 58.3%. (c) groups “N10” and “N14”. The amount of explained variance in Y 

for one latent variable was equal to 89.6%.  (d) groups “C14” and “N14”. The amount of 

explained variance in Y for one latent variable was equal to 95.2%. (e) groups “P10” and “N14”. 

The amount of explained variance in Y for one latent variable was equal to 97.1%. (f) The 

projection of the independent samples from the second EAE model (group “P10-2” and group 

“N10-2”) on the PLS-DA score plot derived from group “P10” versus “N14” of the first EAE 

model. 
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Effect of neuroinflammation  

The PLS-DA model for groups “P10” versus “N10” allows one to discriminate the effects 

of peripheral inflammation and neuroinflammation on the CSF metabolic profile. This 

model shows poor prediction (accuracy for the independent test set is 62.5%) and the 

sensitivity for group “N10” is very low (predicted as belonging to group “P10”). The score 

plot (Figure 2b) illustrates two subgroups in group “N10”, one overlapping with group 

“P10” and a second cluster further away. This result suggests that animals in group 

“N10” are heterogeneous regarding to the disease response. Probably, within group 

“N10” some animals did not show any neuroinflammation yet, indeed at Day 10, no 

neurological deficits have been observed in this particular experiment. Therefore for 

some animals the peripheral inflammation is still the dominant effect since the 

neuroinflammation has not developed yet. A hierarchical clustering was performed on 

group “N10” to confirm the heterogeneity of the group (data not shown). Three samples 

were identified as outliers for group “N10”. This suggests that the response of the 

animals to the disease in the EAE model was not uniform and some animals’ response 

is shifted along time. The neurological scores recorded for group “N10” on average were 

equal to 0. This means that by examination of the rat’s motor system no external 

neurological or pathological physical signs were observed.  The heterogeneity of group 

“N14” was further investigated with ROC curve analysis. The area under curve (60%) 

shows that group “P10” and group “N10” are not well separated.  

The PLS-DA model for groups “N10” versus “N14” allows one to study the progression 

of disease. The classification model has perfect accuracy (overall classification of 100% 

for independent test set).  

Investigation of the second time point (Day 14) by PLS-DA allows one to identify the 

metabolites differently profiled during the peak of disease. The PLS-DA model of “C14” 

versus “N14” has perfect prediction ability (overall classification is 100% for independent 

test set).  

Effect of peripheral inflammation during the peak of the disease 

The overall correct classification rate for independent test set of this model is only 65%. 

The area under the ROC curve is 59%. These results suggest that the metabolic profiles 

of group “C14” and group “P14” are quite similar. Based on these data we can make the 
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statement that at Day 14 the effect of an immunopotentiator, i.e. CFA, was not 

measurable based on the metabolite profile. Our interpretation of these results is that 

peripheral inflammation has vanished by Day 14 and group “P14” is actually healthy. 

This interpretation is coherent with the absence of external symptoms (i.e. fever and 

swelling pad). Since group “P14” is not  

inflamed anymore the PLS-DA models of group “P14” vs. “N14” and “N14” vs. 

(“C14&P14”) give similar results as the PLS-DA model of the healthy group “C14” vs. 

group “N14”. In both situations the overall correct classification for independent test set 

is 100%. The PLS-DA model of “P10” vs. “P14” is described in the supplementary 

material.  

P10 vs N14 : Peripheral inflammation effect versus neuroinflammation effect 

Based on the experimental design the effect in group “N14” is a combination of 

peripheral inflammation (CFA effect) and neuroinflammation (MBP effect). However, 

considering the conclusion that at Day 14 the peripheral inflammation has vanished, 

group “N14” should show only neuroinflammation. Because group “N10” was is 

heterogeneous in disease onset, we used groups “P10” and “N14” to distinguish 

peripheral inflammation from neuroinflammation. We performed this comparison, 

knowing that groups “P10” and “N14” represent different conditions, i.e. Day 10 for group 

“P10” and Day 14 for group “N14”. This comparison should yield the metabolites 

influenced by peripheral inflammation or neuroinflammation. 

The “P10” vs.”N14” PLS-DA model should carry the information about the metabolites 

differentially profiled in peripherally inflamed and neuroinflamed subjects. The PLS-DA 

model shows perfect prediction ability with an overall correct classification of 100% for 

independent test set. Based on our results these two groups indeed have different 

metabolic profiles. 

 

4.3.3.2 ANOVA-PCA of 1H-NMR CSF data 
To confirm the results from the PLS-DA models we used ANOVA-PCA as a 

corroborative technique to identify metabolites that vary significantly between groups. 

The factors modeled in this study are the factor treatment (CFA, CFA+MBP or no 

treatment), and the different metabolites (the Metabolite factor). The resulting biplots of 
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the ANOVA-PCA are displayed in Figures S2 (a-d), while the group specific metabolites 

are summarized in Table S5 in the supplementary materials. In the next part of this 

paragraph an overview of the results derived from ANOVA-PCA are discussed.  

Except for a few metabolites, the same set of metabolites for peripheral as well as 

neuroinflammation was selected by ANOVA-PCA. ANOVA-PCA showed that the 

metabolic profiles of healthy group, peripheral inflamed and neuroinflamed animals can 

be distinguished. Moreover it showed that groups “C14” and “P14” have similar 

metabolic profiles. 

 

The most discriminating metabolites and their absolute concentrations are presented in 

Table 2; their short biological interpretation is further discussed in the section 

‘Discussion and Conclusion'. 

As a final step, to make the PLS-DA model more robust and generic (i.e. machine 

independent), PLS-DA model was constructed for the absolute concentration of the 

metabolites. This is, however, a time consuming step and therefore we performed it only 

for the “P10” and “N14” groups. The PLS-DA model for group “P10” versus group “N14” 

shows perfect prediction ability with an accuracy of 100% on the independent test set. 

The score plot of this model is shown in the supplementary material (Figure 3S). This 

model is further validated with an independent set of animals, derived from a second 

EAE experiment. 

 

4.3.4 Heat map and correlation network map  
In order to represent the individual differences in metabolites concentrations of healthy 

controls (“C14”), peripherally inflamed (“P10”) and neuroinflamed (“N14”) animals a heat 

map of the metabolomics data was constructed (Figure 3a). The metabolite 

concentrations were standardized with respect to the healthy group “C14”. The 

metabolites included in the heat map correspond to the significant ones shown in Table 

2. The heat map shows that the metabolite concentrations, characteristic for 

neuroinflammation, change significantly in group “N14”. For instance arginine 

concentration is elevated in group “N14” in comparison to healthy and peripherally 
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inflamed controls.  On the contrary alanine is reduced. The intra-individual variations are 

still observable.  

To assess the correlation between metabolites, we calculated Spearman’s correlation 

between relative metabolites concentrations in groups “C14” and “N14”, as well as in 

groups “P10” and “N14”. Those correlations are visualized as a network map (Figure 3b-

3c) to provide an overview of similarities between different metabolites in the considered 

groups. In Figure 3b a correlation network map between metabolites in healthy group 

“C14” and neuroinflamed group “N14” is presented. There are just a few shared 

correlations (indicated with a dashed line), i.e. significant correlations seen in both 

groups. These correlations are thus not influenced by neuroinflammation. Figure 3c 

shows the correlation network map between metabolites in peripherally inflamed group 

“P10” and neuroinflamed group “N14”.  There are only a few correlations present in 

group “P10” (solid, black line) and shared correlations between groups “P10” and “N14” 

are absent. What is particularly noteworthy is the fact that many correlations, present in 

the healthy control, vanished due to neuroinflammation, but also some new correlations 

appeared. 
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Figure 3. (a) Heat map of selected metabolites for groups “C14”, “P10” and “N14”.  Each row 

represents a metabolite, and each column corresponds to an animal from healthy group “C14” or 

peripherally inflamed group “P10”, or neuroinflamed group “N14”.  The relative metabolite 

concentrations were standardized with respect to healthy group. Red and blue colors represent 

elevation or reduction of a given metabolite concentration, respectively. NAA stands for N-

acetylaspartate, while σ indicates the standard deviation of the healthy control. (b) Correlation 

network map between metabolites identified with high certainty: in healthy group “C14” and 

neuroinflamed group “N14”; (c) in peripherally inflamed group “P10” and neuroinflamed group 

“N14”. A solid black line indicates a significant correlation (i.e. correlation > 0.7 and p-value < 

0.05) occurring in the first group (healthy group “C14” or peripherally inflamed group “P10”). A 

dotted line signifies the significant correlation unique for neuroinflamed group “N14”. A dashed 
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line represents a significant correlation seen in each group. The red and blue boxes represent 

elevated or reduced metabolite concentrations in neuroinflamed group “N14”, respectively. NAA 

stands for N-acetylaspartate. 

4.3.5 Prediction of neuroinflammation in an independent set of animals 
To confirm the validity of the discovered disease specific markers for neuroinflammation, 

we used an independent set of samples coming from another EAE experiment, in which 

we want to predict neuroinflammation in an early stage. The absolute concentration of 

our markers was determined for the group with peripheral inflammation at Day 10 (here 

called group “P10-2”) and the group with peripheral and early neuroinflammation at Day 

10 (here called group “N10-2”). All peripherally inflamed animals (group “P10-2”) are 

correctly classified. Animals with peripheral inflammation and early neuroinflammation 

(group “N10-2”) are also correctly classified, except for one animal. The overall correct 

classification for the independent set of samples is 95.8%, with specificity for group 

“P10-2” and group “N10-2” equal to 100% and 91%, respectively. The projection of 

these independent samples on the PLS-DA score plot derived from group “P10” versus 

“N10” is shown in Figure 2f. It is important to note that the misclassified sample is 

located close to the borderline between the two groups.  This result suggests that 

proposed markers have a similar behavior in the second study.  
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4.4 DISCUSSION AND CONCLUSIONS 
Supervised analysis of CSF 1H-NMR data revealed significant changes in biochemical 

composition of the CSF metabolic profile amongst the analyzed groups. PLS-DA and 

ANOVA-PCA have been used to model the metabolic profiles from rat CSF. The small 

differences between PLS-DA and ANOVA-PCA results may arise from the principles of 

the two methods. PLS-DA aims to select a subset of metabolites which gives the highest 

separations between groups. This may imply that not all discriminatory metabolites are 

selected. In the case of ANOVA-PCA the amount of selected variables mostly depend 

on α level Hotelling T2. In addition the two different scaling approaches applied before 

PLS-DA and ANOVA-PCA may have an influence on the selection of metabolites. 

 

Interpretation of PLS-DA models and ANOVA-PCA yielded a set of relevant metabolites, 

which are shown in Table 2. In this section we further discuss their biological 

interpretation 
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Table 2. Average absolute concentration (Cμ) and standard deviation (σ) of metabolites 

important for peripheral inflammation or neuroinflammation selected based on PLS-DA and 

ANOVA-PCA.  

 
Groups 

healthy P10 N10 N14 

Metabolites Cμ [μM] σ [μM] Cμ [μM] σ [μM] Cμ [μM] σ [μM] Cμ [μM] σ [μM] 

NAA* 13.5 2.5 14.8 1.7 16.5 2.3 21.0 3.6 

arginine 39.0 10.5 37.5 8.4 46.2 11.8 62.3 17.8 

lysine 72.5 9.6 68.5 11.6 89.0 15.0 135.6 29.5 

choline 5.6 1.4 5.9 1.2 8.0 1.1 10.6 1.8 

malonate 120.4 17.2 126.6 17.2 122.2 33.2 40.5 10.9 

alanine 51.9 5.1 55.5 7.3 51.8 8.8 34.3 4.6 

citrate 200.2 21.8 143.0 21.2 145.9 37.5 105.4 23.5 

creatine 70.6 9.3 69.1 11.2 80.1 9.1 91.3 8.7 

glutamine 606.4 93.4 531.9 96.4 544.7 71.6 654.3 127.2 

lactate 2660 551.9 2757.3 387.2 3723.0 671.8 2869.3 282.0 

3-hydroxy* 494.4 17.2 430.7 25.8 439.9 33.5 510.8 15.4 

* 3-hydroxy stands for 3hydroxyisovalerate; NAA stands for N-acetylaspartate 

 

Metabolites related to neuroinflammation: Choline, N-acetylaspartate, creatine, lysine, 

arginine, alanine and malonate 

The concentration of choline was elevated in groups “N10” and “N14”. However, the 

choline concentration stayed invariable between two control groups “C10” and “P10”. In 

a previous study, where MScl patients and EAE model in marmoset  were studied by 1H-

NMR spectroscopy, higher choline concentrations have been reported as a marker for 

demyelination in urine.32 This metabolite is required for synthesis of neurotransmitter 

acetylcholine, and phosphatidylcholine. The increase in choline concentration could be 

due to demyelination and/or cell membrane breakdown. 
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Another metabolite found as being highly correlated with EAE-affected groups “N10” and 

“N14” and which enabled to differentiate these groups from the others was N-

acetylaspartate (NAA). This compound is known as a marker of neuronal damage. Its 

concentration was elevated in the “N14” group. In addition this metabolite distinguished 

neuroinflammation from peripheral inflammation in the PLS-DA model. NAA is a free 

amino acid present in neuronal cell and it has been culpably involved in many processes 

of the nervous system: for instance it may be involved in the myelin production, 

regulation of neuronal protein synthesis or the metabolism of several neurotransmitters 

such as aspartate or N-acetyl-aspartyl-glutamate. 

Two other metabolites, creatine and malonate, were found to vary between the two 

EAE-effected groups. Creatine level was found to be up regulated in group “N14”. 

Creatine is considered as one of the principal brain metabolite. Its changes in 

concentration are seen in many other neuro-degenerative disorders and are caused by 

gliosis 33 or scarring of neuron (demyelination). Elevated level of creatine in patients with 

MScl was found in a previous study and has been associated as marker of gliosis.34, 35 36 

Up regulated creatine level could be due to a change in the cellular composition, either 

increased inflammatory cells or glial cells. Malonate level was reduced in neuroinflamed 

group “N14”. Another metabolite found to be reduced in neuroinflamed group “N14” is 

alanine. Reduced level of alanine in patients with MScl in comparison to patients with 

cerebrovascular disease was found in a previous study, where Sinclair et al used NMR 

spectroscopy to evaluate the ability of metabolomics analysis to differentiate 

neurological disease.37 Alanine is used as a source for pyruvate for energy metabolism 

or to synthesis of macromolecules within neural and immune cells.38 Reduction of 

alanine concentration may be connected to energy metabolism, since it might be used 

by invading cells. 

Lysine and arginine were found to have a high correlation with EAE-affected groups 

“N10” and “N14”. Lysine and arginine levels were up regulated in group “N14” compared 

to “N10” and in “N10” compared to “P10”. This indicates their relation to 

neuroinflammation. Lysine and arginine are metabolites which may differentiate 

peripheral inflammation from neuroinflammation. Arginine is used to synthesize nitric 

oxide (NO). Elevated levels of NO oxidation products in the CNS have been shown in 
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bacterial meningitis in cerebral lupus erythematosus. Recently it was demonstrated that 

increased levels of NO oxidation plays a part in the generation of MScl symptoms.39 

Inhibition of NO synthesis may suppress40 or emphasis EAE.41 However, the precise 

role of NO in EAE and MScl still remains elusive and unclear. Qureshi and cowworkers 

have studied a role of neurotransmitters amino acids in CSF of MScl patients. 42 They 

have reported increased level of lysine in CSF in MScl patiens. 

 

Metabolites related to peripheral inflammation: citrate, glutamine, lactate and  

3-hydroxyisovalerate 

Citrate is a key metabolite to differentiate the healthy group “C10” from the peripherally 

inflamed group, “P10” but also the peripherally inflamed group from the EAE affected 

group “N14”. Reduced citrate is in line with a previous study of Sinclair and coworkers.37 

The difference in citrate level is larger between the peripherally inflamed and 

neuroinflamed group than between the healthy control and the peripherally inflamed 

group. The citrate level may indicate the degree of inflammation. Citrate is released to a 

larger extent from astrocytes than from neurons. This metabolite is an intermediate in 

tricarboxylic acid cycle (TCA). In the study of Smith and coworkers43 the metabolic 

activity of proteins from myelin and non-myelin fractions of spinal cords of Lewis rats 

with EAE was investigated using [1-14C]leucine as a protein precursor.  In this study they 

showed that the decreased activity of the TCA cycle exists. However, the implication of 

the citrate alternation is unclear although it was already noted in Alzheimer’s and in MScl 

disease.37, 44  

Glutamine is an amino acid, which plays an important role in brain metabolism. This 

metabolite is involved in energy metabolism. It was shown that glutamine is a necessary 

nutrient for cell proliferation, serving as a specific fuel for inflammatory cells and 

enterocytes and, when present in appropriate concentrations, enhancing cell function. 

During inflammatory states, glutamine consumption may outstrip endogenous production 

and a relative glutamine deficiency state may exist.45  

A higher level of lactate was found in group “N10” in comparison to group “N14”. 

Predominant lactate peaks have already been reported in inflammatory CNS diseases. 

The amount of CSF lactate depends largely on production from CNS glycolysis. 
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Increased lactate production by immune cells is observable in the presence of 

inflammation. Although elevations in CSF lactate may occur because of many different 

processes, for instance hypoxia of inflamed tissues, reduced blood flow from cerebral 

edema, and granulocyte and bacterial metabolism.46 In addition elevated lactate levels 

have been identified in vitreous.  

The reduced level of 3-hydroxyisovalerate was established for group “N10” and group 

“P10” when compared with the healthy group. This suggests that this metabolite is 

involved in peripheral inflammation. However this result deserves more attention since a 

previous publication demonstrated an increase in 3-hydroxyisovalerate level in some 

MScl patients.47   

Conclusions 
We investigated the effect of neuroinflammation and peripheral inflammation on the 

metabolic state of CSF in the rat EAE model, a mimic of the neuroinflammatory aspect 

of the early stage of MScl. In the animal study untargeted and unbiased biomarker 

discovery approach consisting of high-field 1D 1H NMR combined with multivariate data 

analysis was employed.  

CSF is demonstrated as a valuable biofluid for the investigation of neurological disorders 

in the CNS. We found that 1H-NMR is a powerful technique capable of providing 

information for the identification and quantification of a large number of metabolites in 

CSF. 

The use of two statistical techniques (PLS-DA and ANOVA-PCA) contributes 

significantly to the reliability of the results. The two methods are corroborative, because 

the overall results obtained by PLS-DA and ANOVA-PCA were found to be coherent.  

The CSF metabolic profile for neuroinflammation is distinct from that of healthy and 

peripheral inflammation and characterized by changes in concentrations of metabolites 

such as creatine, arginine and lysine. Peripheral inflammation was only seen at Day 10 

and absent at Day 14. A further interesting observation was that the correlation network 

map is much more complex for the healthy group than for the groups affected by 

peripheral inflammation or neuroinflammation. Disappearance of correlation between 

metabolites in peripherally inflamed and neuroinflamed animals might be related to 

change of penetrability of the blood-brain-barrier (BBB). Under standard physiological 
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circumstances BBB controls the homeostasis of the interstitial cerebral fluid.48 It is 

known that during EAE changes in the BBB function occur.  It causes disruption in the 

BBB and affects the saturable transport system of substances involved in disease 

process.49 Injection of CFA can itself lead to increased BBB permeability to small 

molecules and even certain serum proteins.50 These disturbances might then cause 

changes in metabolites flux across BBB and relations between them. For instance the 

correlation might become more non-linear or weaker and therefore be absent in disease 

stage under selected threshold. In addition in EAE there is a strong increase in 

infiltration of the BBB by monocytes and activated lymphocytes which is bound to 

change the metabolite profile of the fluids. Not only a disrupted BBB leads to "leakage", 

but activated immune cells crossing the BBB and entering the interstitial fluid and the 

CSF produce metabolites that change the overall profile of the fluids they are in. 

Interestingly some markers of neuroinflammation have been connected to demyelination 

and neuronal damage. In EAE model induced with MBP demyelination is missing or 

limited to the ventral root exit and dorsal root entry zone of the spinal cord. In the case of 

Lewis rats primary demyelination is restricted to occasional perivenous myelin sheaths. 

In general, demyelination is more distinct when addition of other CNS antigens to the 

MBP results in pronounced demyelination. In addition, some demyelination was 

observed in guinea pig EAE model incorporated with MBP inoculums utilized for 

sensitization.51 However the presence of demyelination in the EAE model induced with 

MBP is a matter of debate. Therefore we believe that it needs additional investigations. 

In current study the presence of demyelination could be investigated by for instance 

repeating the EAE model and then performing histology studies or electron microscopy 

of spinal cord. Another possibility would be to use Magnetic magnetic resonance 

imaging to study the pathology of rats’ brain and spinal cord. These steps could 

demonstrate the presence or absence of demyelination. 

By using an independent set of animals, i.e. coming from another EAE experiment, we 

demonstrated that this model and ipso facto the disease specific markers have ability to 

predict neuroinflammation in its early stage with high accuracy. Thus, these animal-

model based markers may be used to diagnose the early stage of neuroinflammation. 
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Further developments will include the investigation and translation of our results to a 

clinical context, i.e. how these results can be used to predict MScl.  
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ABSTRACT 
Cerebrospinal fluid (CSF) is the biofluid in closest interaction with the central nervous 

system. Therefore it holds promise as a reporter on neurological disease such as 

Multiple Sclerosis (MScl). To characterize the metabolomics signature of the 

neuroinflammation aspects of this disease we studied an animal model of MScl: the 

Experimental Autoimmune/Allergic Encephalomyelitis (EAE). CSF also exchanges 

metabolites with blood via the blood-brain-barrier. Therefore, malfunctions occurring in 

the CNS may be reflected in the biochemical composition of blood plasma. The 

combination of blood plasma and CSF provides more complete information about the 

disease. Both biofluids can be studied using NMR spectroscopy.   It is then necessary to 

perform a combined analysis of the two different datasets. In consequence mid-level 

data fusion was applied to blood plasma and CSF datasets. Firstly, the relevant 

information is extracted per biofluid dataset using linear support vector machine 

recursive feature elimination. The selected variables per dataset are concatenated in 

order to be analyzed jointly by Partial Least Squares Discriminant Analysis (PLS-DA). 

The combined metabolomics information from plasma and CSF allows for a more 

efficient and reliable discrimination of the onset of the EAE. Secondly, we introduce 

Hierarchical Models Fusion, in which previously developed PLS-DA models are 

hierarchically combined. We show that this approach allows one to distinguish 

neuroinflamed rats (even on the day of onset) from either healthy or peripherally 

inflamed rats. Moreover, the progression of EAE can be investigated thanks to the 

model separating the onset and the peak of the disease.  

 

 

 

 

 

 

 

 



163 
 

5.1 INTRODUCTION 
Multiple Sclerosis (MScl) is an inflammatory, presumably autoimmune disease of Central 

Nervous System (CNS) in which the fatty myelin sheaths which surround the axons of 

the brain and spinal cord are damaged, leading to demyelization1. MScl is one of the 

most common neurological disease affecting young adults and it has enormous effect on 

the health system and economy of different countries. The cause of MScl is still elusive. 

However it is believed that it is a combination of genetic and environmental factors with 

a possible infectious origin. Signs of MScl can be observed not only in CNS but also in 

the peripheral nervous system (PNS) 2. 

Diagnosis of MScl still remains challenging, especially in its early stage. Currently the 

diagnosis of MScl is mostly based on clinical evidence complemented with laboratory 

investigations, like the presence of lesions in the brain and/or spinal cord (visualized by 

magnetic resonance imaging (MRI)). However, lesions have been found in other 

neurological diseases, like Guillain-Barré syndrome 3, as well as in non-neurological 

diseases such as systematic vasculitis 4  or sarcoidosis 5.  Furthermore, brain lesions 

have been found in healthy individuals 6. Therefore, brain lesions are not specific 

enough for proper, early diagnosis. In order to improve diagnosis of MScl it is necessary 

to combine the information from Cerebrospinal fluid analysis, MRI results and all clinical 

symptoms.  

 In order to fingerprint MScl at the molecular level the biological samples have to be 

analyzed. Since CSF is the biofluid in direct contact with the brain and spinal cord, it is 

the most suitable choice for fingerprinting MScl. The investigation of biochemical 

composition of CSF may indicate the abnormal status of the brain. The CSF is absorbed 

into the blood via a semi-permeable membrane, the blood-brain barrier (BBB). 

Therefore, effects of CNS diseases can potentially also be seen in the biochemical 

composition of blood plasma. Obviously, cross-over effects from the plasma to the CSF 

may also cause changes in biochemical composition of the CSF. In MScl, the BBB is 

often damaged causing “leakage” 7. This suggests that plasma may contain predictive 

information about the disease. Therefore we propose to study the metabolic profiles of 

both CSF and plasma. These types of samples are relatively difficult to obtain in humans 

and interesting information is very often obscured by other factors, like genetic, 
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environmental and dietetic backgrounds. Thus we opt for the possibility of using samples 

from designed and controlled experiments in rodents. 

The animal model of MScl, the Experimental Autoimmune/Allergic Encephalomyelitis 

(EAE) model has become an important tool to study the neuroinflammatory aspect of 

MScl 8, 9. EAE is a cell-mediated experimental autoimmune disorder of the CNS and 

shares its clinical expression and pathological picture with that of MScl. EAE is used as 

a pre-clinical model of a single episode of MScl. Similar to MScl, in EAE a strong 

increase in infiltration of the BBB occurs, which leads to increased exchange between 

CSF and plasma.  

In this study we have extracted CSF and plasma samples at two time points of the 

disease progression, namely at the onset and the peak; these samples were obtained 

for healthy, immune booster (a group of animals injected with Complete Freund Adjuvant 

emulsion, CFA) and EAE (resembling MScl) Lewis rats. The metabolic profile of the CSF 

and plasma was measured using the untargeted and unbiased technique of high-field 

1D proton Nuclear Magnetic Resonance (1H-NMR). This method allows one to analyze 

both biofluids with very similar measurements protocol. The 1H NMR data of each 

biofluid can be analyzed separately or the two complementary NMR data sets can be 

combined (fused) in the analysis. In this work CSF and blood plasma NMR spectra were 

used in a mid-level data fusion. The metabolite information extracted for each biofluid 

can be directly translated into relative concentrations for each biofluid and compared.  

To obtain such information from the individual or combined data sets several analysis 

challenges have to be solved. First, the disease must be distinguished from the healthy 

condition but also from other diseases such as peripheral inflammation. This means that 

we need to construct a multi-class classifier. Second, even if well controlled the 

experiment still carries additional variances unrelated to the study, i.e. biological and 

experimental variations. Thirdly, the number of variables recorded by NMR is much 

larger than the number of samples which implies specific statistical problems. Moreover 

most of these variables are probably unrelated to the studied problem or redundant. To 

solve these problems we propose the following architecture for the data analysis. Linear 

support vector machine recursive feature elimination (SVM-RFE) is used as variable 

selection technique for both data sets. The selected variables are fused and analyzed 
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using either one multi-class Partial Least Squares Discriminant Analysis (PLS2-DA) 

model or multiple 2 classes PLS-DA models. The latter using a novel approach where a 

hierarchical structure permits to introduce prior knowledge. We introduce this method as 

Hierarchical Models Fusion (HMF). We show that by using HMF, EAE affected rats can 

be distinguished from either healthy or peripherally inflamed rats at the day of onset 

(when no physical symptoms of neuroinflammation are present) with a 100% correct 

classification rate. In addition the progression of EAE can be described. In summary, 

HMF allows one to characterize all studied groups simultaneously without applying 

multiclass classifier. 
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5.2 MATERIALS AND METHODS 
5.2.1 Experimental design of EAE models 
The Experimental Autoimmune/Allergic Encephalomyelitis (EAE) is the common animal 

model for studying the neuroinflammation aspect of the autoimmune disease of Multiple 

Sclerosis (MScl). The experimental setup was as previously described by Smolinska et 

al. and/or Hendricks 10, 11. Here, we briefly summarize the main points. Three sets of 

male Lewis rats (Harlan Laboratories B.V., the Netherlands) were inoculated on Day 0.  

First, a set of 30 animals was injected with  guinea pig myelin basic protein (MBP), 

Complete Freund Adjuvant H37 RA (CFA, Difco Laboratories, Detroit, MI) and 

Mycobacterium tuberculosis type H37RA (Difco). Another group of 30 animals was 

injected with CFA only. Next to these MBP and CFA challenged rats, referred to as the 

EAE group and peripherally inflamed group, respectively, a healthy group undergoing 

anesthesia only (healthy control) was included.  In each group, half of the animals were 

sacrificed to collect both CSF and plasma on Day 10 (onset of disease in EAE group) 

and the other half on Day 14 (peak of disease in EAE group). The typical progression of 

the disease is shown in Figure 1S in the supplementary material, while the details of the 

design of the EAE experiment are summarized in Table 1. 

 
Table 1. Experimental design of EAE model; “n” indicates a number of rats; p – indicates a 

number of common samples between CSF and plasma.   

Group Inflammation type Day 10 Day 14 

Healthy None 
C10 

n = 15 
p= 14 

C14 
n = 15 
p=14 

CFA Peripheral 
P10 

n = 15 
p= 14 

P14 
n = 15 
p=15 

CFA+MBP Peripheral& 
neuroinflammation 

N10 
n = 15* 
p=14 

N14 
n = 15** 

p=11 
* 1 sample from CSF was discarded due to blood contamination and one from blood plasma due to 

sampling 

** 3 samples from CSF was discarded due to blood contamination and two from blood plasma due to 

sampling and preparation 
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5.2.2 CSF and plasma sampling, sample preparation and data acquisition 
On Day 10 and 14, animals were euthanized with CO2/O2 and blood and CSF were 

collected. Sampling, sample preparation and data acquisition of CSF NMR spectra was 

as previously described 11. The blood was sampled intravenously with a Heparin-treated 

syringe. Next, every blood sample was centrifuged for 10 minutes at 4°C with a relative 

centrifugal force of 2000g in order to extract plasma. After centrifugation the 

supernatants were stored at -80 C for further analysis.  

For the NMR measurements, an aliquot of 50 μL of the stored frozen plasma was left at 

room temperature for thawing. Next, the plasma sample was diluted into 200 μL of water 

and then proteins were removed by centrifugation for 30 minutes at 2000g (filter 10 kDa 

Centrisart I 13239-E, Sigma Aldrich, St. Louis, MO, USA) 12. After protein removal, the 

supernatant was lyophilized. Prior to NMR measurements the lyophilized plasma 

samples were re-dissolved in 50μL of water, after which  550 μL of buffer solution was 

added  to obtain sufficient volume for NMR measurement. The buffer solution consisted 

of 2.85 mM TSP-d4 (Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4) (99 atom %D), 6.92 

mM Sodium-azide (NaN3), 42.08 mM Sodium Phosphate dibasic dehydrate 

(Na2HPO4·2H2O) and 7.30 mM HCl solvated in a H2O:D2O (99.96 atom %D) mixture 

(7.93:1). The final TSP concentration in each plasma sample was equal to 2.61 mM. 

The 1H-NMR spectra of the 86 plasma samples were acquired on an AVANCE III 

(Bruker BioSpin, Bruker Inc., Billerica (MA), USA) 500 MHz system equipped 5mm 

cryoprobes, CPTCI (1H-13C/15N/2H + Z-gradients) (Bruker BioSpin, Bruker Inc., 

Billerica (MA), USA). Water suppression was achieved using pre-saturation. For each 

1D 1H NMR spectrum 256 scans were accumulated with a spectral width of 10273 Hz 

resulting in a total of 18K points. The acquisition time for each scan was 3.2s. Between 

scans, a 4s relaxation delay was employed. Prior to spectral analysis, all acquired Free 

Induction Decays (FIDs) were zero-filled to 32K data points, multiplied with a 0.3 Hz line 

broadening function, Fourier transformed, manually phased and the TSP internal 

reference peak was set to 0 ppm - by using ACD/SpecManager software version 12.0 13. 

All 86 rat CSF spectra were acquired and preprocessed as described in 11. However, 

due to high line broadening of the internal standard (TSP) four spectra from CSF and 

plasma were not included in the spectral analysis. Ultimately, 82 CSF spectra and 86 
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plasma spectra were transferred to Matlab (version 7.9, Mathworks Inc., Natick (MA), 

USA) for further analysis, of which 82 samples showed overlap between both CSF and 

plasma spectra (see Table 1).  

 

5.2.3 Preprocessing of CSF and plasma NMR spectra  
The 1H NMR spectral data was preprocessed in Matlab, which typically involved 

baseline correction, alignment, binning, normalization and scaling. For 4 samples (out of 

the 86) only plasma 1H NMR spectra were available. Therefore these four spectra were 

not used in the pre-processing and analysis process. Baseline correction of NMR 

spectra was performed by applying Asymmetric Least Square method 14.  Fluctuation in 

chemical shift variations were removed by applying improved parametric time warping (I-

PTW)15. Each CSF and plasma spectrum was normalized to a total area-under-curve 

(AUC) of 1, to correct for potential differences in sample concentration. In order to 

reduce the high dimensionality of the data, binning was performed by means of adaptive 

intelligent binning 16. This procedure led to 409 bins for CSF and 478 for plasma, which 

can be considered as relative metabolites concentrations. The absolute quantification of 

metabolites in CSF and plasma samples was not performed and used. Data analysis 

was performed on binned data, i.e. on relative metabolites concentrations. The final step 

of preprocessing consisted of autoscaling. 

 

5.2.4 Data analysis 
Explorative analysis by means of robust-Principal Component Analysis (R-PCA) was first 

used to control the presence of outliers in both datasets 17. The strategy for supervised 

data analysis consisted of data division into a training set (75% of samples per class) 

and an independent test set (25% of samples per class) by using the Duplex algorithm 
18, variable selection by Support Vector Machine Recursive Feature Elimination (SVM-

RFE) for linear kernels 19 performed on each dataset (CSF and plasma) separately and 

discriminant analysis by PLS-DA 20 employed on both individual and fused datasets. For 

data fusion so called mid-level data fusion architecture was employed 21. In this 

approach the two data sources are first pre-processed and analyzed separately to 

extract relevant information and next they are fused and analyzed as unique dataset. 
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We used this method, since it was shown that it eliminates variables redundancy. 

Particular steps of this type of data fusion are described in sections 4.1 and 4.2. In this 

fusion approach every data source is treated separately for pre-processing, scaling and 

variable selection. Next, the most optimal set of variables is combined into a single set 

and analyzed with PLS-DA. In the last step of data analysis the approach for cumulative 

fusion by means of Hierarchical Models Fusion (HMF) was carried out. This method, 

proposed for the first time in this paper, is described in detail in the section 4.2. The 

results of this method are compared to PLS2-DA, a variation of PLS-DA which allows 

more than 2 groups to be analyzed simultaneously (see 4.2).  

 

5.2.4.1 SVM-RFE  
SVM-RFE was originally proposed by Guyon et al. 19 and applied to a microarray 

dataset in a cancer study. The method is based on the binary classification method 

SVM. This technique first maps objects into a feature space using kernel transformation 

and then tries to find a hyperplane which separates the data into two classes 22. From all 

separating hyperplanes, SVM looks for the one that gives the biggest separation 

between the borderline training samples of the two classes. The borderline training 

samples are called support vectors. All support vectors have an alpha value, indicating 

how supporting this object is for the position of the hyperplane. Non-supporting objects 

have alpha value equal 0, while alpha equal to 1 indicates the highest support. RFE is a 

backward elimination algorithm, which ranks features based on the weights of linear 

SVM. The algorithm starts with a full training set to train a linear SVM. Next, the 

variables are ranked by sorting in descending order the square of the SVM’s weights 

{wj
2} 

 

wj
2=(∑i=φαiyixij)2          (1) 

 

where  contains the indexes of support vectors, αi are alpha values and yi are the class 

labels. A variable with smallest weight wj is then removed. Indeed the smaller the weight 

of a variable is, the less it contributes to the size of the margin between classes. The 

remaining variables are used to train another linear SVM and all the process is repeated 
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until all variables have been eliminated. In our paper, one variable is removed in each 

iteration. 

We have used a Leave-One-Out (LOO) Cross-Validation (CV) approach to select the 

optimal set of variables per data sets. In this procedure one sample from the training set 

is left out and a variables ranking is obtained based on the remaining objects. The 

procedure is repeated until every object is left once. The final ranking was obtained by 

sorting the variables based on the amount of times it was selected in the LOOCV 

procedure. The variables selected median+1 times made up the optimal set.  The 

complete scheme for LOOCV can be found in the supplementary material. 

 
5.2.4.2 Classification of individual and fused plasma and CSF datasets 
After selecting an optimal set of variables, the features of both data sets are 

concatenated and autoscaled. Subsequently, the variables of the fused sets were 

ranked by SVM-RFE. Classification of fused sets was made by PLS-DA, a well-known 

method used in many omics fields 20, 23. PLS-DA uses the group information to maximize 

the separation between groups of observations. It is currently widely used in 

metabolomics because of its ability to cope with high correlations between variables. In 

PLS-DA a linear model is constructed according to equation 2: 

 

y=Xb + r    (2) 

 

Where, X is a dataset matrix, y a vector of group memberships, b a vector of regression 

coefficient (i.e. weights of individual variable) and r a vector of model residuals. The 

regression coefficients reflect the relative importance of the variables in the PLS-DA 

model. PLS2-DA is a variation of PLS-DA, where the response “y” is not a vector but a 

matrix, which allows more than 2 groups to be analyzed simultaneously.  

The optimal complexity (i.e. number of latent variable (LV)) for all individual as well as 

fused models was determined by LOOCV performed on training sets. The optimal 

number of LV was selected based on the minimal error of the root mean square error of 

cross-validation (RMSECV).  For all individual as well as fused models the optimal 

model complexity was determined to be one LV. All PLS-DA models were validated with 
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an independent test set. A PLS-DA model is considered statistically valid if it shows 

good prediction ability.  After validation, a final model is then reconstructed using all 

available samples. The model can be visualized in a score plot. The importance of all 

variables on the predictive model can be investigated by means of the regression 

coefficients 24.   

After the individual two-class (binary) models are optimized they can be used for HMF.  

 

5.2.4.3 Hierarchical Models Fusion  
In this paper, we propose a new approach Hierarchical Models Fusion, HMF, which uses 

hierarchically multiple simple 2-class classification models to represent individually 

certain parts of the inter-class variation. This approach uses, as any supervised method, 

a priori knowledge of the classes (for instance, type of inflammation) and establishes 

commonalities between them. 

The use of simple two-class models makes the results easier to interpret. The method 

proposed here aims to describe the relevant differences gradually instead of explaining 

all variation from all classes at once. This gradual process becomes possible by 

applying statistically optimized binary models to the data at each step and then to 

combine the outcomes.  Since it fuses the outcome of all earlier optimized models it 

describes and shows all the relevant differences in the data. By using this approach it is 

possible to visualize separation between studied classes and relation between objects 

without applying multiclass classification models (like PLS2-DA or Linear Discriminant 

Analysis (LDA)).   

Data

Model 1 (effect 1 
vs. non-effect)

Non-effect

Effect 1 Effect 2

Xscore

Yscore

Combining Xscore
and Yscore

Model 2 (effect 1 
vs. effect 2)

Xscore

Ys
co

re

Non-effect

Effect 1

Effect 2

 
Figure 1. A graphical representation of Hierarchical Models Fusion. 
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To demonstrate the HMF approach let’s consider a dataset with three classes: non-

effect (i.e. healthy), effect 1 (e.g. peripheral inflammation) and effect 2 (e.g. 

neuroinflammation).  First individual binary PLS-DA models of interest have to be 

optimized (i.e. model 1 and 2 from Figure 1). A graphical representation of HMF is 

shown in Figure 1. These models can then be hierarchically applied to the data in 

accordance to a priori knowledge (here experimental design). For example having data 

containing three classes, i.e. effect 1, effect 2 and non-effect, it is possible to apply HMF 

to separate all three classes. In the first step, model 1 (effect 1 versus non-effect) is 

used to obtain a new score for all samples in data matrix X. This new score (here called 

Xscore) separates non-effect objects from objects belonging to group effect 1 and group 

effect 2. In the next step, another model (model 2: effect 1 versus effect 2) can be 

utilized on matrix X to assess and distinguish these two effects. In that way a second 

score is obtained for all samples in data matrix X (here called Yscore). At each step, a 

new score is obtained by multiplying data matrix X with PLS-DA weights. These two new 

scores (Xscore and Yscore) can then be combined and used to visualize the relationship 

between studied groups.  When the new scores are orthogonal they can be represented 

as usual (i.e. with perpendicular axis). 

Because HMF is based on a hierarchical structure, the complexity of the studied 

problem is reduced by describing every difference on a different level (i.e. step). It 

decomposes the difficulty of multi-class separation into simpler, solvable two-class 

problems. Indeed, the representation of HMF as a decision tree (see Figure 1) is similar 

to the Classification and Regression Trees (CART) 25. However, in HMF at each step 

(node) not a single variable but a PLS-DA model is used to separate objects. In order to 

represent the usefulness of HMF for analyzing multiple classes, simulated data were 

created. The results are shown in the supplementary material. 

Obviously, the presented method can be used not just for visualization of relations 

between samples but also for prediction of new samples (e.g. coming from an extra 

experiment). Moreover, information about variables significant for discrimination is 

associated with PLS-DA weights. Therefore biological interpretation is feasible as well.   

Any results obtained by predictive methods must be validated before drawing any 

conclusions. In HMF the validation is twofold. First all the individual PLS-DA models are 
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validated using independent test sets. Second, the complete HMF structure is also 

validated. Moreover to reduce the possibility of random classification we performed 

permutation test for HMF. 

 

5.2.5 Metabolite identification  
Metabolite identification of the most relevant set of variables was carried out by using 

the 800 MHz library (for CSF) and 500 MHz library (for plasma) of metabolite NMR 

spectra from the Chenomx NMR Suite 7.0 (Chenomx Inc., Edmonton (AD), Canada).  

The libraries of metabolite spectra were obtained based on a database of pure 

compound spectra acquired using a particular pulse sequence and acquisition 

parameters, namely, the noesy-presaturation pulse sequence with 4s acquisition time 

and 1s of recycle delay 26. The Chenomx NMR Suite software fits the spectral signatures 

(singlets, doublets, triplets etc), i.e. the peak shapes, of a compound from an internal 

database of reference spectra to the experimental NMR spectrum. 
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5.3 RESULTS 

5.3.1 Explorative analysis of the CSF - and plasma datasets  
The 82 NMR data of plasma and the 82 NMR data of CSF were each pre-processed as 

described in Materials and Methods. Examples of plasma and CSF spectra are shown in 

Figure 2. As can be noted the intensities of many metabolites (normalized to TSP signal, 

only for visualization purpose), like alanine, arginine, in the plasma spectrum are higher 

in plasma than in CSF. Most metabolites present in CSF can be observed in plasma. A 

few volatile metabolites are not visible in plasma, because of lyophilisation. Some 

metabolites are detected only in plasma, for instance glutamate or phenylalanine. This is 

mostly due to low concentration of these metabolites in CSF. The NMR spectra of CSF 

were divided into 409 bins, which contain resonances of 33 identified metabolites and 

some unidentified signals. In the case of plasma, the NMR spectra were divided into 478 

bins, which correspond to resonances of 50 identified metabolites and some unidentified 

signals.  
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Figure 2. Section of the 800 MHz 1H NMR spectrum of CSF (blue) and 1H 500 MHz NMR 

spectrum of plasma (red).  
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After pre-processing, explorative analysis was performed by means of R-PCA and PCA.  

Initially, R-PCA was applied to the autoscaled spectra of 82 rat CSF and plasma 

samples, to check for outliers. No outliers were detected. Figures 3a-3b show the PCA 

score plots of the plasma and CSF NMR spectra, respectively.  These figures show that 

the samples belonging to group “N14” are clearly separated from the others samples 

along PC2 for plasma data and along PC4 for CSF data. In both situations PC1, which is 

the main source of variance, does not show any group information. This indicates that a 

large source of variance in the data does not correspond to the available groups. . No 

clear grouping is present since most of the groups overlap. It is important to mention that 

further PC’s did not show groupings either.   
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Figure 3. PCA score plot of: (a) plasma NMR spectra; (b) CSF NMR spectra.  

 

5.3.2. Supervised analysis 
The most straightforward approach for separating the 6 groups present in CSF and 

plasma data simultaneously is to apply a multi-class method, for instance PLS2-DA. The 

two datasets can be analyzed separately by PLS2-DA. Alternatively, the CSF and 

plasma data can be fused and PLS2-DA can be applied to the fused data. However, 

PLS2-DA has to describe all group-related variations at the same time. This might lead, 

on the one hand, to worse results in comparison to multiple binary PLS-DA models and 

on the other hand, to difficulties in the biological interpretation. One can apply binary 

PLS-DA models to handle individual biological platforms (CSF and plasma) and the 

(mid-level) fused data sets. This implies that for a full description many binary PLS-DA 
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models have to be constructed and optimized. Therefore, we propose and present a 

new approach, namely HMF. In HMF, a limited number of multiple binary PLS-DA 

models are employed to still fully describe the fused CSF and plasma data. The fusion 

was achieved using the approach described in Materials and Methods (section 4.1 and 

4.2). Binary PLS-DA models were applied to the fused datasets to extract information on 

the metabolic effects of the different group treatments shown in Table 1 and to establish 

the variables significance. All optimal binary PLS-DA models were constructed using 

only 1 LV.  Next these optimized binary PLS-DA models are used in HMF.  Below, we 

first present the results of PLS2-DA, subsequently the binary PLS-DA models, and 

finally those of HMF. The outcomes of HMF are compared with PLS2-DA of the fused 

datasets. 

 

PLS2-DA – complete EAE model for plasma data, CSF data and fused sets 

We applied PLS2-DA to separate simultaneously all 6 groups of the CSF dataset and of 

the plasma dataset. The variables included in the PLS2-DA model are selected by linear 

SVM-RFE. The number of LV’s in the PLS2-DA model was optimized by cross 

validation. The correct classification rate for an independent test set was equal to 57.1% 

for plasma data and 56% for CSF data (the correct classification per class is included in 

Table 1S in the supplementary material). It is interesting to note that better results are 

obtained for the binary PLS-DA models (at least for the binary PLS-DA models 

considered) than for PLS2-DA.However, it is important to mention that PLS2-DA has a 

more difficult problem to solve (i.e. separate 6 classes at once) than PLS-DA.  

A similar situation is encountered for fused datasets. The correct classification for an 

independent test set is equal to 65% for PLS2-DA (correct classification per class can be 

found in the supplementary material, Table 1S). This result is much worse than multiple 

PLS-DA models. PLS2-DA performance (64 % classification) is in turn still much better 

than a random classifier (correct classification 17 %) but still insufficient for a proper 

diagnostic. However, one should notice that some groups are completely classified 

correctly (100 % e.g. “C10”), while some are totally misclassified. 
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PLS-DA models for plasma data, CSF data and for mid-level fused sets: the onset of 

neuroinflammation  

We present the results of PLS-DA obtained for the group “P10” versus “N10”, as this 

represents the interesting case of early onset of neuroinflammation. Binary PLS-DA 

models were derived for the separate CSF and plasma data sets as well as for mid-level 

fused data sets. The predictive models for the problem “P10” vs. “N10” are displayed as 

PLS-DA score plots in Figures 4a, 4b, and 4c. These 1 LV score plots are presented as 

the density distribution of the entire group. The PLS-DA model of CSF is constructed 

based on 87 variables. The PLS-DA model of CSF alone has no prediction ability, as 

follows from the 50% correct classification for an independent test set. Accordingly the 

groups “P10” and “N10” (for CSF) are not separated in Figure 4a. For plasma, the PLS-

DA model separates the classes somewhat better, as follows from the classification for 

independent test sets of 75%. However, there is still quite some overlap and the groups 

of points are still mixed, as can be seen on the horizontal axis of Figure 4b.   

 

Since the individual analysis did not bring satisfactory results, we decided to fuse the 

selected variables from plasma and CSF data. The SVM-RFE carried out on the fused 

sets, led to 11 variables (out of the 112 firstly selected variables). The resulting PLS-DA 

model of fused datasets is shown in Figure 4c. The correct classification for independent 

test set is equal to 100%, demonstrating the statistical adequacy of this model. As can 

be seen from Figure 4c, there is a clear separation.  Figure 4d shows the regression 

coefficients of this PLS-DA model. Interestingly, the fusion model consists of 6 CSF and 

5 plasma variables. This suggests that both biofluids contribute significantly to the group 

separation.  

 



178 
 

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LV 1

de
ns

ity

 

 
N10
P10
P10
N10

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LV 1

de
ns

ity

 

 
N10
P10
P10
N10

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
regression coefficients

Glutamine + Methionine (CSF)

Glutamine (CSF)

Glutamine (CSF)

Creatine (CSF)

Creatinine (CSF)

Lactate (CSF)

Alanine (Plasma)

Unknown singlet (2.929 ppm, Plasma)

Betaine (Plasma)

Unknown resonance (3.642 ppm, Plasma)

Unknown resonance (3.710 ppm, Plasma)

c d

a b

-3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

LV 1

de
ns

ity

 

 
N10
P10
N10
C10

Regression coefficients

P

D
en

si
ty

D
en

si
ty

D
en

si
ty

 
Figure 4. Density distribution of PLS-DA scores of: (a) “P10” vs. “N10” for CSF data, the amount 

of y variance for 1 LV is equal 77.5%; (b) “P10” vs. “N10” for plasma data, the amount of y 

variance for 1 LV is equal 63.5%; (c) “P10” vs. “N10” for fused data, the amount of y variance for 

1 LV is equal 61.3%; (d) Regression coefficients of fused PLS-DA model. 

 

Table 2 summarizes the results of the PLS-DA models for P10 versus N10, and for two 

other pairs of groups, namely “C10” vs. “P10”, and “N10” vs. “N14”. These models were 

used in the HMF. Table 2 displays, apart from the degree of correct classification for 

independent test sets, also the number of selected variables by RFE-SVM used in PLS-

DA models for the fused data. We find that the binary PLS-DA model for “P10 vs. N10” 

(early onset of neuroinflammation) results in a 100% correct classification. The same 

holds for “N10” vs. “N14” (progression of neuroinflammation), while for “C10” vs. “P10” a 

93 % correct classification is achieved. The score plots and regression coefficients of 

models “C10” vs. “P10” and “N10” vs. “N14” are shown in Figures 5Sa-5Sd in the 

supplementary material.  
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In Table 2 only a few of many possible pairs of groups for PLS-DA have been presented. 

Nevertheless, in Table 2S in the supplementary material the correct classification rate 

for the independent test set obtained for individual analysis of plasma data, CSF data 

and fused datasets by PLS-DA for different pairs of groups can be found. To achieve a 

full or nearly full description of the fused data set, without having to use all pairs of 

groups, we apply the hierarchical data fusion model, HFM in the next section.     

 
Table 2. Correct classification rates for an independent test set obtained for fused datasets, 

number of variables coming from plasma and CSF used in a PLS-DA model and number of 

samples in training set and test set. 

PLS-DA 
model 

Correct 
classification 

# variables in PLS-DA 
model 

# samples  

Plasma CSF training test 
C10 vs. P10 93% 4 13 20 8 
P10 vs. N10 100% 5 6 20 8 
N10 vs. N14 100% 8 3 18 7 

 

 

5.3.3 Hierarchical Models Fusion 
The predictive power of the individual PLS-DA models is by itself already satisfactory 

(see Table 2 and in the supplementary material Table 2S). At this point one could stop 

the analysis and start the biological interpretation of the results. However each PLS-DA 

model only looks at two groups at a time and therefore is not able to predict a completely 

unknown sample. Thus, it is necessary to combine the different models. The idea of 

HMF is to join them in a meaningful order.   To perform the HMF on the datasets of CSF 

and plasma, we used the PLS-DA models of “C10” vs. “P10”, “P10” vs. “N10” and “N10” 

vs. “N14” (shown in Table 2). They characterize, respectively, the effect of peripheral 

inflammation, neuroinflammation and progress of neuroinflammation. They are therefore 

consistent with the experimental design shown in Table 1. The HMF approach used in 

this paper is represented in Figure 5. Note that we present here HMF on the fusion of 

two datasets but the same principle could be applied on a single dataset. As explained 

in Materials and Methods, the HMF is validated in two ways. First, all individual PLS-DA 

models were statistically validated with independent test sets. Secondly, the complete 
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scheme of HMF was validated with a set including all test sets used in the binary PLS-

DA models from Table 2 and additionally, some samples belonging to classes “C14” (4 

samples in test set and 10 in training set) and “P14” (5 samples in test set and 10 in 

training set). The graphical representation of HMF for training and test set samples is 

shown in the supplementary material in Figure 5S. As can be seen all test samples are 

correctly predicted. Additionally the permutation test was performed for all 6 classes as 

extra check. The p-value for 40000 permutations was equal to 0.0006. 
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Figure 5. Representation of hierarchical models fusion for fused plasma and CSF NMR 

datasets. * Note that the “P14” is classified as control (the inflammation is gone, see section 

below). 

 

We started with the PLS-DA model of peripheral inflammation, i.e. “C10” vs. “P10” 

(shown in Figure 5 as step 1). This allows one to separate healthy objects, i.e. the one 

without any type of inflammation (see Table 1) from all those with peripheral 

inflammation. The latter also includes groups which have undergone neuroinflammation, 

because in accordance with the experimental design shown in Table 1 these groups 

were injected with CFA. This step enables creating a first new score (i.e. Xscore) for all 
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samples in the data. In other words, this model separates the healthy groups from the 

ones presenting any form of inflammation (neuro- or peripheral).  

In a second step, we used a PLS-DA model of “P10” vs. “N10”, shown in Figure 4d. This 

model distinguishes peripheral inflammation from neuroinflammation at the onset of 

EAE. Therefore, by using this model we are able to separate neuroinflamed animals 

from animals that were only peripherally inflamed (i.e. “P10” and “P14” see Figure 5 step 

2).  Similar to step 1, a second score is generated, the Yscore. At this level, we have 

separated samples belonging to groups with peripheral inflammation (i.e. “P10” and 

“P14”) from the neuroinflamed groups (“N10” and “N14”).  

The last step (number 3) considers the separation of the onset of the disease from the 

peak of EAE. In order to achieve this separation, we applied the PLS-DA model of “N10” 

vs. “N14”, i.e. the model describing the severity of neuroinflammation. At this level, a 

third new score is created, the Zscore. After iterative application of these simple 1LV 

models to fused plasma and CSF datasets, we can integrate the three new scores, i.e. 

Xscore, Yscore and Zscore. They are then used to visualize the outcome. They 

represent the relation between the groups and their separation. The corresponding 

graph is shown in Figure 6. As can be observed, full separation of the different groups is 

achieved.  It is worthwhile to mention that samples belonging to healthy groups “C10” 

and “C14” mostly overlap. However, there is a small shift along the x-axis observable, 

probably due to sampling time (Day 10 vs. Day 14). As can be noticed samples 

belonging to group “P14” overlap with healthy groups, which is in agreement with our 

previous finding, that peripheral inflammation has vanished by day 1411. 
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Figure 6. Graphical representation of HMF applied to fused data of plasma and CSF.  
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5.4 DISCUSSION AND CONCLUSIONS 

Using a mid-level fusion architecture we were able to identify a set of metabolites that 

revealed significant changes in plasma and CSF of neuroinflamed animals. Based on 

the regression coefficients of the PLS-DA model of fused datasets (see e.g. Figure 4d 

and supplementary materials) the importance of the individual metabolites in each PLS-

DA model as well as a direction of elevation/reduction of concentration can be 

evaluated. Based on this information the biological interpretation of these metabolites 

and their connection to EAE, neural inflammation and/or MScl can be performed. 

Therefore, the first aspect to be discussed is the nature of the selected metabolites. It 

should be mentioned that the main aim of the paper is not to provide a biological 

explanation, but to present the methodology for fusion and analysis of 1H NMR 

metabolomics datasets. Therefore biological conclusions are not stressed.   

One can notice that many amino acids (mostly neutral ones) were found to be 

discriminatory for EAE groups and therefore we focus on them. The transport of neutral 

amino acids through BBB is significant for the overall regulation of cerebral metabolism 

and neurotransmitters production 27. BBB amino acids transport plays an important role 

in the regulation of several pathways of brain amino acids metabolism. It is known that 

EAE affects the BBB.  It causes disruption in the BBB and affects the saturable transport 

system of substances involved in the disease process 28. Injection of CFA can itself lead 

to increased BBB permeability to small molecules and even certain serum proteins 29. 

 

We found that tyrosine concentration is reduced in plasma of groups “P10”, “N10” and 

“N14”. It has been reported previously that tyrosine has a role in BBB permeability 30. In 

accordance with our results Monaco et al. detected a reduced level of plasma tyrosine in 

Mscl 31. Another neutral amino acid related to EAE groups is alanine. This metabolite 

was found as a relevant metabolite in both plasma and CSF. Its concentration is 

reduced in CSF and plasma of EAE groups in comparison to healthy controls and 

peripheral inflamed group “P10”. Alanine is associated with energy metabolism and is 

known to be used as a source for pyruvate for energy metabolism and macromolecules 

within neural and immune cells 11.  Similarly, lysine concentration was elevated in CSF 

and plasma related to neuroinflamed groups “N10” and “N14”. Qureshi and co-workers 
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in a study on the role of neurotransmitters amino acids in CSF of MScl patients have 

reported increased levels of lysine in CSF and plasma of MScl patients 32.  

We found the combination of glutamate and proline signals in plasma decreased in the 

EAE groups compared to the other groups. In a previous study a change of glutamate 

concentration in CSF was reported in a clinical study of MScl 33.  Glutamate is a very 

important neurotransmitter and the most abundant free amino acid in the brain. A 

metabolite that is closely interconnected with glutamate is glutamine. This metabolite 

was found in plasma as discriminatory for groups injected with immune booster (i.e., 

“P10” and “N10”) when compared to the healthy groups and its concentration was 

elevated in these groups. Additionally, it was found as discriminatory when comparing 

“P10” and “N10” groups.  In CSF, its level was found to be down regulated in group 

“P10” in comparison to healthy controls. This metabolite is involved in energy 

metabolism. It was shown that glutamine is a necessary nutrient for cell proliferation, 

serving as a specific fuel for inflammatory cells and enterocytes and, when present in 

appropriate concentrations, enhancing cell function 34. The last amino acid that is 

discussed here is phenylalanine. This metabolite was diminished in EAE groups. This 

metabolite is the precursor to Tyrosine, it is necessary in the function of catecholamine 

neurotransmitters epinephrine, norepinephrine, dopamine and tyramine. In the previous 

study by Monoco et al. a reduced level of phenylalanine in MScl was found.31   

 

One aspect which was not emphasized is the importance of a proper preprocessing. 

Here the use of AI binning ensures that one bin corresponds to one peak, therefore 

preventing signals of different metabolites to be mixed within one bin. Normalization is 

the second important preprocessing aspect. We compared the influence of the classical 

total area normalization to the probabilistic quantum normalization. No strong differences 

were observed (data not shown) therefore we decided to use the simplest approach. 

However one should be aware that the total area normalization could be suboptimal due 

to the large influence of highly abundant multiplets (e.g. glucose). 

The third aspect to be discussed is connected to the data analysis strategy used in this 

manuscript, i.e. mid-level data fusion and HMF. Firstly, the approach of mid-level data 

fusion performed here enabled individual variable selection and thus to discard irrelevant 
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information. Secondly, the HMF method, shown in this paper, represents a novel, simple 

strategy for multi-class analysis. Each PLS-DA model only looks at two groups at a time 

and therefore a single model is not able to predict a completely unknown sample. This is 

a minor advantage of HMF over multiple PLS-DA models. One should keep in mind that 

the outputs of this method are statistically accurate, since they are based on validated 

binary predictive models. Moreover, the complete scheme of HMF was validated as well. 

The output of HMF (i.e. new scores) can be used for visualization or prediction of new 

samples. However, it is good practice to check if these new scores are orthogonal.   

When comparing HMF and PLS2-DA, it is important to mention that it is possible that if 

some groups do not behave in accordance to experimental design, the optimal solution 

for class separation can be flipped. In other words, if one or more groups cannot be 

distinguished, PLS2-DA still tries to separate them, which may affect the solution for the 

whole PLS2-DA model. In the case of EAE datasets, there are two groups (i.e. “N10” 

and “P14”) that are characterized with behaviour different than was assumed by 

experimental design. In case of the “N10” group we have shown previously, that animals 

are heterogeneous regarding to disease response 11. Further, the second group “P14” 

was not (or no longer) peripherally inflamed at day 14. This causes the results obtained 

by PLS2-DA to be sub-optimal for groups “N10”, “C14” and “P14”.  In the method 

proposed here, HMF, the situation described for PLS2-DA cannot happen. HMF leads to 

the optimal solution, because it includes relevant sources of variance between groups 

individually rather than all at the same time. This suggests that if two groups are not 

separable this can be easily detected during the HMF and does not influence the 

separation between other groups.   

 

In our study the HMF was shown for fused plasma and CSF NMR datasets. However 

this approach can be also used for one platform (as shown in the supplementary 

material). Obviously, the individual PLS-DA models can be developed for any platform 

and then HMF can be applied.  
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Conclusions 
In this study, we have demonstrated the feasibility of fusion of metabolomics 1H NMR 

datasets from different biofluids. From the data analysis point of view multiple challenges 

had to be addressed. One of them had to do with the biological variation usually 

encountered in omics experiments. Another issue was linked to the number of variables 

recorded by NMR, which first is greatly superior to the number of samples and secondly 

most of them are probably unrelated to the studied problem or redundant. We 

successfully solved these problems using a new architecture for data fusion, where 

SVM-RFE is used as variable selection method and PLS-DA to focus on the information 

of interest through a training procedure.  

We analyzed CSF and plasma metabolomics data of the EAE model for MScl using mid-

level data fusion. The procedure was represented by constructing predictive model for 

neuroinflamed group “N10”, i.e. before physical symptoms have appeared, versus 

peripherally inflamed group “P10”. Prediction models based on either CSF or plasma 

metabolomics data alone could not separate the immune booster and EAE groups at 

day 10, whereas the predictive model using a fused set of variables from CSF and 

plasma managed to separate the two groups with a 100% correct classification rate for 

the independent test set. One should be aware that these results do not imply that all 

new samples will be always correctly classified. However validation with the independent 

test set and the permutation test set indicate that the results are meaningful.  This shows 

that by using bio-molecular information (metabolomic data), a diagnosis can be made 

before physical symptoms arise. Our results also demonstrate that plasma can play a 

significant role in diagnosis of neuroinflammation. Therefore, we believe that plasma 

should be considered when investigating neuroinflammation. 

Finally, we have introduced a new multi-class method HMF, which aims to describe 

relevant sources of variance connected to groups’ description by fusing individual binary 

models. We have shown that by using HMF we are able to separate groups in our data 

by using simple, easily interpretable, one-component predictive models. 

From a biological point of view, the selected metabolites appears to be relevant, 

because the metabolites described in this study were previously found in relationship to 
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the EAE and/or Mscl. Therefore, they provide a biological validation for the fusion of data 

from two different biofluids.  

Further research will focus on the deeper interpretation and absolute quantification of 

newly detected metabolites in plasma and CSF and their relation to BBB. These two 

steps are time consuming but would bring more insights on disease mechanism. The 

pattern and concentrations defined by these variables could also be studied by 

themselves and put into a systems biology context. Absolute quantification would be 

crucial for obtaining advanced biological conclusions and conformation using completely 

different analytical method (e.g. Mass Spectrometry)  
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ABSTRACT 
Background: In the last decade data fusion has become widespread in the field of 

metabolomics. Linear data fusion is performed most commonly. However, many data 

display non-linear parameter dependences. The linear methods are bound to fail in such 

situations. We used proton Nuclear Magnetic Resonance and Gas Chromatography-

Mass Spectrometry, two well established techniques, to generate metabolic profiles of 

Cerebrospinal fluid of Multiple Sclerosis (MScl) individuals. These datasets represent 

non-linearly separable groups. Thus, to extract relevant information and to combine 

them a special framework for data fusion is required.  

Methodology: The main aim is to demonstrate a novel approach for data fusion for 

classification; the approach is applied to metabolomics datasets coming from patients 

suffering from MScl at a different stage of the disease. The approach involves data 

fusion in kernel space and consists of four main steps.  The first one is to extract the 

significant information per data source using Support Vector Machine Recursive Feature 

Elimination.  This method allows one to select a set of relevant variables. In the next 

step the optimized kernel matrices are merged by linear combination. In step 3 the 

merged datasets are analyzed with a classification technique, namely Kernel Partial 

Least Square Discriminant Analysis. In the final step, the variables in kernel space are 

visualized and their significance established.   

Conclusions: Conclusions: We find that fusion in kernel space allows for efficient and 

reliable discrimination of classes (MScl and early stage). This data fusion approach 

achieves better class prediction accuracy than analysis of individual datasets and the 

commonly used mid-level fusion. The prediction accuracy on an independent test set (8 

samples) reaches 100 %. Additionally, the classification model obtained on fused 

kernels is simpler in terms of complexity, i.e. just one latent variable was sufficient. 

Finally, visualization of variables importance in kernel space was achieved. 
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6.1 INTRODUCTION 
Currently, due to the increasing amount of data generated from different analytical 

platforms for a single studied system, for instance in fingerprinting a disease in the 

metabolomics and proteomics fields, optimal data concatenation, or data fusion, has 

become an issue that needs to be addressed. Each analytical technology demonstrates 

different strengths and limitations regarding its capability to distinguish between different 

biological conditions, depending upon factors such as sensitivity, sample preparation, 

analytical stability, and analytical reproducibility. The jointed use of two or more 

analytical technologies gives then a more robust strategy for data analysis than the use 

of a single platform 1. 

Data fusion is widely applied in the pattern recognition field 2. For example, in chemistry, 

biology, medicine and many others fields linear techniques are used to construct a 

mathematical model that relates spectral responses from different techniques to analyte 

concentrations 3-6. In the omics related fields, data fusion is performed in different ways 

and on different data levels 7. To date, data fusion methods are organized in three 

levels: low-level, mid-level and high-level fusion 8, 9. In low-level fusion, different data 

sources are concatenated at the data level. In the mid-level fusion, data from different 

sources are combined at the data level by selection of variables or at the latent variables 

level. In high-level data fusion, different model responses (for instance prediction for 

each available data set) are joined to produce a final response. Currently, several linear 

techniques, such as Principal Component Analysis (PCA) or Partial Least Squares 

Discriminant Analysis (PLS-DA), are used for the above mentioned types of data fusion. 

These different linear data fusion approaches have been applied with good success in 

recent times in the different omics fields, including metabolomics 8, 10-12. To our 

knowledge non-linear methods have not been applied to data fusion in for instance 

metabolomics. However, some chemical systems and problems are inevitably non-linear 

and reveal characteristics in a non-linear fashion. The assumption of a linear response is 

then incorrect and non-linear description is appropriate 13. Of course, to follow Occam’s 

razor principle, it is common practice to first apply linear methods and only if they fail to 

move to non-linear techniques like kernel-based methods. Kernel-based methods 

transform the data to a high dimensional feature space by means of a kernel function. 
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This generates a new data matrix, which can be viewed as a similarity matrix. The kernel 

function takes relationships that are implicit in the data and makes them explicit, so that 

patterns are easier to detect. Moreover, they have been designed to deal with datasets 

where many variables are present. Kernel-based methods have already been 

demonstrated to form powerful tools and therefore are widely applied to various 

statistical problems due to their flexibility and good performance 14, 15. A major 

disadvantage of these Kernel-based methods has been that information on the 

importance of variables is lost. However, recently an approach has been proposed for 

representing the importance of variables in kernel space, a method based on the 

principles of so-called pseudo samples 16, 17.  

Nowadays, proton Nuclear Magnetic Resonance (1H-NMR) and Gas Chromatography-

Mass Spectrometry (GC-MS) are well-established powerful analytical methods for 

generating metabolomics profiles. For analysis of complex, biological samples like those 

from Cerebrospinal fluid (CSF) both techniques have their advantages and 

disadvantages. For instance, 1H-NMR requires limited sample preparation, is 

quantitative, non-destructive and unbiased. 1H-NMR may detect compounds that are too 

volatile for GC, while metabolites without proton (phosphoric acid) are not detected by 
1H-NMR. GC-MS requires derivatization and thus more time consuming sample 

preparation. On the other hand, GC-MS yields a higher sensitivity than NMR and 

therefore may detect metabolites that are present in a concentration below the detection 

limit of 1H-NMR. Therefore, these analytical platforms give wide and complementary 

views of the studied system. To obtain the maximum/optimal amount of relevant 

information about the complex biological system, the data from these powerful analytical 

techniques need to be combined and analyzed with advanced multivariate statistical 

tools.  

This paper presents a novel framework for integrating data from different analytical 

sources by applying non-linear kernel-based statistical learning methods. We 

demonstrate this non-linear kernel fusion approach on 1H-NMR and GC-MS 

metabolomics datasets obtained from CSF of patients with Multiple Sclerosis (MScl) 18. 

These data display non-linear response characteristics. The proposed approach for non-

linear Kernel-based data fusion consists of four steps. The first step aims to extract 
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relevant variables from both datasets separately.  Variable selection is performed by 

means of Support Vector Machine Recursive Feature Elimination (SVM-RFE) for non-

linear kernels 19. The second step is designed to fuse the relevant information of both 

datasets by using linear combinations of kernel matrices 20. This kernel fusion falls 

outside the range of the classical low-, mid- and high-level fusion. The next step (step 3) 

consists of applying PLS-DA on the fused kernels as classification method. In step 4, the 

visualization of the relative contribution of each variable to K-PLS-DA model (variable 

importance) was achieved by applying and extending the recently developed pseudo 

samples principle 16, 17.  Consequently, in our approach the importance of variables is 

visualized. The variables can then be interpreted in terms of the underlying biology of 

system. Application of our non-linear Kernel-based data-fusion methodology to the 1H-

NMR and GC-MS metabolomic datasets from samples of CSF of MScl individuals and 

individuals in the early stage of the disease enabled better classification than using the 

data from the two sources separately. More importantly, the biological interpretation can 

now be done based on the joined data from the two platforms. The approach proposed 

here can be extended to other types of datasets such as to MS or NMR data from 

proteomics or data from microarrays and Liquid Chromatography. The number of 

samples used to study the progression of MScl is relatively small. Therefore, some 

limitations with respect to biological interpretation as well as prediction of future samples 

may exist, e.g. due to biological variation. In order to use the findings in the clinic they 

should be validated in a new cohort with a larger number of samples. This issue will be 

further addressed in the discussion section. 
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5.2 MATERIALS AND METHODS 
5.2.1 CSF sampling and patients 
The CSF patients involved in this study were all followed by the Rotterdam Multiple 

Sclerosis Center and the department of Neurology at Erasmus University Medical 

Center (Rotterdam, The Netherlands). The Medical Ethical Committee of Erasmus 

University Medical Centre in Rotterdam, The Netherlands, approved the study protocol 

and all study patients gave written consent. All CSF samples were specifically collected 

from patients that were not under any drug treatment. 

All CSF samples were taken from patients via lumbar puncture. Immediately after 

sampling, the CSF samples were centrifuged to remove cells and cellular elements (10 

minutes at 3000 rpm). Subsequently, a fraction of the CSF samples were used for 

diagnosis purpose and the remaining amounts were aliquoted and stored at -800 C.  

The CSF samples were classified into two groups. The first group consisted of CSF 

samples collected from patients diagnosed with MScl. The second group of CSF 

samples was taken from patients who were diagnosed with clinically isolated syndrome 

of demyelination (CIS), which represents an early stage of MScl. It is worthwhile to 

mention that all patients diagnosed with CIS have later developed MScl. The overview of 

the available CSF samples for NMR and GC-MS is presented in Table 1, while clinical 

information is described in the supplementary material. It is important to mention that the 

set of samples analysed by NMR and GC-MS only partly overlap (Table 1).  
 

Table 1. The number of samples included in a training and independent test set. 

Group 
No. samples NMR No. samples GC-MS Overlap NMR and GC-MS 

Training Test Total Training Test Total Training Test Total 

MScl 19 7 26 18 6 24 7 5 12 

CIS 15 5 20 10 4 14 7 3 10 
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5.2.2 NMR samples preparation and data acquisition 
The CSF samples of the CIS and MScl classes were prepared as follows. An aliquot of 

20μL of the stored frozen human CSF sample (-80 °C) was thawed at room 

temperature. Subsequently, 200 μL D2O was added to biofluid in order to obtain 

sufficient sample volume for NMR measurements. We used 3-(Trimethylsilyl)propionic-

2,2,3,3-d4 acid sodium salt (TSP-d4 99 at.%D) as internal standard for chemical shift 

reference (δ 0.00 ppm) and metabolite quantification. For this and buffering, 70μL of 

buffer solution was added to the 220 μL of human CSF sample. The buffer solution 

solvated in a mixture of water and D2O consists of 2,85mM TSP, 6.92 mM sodium azide 

(NaN3) and 42.08 mM sodium phosphate dibasic dehydrate (Na2HPO4•2H2O).  The 

addition of mixture solution to 220 μL of CSF sample leads to a final concentration of 

0.66 mM TSP-d4 and corresponding concentrations of buffer solution components. The 

pH of the CSF NMR sample was adjusted to around 7 (7.0 – 7.1) by the buffering 

capacity of the phosphate in the buffer solution. The final CSF NMR sample (290 μL) 

was transferred to a SHIGEMI microcell tube for NMR measurements. 

All spectra were recorded by using a standard pulse sequence (1D-NOESY; recycle 

delay-90°-t1-90°-tm-90°) at a temperature of 25 °C. The water suppression was achieved 

by presaturation during the relaxation delay (8 s) and mixing time (100 ms). All 1H NMR 

spectra were acquired at 600 MHz Bruker NMR Spectrometer equipped with cryo-cooled 

probe. For each 1D 1H NMR spectrum 256 scans were accumulated with a spectral 

width of 7200 Hz resulting in a total of 16K data points. The acquisition time for each 

scan was 2.2s. Prior to spectral analysis, all Free Induction Decays (FIDs) were 

multiplied with a 0.3 Hz line broadening function, Fourier transformed and manually 

phased. In addition, the TSP internal reference peak was set to 0 ppm. This initial 

processing was done  using ACD/SpecManager software version 12.02 21. 

All 46 human CSF spectra were acquired and pre-treated as described above and 

subsequently, transferred to Matlab, version 7.6 (R2008b) (Mathworks, Natick, MA) for 

further analysis. 
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5.2.4 Preprocessing of NMR spectra  
The NMR spectral data of human CSF was pre-processed, which typically involves 

baseline correction, alignment, binning, normalization and scaling.  Asymmetric Least 

Square method was used for baseline correction of NMR spectra 22. Next, in order to 

remove variations in peak position, NMR spectra were aligned by using correlation 

optimized warping 23. A further problem is the high dimensionality of the data (circa 

15000 variables). To reduce the number of variables associated with the NMR spectra, 

we performed binning via adaptive intelligent binning 24. Before binning data were 

normalized to total area. The chemical shift ranges of  0.75 – 4.15 and  8.65 – 8.85 

were used for the binning procedure. The binning procedure led to 233 bins in total. In 

the final step of preprocessing data were scaled to unit variance. 

 

5.2.5 GC-MS samples preparation and data acquisition 
The GC-MS method applied here is a non-targeted GC-MS method which uses  a 

derivatization step that has frequently been applied for metabolomics studies 25. With 

this method it is possible to analyse simultaneously various classes of (polar) 

metabolites, e.g. amino acids, organic acids, fatty acids, sugars.  

Human CSF samples (100 μL) were deproteinized by adding 400 μL methanol and 

subsequently centrifuged for 10 min at 10000 rpm. The supernatant was dried under N2 

followed by derivatization with methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) in 

pyridine similar to Koek et al.25. During the different steps in the sample work-up, i.e. 

prior to deproteinization, derivatization and injection, different (deuterated) internal 

standards were added at a level of circa 20 ng/μL. The end volume was 135 μl and 1 μl 

aliquots of the derivatized samples were injected in splitless mode on a HP5-MS 30 m x 

0.25 mm x 0.25 mm capillary column (Agilent Technologies, Palo Alto, CA) using a 

temperature gradient from 70 °C to 320 °C at a rate of 5 °C/min. GC-MS analysis was 

performed using an Agilent 6890 gas chromatograph coupled to an Agilent 5973 

quadrupole mass spectrometer. Detection was carried out using MS detection in 

electron impact mode and full scan monitoring mode (m/z 15-800). The electron impact 

for the generation of ions was 70 eV. 
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A total of 38 human CSF samples were analysed by GC-MS. The samples were 

randomly distributed over batches and each sample was injected once. A pooled CSF 

sample was prepared from the study samples for quality control (QC). Aliquots of this 

QC sample were analysed in sextuplicate in each batch according to the procedure 

described by van der Greef et al. 26.  

Data-pre-processing was performed by composing target lists of peaks detected in the 

samples based on retention time and mass spectra. Peaks were characterized by 

retention time and m/z ratio and identified by comparison with a spectral database. 

These peaks were integrated for all samples. The peak areas were subsequently 

normalized using internal standards and corrected for intra- and inter-batch effects using 

the QC samples according to the procedure described by Verheij et al. 27. The final step 

of preprocessing was unit variance scaling. 

 

5.2.6 Data analysis 
5.2.6.1 Explorative analysis 
The first step of our data analysis strategy consists of a data exploration by means of 

Robust – Principal Component Analysis (R-PCA) 28 and PCA. R-PCA was employed on 

the autoscaled data to detect the outliers in both datasets. To extract and display the 

systematic variation in the two datasets PCA was also carried out on the autoscaled 

data.  

5.2.6.2 Selection of training set and independent test set 
In order to validate the performance of the classifier an independent test set was used. 

Dividing the data into training and test sets is a widely accepted approach for this 

purpose 29, 30. The commonly used leave-one-out cross-validation (LOOCV) is biased to 

assess the predictive ability of the classification model. External validation using test 

sets provides a means to establish a more reliable predictive performance of the 

classification model 31-33. 

The training set and an independent test set were selected separately for NMR and GC-

MS datasets using the Kennard-and-Stone algorithm 34 in such a way that the number of 

samples in the test set in every group (i.e. MScl or CIS, see Table 1) was equal to 25% 

of the total number of samples in a group). The training sets were used for all 
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optimization steps and for developing a classifier, while the independent test was utilized 

to assess the predictive ability of the classification model. The Kennard-and-Stone 

algorithm is one of many possible approaches for data division 32, 35, 36. The use of 

Kennard-and-Stone algorithm for data division is justified by the advantage of obtaining 

representative training set and the reproducibility of the selection. Nevertheless, since it 

is Euclidean based algorithm it might be influenced by noisy variables. Therefore, in 

addition the training and independent test sets were selected randomly. The results of 

presented fusion approach for random division is shown in the supplementary material. 

The number of samples included in the training set and independent test set is shown in 

Table 1. Since the number of overlapping samples between NMR and GC-MS is 

relatively low (22) this puts limitations on the accuracy of the predictions when using a 

relatively small independent test. Therefore, as an additional check of the 

meaningfulness of the classification model, a permutation test with 10000 permutations 

was performed. Using a permutation test, we checked if the assessment of the 

classification of objects into the original classes is significantly better than any random 

classification in two arbitrary classes. 

 

5.2.6.3 Supervised analysis: linear and non-linear approaches 
The supervised analysis is carried out in order to extract class related information. 

Below, we briefly describe the overall strategy. First, the supervised data analysis 

involving linear methods is described followed by the proposed kernel based non-linear 

methods. In the next sections detailed information on specific technical aspects of the 

supervised data analysis strategy is provided.  

The most straightforward approach in data analysis is to first use a linear method. 

Therefore, the linear method by means of the cross model validation (CMV) PLS-DA is 

applied 37. In this technique, two cross validation procedures are included in the variable 

selection procedure based on jack-knifing. This approach enables removal of irrelevant 

variables and optimizes the model for accurate prediction of group memberships. This 

technique was first applied to individual datasets and then the selected variables were 

fused and analysed by the linear classifier.  
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Next, if the considered classification problem is suspected to be non-linear (e.g. when 

prediction accuracy of linear model is low), more sophisticated algorithms can be 

applied. Here, a non-linear technique based on kernel methods was utilised. The 

strategy is shown in Figure 1. The steps 1 and 2 were carried out on the training set. 

The first step consists of a variable selection method, which aims to obtain meaningful 

information from each individual data set. We used SVM-RFE for the non-linear kernel 

as variable selection method 19. For both datasets the radial basis function (rbf), i.e. a 

Gaussian function, is used to map the original input data into a feature space 38. The 

choice of kernel function is performed both by means of visual inspection of PCA score 

plot and using the root mean square error of cross validation (RMSECV).  

RMSECV= 
n

YYn

i ii

2

1
 

 Here, Y is a real class label, while Y is the predicted class label; n indicates the number 

of observations. 

The kernel parameter sigma (σ) is optimized by LOOCV. More specifically, in each 

iteration, one object from the training set is removed and a model is constructed on the 

remaining objects for different values of σ. This is repeated until each object has been 

removed once. The RMSECV is calculated for each iteration. The optimal σ value is 

selected based on the first minimum in the RMSECV. SVM-RFE is performed for both 

datasets separately. Only the selected variables are then used in the subsequent steps. 

In the final part of step 1 (see Figure 1), the data with only significant variables are 

analysed by K-PLS-DA, which is an alternative to the SVM technique. This part is 

employed to tune the kernel parameters and to estimate the classification accuracy of 

the separate datasets. The optimal model complexity (i.e. number of latent variables 

(LV’s)) was selected based on RMSECV. Note that the selected variables per dataset 

can be concatenated in classical mid-level fusion and analysed with K-PLS-DA.8 In our 

procedure, SVM-RFE was selected as variable selection and K-PLS-DA as classification 

method. The use of SVM-RFE it justified by the fact that it is a well-established method, 

able to find significant variables in non-linear space. The binary classifier (PLS-DA) is a 

popular alternative to SVM. Our choice was guided by the fact that SVM offers sparse 
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solutions based on a limited number of observations, i.e. the support vectors. Since the 

obtained hyperplane can be based on outlying objects, this brings a question about the 

robustness of SVM 38. The main benefits of K-PLS-DA are its efficiency and simplicity. In 

addition, it has convenient visualisation options in the latent variable space. 

Nevertheless, as it will be shown latter, in terms of prediction K-PLS-DA and SVM 

perform similarly (see Data fusion by MKL).In the second step (see Figure 1), the 

kernels of the individual datasets are concatenated by linear combination of their kernel 

matrixes. In step 3 the combined kernels are analyzed with K-PLS-DA. The accuracy of 

the K-PLS-DA model is validated by the independent test set and by the permutation 

test. In order to obtain more robust classification model in the final step (number 4) the 

K-PLS-DA model is reconstructed using all available samples (i.e. both training and test 

sets) and all previously optimized parameters, namely number of variables, sigma for rbf 

kernel, coefficients μ and nr. of LV’s  (see later). Moreover in this step variable 

importance in kernel space is evaluated and visualized. 

 

5.2.7 Variable selection by SVM- RFE 
The first step of our approach (Figure 1) consists of extracting the most relevant 

information from the datasets by using SVM- RFE variable selection. SVM is a powerful, 

supervised method and since this technique is extensively discussed in the literature we 

do not focus on its description 39.  SVM- RFE is an application of RFE in the SVM 

algorithm and was introduced by Guyon 19. RFE is a backward elimination algorithm that 

ranks variables on the basis of the smallest change in a cost function minimized in the 

SVM algorithm. In the specific case of a non-linear kernel, used in this manuscript, the 

cost function to be minimized takes the form: 

1)2/1( TTJ H         (1)  

Here, H is a matrix with elements yiyjK(xi,xj), K is a kernel function, yj and yj denotes the 

class labels, α’s are the Lagrangian multipliers and 1 is a vector of ones. The algorithm 

begins by using all training data to train SVM. The matrix H is than recomputed for every 

variable being removed, while the α’s values remain unchanged. The elimination of the 

input variable “i” causes the change in cost function, J. The change in the cost function 

is calculated according to equation 2: 
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)()2/1()2/1()( iiJ TT HH  (2) 

Here, H(-i) indicates the matrix H calculated when the input component “i” is removed. 

All the ∆J(i) is calculated  and the values are sorted accordingly. A subset of variables 

corresponding to the end of the sorted list of ∆J (i.e. those with small ∆J) is then 

removed. In our case, the subset is formed by only one variable in each iteration.  

In order to select an optimal set of variables LOOCV approach is used. We used RFE 

with cross-validation since it increases the likelihood that relevant variables are selected. 

Averaging over cross-validation iterations ensures that the variables that were significant 

in each run are selected. This gives a better estimation of the important variables than 

performing variable selection only once using all training samples. Moreover, using a 

variable selection procedure with cross-validation, overly optimistic results (solely valid 

for the training models) can be avoided. In LOOCV in each iteration, one object of the 

training set is left out and a ranking is obtained.  Next, the total ranking is obtained by 

sorting the variables based on the amount of times it is selected in the LOOCV. All 

variables that appear twice or more in the “top ten” of the rankings are selected. 

Although the number ten is somewhat arbitrary, exploration of other options (e.g. “top 

fifteen” or median +1 of the amount it is selected in the LOOCV) did not affect the 

outcome. 

 

5.2.8 Data fusion by Multiple kernel learning  
The second step of our approach (step 2, Figure 1) aims to combine the kernels. This is 

done  by means of Multiple Kernel Learning (MKL), which was pioneered by Lanckriet et 

al. 40and Bach et al. 41 as extension of single kernel to integrate multiple kernels in SVM. 

They integrated multiple kernels in classification problems. The essence of MKL is to 

combine kernel matrices into a single kernel using basic algebraic operations such as 

addition or multiplication. For example, given two (positive semi-definitive) kernels K1 

and K2 it is possible to define the new kernel K, which is a parameterized linear 

combination of K1 and K2. In particular, given a set of kernels K it is possible to combine 

them by linear combination according to equation 3: 

KK i

m

i
i

1

  (3)  
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Here m is a number of kernels and coefficients μ are non-negative to assure positive 

semi-definiteness of K: μi ≥0. Note that the dimensions of the kernels have to be equal 

(i.e. the number of samples in the datasets has to match). The coefficients μi in equation 

3 can be tuned to weight the importance of the different kernels. The weights can be 

obtained in multiple ways, i.e. by applying different regularization method such as the L1 

or L2-norm. L1 regularization on the kernel coefficients corresponds to the requirement 

that the sum of μi equals one (||μi||1=1). L1 regularization can lead to sparse optimal 

solution and diminishing one of the platforms.. In the current problem of deriving 

metabolite profiles from NMR and GC-MS datasets both datasets are relevant and 

complementary (the sets of measured metabolites are partially different). In order to 

avoid the possibility of shrinking the importance of any platform the L2-norm was used as 

regularization parameter. In the L2-norm approach, different constraint on the 

coefficients are used, i.e. the sum of squares of μi equals one (||μi||2=1). The L2-norm 

yields a non-sparse solution and it distributes the coefficients over  multiple kernels 20. 

Using the L2-norm MKL we try to find the best separation between classes by solving the 

objective as follows: 

1||||

,...,1,0

;

)min

1

2

i

i
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m
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The weights μi were optimized by LOOCV performed on the training set. The optimal 

weights were selected based on the minimal error of the root mean square error of 

cross-validation (RMSECV).   
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5.2.9 K-PLS-DA and variables visualisation  
In the non-linear architecture presented in Figure 1, the fused kernels are analyzed with 

a classification method, K-PLS-DA (step 3). This means that PLS-DA is applied on to the 

combined kernel matrix.  

 

 

 
Figure 1. Conceptual flowchart of kernel-based data fusion. X1 and X2 are two blocks of data. * 

Note that all optimized parameters, i.e. number of variables, sigma for the rbf kernel, coefficients 

μ and nr. of LV’s are kept during the model reconstruction using all available samples. The 

particular steps are described in sections data analysis. 
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The classification model is statistically validated, i.e. it is based on the prediction 

accuracy of the K-PLS-DA model, on the independent test and on the permutation test. 

Therefore, in the final fourth step of the approach shown in Figure 1 K-PLS-DA is first 

reconstructed using all available samples and next variables importance is established. 

 

To represent the importance of the original variables, the pseudo samples principle, 

recently proposed by Krooshof et al. 16 and based on the non-linear plot principle 

described by Gower 42, was applied (step 4; Figure 1). As shown in Figure 2a, the matrix 

X (with n number of objects and p number of variables) is mapped by the kernel function 

K(xi,xj) (where xi and xj are samples from matrix X). The obtained kernel matrix K is a 

square matrix of size “n x n” (where n is a number of samples). The application of PLS-

DA on the kernel matrix leads to a linear model, i.e. y=Kb+r, where y a vector of group 

memberships, b regression coefficients and r a model residual. It is possible to obtain 

predicted ŷ-values for all training samples of matrix X, but the information about the 

variables (i.e. metabolites) involved in the discrimination is lost. In our approach every 

original variable is represented as a set of pseudo samples. The pseudo samples are 

artificial samples constructed as follows: every pseudo sample contains a certain value 

(e.g. 1) for only one variable and zeros for all the others. It is possible to check the 

influence of these pseudo samples in a K-PLS-DA model by predicting their 

corresponding ŷ-values or projecting them into latent variable space.  

The graphical representation of the pseudo samples principle is shown in Figure 2b. It is 

possible to construct for each original variable a series of pseudo samples containing 

different values. These different values permit to describe a complete trajectory for each 

variable. In that way, for every variable a matrix of size “k x p” (where k is the number of 

pseudo samples used to span the complete range of the original variable and p the 

number of original variables) is created. From now on, we call this set of pseudo 

samples describing a single original variable a pseudo samples matrix. For data matrix X 
(shown in Figure 2a) “p” pseudo samples matrices are created, each of size “k x p”. 

Once all pseudo samples matrices are constructed, one can apply the K-PLS-DA model 

to estimate the influence of the original variables. The pseudo samples are first mapped 

into the kernel space in relation to the original data matrix X using the same kernel 
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function as derived for data matrix X (Figure 2a), i.e. K(xi,psj) where xi is an object of 

matrix X and psj is one pseudo sample. This leads to “p” kernel pseudo samples 

matrices (Figure 2b). Next the ŷ-values of pseudo samples can be estimated using 

regression vector “b” of K-PLS-DA model or they can be projected into LV space using 

loading vector of K-PLS-DA model. It has been shown that for linear kernel predicted ŷ-

values of pseudo samples can be directly related to the regression coefficient of the 

original variables 17. The projections of pseudo samples into the regression vector “b” of 

K-PLS-DA model from now on will be called “regression coefficient”; while the projection 

of the pseudo samples in the LV space will be referred to as a loading plot.  

 
Figure 2. Representations of the a) kernel mapping of data matrix X into kernel space; b) 

pseudo samples principle in K-PLS-DA. k indicates the range of pseudo sample values 

(uniformly distributed); * Note that  there are “p” pseudo sample matrixes and “p” kernel pseudo 

samples matrixes. **The ŷ-values can be projected into latent variable space.  #Note that for 

kernel pseudo samples the loading and b vector of K-PLS-DA model are used.  *** These ŷ-

values can be represented as “regression coefficients” shown later in Figure 4 or loading plot 

shown in Figure 5. 
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The first graphical representation (Figure 3a) permits one to investigate how the original 

variables evolve as a function of the studied response as well as their global and local 

importance in the model. As described above, the kernels pseudo samples (see Figure 

2b) are projected into the K-PLS-DA model to visualize the importance and behaviour of 

the original variables. A schematic example is provided in Figure 3a.  The “regression 

coefficients” of four variables trajectories are displayed, each one illustrating a different 

case. If the influence of a given variable to the model is linear the corresponding pseudo 

samples trajectory should form a straight line, as variable 1 in Figure 3a. Variable 2 

behaves linearly in the low variable range but becomes non-linear in the high range as 

can be observed from the corresponding curvature. Variable 3 represents a more 

complex sigmoid shape. This variable has big importance in the model in the low range 

and in high range but less in intermediate range. Note that in the high range variable 3 

shows a plateau, which indicates that after passing a certain concentration value its 

importance stays constant. Finally, the last variable shown in Figure 3a, variable 4, has 

very little influence on the model. Note that, if the optimal K-PLS-DA model complexity is 

one LV, information contained in the regression coefficient and the loading vector 

(obtained from K-PLS-DA model) is equivalent. Therefore it is possible to use the 

loading vector instead of the regression vector “b” for obtaining the predicted ŷ-values of 

pseudo samples (the y-axis of Figure 3a represent 1LV). This kind of plot in linear PLS-

DA is called loading plot. Therefore, in the rest of paper it will also be called loading plot. 

Another piece of information delivered from Figure 3a, is the change of variable value 

between studied groups. Positive predicted ŷ-values of pseudo samples indicates group 

A and a negative indicates group B. For instance the value of variable 1 increases from 

group A to group B, while the value of variable 2 decreases from group A to group B.  

Figure 3b is an enhanced version of the figure presented in reference 17. It allows direct 

visualisation of the importance of each variable on the K-PLS-DA model. Figure 3b is 

constructed as follows: the absolute value of the maximal “regression coefficients” (i.e. 

predicted values of pseudo samples) is used as the relative importance of each variable. 

Note that this approach can be used when the original variables are scaled to unit 

variance. Note further, an alternative to estimate/visualize the relative importance would 

be by taking the absolute value of the difference between maximum value and minimum 
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value. The result can be graphically represented using the traditional regression plot 

obtained in any regression method 8. Note that the importance of the variables can be 

also directly read off from Figure 3a, i.e. from the absolute max values along the 

horizontal axis. The 4 variables in Figure 3b correspond thus to the ones shown in 

Figure 3a.   

 
Figure 3.  (a) A schematic example of “regression coefficients” of original variables trajectories 

plotted versus their range; (b) The maximum absolute value of “regression coefficients” of 

original variables trajectories shown in a. 

 
 
5.2.10 Data 
Every NMR spectrum of CIS and MScl groups was divided into 233 bins, corresponding 

to relative metabolites concentrations. These bins are equivalent to approximately 50 

identified metabolites and some unidentified resonances. The GC-MS data consists of 

66 metabolites and their corresponding relative concentrations. It is important to mention 

that 20 metabolites were measured by both NMR and GC-MS. Some metabolites are 

identified only by NMR (e.g. methanol) or only by GC-MS (e.g. urea) 43.   

These two datasets are used as case study to represent the proposed architecture for 

non-linear data analysis and fusion. After variables selection by SVM-RFE the NMR data 

and GC-MS data are reduced to 47 bins and 29 metabolites, respectively. In case of 
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NMR these 47 informative bins correspond to 20 identified metabolites and some 

unidentified resonances.  

It is important to keep in mind that σ, i.e. the parameter controlling the smoothness of 

the function, has to be tuned correctly, since it impacts the model performance. The σ 

parameter used for rbf kernel function is optimized separately for NMR dataset and GC-

MS dataset and again before kernel fusion. An overview of σ parameters optimized in 

particular steps in Figure 1 is summarized in Table 2.  

 

Table 2. Summary of σ parameter for rbf kernel function. 

σ parameter at: NMR GC-MS 

Step 1 (variable selection) 0.5 0.55 

Step 3 (kernel fusion) 0.3 0.3 

 
 
5.2.11 Metabolites identification  
After selection and visualization of the most important variables, the corresponding 

metabolites were identified (NMR). Metabolite identification for NMR data was carried 

out by using the 600 MHz library of metabolite NMR spectra from the Chenomx NMR 

Suite 7. The library of metabolite spectra is obtained based on a database of pure 

compound spectra acquired using particular pulse sequence and acquisition 

parameters, the tn-noesy-presaturation pulse sequence with 4s acquisition time and 1s 

of recycle delay 44.  
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6.3 RESULTS 

6.3.1Linear methods 
The analysis of the data can be first performed per analytical method. This is particularly 

significant not only during exploratory phase but also during supervised analysis, where 

relevance of individual sets is investigated. Both datasets were first analyzed with R-

PCA and PCA for presence of outliers and to detect potential trends. In total 4 NMR 

spectra and 3 GC-MS samples were detected as outliers and removed from further 

analysis. Since PCA score plots did not reflect any groupings and the variations did not 

separate according to groups CIS and MScl, the results of this analysis are not shown. 

Next, the linear method, CMV-PLS-DA, was employed on separate platforms and on 

fused datasets in mid-level fashion. In our case, the application of linear methods 

provided disappointing results for the separate datasets as well as for the datasets fused 

in the mid-level fashion. The degree of correct classification for a validation set obtained 

for the individual data-set analysis and for the concatenated sets can be seen in Table 3 

and the corresponding figures are shown in the supplementary material (Figure 2Sa-

2Sc).  

 

Table 3. An overview of prediction accuracy for the validation set using linear methods, non-

linear methods and MKL.   

 
Correct classification rate 

NMR GC-MS fusion (NMR +GC-MS) 

Linear method 61% 63% 65% 

Non-linear method 93% 85% 89% 

MKL   100% 
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6.3.2 Non-linear analysis 
Since linear methods did not lead to satisfactory results (see Table 3), we used more 

sophisticated methods (i.e. non-linear) to find differences in metabolic profiles of CSF of 

CIS and MScl groups. As pointed out previously (see Materials and Methods), our 

approach is based on four steps. The first one consists of a variable selection performed 

on each dataset. We used SVM-RFE in order to get good predictive group membership 

ability and a meaningful interpretation of the model. After the first step, we analysed the 

separate datasets by K-PLS-DA. After variable selection every dataset can be assessed 

in terms of complexity and prediction accuracy. The overall correct classification for 

independent test sets, left out during model optimization and construction, is 93% for 

NMR data and 85% for GC-MS data, respectively (Table 3). Both K-PLS-DA models 

were constructed for 2 latent variables (LV’s). These results suggest that both data 

sources hold relevant information concerning discriminating CIS and MScl groups. The 

overview of the prediction of each K-PLS-DA model is presented in Table 3. 

The most straightforward approach for data fusion is to analyse the two datasets 

together by simply concatenating the selected variables from two data sources together 

(mid-level fusion). It is expected that the two types of information from the NMR and GC-

MS datasets should complement each other and improve the class separation. 

However, this mid-level fusion provides very similar results in terms of complexity of the 

K-PLS-DA model and correct classification (i.e. 2LV’s and 89% correct classification, 

see Table 3).  

 

6.3.3 Data fusion by Multiple Kernel Learning  
Since the analysis of both sets as unique matrices does not provide a better separation 

of the groups, we decided to apply kernel-based fusion by MKL (Materials and 

Methods). Note that this kernel fusion architecture, as applied by us here, falls outside 

the range of the classical low-, mid-, or high-level fusion. It uses the specific property of 

the kernel matrix in the data fusion, i.e. its dimensions and its nature comparable to a 

similarity matrix.   

The MKL approach used here is composed of optimizing weights for each kernel matrix. 

The optimized weights were equal 0.75 for NMR and 0.661 for GC-MS. This indicates 
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that both datasets are almost equally important. After weighted kernel-based fusion, the 

newly formed kernel matrix can by analysed by PLS-DA. The kernel fusion leads to 

correct prediction of 100% on the independent test set (versus 89% for mid-level fusion, 

see Table 3). The K-PLS-DA model was constructed by using 1 LV. As an additional 

check, we performed a permutation test. The p-value for 10000 permutations was equal 

to 0.0013. The accuracy of K-PLS-DA was further compared to SVM. The correct 

prediction was as well 100% on the independent test set.  

 

Since the model shows good predictive ability on the independent test set, we consider it 

as statistically validated and as shown in Figure 1 (step 4) the K-PLS-DA model is then 

reconstructed using all available samples. The resulting model can be graphically 

assessed using a score plot (here not shown). Obviously, this kind of plot is the normal 

visual representation of kernel method.  

Variables importance visualization 

As shown in Materials and Methods, it is possible to visualize the original variables in 

discriminating the groups. For that purpose the maximum absolute value of the predicted 

values of pseudo samples was calculated. The obtained values are shown in Figure 4. 

This figure demonstrates that there are several variables having very high importance. 

For instance, variables number 67 (sucrose), 76 (urea) and 50 (3-methyl-2-

hydroxybutanoic acid) have the highest values of the predicted values of pseudo 

samples, demonstrating the relevance of these variables. There are just few variables 

seen as less significant, for example variable 57 (glycerol) or 63 (phenylalanine). The 

complete list of names of metabolites corresponding to variable number is given in the 

supplementary material (Table 1S).  
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Figure 4. The maximum absolute value of “regression coefficients” of original variables. 

 

 

As was explained in Materials and Methods, to investigate the relation between 

individual variables and changes of metabolite concentration (i.e. elevation or reduction) 

the trajectory of predicted values of pseudo samples (representing individual variables) 

can be studied. Since the optimal model complexity is 1LV we used loading vector 

delivered from K-PLS-DA model to project the pseudo samples into LV1. The obtained 

trajectories are shown in Figure 5. Because presenting trajectories for all variables 

makes the plot unreadable, in Figure 5, only a few of them are given. Trajectories for all 

variables are given in the supplementary material (Figure 1S). 

 

Besides showing the importance of variables in discriminating, Figure 5 also reveals the 

linear or non-linear trend and/or monotonicity of the variables in certain concentration 

ranges. A variable which shows a non-linear trend is glutamine and is derived from 
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NMR. Valine is characterized by linearity and monotonicity in its low range, and non-

linearity in its high range. Urea and sucrose demonstrate linearity over the whole 

concentration range. 

 

 
Figure 5. Loading plot of pseudo samples trajectories for selected variables. Numbers in the 

brackets correspond to variable numbers in Figure 4.   
 

As mentioned before the change in metabolite concentrations across groups can be 

assessed. The horizontal axis in the Figure 5 represents the range of every original 

variable (scaled to its min to max value). The levels of lactate and of valine both 

increase, while the concentration of glutamine and citrate is reduced with disease 

progression. To make the change of metabolite concentrations more evident we 

included the direction of groups along vertical y-axis. More specifically, the negative 

values of the predicted values of pseudo samples correspond to CIS and the positive 

values to MScl. 
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At this point one should remember that some metabolites were measured both by NMR 

and GC-MS. It is therefore interesting to check how the corresponding variables 

compare with each other. For instance, pseudo sample trajectories for glutamine derived 

from NMR and GC-MS reveal very similar evolution upon disease progression.  

Correspondingly, pseudo sample for lactate, glucose and citrate measured by NMR and 

GC-MS display comparable trajectories along concentration range.  This suggests that 

even after non-linear transformation the same variables measured by two different 

analytical methods are correlated and demonstrate their akin behaviour. 
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6.4 DISCUSSION 

In this paper we have described a procedure for kernel-based data fusion. We have 

demonstrated an application of the proposed procedure to the classification problem of 

metabolomics datasets of CIS and MScl individuals. We have proposed a framework 

based on four steps, where the first one is focused on optimization of individual 

datasets. This is relevant, since we want to make sure that accurate information 

extracted from both data sources is included in fusion. We applied the L2 MKL 

framework, demonstrated by Yu et al. for SVM, to K-PLS-DA, since it is characterized by 

the non-sparse integration of multiple kernels. Indeed, the optimization of the L2 norm 

showed that both datasets, i.e. NMR and GC-MS, are valuable for discriminating CIS 

and MScl individuals. 

The application of SVM-RFE allowed one to reduce both datasets significantly and 

select a set of informative variables. The classification performance of K-PLS-DA 

performed on fused kernels was better than single analysis and common mid-level 

fusion. Additionally, the K-PLS-DA model was simpler in terms of complexity, i.e. just 

one LV was sufficient to obtain optimal classification model.  

The visualization of the variables relative contribution to K-PLS-DA model was achieved 

by applying and extending the pseudo samples approach demonstrated by 16, 17. This 

allowed us to show that even after non-linear kernel transformation two different 

analytical methods are consistent with the results. The pseudo samples trajectories of 

the same variable measured by NMR or GC-MS demonstrate very similar trends.  

 

Several potential challenges remain in the proposed framework. One possibility is to 

apply it to larger datasets with more different sources, for instance lipids and 

metabolites.   

Since the number of available samples was limited, the potential impact of over-fitting of 

statistical model must be considered. We used here an independent test set and 

permutation test, which yielded results that clearly show that over-fitting, is highly 

unlikely.  Note that in individual analysis the total number of samples was larger than in 

the fused set.  
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Classification with different types of non-linear functions in the original space can be 

achieved using diverse types of kernels.  Of course, the choice of kernel function has to 

be done beforehand.  A correct selection of kernel function has a significant influence on 

classification accuracy. However, no rules can be defined. In our experiment different 

kernel functions were tried. The Gaussian kernel was chosen as the one to fit the data 

properly.  If the sigma value is too small over-fitting can easily occur. It has also 

influence on pseudo samples trajectories. Small sigma value (e.g. 0.1) might lead to 

very non-linear and hardly interpretable trajectories.  

The case study described here represents indeed a non-linearly separable problem. As 

was shown, linear methods gave poor classification performance. The class separation 

was possible after application of a non-linear kernel function and PLS-DA. Non-linearity 

is also visible in the pseudo samples trajectories. There are several variables that are 

characterized by curved trajectories. The curvatures of the trajectories illustrate the 

effect of the original data. Importantly, even if these trajectories are non-linear, they are 

still simple enough to be interpretable.  

 

The example given on the metabolites analysis of CSF gave very interesting results. 

However the number of used samples was relatively low. It should then be pointed out 

that due to this small number of samples, this study may have several limitations. 

Obviously, the size of the training and testing sets has an influence on the accuracy 

assessment of the classification method. Small sample size may result in detecting only 

the largest differences. Indeed the data size and classification rate are correlated.  

The bigger the groups size the more representative and robust the results become. It 

has been shown 45 that as the sample size is increased prediction accuracy overcomes 

local minima and next stabilizes and therefore become more reliable and accurate. 

Obviously classification performance of a classifier is influenced by the natural difficulty 

of the studied problem, however there are possibilities where the performance of a 

classifier is degraded because of small training cases. Therefore one should be aware 

that results (with 100% correct prediction on test set) shown here do not imply that all 

new samples will be always correctly classified (due to e.g. biological variance). Hence, 

more studies involving a larger cohort will be necessary to fully establish and assess the 
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findings. However, despite the drawbacks of the study, it seems that validation with the 

independent test set and the permutation test set attest that the results are meaningful. 

In general the accuracy of the classification of objects into the original classes is 

significantly better assessed than any random classification in two arbitrary classes (p-

value of 0.0013). Additionally the random division of data to training and test set was 

performed, showing that the average correct prediction over 10000 different runs 

supports our results. 

From a biological point of view the metabolites having a relatively high contribution in the 

K-PLS-DA model, e.g. urea, glutamine, lactate, citrate, valine, are consistent with 

biological knowledge. These metabolites, described in this study, were previously found 

in relationship to the MScl 6. They, therefore, provide a biological validation for the fusion 

of data. However, the full interpretation of the presented models in terms of biology still 

remains to be made.   Therefore, future work will focus on the interpretation of newly 

detected metabolites and on highlighting pathways involved in the MScl disease 

process. The pattern defined by these variables must also be studied by itself and put 

into context in a system biology approach. 

The kernel fusion approach presented in this paper assumes the dimensionalities of the 

kernels to be equal, i.e. the samples present in each dataset have to come from the 

same subjects at the same time points. Although, extending our method for missing 

values appears valuable and would be an interesting subject for further research.  
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SUMMARY 
In this thesis we investigated the metabolomics of biofluids by Nuclear Magnetic 

Resonance (NMR) in combination with chemometrics analysis. Apart from the 

development of new methods, the main aim was to identify potential metabolomic 

biomarkers of Multiple Sclerosis (MScl).  

MScl is a disease of the Central Nervous System (CNS) and is characterized by a 

combination of many factors, such as inflammation, demyelination, remyelination and 

axonal damage, most probably caused by a disturbance of the autoimmune system. It is 

the most common chronic disease in young adults. Since the early 20th century, constant 

research has been performed to understand the origin and the pathology of the disease, 

to set up diagnostic criteria and to come up with a cure for this disease. However, the 

cause(s) of MScl still remains unknown. Moreover, a cure has not yet been found. MScl 

is a very heterogeneous disease and thus it is difficult to diagnose especially at an early 

stage. Therefore, there is still a need for new molecular biomarkers, which would allow 

an early diagnosis and consequently improve preventative action. Since MScl is a CNS 

disorder, analyzing Cerebrospinal fluid CSF is the most suitable and interesting 

compartment, because of its proximity to the brain, besides the brain itself. Therefore, 

our main focus was to investigate the metabolic profile of CSF. Nevertheless, we also 

examined blood plasma in the animal model of MScl and we showed that not only CSF, 

but blood plasma as well contains significant information about neuroinflammation.  

In this thesis four main aspects are covered and discussed, namely: (i) sample 

treatments and measuring by NMR, (ii) data preprocessing of NMR data, (iii) 

chemometric analysis of NMR metabolomics data, and (iiii) data interpretation in 

biomarker discovery of MScl disease. The joint analysis of NMR of biofluids and pattern 

recognition methods has driven forward the relevance of metabolomics in biomarker 

discovery field. In chapter 1 a review is given of the data acquisition and multivariate 

analysis of NMR-based metabolomics data, with particular emphasis on CSF and MScl. 

We demonstrate recent developments in biofluid sample handling and measuring, 

crucial steps in preprocessing of NMR spectra, i.e. baseline correction, alignment, 

binning and scaling, and different approaches in multivariate data analysis. Moreover, 
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the application of current developments of NMR and chemometrics methods in 

metabolic biomarker discovery for MScl is addressed.  

A proper biomarker search first requires standardization in sample handling. Several 

aspects, such as sample collection, sample storage and time between collection and 

storage can influence the results. Therefore, in order to obtain reliable results and avoid 

false biomarker candidates the stability of metabolites identified by NMR was 

investigated. The metabolites that were identified in human CSF by NMR showed 

negligible changes in concentration when left at room temperature for 30 and 120 

minutes before freezing and storing the samples at -80oC.  The results are presented in 

chapter 2 of the thesis.  

Investigating the biological and analytical variations in metabolite concentrations in CSF 

of “healthy” (i.e. with no neurological disease) individuals is brought up in the third 
chapter of the thesis. The knowledge of inter-individual variation of metabolite 

concentrations in CSF of “healthy” humans is essential for evaluating a potential up-

regulated/down-regulated metabolite when confronted with CSF samples of subjects 

with a disease. The results clearly showed that variations in metabolite levels range from 

circa 8% to 53% for majority, while the analytical variation was found to be less than 9%. 

Moreover, using Principal Component Analysis no clear relation between variation in 

metabolite concentrations and gender and age range was found.  

In biomarker discovery studies, it is a common approach to start the investigation of a 

certain disease with a control experiment, i.e. an animal model. Animal models allow a 

better understanding of the underlying (molecular) processes in a disease. As presented 

in chapter 4, we first investigated MScl by means of Experimental Autoimmune 

Encephalomyelitis (EAE), an animal model which mimics a certain aspect of MScl, 

namely neuroinflammation. In this study, we found that by using NMR spectra of rat CSF 

in combination with state of the art pattern recognition methods (PLS-DA and ANOVA-

PCA), a set of metabolites relevant for neuroinflammation can be established. We 

demonstrated that the CSF metabolic profile of neuroinflamed animals is distinct from 

that of healthy and peripherally inflamed individuals. Moreover, we have shown that 
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neuroinflamed animals at the onset of the EAE are heterogeneous regarding to the 

disease response. More importantly, our findings were validated with a second 

independent set of animals, showing the relevance of the metabolites specific for 

neuroinflammation.  

Our first study involving CSF of EAE affected rats indicated that it is difficult to 

distinguish neuroinflamed rats from peripherally inflamed animals at the onset of the 

disease. This was mostly due to heterogeneous response of neuroinflamed animals to 

disease. For this reason metabolic profiles of blood plasma and CSF were combined by 

the mid-level-fusion strategy. In chapter 5, the combined analysis of blood plasma and 

CSF of EAE models is detailed. It describes that the combined metabolomics 

information from blood plasma and CSF enables a more efficient and reliable 

discrimination of the onset of the EAE. Several metabolites in blood plasma are relevant 

in discriminating neuroinflammation at its onset. At this point new chemometric 

developments were required. Therefore, we present and introduce a new chemometric 

method: Hierarchical Models Fusion (HMF). This approach hierarchically combines 

previously developed classification two-class models. We show that HMF allows one to 

distinguish neuroinflamed rats also on the day of onset from either healthy or 

peripherally inflamed rats as well as to investigate the progression of EAE.  

Following the studies of the two previous chapters we investigated the metabolic profile 

of MScl in humans. Recently, a number of studies aiming to identify metabolic 

components of MScl pathology have been published. However, in most of these studies 

a single metabolomic analytical platform (e.g. NMR or Gas Chromatography-Mass 

Spectrometry (GC-MS)) is used to find metabolic patterns characteristic for MScl. In 

chapter 6, we discuss a novel approach for data fusion, which is subsequently applied 

to CSF metabolic profiles of patients suffering from MScl and obtained by NMR and GC-

MS. Due to complexity of these datasets, new challenges needed to be tackled. The 

data fusion architecture involves fusion in kernel space, which permits one to establish 

non-linear discrimination models. Using this approach we were able to study the 

progression of MScl in humans. We unveiled that fusion of datasets in kernel space 

provides more efficient discrimination between MScl individuals and patients 
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representing early stage of MScl in comparison to mid-level fusion approach and 

analysis of individual datasets. Moreover the visualization tools implemented for this 

method open the gate for a thorough biological interpretation. It is important to point out 

that the main focus was the statistical approach not the biological interpretation and 

translation. Nevertheless, the majority of metabolites specific for neuroinflammation 

found in CSF of EAE-affected rats, were also significant for describing progression of 

MScl in human CSF.  

 

Conclusively, the metabolic biomarker discovery of MScl disease was investigated in 

different species (humans and rats) as well as in different biofluids (CSF and plasma). 

The thesis also presents new analytical/statistical methods for the metabolics research, 

methods which are able to improve the metabolic biomarker discovery. We found that 

the metabolic profile of MScl in an early stage can be recognized for humans and in a rat 

model. We also found that the majority of MScl related metabolites in rats are similar to 

those in humans. This is very interesting since it suggests that the results found on rats 

could be transmitted to humans. However for a good “translation” study further research 

is needed. Another interesting observation was the strong similarity of the metabolic 

profile in blood plasma and CSF of EAE rats, which suggest that the plasma metabolites 

could be used as a source for biomarker discovery of MScl instead of CSF. However, 

the similarity between blood plasma and CSF of EAE rats had only been cursory 

glanced, so in the future a detailed comparison has to be made to validate these results.  
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 FUTURE PERSPECTIVES 
The metabolomics analysis of biofluids by means of Nuclear Magnetic Resonance 

(NMR) and chemometrics in the investigation of neurological diseases is presented. The 

main focus was metabolomic biomarker search in Multiple Sclerosis (MScl) disease. 

Several aspects connected to suitable biofluids sampling and prior measurement 

samples handling, data pretreatment and data preprocessing, and proper analyzing are 

brought up, described and presented.  Consequently, as it was pointed out in the 

introduction and summary, this thesis highlights four main points: coefficient  

(i) analytical, i.e. samples handling and NMR measuring 

(ii) preprocessing of NMR metabolomics data 

(iii) data analysis of NMR metabolomics data 

(iiii) interpretation of findings and their biological relevance 

Obviously, each of these aspects opens doors for future research. However, the synergy 

between them is potentially more interesting. The most straightforward step is the 

validation of the findings on larger cohort of individuals, because the amount of samples 

is very crucial for precise statistical multivariate analysis. The larger the groups, the 

more representative and accurate the analysis becomes. Unfortunately, in many animal 

and human studies large study groups are difficult to reach and thus uncommon, e.g. 

due to ethical reasons. In biomarker discovery studies the number of individuals is 

generally low, because of the explorative nature of this type of research. To compensate 

for this pitfall, our statistical approaches were always validated with an independent test 

set. When it was possible, an extra validation was performed with additional subjects 

coming from an independent experiment. Nevertheless, the validation on the target 

population using hundreds or thousands of samples ensures the validity and reliability of 

discovered markers. Besides that, this kind of validation is mandatory if a biomarker is 

going to be used as diagnostic tool.  

In parallel to validation on large population one could use these putative biomarkers to 

define drugs targets or effects. This is the basic concept behind  
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pharmacometabonomics. This is currently the new field where drug efficiency and/or 

toxicity are predicted from the metabolic profile of an individual prior to treatment. 

Concretely, the biomarkers could be utilized to study the pharmaceutical effects of 

different drugs in e.g. rats or mice using EAE model. The metabolite profiles would be 

used to predict a response to potential drug treatment.  In that way the quantitative 

pharmaceutical properties of drugs could be measured. The concept of investigating the 

pharmaceutical effects can be extended into personalization of drug treatments, so 

called personalized medicine, which combines pre-dose metabolite profiling and 

chemometrics to model and predict the responses of individual subjects. From a 

chemometrics point of view it would be interesting to combine the information present in 

the covariance matrix to the information in the network analysis. Information contained in 

the network might be used directly to weight the covariance matrix, for instance if two 

metabolites share a reaction it can be assumed that they should be correlated. This 

could bring together two approaches, the usual bottom up approach of chemometrics 

(starting from data to build hypotheses) and the top down approach generally used in 

biochemical modeling. This would allow reaping the benefits of both concepts.   

1D NMR spectra are very rich in information and completely untargeted. Therefore, one 

can expect to obtain a complex biomarker pattern based on multiple metabolites. Some 

of these metabolites can be straightforwardly assigned, while others remain challenging 

in terms of identification. Moving to higher dimensional NMR would be beneficial by 

reducing signals overlap and thus entail that more metabolites can be assigned. The 

application of homonuclear techniques like COSY and TOCSY could help in identifying 

unknown resonances in complex biofluid mixtures. Moreover, improving the sensitivity of 

NMR by applying recent developments in the area of hyperpolarization are potentially 

very useful in metabolomics. Finally, improved applications of so-called pure-shift NMR, 

in which NMR spectra are simplified by removing the resonance splittings due J-

couplings, may considerably improve the spectral resolution. These advances in 

combination with higher magnetic fields open the doors for considerably better coverage 

of the metabolome of biofluids by means of NMR.   
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Once all signals have been assigned, the next step of the metabolomics analysis is to 

investigate the relationships between the metabolites. This allows finding others 

metabolites involved in a disease and consequently, to improve our understanding of a 

disease. In this respect, the integration of metabolomics with others ‘omics’ data, i.e. in a 

systems biology approach, is essential to come to a better understanding of the multi-

factorial interactions of causes and effects of a disease.  Such an approach will provide 

system-wide properties of a studied disorder. For this point, developing further data 

fusion methods is essential. One of the major problems in fusion methods is the aspect 

of missing values. This aspect would be of particular interest to explore in non-linear 

space. 

In this thesis MScl was studied metabolomics in two different systems, namely in rats 

and in humans. Fortunately, in comparison to other ‘omics’ fields, metabolomics is far 

less species dependent. Therefore, it has potential to relatively easily perform translation 

from animals to humans. However, there is at present little known about direct 

comparison between metabolic profiles of animals, e.g. rats (used so often in animal 

models), and humans.  It has been shown that there is still considerable difference in 

metabolite composition between human and rat urine. This is most probably triggered 

not only by dissimilarity in metabolic pathways in humans and rats, but as well by 

nutritional and food source differences. Therefore, an interesting issue would be to first 

investigate the qualitative and next quantitative difference in metabolic profile of humans 

and e.g. rats CSF.  This would simplify the translation studies. The next step forward 

would consist of translating the results found in pre-clinical study into humans. In the 

EAE studies we have discovered candidate markers in CSF and blood plasma that are 

related to neuroinflammation. In our research metabolic profile of CSF of humans 

affected with MScl was also examined. It was necessary to develop novel chemometric 

approach, since the standard available ones did not fully enable to extract class-related 

variance. It ought to be mention that therefore the focus was the statistical approach not 

the biological interpretation and translation. Nevertheless, metabolites found previously 

in EAE model were identified in human CSF as disease related. However, still more 

exhaustive translation study is necessary. 
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The philosophy of translation does not apply only between species but also between 

different biofluids. CSF is in closest interaction with the brain therefore it is the obvious 

choice for analyzing CNS disorders. The biochemical composition of CSF may indicate 

the malfunction occurring in the brain and more generally the abnormal status of the 

brain. However, the collection of CSF requires a lumbar puncture, which is invasive and 

might result in clinical complications. Moreover the total volume of CSF is far lower than 

the total volume of blood, so this circumscribes the amount that can be sampled. 

Therefore the detection of markers in blood would be more optimal. The CSF 

metabolites are absorbed into the blood via the blood-brain barrier (BBB) and thus 

effects of CNS disorders can presumably also be detected in the biochemical 

composition of blood. Since BBB is often damaged in MScl causing “leakage”, this 

presumes that that blood may comprise significant information about the disease. In our 

research blood plasma was investigated in an animal model of MScl, namely EAE. We 

demonstrated the usefulness of blood plasma for discriminating the early onset of EAE. 

However an in depth investigation of relation between markers found in CSF, plasma 

and vice versa has not been done. Therefore the translation of markers found in CSF 

into blood is a possibility of future research.  

For any translation study the chemometrics approach is essential. One can imagine 

adapting the calibration transfer methods to adjust a model constructed for rodents into 

a model suitable for humans, or a model for CSF to plasma. 
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In dit proefschrift worden metabolomics studies beschreven van lichaamsvloeistoffen 

waarin de data gemeten zijn met behulp van Nucleaire Magnetische 

KernspinResonantie (NMR) en geanalyseerd met behulp van chemometrie. Naast het 

ontwikkelen van nieuwe methoden, was het identificeren van potentiële metabole 

biomarkers voor Multiple Sclerose (MScl) een van de belangrijkste doelstellingen. 

Multiple Sclerose is een aandoening van het centrale zenuwstelsel en wordt 

gekenmerkt door een combinatie van verschijnselen, zoals ontstekingen, beschadiging 

van het myeline en aantasting van de axonen, waarschijnlijk voorzaakt door een 

verstoring van het immuun systeem. Bij jong volwassenen is het de meest 

voorkomende chronische ziekte. Sinds het begin van de 20e eeuw wordt onderzoek 

gedaan naar het het ontstaan en de pathologie van de ziekte. Ook wordt onderzoek 

gedaan om te komen tot betere criteria voor het diagnosticeren van de ziekte. Dit alles 

gericht op het ontwikkelen van een behandeling van de ziekte. Hoewel het duidelijk is 

geworden dat MScl een auto-immuun ziekte is, blijft het nog altijd niet geheel duidelijk 

waardoor MScl wordt veroorzaakt en, vooral, is er nog geen effectieve behandeling 

gevonden. MScl kan zich bovendien heel verschillend uiten, vooral in de beginstadia, en 

is dan ook moeilijk te diagnosticeren in een vroeg stadium. Daarom is er nog altijd een 

grote behoefte aan nieuwe moleculaire biomarkers die een vroege diagnose mogelijk 

maken en dientengevolge preventief handelen kunnen verbeteren. Omdat MScl een 

aandoening is van het centrale zenuwstelsel, is, naast onderzoek naar de hersenen 

zelf, het analyseren van hersen vloeistof-  oftewel cerebrospinale vloeistof (CSF) - het 

meest voor de hand liggende en interessantste gebied. Daarom hebben wij ons 

onderzoek vooral gericht op het metabole profiel van CSF. Daarnaast hebben we ook 

bloed plasma van het dierlijke MScl model onderzocht en konden we aantonen dat niet 

alleen hersenvloeistof (CSF) maar ook bloed plasma belangrijke informatie over 

inflammatie van het centrale zenuw stelsel bevat. 

Vier belangrijke aspecten worden in dit proefschrift beschreven en bediscussieerd, te 

weten: (i) behandeling van monsters en meten met behulp van NMR, (ii) bewerken van 

NMR data zodat deze bruikbaar worden voor de volgende stap, te weten: (iii) 

chemometrische analyse van NMR metabolomics data, en (iiii) interpretatie van data bij 
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het zoeken naar biomarkers voor MScl. Dit proefschrift laat via de combinatie, NMR 

metaboliet spectra van lichaamsvloeistoffen en analyse daarvan met patroon 

herkennings methoden,het grote belang en potentie van metabolomics zien en heeft 

daarmee metabolomics op het gebied van de ontdekking van biomarkers een impuls 

gegeven. In hoofdstuk 1 wordt een overzicht gegeven van de data acquisitie en de 

multivariate analyse van de op NMR gebaseerde metabolomics gegevens, waarbij de 

nadruk wordt gelegd op CSF en MScl. We laten recente ontwikkelingen op het gebied 

van het behandelen en meten van monsters van lichaamsvloeistoffen de revue 

passeren, behandelen de cruciale stappen in het voorbehandelen van NMR spectra, 

zoals basislijncorrectie, alignment, binning en schaling van data. Daarnaast worden 

verschillende moderne methodes voor de multivariate data analyse beschreven. Verder 

wordt ook de toepassing van actuele ontwikkelingen van de NMR en chemometrische 

methoden bij het zoeken naar metabolische biomarkers voor MScl belicht. 

Een goede zoektocht naar biomarkers vraagt allereerst om standarisatie in de 

behandeling van monsters. Verschillende aspecten, zoals het verzamelen en opslaan 

van de monsters, en de tijdsduur tussen verzameling en opslag, kunnen de resultaten 

beïnvloeden. Om betrouwbare resultaten te krijgen en valse biomarker kandidaten te 

vermijden, is daarom de stabiliteit van door NMR geïdentificeerde metabolieten 

onderzocht. De metabolieten die door NMR in menselijk CSF werden geïdentificeerd, 

lieten verwaarloosbare veranderingen in concentratie zien als ze tussen 30 en 120 

minuten aan kamertemperatuur werden blootgesteld alvorens de samples in te vriezen 

en op te slaan bij -80˚C. Deze resultaten worden in hoofdstuk 2 van dit proefschrift 

gepresenteerd. 

Onderzoek naar de biologische en analytische variaties in metaboliet concentraties in 

het CSF van “gezonde” (d.w.z. zonder neurologische aandoeningen) individuen wordt in 

het derde hoofdstuk van dit proefschrift gepresenteerd. Kennis van de variatie van 

metaboliet concentraties in het CSF van en tussen “gezonde” mensen is van groot 

belang om de verhoging of verlaging van de concentratie van een metaboliet op zijn 

waarde te kunnen schatten wanneer men wordt geconfronteerd met CSF samples van 

zieke subjecten. De resultaten geven duidelijk aan dat de variatie in metabole niveaus 
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verschillen van ongeveer 8% tot 53% voor de meerderheid, terwijl voor de analytische 

variatie werd aangetoond dat deze kleiner dan 9% is. Door gebruik van 

hoofdcomponentenanalyse (PCA) werd bovendien zichtbaar dat er geen relatie is 

tussen variatie in metabole concentraties enerzijds en geslacht en leeftijd anderzijds. 

Bij onderzoek naar biomarkers is het gebruikelijk het onderzoek naar een bepaalde 

ziekte te starten met een controle experiment, b.v.  via een diermodel. Diermodellen 

maken het mogelijk tot een beter begrip van onderliggende (moleculaire) processen bij 

een ziekte te komen. Zoals gepresenteerd in hoofdstuk 4, hebben we MScl eerst 

onderzocht met behulp van Experimentele Auto-immune Encephalomyelitis (EAE), een 

diermodel dat een bepaald aspect van MScl, te weten neuro-inflammatie, nabootst. In 

dit onderzoek ontdekten we dat door het gebruik van NMR spectra van het CSF van 

ratten in combinatie met ‘state-of-the art’ patroon herkennings methoden (PLS-DA en 

ANOVA-PCA), een set van metabolieten relevant voor neuro-inflammatie kon worden 

vastgesteld. We toonden aan dat het metabole CSF profiel van dieren met neuro-

inflammatie verschilt van dat van gezonde dieren en van dieren met perifere 

inflammatie. Ook toonden we aan dat de groep dieren met neuro-inflammatie bij de start 

van de EAE een heterogene reactie op de ziekte heeft. Van belang is dat onze 

resultaten zijn gevalideerd door een tweede onafhankelijke groep dieren, die de 

relevantie van metabolieten specifiek voor neuro-inflammatie liet zien. 

Ons eerste onderzoek op het gebied van CSF van met EAE aangetaste ratten liet zien 

dat het moeilijk is om in de beginfase van de ziekte een onderscheid te maken tussen 

enerzijds ratten met neuro-inflammatie en anderzijds ratten met perifere inflammatie. Dit 

was vooral te wijten aan de heterogene respons op de ziekte van de neuro-

geїnflammeerde dieren. Daarom hebben we de metabole profielen van bloed plasma en 

CSF gecombineerd met behulp van zogenaamde ‘mid-level’ data fusie. In hoofdstuk 5 

wordt de gecombineerde analyse van metabolite data van bloed plasma en CSF van 

EAE modellen gedetailleerd beschreven. Hieruit komt naar voren dat de gecombineerde 

metabolomics informatie uit bloed plasma en CSF een meer efficiënte en betrouwbare 

bepaling van de start van de EAE mogelijk maakt. Verschillende metabolieten in bloed 

plasma blijken van betekenis voor het bepalen van neuro-inflammatie in de beginfase. 
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Om tot dit resultaat te kunnen komen moest een nieuwe chemometrische methode 

worden ontwikkeld, namelijk Hierarchical Model Fusion (HMF). In HMF worden eerder 

ontwikkelde twee-groeps classificatie modellen hiërarchisch gecombineerd. We laten 

zien dat HMF het mogelijk maakt neuro-geїnflammeerde ratten vanaf het begin te 

onderscheiden van zowel gezonde als perifeer geїnflammeerde ratten. Op deze manier 

kan men de progressie van EAE volgen en onderzoeken vanaf een vroeg stadium. 

Volgend op het onderzoek in de twee voorafgaande hoofdstukken, onderzochten we het 

metabole profiel van MScl bij mensen. Recentelijk is een aantal onderzoeken 

gepubliceerd waarin wordt geprobeerd de metabole componenten van de MScl 

pathologie te identificeren. In de meeste van deze publicaties wordt echter een 

enkelvoudig metabolomics platform (zoals NMR of Gas Chromatografie-Massa 

Spectrometrie (GC-MS)) gebruikt om de voor MScl karakteristieke metabole patronen te 

vinden. In hoofdstuk 6 bespreken we een nieuwe aanpak van data fusie, welke wordt 

toegepast op door NMR en GC-MS verkregen metabole profielen van het CSF van 

MScl patiënten. Vanwege de complexiteit van deze verzamelingen van gegevens 

(datasets), moesten nieuwe analyse methoden worden onwikkeld, i.h.b. nieuwe data 

fusie methodes, namelijk in data fusie en analyse in kernel ruimte. Deze datafusie 

architectuur in de kernel ruimte, maakt het mogelijk om niet lineaire verbanden 

zichtbaar te maken. Dankzij deze kernelruimte (niet-lineaire) benadering konden we de 

progressie van MScl bij mensen onderzoeken. We laten zien dat fusie van datasets in 

de kernelruimte een effectieve methode is om onderscheid te maken tussen MScl 

patienten in een vroeg en later stadium, dwz tussen MScl patienten (laat MScl stadium) 

en CIS patienten (Clinically Isolated Syndrome; vroeg MScl stadium). Deze kernel fusie 

methode werkt aanzienlijk beter dan de mid-level fusie benadering en de analyse van 

individuele datasets. De visualisatie handvaten die voor deze methode zijn 

geïmplementeerd effenen het pad voor een diepgaande biologische interpretatie. Wij 

benadrukken dat in dit onderzoek de nadruk lag op de ontwikkeling van de statistische 

analyse methoden en niet op de biologische interpretatie en translatie. Desalniettemin 

was de meerderheid van de metabolieten, die karakteristiek waren voor neuro-

inflammatie in het CSF van EAE ratten, ook significant voor het beschrijven van de 

progressie van MScl in menselijk CSF. 
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Dit proefschrift beschrijft een zoektocht naar metabole biomarkers voor MScl in 

verschillende lichaamsvloeistoffen (CSF en plasma) bij mens en dier (rat, EAE model). 

Het proefschrift presenteert ook nieuwe analytische/statistische methoden op het 

onderzoeksgebied van de metabolics, methoden die kunnen helpen bij deze zoektocht. 

Deze nieuwe methoden kunnen een impuls geven aan de verdere ontwikkeling van het 

veld van de metabolomics. Het is gevonden dat metabolite profiel MScl in een vroeg 

stadium is te herkennen in mensen en in een rat model (Hoofdstuk 5). Het is verder 

gevonden dat de meerderheid van aan de MScl-ziekte gerelateerde metabolieten in 

ratten overeenkomt met die in mensen. Dit is zeer interessant omdat dit suggereert dat 

resultaten gevonden voor ratten overdraagbaar zijn naar mensen. Voor een volledige 

‘translatie’ studie moet evenwel een uitgebreidere en diepere analyse worden 

uitgevoerd. Een andere interessante observatie is de sterke overeenkomst in het 

metabole profiel van bloed plasma en CSF van EAE ratten (ratten die door EAE zijn 

beïnvloed). Dit suggereert dat het plasma metaboloom gebruikt zou kunnen worden als 

bron voor biomarkers voor MScl diagnostiek in plaats van de veel minder makkelijk 

toegankelijke CSF. Echter, de overeenkomst tussen bloed plasma en het CSF van met 

EAE aangetaste ratten is maar kort besproken in Hoofdstuk 4 en een gedetailleerde 

vergelijking moet in de toekomst worden uitgevoerd om dit punt te valideren.  
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Table S1. Peptide isotope standards used for SRM quantification 

Protein 
(accession number) 

Peptide Modification Mass difference 
 (Da) 

Concentration 
(mg/L) 

Albumin (P02768) 427FQNALLVR434 L-Arg-13C6, 15N4 10 27.7 
Cystatin C (P01034) 52ALDFAVGEYNK62 L-Lys-13C6, 15N2 8 6.6 

 
Table S2. Settings used for SRM quantification.1  

Peptide Q1 mass Q3 mass Fragment ion Collision energy (V) 
FQNALLVR 480.8 685.4 y6 23.1 (2+ ion) 
ALDFAVGEYNK 613.8 709.4 y6 35.0 (2+ ion) 
ALDFAVGEYNK 613.8 780.3 y7 35.0 (2+ ion) 
 
Table S3. Cystatin C concentrations measured by SRM MS2 

 Cystatin C concentration (mg/l) 
Sample t = 0 

minutes 
t = 30 minutes t = 120 

minutes 
H 1 2.71 2.96 2.98 
H 2 2.91 2.77 3.15 
H 3 2.41 2.55 2.19 
H 4 5.24 6.08 5.83 
H 5 2.32 2.17 2.60 
H 6 2.28 2.30 2.40 

Average 2.98 3.14 3.19 
 
Table S4. Albumin concentrations measured by SRM MS3 

 Albumin concentration (mg/l) 
Sample t = 0 

minutes 
t = 30 minutes t = 120 

minutes 
H 1 195.40 187.47 193.93 
H 2 240.04 232.62 239.81 
H 3 227.30 222.02 213.57 
H 4 225.62 232.52 218.75 
H 5 214.44 208.08 219.13 
H 6 192.38 197.57 192.63 

Average 215.87 213.38 212.97 

                                                           
 
1 For all peptides the dwell time was set to 100 ms, entrance potential was set to 10 V and declustering 
potential was set to 66.2 V. 
2 No significant differences were observed between the time points (paired t-test, t = 0 vs. t = 30: p = 0.34, 
t = 0 vs. t = 120; p = 0.11, and t = 30 vs. t = 120: p = 0.71). 
 
3 No significant differences were observed between the time points (paired t-test, t = 0 vs. t = 30: p = 0.40, 
t = 0 vs. t = 120; p = 0.32, and t = 30 vs t = 120: p = 0.92). 
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PC1

PC2
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Figure S1. Score plots for PCs 1-3 of the NMR spectral data using vast scaling and 

meancentering per patient (0 min: o; 30 min: +; 120 min: ×). Total variance explained per first 

three PCs was 21%, 18% and 13%, respectively. 
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These figures all illustrate the lack of clustering of the different subgroups in a PCA 

analysis, indicating that the total variation is not unevenly influenced by one of these 

subgroups. 
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(c)  

 
Figure S1. PCA plots proteomics ESI-Orbitrap, gender effect (Male vs. Female); (a), 
PC1 vs. PC2; (b) PC1 vs. PC3 ; (c) PC2 vs. PC3. 
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Figure S2. PCA plots proteomics ESI-Orbitrap, age effect (1 = <35, 2 = >35 and < 50, 3 
= >50); (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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Figure S3. PCA plots metabolomics GC-MS, gender effect (Male vs. Female);(a) PC1 
vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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(c)  
 

 
Figure S4: PCA plots metabolomics GC-MS, age effect (1 = <35, 2 = >35 and < 50, 3 = 
>50); (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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(c)  
 

 
Figure S5. PCA plots metabolomics NMR, gender effect (Male vs. Female); (a) PC1 vs. 
PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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(c)  

 
Figure S6. PCA plots metabolomics NMR, age effect (1 = <35, 2 = >35 and < 50, 3 = 
>50); (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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(c)  
Figure S7. PCA plots metabolomics LC-MS/MS, gender effect (Male vs. Female); (a) 
PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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(a) 
 

 
(b)  
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(c)  
 

 
PCA plots metabolomics LC-MS/MS, age effect, age effect (1 = <35, 2 = >35 and < 50, 
3 = >50), (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC2 vs. PC3. 
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Original samples information 
Sample Gender age Protein (g/L) Albumin (g/L) 

61454 M 59 0.45 0.244 
61525 M 30 0.25 0.118 
61281 M 44 0.4 0.221 
61430 M 51 0.62 0.403 
61435 M 57 0.4 0.173 
61349 M 62 0.33 0.179 
61373 F 72 0.46 0.241 
61378 M 57 0.31 0.097 
61607 F 27 0.26 0.171 

AVG 7M/2F 51 0.3867 0.2052 
STDV 14.849 0.1162 0.0897 

AVG Male 51.4 0.39 
STDV Male 11.1 0.12 

AVG Female 49.5 0.36 
STDV Female 
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Validation samples information 
Sample 
number  Gender 

protein concentration 
(g/L) 

SFG01 F 64 0.32 
SFG02 M 44 0.38 
SFG07 M 43 0.34 
SFG09 M 49 0.44 
SFG10 M 40 0.65 
SFG12 M 52 0.34 
SFG14 F 76 0.4 
SFG15 M 27 0.33 
SFG17 F 17 0.21 
SFG18 F 34 0.38 
SFG20 F 74 0.48 
SFG21 M 42 0.49 
SFG26 F 49 0.19 
SFG27 F 54 0.32 
SFG28 F 42 0.35 
SFG29 M 42 0.54 
SFG30 M 39 0.35 
SFG31 M 34 0.56 
SFG32 M 36 0.45 
SFG46 F 39 0.31 
SFG47 F 50 0.29 
SFG49 F 35 0.19 
SFG53 M 32 0.36 
SFG55 F 22 0.33 
SFG56 M 62 0.23 
SFG58 F 64 0.3 
SFG59 F 29 0.28 
SFG60 F 54 0.46 
AVG 13M/15F 44 0.3668 
STDV 14.513 0.1112 
AVG Male 41.7 0.42 
STDV Male 9.1 0.12 
AVG Female 46.9 0.32 
STDV Female 17.9 0.09 
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Experimental samples information metabolomics 

GC-MS MALDI-FT-ICR MS Gender Diagnosis Age 
protein concentration 
(g/L) 

2 171 M PP MS 51 0.41 
4 199 M CIS 41 0.36 
5 163 M RR MS 62 0.47 
6 198 M RR MS 36 0.31 
7 186 M OIND 24 0.44 
8 192 F OIND 39 0.24 
11 197 F PP MS 60 0.29 
12 120 M OND 44 0.29 
14 182 M PP MS 36 0.44 
15 200 F CIS 29 0.24 
17 159 F CIS 27 0.27 
18 161 M OND 56 0.63 
20 162 F OND 46 0.36 
22 150 M CIS 22 0.29 
23 148 M OIND 62 0.77 
24 147 F RR MS 41 0.4 
26 140 M PP MS 50 0.62 
27 103 F PP MS 49 0.29 
28 138 F OIND 46 0.31 
30 98 M RR MS 16 0.53 
31 125 F RR MS 44 0.28 
33 89 M OIND 70 0.44 
35 106 M OND 40 0.27 
36 87 F OND 76 0.29 
37 92 F PP MS 48 0.35 
40 57 M RR MS 39 0.63 
41 105 F RR MS 38 0.33 
42 102 F OND 39 0.23 
43 107 F CIS 50 0.4 
44 101 F RR MS 46 0.33 
45 50 M PP MS 36 0.45 
46 97 M CIS 57 0.39 
49 62 F CIS 26 0.24 
50 54 M CIS 30 0.28 
51 A261 M RR MS 41 0.43 
52 60 F OND 57 0.4 
53 68 M OIND 36 0.27 
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56 64 F OIND 54 0.42 
59 69 M OND 54 0.53 
61 A66 M RR MS 37 0.44 
62 40 F RR MS 36 0.19 
63 129 M PP MS 37 0.35 
AVG 23 M/19 F 43.5 0.38 
STDV 12.8 0.13 
  
AVG 
Male 42.5 0.44 
STDV 
Male 13.6 0.13 
  
AVG Female   

  
44.8 0.31 

STDV Female 12.1 0.07 
 

 

Experimental samples information proteomics 
Sample 
number Gender Age 

Protein 
concentration(g/L) 

Albumin 
concentration(g/L) Diagnosis 

42 F 25 0.27 0.154 Headache 
106 M 40 0.27 ? Headache 
126 F 55 ? ? Headache 
128 F 34 0.36 ? Headache 
195 M 42 0.35 ? Headache 
A69 M 40 0.22 ? Headache 
A82 M 41 0.24 0.149 Headache 

C1063 M 36 0.51 ? Headache 
C1111 M 46 0.6 ? Headache 
C1117 M 27 0.44 ? Headache 
C1210 F 21 0.35 0.229 Headache 

92 F 48 0.35 0.211 PP MS 
103 F 49 0.29 0.159 PP MS 
197 F 60 0.29 0.186 PP MS 
A4 M 52 0.44 0.169 PP MS 
A5 F 60 0.29 0.186 PP MS 

A24 M 36 ? 0.314 PP MS 
A91 M 37 0.35 0.163 PP MS 
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A134 F 51 0.49 0.337 PP MS 
A146 F 55 ? 0.271 PP MS 
A169 M 50 0.62 0.477 PP MS 
A179 M 51 0.41 0.238 PP MS 

C1251 F 51 0.49 0.337 PP MS 
47 F 31 0.33 0.2 RR MS 
91 F 36 0.61 0.405 RR MS 

100 F 38 0.41 0.259 RR MS 
105 F 38 0.33 0.2 RR MS 
115 F 29 0.2 0.12 RR MS 
122 F 33 0.45 0.196 RR MS 
125 F 44 0.28 0.154 RR MS 
147 F 41 0.4 0.245 RR MS 
155 F 30 0.34 0.2 RR MS 
163 M 62 0.47 ? RR MS 

A102 F 39 0.35 0.189 RR MS 
A167 F 22 0.3 0.116 RR MS 

C1222 F 52 ? 0.26 RR MS 
AVG 13M/23F 41.722 0.378125 0.2268   
STDV 10.841 0.110173983 0.0858   
  

  

  
  
  
  
  
  
  

AVG 
Male 43.1 0.41 
STDV 
Male 9.0 0.13 
  
AVG 
Female 41.0 0.36 
STDV 
Female 11.9 0.09 
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Variation analysis proteomics 

9 Original samples 

Name RSD 
(%) 

Analytical 
error (%) 

Av SD 

Complement C4-A 18 25 27138450 4866115 
Complement factor H 18 19 1700013 312547 
Complement C3 19 24 87009580 16659566 
Antithrombin-III 20 21 4526377 906119 
Alpha-2-HS-glycoprotein 20 27 14545015 2928096 
Insulin-like growth factor-binding 
protein 6 

20 21 866435 174989 

Tetranectin 21 24 323073 67465 
Complement C1q subcomponent 
subunit B 

24 26 399373 95186 

Gelsolin 24 26 33507052 8044402 
Alpha-2-macroglobulin 24 19 27648642 6694200 
Complement C1s subcomponent 24 20 216100 52462 
Ceruloplasmin 25 23 17944231 4425677 
Serotransferrin 25 28 369677777 91474621 
Clusterin 25 18 55161172 13968349 
Apolipoprotein D 25 24 14147657 3602011 
Ig gamma-1 chain C region 25 25 96127790 24489601 
Alpha-1-antichymotrypsin 26 17 24319660 6224496 
Cathepsin D 26 17 759239 194412 
Ig kappa chain C region 26 18 82086700 21228205 
Prothrombin 26 24 654402 172085 
Plasma protease C1 inhibitor 26 24 1996211 524950 
Beta-2-microglobulin 27 26 1332327 353236 
Alpha-1B-glycoprotein 28 16 5949602 1581320 
Epididymal secretory protein E1 29 26 12728294 3426895 
Vitamin D-binding protein 29 24 12170699 3418187 
Ganglioside GM2 activator 29 23 193682 56813 
Hemopexin 29 22 32879169 9684949 
Beta-2-glycoprotein 1 30 18 2313020 697871 
Fibronectin 30 23 5098155 1539160 
Mimecan 30 26 865639 261395 
Apolipoprotein A-I 31 15 7056838 2185665 
Transthyretin 32 24 26458600 8343161 
Vitronectin 32 18 3310278 1065162 
Plasminogen 33 15 870518 285846 
Ig lambda chain C regions 34 26 26621885 9039823 
Extracellular superoxide dismutase 35 17 302183 104416 
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[Cu-Zn] 
Fibrinogen beta chain 35 22 829886 289591 
Apolipoprotein A-IV 35 15 462888 162289 
Chromogranin-A 35 29 13666560 10277369 
Fibrinogen alpha chain 35 23 1069593 377280 
Apolipoprotein E 36 28 21931476 7818894 
Angiotensinogen 36 26 39827610 14414312 
Insulin-like growth factor-binding 
protein 7 

36 28 819068 297200 

Complement factor B 37 28 1206238 441960 
Zinc-alpha-2-glycoprotein 37 18 2710354 995077 
Secretogranin-1 37 29 13441778 4976916 
Complement component C7 37 24 336342 125909 
Galectin-3-binding protein 38 26 459980 173737 
Apolipoprotein A-II 39 20 197709 76502 
Alpha-1-antitrypsin 39 24 67673227 26229891 
Serum albumin 39 23 4381612279 969042168 
Inter-alpha-trypsin inhibitor heavy 
chain H4 

39 24 286511 112307 

Alpha-2-antiplasmin 40 21 51774 20609 
Kallikrein-6 40 29 7760011 3115900 
Complement C1r subcomponent 40 27 314186 126650 
Prostaglandin-H2 D-isomerase 40 21 422446514 170728098 
Cystatin-C 41 20 95242329 39101877 
Histidine-rich glycoprotein 41 29 2399445 986981 
Calsyntenin-1 41 24 1093188 451402 
Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 2 

41 28 2441554 1008732 

Ig gamma-3 chain C region 41 22 7832786 3245788 
Pigment epithelium-derived factor 42 29 20021202 8428956 
Ribonuclease pancreatic 42 24 1660649 701515 
Biotinidase 43 24 83830 35754 
Ig gamma-4 chain C region 44 19 9375918 4169811 
Neural cell adhesion molecule 1 45 28 3438240 1560063 
Ig kappa chain V-III region SIE 46 25 1449706 662829 
Afamin 46 23 59458 27186 
Osteopontin 46 23 6064788 2800927 
Kininogen-1 47 26 927469 435902 
Carboxypeptidase E 47 25 698574 328487 
Peptidyl-glycine alpha-amidating 
monooxygenase 

47 27 155663 73622 

Alpha-1-acid glycoprotein 1 48 18 13926929 6654663 
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Alpha-1-acid glycoprotein 2 48 29 3470429 1664010 
Inter-alpha-trypsin inhibitor heavy 
chain H1 

49 20 210609 103093 

Chitinase-3-like protein 1 49 17 250984 123304 
Dickkopf-related protein 3 50 24 17936224 8987787 
Pyruvate kinase isozymes M1/M2 50 15 187792 94322 
Amyloid beta A4 protein 50 18 2207802 1109417 
Lumican 51 27 243809 123767 
Beta-Ala-His dipeptidase 51 24 6140453 3134697 
Ig gamma-2 chain C region 51 26 30692062 15691973 
Neuroendocrine protein 7B2 52 16 723035 377600 
ProSAAS 52 28 1453298 760500 
Inter-alpha-trypsin inhibitor heavy 
chain H2 

53 23 598461 315987 

Fibrinogen gamma chain 54 20 698561 377501 
Amyloid-like protein 1 54 19 5115411 2775572 
Brevican core protein 55 23 749172 412662 
Cartilage acidic protein 1 56 29 1589651 888129 
Procollagen C-endopeptidase enhancer 
1 

56 21 163431 91350 

Protein FAM3C 57 17 1526470 875357 
Collagen alpha-1(VI) chain 59 28 566701 337022 
N-acetyllactosaminide beta-1,3-N-
acetylglucosaminyltransferase 

60 30 4212554 2513146 

Insulin-like growth factor-binding 
protein 2 

60 23 30120 18025 

Cadherin-2 60 27 488433 295467 
Major prion protein 61 27 1525232 924607 
Reelin 61 28 26557 16274 
Secretogranin-3 62 28 4392667 2729659 
Protein kinase C-binding protein 
NELL2 

63 22 141105 89249 

Neural cell adhesion molecule 2 65 22 252609 163981 
SPARC-like protein 1 65 26 7946151 5169792 
Tyrosine-protein phosphatase non-
receptor type substrate 1 

66 19 84342 55393 

Ubiquitin 68 25 224325 151670 
Neuronal cell adhesion molecule 69 22 5730668 3957629 
Superoxide dismutase [Cu-Zn] 71 18 535106 378451 
Cell adhesion molecule 3 71 30 220836 157002 
Secretogranin-2 72 27 1613520 1155587 
Neuroserpin 72 26 123199 88440 
Thy-1 membrane glycoprotein 74 29 211863 157129 
Neurotrimin 75 26 172232 129000 
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Neural cell adhesion molecule L1-like 
protein 

76 16 2988910 2269783 

Neurosecretory protein VGF 76 23 2497365 1906055 
IgGFc-binding protein 78 20 56777 44510 
Receptor-type tyrosine-protein 
phosphatase zeta 

81 26 27691 22364 

Cadherin-13 82 28 124803 102958 
Limbic system-associated membrane 
protein 

83 29 273267 228088 

L-lactate dehydrogenase B chain 85 27 28031 23767 
Disintegrin and metalloproteinase 
domain-containing protein 22 

86 22 47948 41253 

Neuronal pentraxin receptor 97 19 1531542 1491664 
Seizure 6-like protein 102 21 17922 18231 
Voltage-dependent calcium channel 
subunit alpha-2/delta-1 

103 19 38474 39755 

Ephrin type-A receptor 4 107 19 71103 76301 
Contactin-2 124 19 1740303 2166015 
Basement membrane-specific heparan 
sulfate proteoglycan core protein 

134 24 421578 563833 

Haptoglobin 135 28 21359232 28936658 
Hornerin 148 28 9722 14363 
 

Variation analysis proteomics 

28 validation samples 
Name RSD 

% 
RSD % 
Age >50 

RSD % Age 
>35 & <50 

RSD % 
Age<35 

RSD % 
Male 

RSD % 
Female 

Complement C4-A 14 15 13 13 14 14 
Complement factor H 18 18 20 18 18 19 
Complement C3 15 14 12 17 13 17 
Antithrombin-III 14 16 15 14 14 16 
Alpha-2-HS-
glycoprotein 15 13 15 16 15 16 
Insulin-like growth 
factor-binding protein 6 17 18 19 17 17 18 
Tetranectin 18 17 23 18 42 26 
Complement C1q 
subcomponent subunit 
B 16 16 17 16 17 16 
Gelsolin 19 20 20 16 15 20 
Alpha-2-macroglobulin 20 22 18 20 21 19 
Complement C1s 
subcomponent 20 20 23 21 21 20 



275 
 
 
 

Ceruloplasmin 19 16 21 20 16 23 
Serotransferrin 18 19 19 21 20 16 
Clusterin 21 18 22 25 22 21 
Apolipoprotein D 20 23 15 16 17 21 
Ig gamma-1 chain C 
region 22 21 26 20 26 19 
Alpha-1-
antichymotrypsin 17 16 17 21 16 18 
Cathepsin D 20 22 19 30 18 22 
Ig kappa chain C region 23 25 25 21 26 16 
Prothrombin 22 21 21 25 21 22 
Plasma protease C1 
inhibitor 23 20 23 25 28 18 
Beta-2-microglobulin 23 24 22 19 28 19 
Alpha-1B-glycoprotein 23 20 26 23 21 26 
Epididymal secretory 
protein E1 25 26 27 21 23 25 
Vitamin D-binding 
protein 21 18 23 22 24 18 
Ganglioside GM2 
activator 26 31 28 19 24 25 
Hemopexin 21 21 23 16 21 21 
Beta-2-glycoprotein 1 24 16 27 26 25 24 
Fibronectin 17 17 20 14 17 18 
Mimecan 21 22 26 19 23 20 
Apolipoprotein A-I 29 32 27 25 29 28 
Transthyretin 24 27 28 20 25 23 
Vitronectin 25 27 23 31 27 24 
Plasminogen 24 20 22 16 17 29 
Ig lambda chain C 
regions 26 33 31 20 28 26 
Extracellular 
superoxide dismutase 
[Cu-Zn] 30 27 26 35 27 35 
Fibrinogen beta chain 29 30 32 28 30 28 
Apolipoprotein A-IV 29 32 29 28 27 29 
Chromogranin-A 32 31 33 26 30 33 
Fibrinogen alpha chain 30 34 32 29 29 31 
Apolipoprotein E 27 29 27 23 25 29 
Angiotensinogen 25 29 24 25 26 23 
Insulin-like growth 
factor-binding protein 7 26 32 28 19 24 27 
Complement factor B 26 22 28 29 23 28 
Zinc-alpha-2-
glycoprotein 26 27 29 24 21 30 
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Secretogranin-1 27 27 32 21 34 23 
Complement 
component C7 28 32 23 33 30 27 
Galectin-3-binding 
protein 27 23 23 35 35 21 
Apolipoprotein A-II 42 46 44 36 39 47 
Alpha-1-antitrypsin 31 33 27 36 28 32 
Serum albumin 30 27 29 32 29 30 
Inter-alpha-trypsin 
inhibitor heavy chain 
H4 27 30 29 24 27 27 
Alpha-2-antiplasmin 36 34 44 35 44 28 
Kallikrein-6 31 28 23 27 31 31 
Complement C1r 
subcomponent 27 21 34 21 30 25 
Prostaglandin-H2 D-
isomerase 28 28 27 29 30 25 
Cystatin-C 30 27 38 32 33 28 
Histidine-rich 
glycoprotein 29 32 38 24 30 28 
Calsyntenin-1 33 23 38 27 35 30 
Ectonucleotide 
pyrophosphatase/phos
phodiesterase family 
member 2 31 28 32 31 21 38 
Ig gamma-3 chain C 
region 32 30 38 27 30 33 
Pigment epithelium-
derived factor 30 26 27 35 27 32 
Ribonuclease 
pancreatic 30 32 32 28 25 36 
Biotinidase 32 32 26 36 27 36 
Ig gamma-4 chain C 
region 34 34 33 35 30 39 
Neural cell adhesion 
molecule 1 32 31 32 33 23 42 
Ig kappa chain V-III 
region SIE 35 34 33 38 32 37 
Afamin 34 27 35 24 33 34 
Osteopontin 35 30 38 32 33 36 
Kininogen-1 31 38 31 24 26 35 
Carboxypeptidase E 26 24 27 25 24 27 
Peptidyl-glycine alpha-
amidating 
monooxygenase 45 50 42 49 43 47 
Alpha-1-acid 
glycoprotein 1 33 37 34 33 33 34 
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Alpha-1-acid 
glycoprotein 2 32 28 31 37 21 43 
Inter-alpha-trypsin 
inhibitor heavy chain 
H1 44 37 45 52 56 32 
Chitinase-3-like protein 
1 33 37 53 28 40 45 
Dickkopf-related 
protein 3 33 33 39 30 31 35 
Pyruvate kinase 
isozymes M1/M2 36 32 46 26 38 33 
Amyloid beta A4 
protein 37 41 39 30 39 36 
Lumican 39 45 34 36 29 48 
Beta-Ala-His 
dipeptidase 40 39 46 33 45 35 
Ig gamma-2 chain C 
region 40 37 40 42 42 37 
Neuroendocrine protein 
7B2 39 41 43 34 39 37 
ProSAAS 39 47 32 39 32 47 
Inter-alpha-trypsin 
inhibitor heavy chain 
H2 43 42 45 36 38 47 
Fibrinogen gamma 
chain 40 36 42 42 35 44 
Amyloid-like protein 1 41 39 47 40 37 45 
Brevican core protein 45 42 50 42 45 43 
Cartilage acidic protein 
1 40 40 46 34 35 45 
Procollagen C-
endopeptidase 
enhancer 1 41 47 35 44 42 41 
Protein FAM3C 42 44 44 41 42 42 
Collagen alpha-1(VI) 
chain 44 47 46 42 37 49 
N-acetyllactosaminide 
beta-1,3-N-
acetylglucosaminyltran
sferase 44 49 44 37 45 43 
Insulin-like growth 
factor-binding protein 2 41 54 38 33 39 43 
Cadherin-2 42 46 47 35 34 50 
Major prion protein 45 45 45 45 32 62 
Reelin 46 46 47 46 46 48 
Secretogranin-3 45 53 45 41 45 46 
Protein kinase C- 47 45 48 46 40 52 
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binding protein NELL2 
Neural cell adhesion 
molecule 2 48 58 43 43 44 51 
SPARC-like protein 1 48 55 48 42 42 55 
Tyrosine-protein 
phosphatase non-
receptor type substrate 
1 35 29 50 22 40 30 
Ubiquitin 51 60 57 37 61 42 
Neuronal cell adhesion 
molecule 51 56 45 48 41 60 
Superoxide dismutase 
[Cu-Zn] 49 56 47 54 49 49 
Cell adhesion molecule 
3 42 38 46 41 31 52 
Secretogranin-2 47 40 54 49 53 42 
Neuroserpin 51 64 47 41 42 62 
Thy-1 membrane 
glycoprotein 52 66 46 46 49 57 
Neurotrimin 56 60 52 56 57 54 
Neural cell adhesion 
molecule L1-like 
protein 52 62 49 47 54 50 
Neurosecretory protein 
VGF 52 63 47 48 49 54 
IgGFc-binding protein 52 55 52 50 46 58 
Receptor-type tyrosine-
protein phosphatase 
zeta 55 65 50 50 47 61 
Cadherin-13 60 58 59 63 61 58 
Limbic system-
associated membrane 
protein 59 60 60 59 53 66 
L-lactate 
dehydrogenase B chain 69 68 69 69 72 67 
Disintegrin and 
metalloproteinase 
domain-containing 
protein 22 68 67 68 68 59 75 
Neuronal pentraxin 
receptor 63 65 61 63 60 65 
Seizure 6-like protein 86 98 84 72 81 92 
Voltage-dependent 
calcium channel 
subunit alpha-2/delta-1 61 64 59 59 56 66 
Ephrin type-A receptor 
4 72 82 67 64 75 68 
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Contactin-2 80 86 82 70 83 75 
Basement membrane-
specific heparan 
sulfate proteoglycan 
core protein 86 102 70 88 80 93 
Haptoglobin 84 91 84 78 74 94 
Hornerin 184 209 156 185 141 228 
 

Variation analysis proteomics 

28 Validation samples 
Name RSD % 
Complement C4-A 79 
Complement factor H 30 
Complement C3 84 
Antithrombin-III 53 
Alpha-2-HS-glycoprotein 47 
Insulin-like growth factor-binding protein 6 49 
Tetranectin 52 
Complement C1q subcomponent subunit B 58 
Gelsolin 39 
Alpha-2-macroglobulin 39 
Complement C1s subcomponent 50 
Ceruloplasmin 50 
Serotransferrin 49 
Clusterin 81 
Apolipoprotein D 54 
Ig gamma-1 chain C region 98 
Alpha-1-antichymotrypsin 62 
Cathepsin D 53 
Ig kappa chain C region 124 
Prothrombin 46 
Plasma protease C1 inhibitor 57 
Beta-2-microglobulin 64 
Alpha-1B-glycoprotein 88 
Epididymal secretory protein E1 81 
Vitamin D-binding protein 55 
Ganglioside GM2 activator 54 
Hemopexin 62 
Beta-2-glycoprotein 1 67 
Fibronectin 65 
Mimecan 70 
Apolipoprotein A-I 70 
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Transthyretin 73 
Vitronectin 84 
Plasminogen 106 
Ig lambda chain C regions 73 
Extracellular superoxide dismutase [Cu-Zn] 66 
Fibrinogen beta chain 89 
Apolipoprotein A-IV 70 
Chromogranin-A 72 
Fibrinogen alpha chain 108 
Apolipoprotein E 64 
Angiotensinogen 69 
Insulin-like growth factor-binding protein 7 69 
Complement factor B 86 
Zinc-alpha-2-glycoprotein 81 
Secretogranin-1 106 
Complement component C7 56 
Galectin-3-binding protein 69 
Apolipoprotein A-II 85 
Alpha-1-antitrypsin 72 
Serum albumin 60 
Inter-alpha-trypsin inhibitor heavy chain H4 73 
Alpha-2-antiplasmin 59 
Kallikrein-6 71 
Complement C1r subcomponent 100 
Prostaglandin-H2 D-isomerase 59 
Cystatin-C 80 
Histidine-rich glycoprotein 98 
Calsyntenin-1 88 
Ectonucleotide pyrophosphatase/phosphodiesterase family 
member 2 73 
Ig gamma-3 chain C region 151 
Pigment epithelium-derived factor 80 
Ribonuclease pancreatic 89 
Biotinidase 94 
Ig gamma-4 chain C region 148 
Neural cell adhesion molecule 1 110 
Ig kappa chain V-III region SIE 126 
Afamin 72 
Osteopontin 71 
Kininogen-1 99 
Carboxypeptidase E 82 
Peptidyl-glycine alpha-amidating monooxygenase 88 
Alpha-1-acid glycoprotein 1 83 
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Alpha-1-acid glycoprotein 2 92 
Inter-alpha-trypsin inhibitor heavy chain H1 104 
Chitinase-3-like protein 1 87 
Dickkopf-related protein 3 94 
Pyruvate kinase isozymes M1/M2 84 
Amyloid beta A4 protein 89 
Lumican 111 
Beta-Ala-His dipeptidase 106 
Ig gamma-2 chain C region 172 
Neuroendocrine protein 7B2 130 
ProSAAS 120 
Inter-alpha-trypsin inhibitor heavy chain H2 107 
Fibrinogen gamma chain 120 
Amyloid-like protein 1 119 
Brevican core protein 92 
Cartilage acidic protein 1 101 
Procollagen C-endopeptidase enhancer 1 68 
Protein FAM3C 115 
Collagen alpha-1(VI) chain 91 
N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase 118 
Insulin-like growth factor-binding protein 2 100 
Cadherin-2 96 
Major prion protein 103 
Reelin 119 
Secretogranin-3 99 
Protein kinase C-binding protein NELL2 108 
Neural cell adhesion molecule 2 91 
SPARC-like protein 1 111 
Tyrosine-protein phosphatase non-receptor type substrate 1 85 
Ubiquitin 106 
Neuronal cell adhesion molecule 126 
Superoxide dismutase [Cu-Zn] 112 
Cell adhesion molecule 3 126 
Secretogranin-2 127 
Neuroserpin 134 
Thy-1 membrane glycoprotein 127 
Neurotrimin 145 
Neural cell adhesion molecule L1-like protein 156 
Neurosecretory protein VGF 114 
IgGFc-binding protein 120 
Receptor-type tyrosine-protein phosphatase zeta 134 
Cadherin-13 143 
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Limbic system-associated membrane protein 127 
L-lactate dehydrogenase B chain 126 
Disintegrin and metalloproteinase domain-containing protein 22 159 
Neuronal pentraxin receptor 165 
Seizure 6-like protein 160 
Voltage-dependent calcium channel subunit alpha-2/delta-1 139 
Ephrin type-A receptor 4 161 
Contactin-2 156 
Basement membrane-specific heparan sulfate proteoglycan 
core protein 159 
Haptoglobin 182 
Hornerin 159 
 

 

Variation analysis metabolomics LC-MS 

Original samples 
  

concentration 
(uM) 

Av 
(n=8) 

SD 
(n=8) 

RSD (%, 
n=8) 

Analytical error 
(%) 

pooled CSF 
sample 

alanine 36.2 14.7 40 4 44.9 
arginine 25.1 6.9 28 8 31.6 
asparagine 8.7 3.0 34 4 10.6 
citrulline - - - - - 
glutamine - - - - - 
glycine 10.3 3.2 31 5 12.0 
histidine 21.7 6.9 32 9 27.1 
iso-leucine 5.0 1.7 34 6 6.1 
leucine 17.4 5.0 29 11 22.1 
lysine 35.9 10.9 30 8 43.8 
methionine 4.9 2.3 46 9 6.0 
phenylalanine 12.3 5.0 41 8 17.0 
proline 0.66 0.34 52 7 0.78 
serine 30.3 9.1 30 9 36.2 
threonine 36.3 11.6 32 4 44.5 
tryptophan 2.6 1.2 44 9 3.4 
tyrosine 12.0 5.1 42 7 16.0 
valine 22.5 8.6 38 8 29.0 
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Variation analysis metabolomics LC-MS (Validation samples) 

concentration 
(uM) 

Av 
(n=27) 

SD 
(n=27) 

RSD (%, 
n=27) 

Analytical error 
(%) 

alanine 30.4 9.7 32 1 
arginine 24.8 6.2 25 9 
asparagine 6.7 1.5 22 2 
citrulline 2.1 0.7 34 7 
glutamine 537 77 14 7 
glycine 6.3 1.9 30 5 
histidine 17.2 2.8 16 9 
iso-leucine 6.0 1.8 30 3 
leucine 14.7 4.0 27 2 
lysine 32.6 7.2 22 7 
methionine 3.8 1.3 34 8 
phenylalanine 9.0 2.1 23 8 
proline 1.0 0.5 49 5 
serine 27.0 4.5 17 3 
threonine 30.4 8.1 27 2 
tryptophan 2.3 0.6 24 9 
tyrosine 11.2 3.3 30 6 
valine 18.4 5.2 28 2 

 

Variation analysis metabolomics LC-MS (Validation samples) 

concentratio
n (uM) 

MALE FEMALE 
Av 
(n=13) 

SD 
(n=13) 

RSD 
(%,n=13) 

AV 
(n=14) 

SD 
(n=14) 

RSD (%, 
n=14) 

alanine 32.0 9.3 29 28.9 10.2 35 
arginine 27.9 6.6 24 21.9 4.2 19 
asparagine 7.1 0.9 13 6.4 1.9 29 
citrulline 2.5 0.8 31 1.8 0.5 26 
glutamine 565 74 13 511 73 14 
glycine 6.7 2.2 32 5.8 1.5 25 
histidine 18.1 2.8 16 16.3 2.5 15 
iso-leucine 6.6 1.2 18 5.4 2.2 40 
leucine 16.0 2.6 16 13.4 4.7 35 
lysine 34.3 7.2 21 30.9 7.1 23 
methionine 4.1 1.1 26 3.6 1.5 40 
phenylalanine 9.3 1.8 20 8.7 2.3 26 
proline 1.1 0.6 50 0.8 0.3 40 
serine 25.7 3.8 15 28.1 4.9 17 
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threonine 31.4 6.5 21 29.5 9.4 32 
tryptophan 2.4 0.6 26 2.2 0.4 21 
tyrosine 11.7 2.7 23 10.7 3.9 36 
valine 19.4 4.0 20 17.4 6.0 35 

 

Variation analysis metabolomics LC-MS (Validation samples) 

concentration 
(uM) 

AGE <35 AGE >35  and <50 AGE <50 

Av 
n=8 

SD 
n=8 

RSD 
%, n=8 

Av 
n=10 SD n=10 

RSD 
%, 

n=10 
Av n=9 

SD 
n=9 

RSD 
%, 
n=9 

alanine 24.9 5.0 20 31.1 9.6 31 34.5 
11.5 33 

arginine 23.3 7.5 32 27.2 5.4 20 23.5 
5.5 23 

asparagine 6.4 2.0 31 6.8 1.1 17 6.9 
1.4 21 

citrulline 1.9 0.8 41 2.2 0.5 23 2.2 
0.9 41 

glutamine 504 83 16 557 82 15 545 
63 12 

glycine 5.6 2.5 45 6.3 1.4 22 6.8 
1.7 25 

histidine 17.2 2.2 13 17.1 2.1 12 17.2 
3.9 23 

iso-leucine 5.9 1.8 30 5.9 1.6 28 6.2 
2.2 36 

leucine 13.5 4.0 30 15.2 3.3 22 15.1 
4.8 32 

lysine 32.9 7.0 21 32.8 9.0 27 31.9 
5.9 18 

methionine 3.4 1.5 43 3.8 1.0 25 4.2 
1.4 34 

phenylalanine 8.3 2.4 29 8.9 1.6 18 9.6 
2.3 24 

proline 0.9 0.3 33 0.9 0.6 62 1.0 
0.5 51 

serine 26.7 4.1 16 25.8 4.1 16 28.5 
5.2 18 

threonine 30.9 10.4 34 30.0 6.5 22 30.5 
8.3 27 

tryptophan 2.0 0.6 28 2.4 0.5 22 2.5 
0.5 22 

tyrosine 9.5 3.2 34 11.1 3.0 27 12.8 
3.4 27 

valine 16.8 5.0 30 18.2 3.9 21 19.9 
6.5 33 
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Variation analysis metabolomics NMR (Original samples) 

concentration (uM) Av n=5 SD n=5 RSD %, n=5 
Analytical error 

(%) 
pooled CSF 

sample 
2-aminobutyric acid 3.4 0.6 17 8 3.2 
2-hydroxybutyric acid 21.1 3.4 16 4 19.4 
2-hydroxyisovaleric acid 4.1 1.8 43 8 3.0 
3-hydroxyisovaleric acid 32.6 13.8 42 4 40.2 
3-hydroxybutyric acid 6.2 3.1 50 9 4.7 
Acetic acid 37.2 12.4 33 6 79.0 
Acetoacetic acid 5.1 1.4 27 8 7.0 
Acetone 12.6 2.5 20 4 97.7 
Alanine 21.8 4.1 19 6 25.6 
Aconitic acid 19.6 9.0 46 9 28.4 
Arginine 22.0 2.0 9 5 23.1 
Choline 3.3 0.7 22 9 4.4 
Citric acid 178 33 19 5 186.5 
Creatine 32.8 4.2 13 6 33.7 
Creatinine 42.7 5.2 12 5 49.5 
Dimethylamine 2.3 0.3 15 8 3.1 
Formic acid 18.7 1.5 8 5 21.7 
Fructose 230 68 29 9 262.5 
Galactitol 5.6 0.8 13 7 5.6 
Glucose 1895 308 16 6 2404 
Glutamine 428 86 20 4 424 
Glycine 9.3 3.2 34 9 11.2 
Histidine 8.6 2.0 23 5 9.8 
Isoleucine 3.6 0.7 21 6 4.2 
Lactic acid 848 100 12 4 915 
Leucine 9.1 2.3 26 3 9.5 
Lysine 13.0 4.8 37 9 12.8 
Methanol 36.4 9.9 27 6 39.9 
Methionine 4.4 1.6 37 7 4.4 
1-methylhistidine 5.6 2.8 50 8 6.0 
3-methylhistidine 5.2 1.3 25 7 4.5 
Myo-Inositol 59.1 20.2 34 4 54.2 
Phenylalanine 10.6 2.1 20 5 12.7 
Pyruvic acid 46.3 7.4 16 7 50.9 
Succinic acid 2.9 0.7 23 7 2.7 
Trimethylamine-N-oxide 4.8 1.2 25 9 4.8 
Threonine 21.5 3.6 17 6 25.1 
Tyrosine 7.1 1.6 22 6 9.9 
Urea 2758 1472 53 8 1975 
Valine 11.9 2.1 18 9 14.4 
Xanthine 7.8 2.7 35 8 7.6 
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Variation analysis metabolomics NMR (Validation samples) 

concentration (uM) Av n=27 SD n=27 RSD %, n=27 Analytical error % 
2-aminobutyric acid 3.6 1.0 28 5 
2-hydroxybutyric acid 21.0 6.1 29 4 
2-hydroxyisovaleric acid 4.0 1.2 30 8 
3-hydroxyisovaleric acid 11.5 1.7 15 2 
3-hydroxybutyric acid 7.1 1.0 15 3 
Acetic acid 77.0 39.7 52 2 
Acetoacetic acid 4.9 1.3 26 4 
Acetone 8.7 1.7 20 5 
Alanine 29.7 8.0 27 3 
Aconitic acid 22.6 6.2 28 6 
Arginine 19.1 3.7 19 4 
Choline 1.9 0.5 24 6 
Citric acid 204 31 15 2 
Creatine 38.5 5.9 15 3 
Creatinine 56.8 9.5 17 2 
Dimethylamine 1.9 0.5 25 6 
Formic acid 37.9 7.3 19 5 
Fructose 135 32 24 7 
Galactitol 5.5 1.3 23 4 
Glucose 2621 303 12 8 
Glutamine 399 70 18 2 
Glycine 7.5 1.8 24 2 
Histidine 11.5 1.8 15 3 
Isoleucine 5.1 1.3 25 4 
Lactic acid 1127 155 14 2 
Leucine 12.1 3.1 26 4 
Lysine 18.2 3.0 16 2 
Methanol 47.1 10.0 21 2 
Methionine 3.0 0.9 31 6 
1-methylhistidine 3.9 1.9 49 4 
3-methylhistidine 1.0 1.5 143 8 
Myo-Inositol 122 30 25 9 
Phenylalanine 8.8 1.99 23 5 
Pyruvic acid 62.6 14.4 23 5 
Succinic acid 2.5 0.6 23 9 
Trimethylamine-N-oxide 5.1 0.9 18 3 
Threonine 26.5 5.3 20 4 
Tyrosine 9.5 2.6 27 6 
Urea - - - - 
Valine 16.5 4.6 28 2 
Xanthine 3.4 2.9 86 8 
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Variation analysis metabolomics NMR (Validation samples) 

concentration (uM) 

MALE FEMALE 

Av n=13 
SD 
n=13 

RSD %, 
n=13 AV n=14 SD n=14 RSD %, n=14 

2-aminobutyric acid 3.8 1.3 34 3.3 0.5 16 
2-hydroxybutyric acid 22.4 6.6 29 19.6 5.8 30 
2-hydroxyisovaleric acid 3.7 0.8 22 4.3 1.5 34 
3-hydroxyisovaleric acid 7.3 1.2 16 6.8 0.7 11 
3-hydroxybutyric acid 11.7 1.1 9 11.3 2.2 20 
Acetic acid 82.7 32.8 40 71.0 47.0 66 
Acetoacetic acid 4.7 1.2 25 5.1 1.4 27 
Acetone 9.0 1.7 19 8.3 1.7 20 
Alanine 29.0 8.1 28 30.6 8.2 27 
Aconitic acid 19.0 2.7 14 19.1 2.7 14 
Arginine 2.0 0.5 24 1.8 0.4 24 
Choline 24.7 6.7 27 20.3 4.9 24 
Citric acid 206 37 18 201 25 13 
Creatine 38.7 5.8 15 38.3 6.5 17 
Creatinine 58.6 10.5 18 54.8 8.5 15 
Dimethylamine 1.8 0.5 27 2.0 0.4 23 
Formic acid 39.3 6.9 18 36.3 7.2 20 
Fructose 128 28 22 142 35 25 
Galactitol 5.7 1.3 22 5.2 1.2 23 
Glucose 2487 265 11 2764 279 10 
Glutamine 384 68 18 415 75 18 
Glycine 7.9 2.2 27 7.0 1.1 16 
Histidine 11.5 2.1 18 11.5 1.4 13 
Isoleucine 5.1 1.6 30 5.0 1.0 19 
Lactic acid 1161 186 16 1090 107 10 
Leucine 11.8 2.5 22 12.3 1.6 13 
Lysine 18.1 2.5 14 18.3 3.6 20 
Methanol 47.0 12.7 27 47.1 5.5 12 
Methionine 3.1 1.1 35 2.9 0.7 26 
1-methylhistidine 3.3 2.2 66 4.5 1.4 31 
3-methylhistidine 1.0 1.5 150 1.0 1.5 142 
Myo-Inositol 125 31 25 117 28 24 
Phenylalanine 9.4 1.4 15 8.3 2.3 28 
Pyruvic acid 67.9 13.8 20 56.9 13.4 23 
Succinic acid 2.4 0.6 25 2.6 0.6 23 
Trimethylamine-N-oxide 27.0 6.0 22 25.9 4.4 17 
Threonine 4.9 1.0 19 5.3 0.9 17 
Tyrosine 8.3 1.5 17 10.7 3.0 28 
Urea - - - - - - 
Valine 16.1 5.7 36 17.1 3.3 19 
Xanthine 2.4 3.1 130 4.4 2.3 53 
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Variation analysis metabolomics NMR (Validation samples) 

concentration 
(uM) AGE <35 AGE >35  and <50 

AGE <50 
  

Av 
n=8 

SD 
(n=8) 

RSD %, 
n=8 

Av 
n=10 

SD 
n=10 

RSD %, 
n=10 

Av 
n=9 

SD 
n=9 

RSD %, 
n=9 

2-aminobutyric 
acid 3.9 1.0 26 3.1 0.6 19 3.7 1.3 34 
2-
hydroxybutyric 
acid 18.0 3.5 19 20.6 5.0 24 24.1 8.2 34 
2-
hydroxyisovaler
ic acid 4.5 1.8 39 4.0 0.8 21 3.5 0.7 22 
3-
hydroxyisovaler
ic acid 7.5 1.1 14 6.8 1.0 15 7.0 0.9 13 
3-
hydroxybutyric 
acid 12.4 1.3 10 11.0 2.3 21 11.2 1.0 9 
Acetic acid 90.4 31.9 35 72.3 52.3 72 70.6 30.8 44 
Acetoacetic 
acid 5.4 1.4 26 4.9 1.1 22 4.5 1.3 29 
Acetone 8.8 1.9 21 8.4 1.7 21 8.9 1.7 19 
Alanine 25.5 4.4 17 30.1 9.8 33 33.1 7.2 22 
Aconitic acid 21.8 4.7 22 19.9 5.5 27 26.2 6.9 26 
Arginine 19.3 2.9 15 19.0 2.9 15 18.9 2.5 13 
Choline 1.8 0.4 21 1.7 0.4 22 2.2 0.5 21 
Citric acid 194 21 11 199 18 9 218 45 21 
Creatine 36.4 4.4 12 39.3 6.8 17 39.4 6.6 17 
Creatinine 53.1 8.2 15 55.9 9.0 16 61.0 10.7 17 
Dimethylamine 1.9 0.4 19 1.9 0.5 28 1.9 0.5 28 
Formic acid 38.6 5.8 15 37.4 7.7 21 37.7 8.2 22 
Fructose 136 37 27 127 26 20 142 35 24 
Galactitol 5.2 1.0 19 5.0 1.0 20 6.3 1.4 22 
Glucose 2571 482 19 2636 206 8 2648 201 8 
Glutamine 375 42 11 412 84 20 406 80 20 
Glycine 7.4 2.1 28 7.3 1.9 25 7.7 1.5 20 
Histidine 12.3 1.0 8 11.0 1.2 11 11.3 2.6 23 
Isoleucine 4.6 0.6 13 4.8 0.8 16 5.9 1.8 31 
Lactic acid 1038 76 7 1139 176 15 1193 157 13 
Leucine 12.3 2.0 16 11.9 2.1 17 12.0 2.5 21 
Lysine 19.1 2.3 12 17.5 3.5 20 18.1 3.1 17 
Methanol 48.6 12.5 26 46.0 8.0 17 46.8 9.8 21 
Methionine 3.5 0.8 22 2.5 0.6 24 3.0 1.2 39 
1-
methylhistidine 3.9 1.1 29 3.7 1.8 49 4.1 2.6 64 
3-
methylhistidine 0.6 1.1 194 1.3 1.5 115 1.1 1.7 158 
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Myo-Inositol 106 26 24 132 27 20 124 31 25 
Phenylalanine 8.7 1.3 15 9.5 1.4 15 8.2 2.8 34 
Pyruvic acid 55.5 12.0 22 59.4 13.1 22 72.5 13.6 19 
Succinic acid 2.4 0.5 20 2.4 0.6 26 2.7 0.6 23 
Trimethylamine
-N-oxide 5.1 1.0 19 5.1 1.0 19 5.2 1.0 19 
Threonine 25.1 5.4 22 26.4 5.0 19 27.9 5.5 20 
Tyrosine 9.1 2.5 27 10.1 3.2 32 9.2 2.1 23 
Urea - - - - - - - - - 
Valine 15.6 3.9 25 15.6 4.1 26 18.4 5.7 31 
Xanthine 3.0 2.3 77 3.8 2.8 73 3.1 3.6 116 

 

Biological variation in the validation CSF sample set vs experimental CSF sample set with 
GC-MS 

  Validation sample set Experimental sample set 
 Name RSD (%, n=28) RSD (%, n=420 
1,5-Anhydro-D-Glucitol 7 31 
Arabitol 12   
alanine 12 32 
leucine 13 32 
iso-leucine 13 32 
2-Hydroxybutanoic acid 14 88 
3,4-Dihydroxybutanoic acid 14   
3-Hydroxypropanoic acid 16 43 
Aspartic acid 16 58 
Aminomalonic acid 17 30 
Benzoic acid 17 29 
Myo-inositol 18 38 
Sucrose 19 53 
2-Hydroxypropenoic acid 19 36 
Asparagine 19 36 
Glucose 19 41 
Urea 21   
Glutamic acid 21 36 
Tryptophan 22   
Arabinose 22 36 
Hypoxanthine 22 116 
2-Aminobutyric acid 23 28 
Creatinine 24 56 
Proline 25 94 
Tyrosine 26   
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3-hydroxyisovaleric acid 26 43 
Glycerol 26 34 
Acetoacetic acid 26 42 
Glycerol-galactopyranoside 26   
C18:1 fatty acid 28 33 
Cysteine 28 89 
Inositol 28 36 
Erythronic acid 28   
Quinic acid 28 36 
sn-Glycerol-3-Phosphate 30 45 
5,6-dihydrouracil 30 44 
C18:0 Fatty acid 30 40 
Cholesterol 30 52 
phenylalanine 31   
C16:0 Fatty acid 31 32 
Gluconic acid 33 38 
2-Oxo-butanoic acid 33 56 
Ribitol 34 64 
1-Monostearoylglycerol 35 28 
Glyceric acid 35 72 
C14:0 Fatty acid 36 31 
Mannitol 36 36 
Serine 38   
2,3-dihydroxybutanoic acid 38 39 
Fructose 38 104 
2-hydroxyisovaleric acid 43 34 
Methionine 45 47 
Xylonic acid 45   
3-Hydroxyhexanoic acid 46 42 
Uric acid 47   
Fucose 48 67 
2,4-Dihydroxybutanoic acid 54 129 
N-Acetylaminomalonic acid 57 47 
Phosphoric acid 58   
Amino-butyric acid isomer 63 29 
Valine 64   
Threonic acid 68 71 
Myo-inositol-1,2-cyclicphosphate 69 63 
Xylose 82  - 
Uridine 90  - 
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Phosphorylethanolamine 106 106 
Threonine 113   
Inositol related compound 214 120 

 

Concentrations comparison 

 
Validation sample 

set Wishart et al. (13) 

Literature values 
referred to by 

Wishart et al. (13) 

concentration (uM) 
Av 

(n=27) SD (n=27) 
Av 

(n=35) 
SD 

(n=35) Av SD 
1-methylhistidine 3.9 1.9 ND ND ND ND 
2-aminobutyric acid 3.6 1.0 ND ND ND ND 
2-hydroxybutyric acid 21.0 6.1 40 24 35 24 
2-hydroxyisovaleric 
acid 4.0 1.2 8 6 7 7 
3-hydroxybutyric acid 7.1 1.0 34 31 46 24 
3-hydroxyisovaleric 
acid 11.5 1.7 4 2 ND ND 
3-methylhistidine 1.0 1.5 ND ND ND ND 
Acetic acid 77.0 39.7 58 27 100 30 
Acetoacetic acid 4.9 1.3 12 14 6 6 
Acetone 8.7 1.7 20 21 67 24 
Aconitic acid 22.6 6.2 ND ND ND ND 
Alanine 29.7 8.0 46 27 37 7 
Arginine 19.1 3.7 ND ND ND ND 
Choline 1.9 0.5 3 1 8 5 
Citric acid 204 31 225 96 176 50 
Creatine 38.5 5.9 44 13 ND ND 
Creatinine 56.8 9.5 43 12 65 25 
Dimethylamine 1.9 0.5 2 1 ND ND 
Formic acid 37.9 7.3 32 16 ND ND 
Fructose 135 32 160 91 240 20 
Galactitol 5.5 1.3 ND ND ND ND 
Glucose 2621 303 2960 1110 5390 1650 
Glutamine 399 70 432 204 444 80 
Glycine 7.5 1.8 ND ND ND ND 
Histidine 11.5 1.8 14 8 12 2 
Isoleucine 5.1 1.3 7 5 8 3 
Lactic acid 1127 155 1651 626 1590 330 
Leucine 12.1 3.1 16 9 19 4 
Lysine 18.2 3.0 29 13 28 8 
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Methanol 47.1 10.0 44 36 ND ND 
Methionine 3.0 0.9 5 4 6 3 
Myo-Inositol 122 30 84 40 133 20 
Phenylalanine 8.8 1.99 15 13 18 7 
Pyruvic acid 62.6 14.4 53 42 71 30 
Succinic acid 2.5 0.6 3 2 29 5 
Threonine 26.5 5.3 30 12 28 5 
Trimethylamine-N-
oxide 5.1 0.9 ND ND ND ND 
Tyrosine 9.5 2.6 12 9 10 4 
Valine 16.5 4.6 19 13 24 7 
Xanthine 3.4 2.9 13 7 5 1 
Av Average 
SD Standard deviation 
RSD Relative standard deviation 
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List of metabolites identified in rat CSF by 1H-NMR 

Metabolites 

3-Hydroxyisovalerate  

Acetate 

Acetoacetate 

Acetone 

Alanine 

Arginine 

Butyrate 

Choline 

Cis-aconitate 

Citrate 

Creatine 

Creatinine  

Dimethylamine 

Formate 

 Fructose 

Glucose 

Glutamine 

Glycerol 

Lactate 

Lysine 

 Malonate 

Methanol 

Methylmalonate 

N-acetylaspartate 

Ornithine 

Pantothenate 

Propylene glycol 

Pyruvate 

Succinate 

Threonine 

Valine 

myo-Inositol 

N-acetylcompounds 

 

 

Sample preparation and data acquisition of CSF samples from the second EAE 
experiment 

10μL of rat CSF were thawed at room temperature and 210 μL D2O (99.96 at.%D) were 

added to the biofluid. TSP-d4 (Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 ) (99 

at.%D) was used as internal standard for chemical shift reference (δ 0.00 ppm). For the 

latter, 70μL of buffer solution was added to 220 μL of rat CSF. The buffer solution 

solvated in a mixture of water and D2O consists of 2,85mM TSP, 6.92 mM Sodium azide 

(NaN3) and 42.08 mM sodium phosphate dibasic dehydrate (Na2HPO4•2H2O).  The 

addition of buffer solution to 220 μL of CSF sample leads to a final concentration of 

0.66mM TSP. The pH of the CSF was adjusted to around 7 (7.0 – 7.1) by phosphate 

buffer in buffer solution. The final CSF NMR sample (290 μL) was then transferred to a 

SHIGEMI microcell tube for measurements. 

The 1D 1H NMR spectra of rat CSF samples were acquired on a 600 MHz Bruker with a 

5 mm CPTCI z-gradient cold probe.  Suppression of water was achieved by using 
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presaturation. For each 1D 1H NMR spectrum 512 scans were accumulated with a 

spectral width of 7000 Hz resulting in a total of 16K points. The acquisition time for each 

scan was 2.2s. Between scans, a 8s relaxation delay was employed. Prior to spectral 

analysis, all acquired Free Induction Decays (FIDs) were zero-filled to 32K data points, 

multiplied with a 0.3 Hz line broadening function, Fourier transformed, manually phased, 

the TSP internal reference peak was set to 0 ppm and baseline corrected by using 

ACD/SpecManager software version 12.02. All 44 rat CSF spectra were acquired and 

preprocessed as described above and subsequently transferred to Chenomx NMR Suite 

7.0 for metabolites quantification.  

 

Table 1S. Groups description of the second EAE experiment; “n” indicates number of rats 

(samples) for each group.  

Treatment 
Day 0 

Group description Day 10 

CFA Peripheral inflammation P10-2* 
n=15 

CFA+MBP Neuroinflammation + peripheral 
inflammation 

N10-2** 
n=15 

*2 sample were discarded due to blood contamination 

**4 samples were discarded due to blood contamination 

 

PLS-DA of 1H-NMR CSF data 

C10 vs. P10: Effect of peripheral inflammation  

Figure S1 presents the score plot of the PLS-DA model for groups “C10” versus “P10”. 

This model enables us to examine the effect of peripheral inflammation on the 

metabolic profile of CSF. This PLS-DA model is also performing well, since the overall 

correct classification for the test set is 100% (Table S2).   

 

P10 vs. P14: Evolution of peripheral inflammation   
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By studying groups “P10” and “P14” the evolution of peripheral inflammation may be 

investigated. We concluded from the “C14” vs. “P14” model that group “P14” was not 

inflamed anymore.  The PLS-DA model of “P10” vs. “P14” has perfect prediction ability. 

The key metabolites contributing to discrimination are mostly glutamine and citrate. This 

is indeed in agreement with the PLS-DA model of groups “C10” vs. “P10”, where the 

effect of peripheral inflammation was examined.  

 
Figure 1S. PLS-DA score plots derived from 1H-NMR spectra of rat CSF belonging to groups 

“C10” and “P10”. The amount of explained variance in Y for two latent variables was equal to 

88.5%. 

 

P10 vs. P14: Evolution of peripheral inflammation   

By studying groups “P10” and “P14” the evolution of peripheral inflammation may be 

investigated. We concluded from the “C14” vs. “P14” model that group “P14” was not 

inflamed anymore.  The PLS-DA model of “P10” vs. “P14” has perfect prediction ability. 
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The key metabolites contributing to discrimination are mostly glutamine and citrate. This 

is indeed in agreement with the PLS-DA model of groups “C10” vs. “P10”, where the 

effect of peripheral inflammation was examined.  
 

Table 2S. Summary of multivariate modeling diagnostic accuracy (PLS-DA) for the test set. 

Model Group Sensitivity 
[%] 

Specificity 
[%] 

Overall correct 
classification [%] 

Number of 
variables in PLS-

DA model 

C10 vs. 
N10 

C10 100 100 
100 45 

N10 100 100 

C10 vs. 
P10 

C10 100 100 
100 25 

P10 100 100 

P10 vs. 
N10 

P10 100 100 
62.5 20 

N10 58 33 

N10 vs. 
N14 

N10 100 100 
100 45 

N14 100 100 

C14 vs. 
N14 

C14 100 100 
100 40 

N14 100 100 

P10 vs. 
N14 

P10 100 100 
100 25 

N14 100 100 

 

Table 3S. Key metabolites discriminating groups based on PLS-DA models. 

PLS-DA model Key metabolites 

C10 vs. N10 fructose, glutamine, 3-hydroxyisovalerate, lysine, N-
acetylaspartate 

C10 vs. P10 citrate, glutamine, N-acetyl-compound  and resonance at 0.8983 
which probably belongs to butyrate 

C14 vs. N14 
Lysine, arginine, alanine, pantothenate, malonate and unknown 
resonance at 1. 18 (variable 126) 
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N10 vs. N14 
arginine, dimethylamine, lysine, creatinie, pantothenate  and 
unknown resonances at 1.50 and 1.18 (variable 126). 

N10 vs. (C14&P14) lysine, arginine, pantothenate, malonate  

P10 vs. N14 lysine, pyruvate, choline, arginine, creatine, N-acetylaspartate 

 

Table 4S. Particular effect observed based on PLS-DA results. 

Groups Effect 

Comments 

 

Number 
of 

variables 
in PLS-

DA model 

C10 vs. 
N10 

Peripheral Inflammation& 
“neuroinflammation” 

Neuroinflammation 
was only present in 
some animals 

DAY 10 

 

C10 vs. 
P10 Peripheral inflammation  

P10 vs. 
N10 

“Neuroinflammation” & 
peripheral inflammation 

 

C14 vs. 
N14 Neuroinflammation 

Probably only the  
effect 
neuroinflammation is 
observed at Day 14 
and no effect 
peripheral 
inflammation is 
anymore present 

DAY 14 

 

C14 vs. 
P14 

Lack of peripheral inflammation; 
effect observed unrelated to 
peripheral inflammation 

 

N14 vs. 
(C14&P14) Neuroinflammation  

P14 vs. 
N14 Neuroinflammation  

P10 vs. P14 Peripheral inflammation  

DAY 10 & 
DAY 14 

 

N10 vs. 
N14 Evolution of disease   

P10 vs. 
N14 Neuroinflammation   
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ANOVA-PCA results obtained at the onset of disease 
The first principal component (PC1), in Figure S2a, indicates variations, which 

distinguish between non-treated (“C10”) and the EAE affected group (“N10”). The 

second PC accounts for the discrimination between group “P10” and groups C10&N10. 

By visual inspection of Figure 4a group specific metabolites are found.  As an example, 

lactate (variable 116) and N-acetylaspartate (variable 90), have a high, positive 

interaction with group “N10, while citrate (variable 70) and glutamine (variable 72) 

interact negatively with this group.   

 

ANOVA-PCA results obtained for the peak of disease 
The first principal component of Figure S2b shows the variation, which differentiates the 

EAE-affected group at the second time point (group “N14”) from the other two groups. 

The second principal component represents the variation distinguishing groups “C14” 

and “P14”. However, the amount of variance explained by the second PC is low 

(12.3%), indicating that these groups are quite similar.  

 

ANOVA-PCA results obtained for all diagnostic groups 
Similarly we applied ANOVA-PCA to the metabolic profiles of all groups. The results are 

presented in Figures S2c and S2d. The first principal component of Figure S2c 

differentiates the group “N14” from other groups. It is also visible that the”N10” is 

different from the healthy group “C14” and group “P14”. Furthermore, groups “C14” and 

“P14” are highly collinear, which confirms their similarity in metabolic profiles.   

The score plot of the second and third principal component (Figure S2d) represents the 

distinction between the healthy group “C10” and group “N10”. By inspection of the 

reciprocal location of groups “C14” and “P14” on the plane of PC2 and PC3 similar 

conclusions can be drawn. These groups show collinearity in the metabolic profiles.   
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Figure 2S. Biplots of principal component analysis performed on the interaction between 

metabolites and treatments. Metabolites which are statistically significant are indicated with red 

squares. The arrows indicate the loadings of the treatments: (a) groups “C10”, “P10” and “N10”; 

(b) groups “C14”, “P14” and “N14”; (c) all groups plotted along two first principal components 

(PC1 and PC2); (d) all groups plotted along PC2 and PC3.    
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Table 5S. Group specific metabolites selected by mean of ANOVA-PCA. 
Group Metabolites with significant interactions 

C10 
healthy Day 10 

glutamine (variable 72) citrate (variable 70) 

variables 135 and 137 threonine (variable 36) 

3-hydroxyisovalerate 
(variable 120) succinate (variable 73) 

variable 77 variable 126 

variables 151 and 152 (probably butyrate) 

C14 
healthy Day 14 

myo-inisitol (variable 34) propylene glycol (variables 
133, 134) 

citrate (variable 70) ornithine (variables 60 and 
61) 

variables 135 variables 137 

P10 

peripheral inflammation Day 10 
cis-aconitate (variable 57) pyruvate (variable 76) 

P14 
peripheral inflammation Day 14 

glycerol (variable 38) ornithine (variables 60 and  
61) 

variable 127 variable 129 

N14 
neuroinflammation Day 14 

lactate (variable 116) N-acetylaspartate (variable 
90) 

N-acetyl-compounds 
(variables 88 and 89) 

methylmalonate (variable 
123) 

pyruvate (variable 76), lysine (variable 65) 

arginine (variables 100, 101 
and 102) 

pantothenate (variables 146 
and 148) 

N10 
neuroinflammation Day 10 

citrate (variable 70) malonate (variable 56) 

Methylmalonate (variable 
123) 

N-acetylaspartate (variable 
90) 

lysine (variable 65) arginine (variables 100, 101 
and 102) 

pantothenate (variables 146 and 148) 

 

 



 304 

-1.5 -1 -0.5 0 0.5 1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2

2.2

cl
as

s

LV 1

 

 

P10
N14

 

Figure 3S. PLS-DA score plots derived from absolute concentration of metabolites specific for 

neuroinflammation for groups “P10” and “N14”. The amount of Y explained variance for one 

latent variable was equal to 91.3%. 
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Figure 1S. Typical disease progression in EAE model.  

 

 

Simulated data 

In order to represent the use of Hierarchical Model Fusion (HMF) a simulated data set 

was constructed. This data set contains 280 samples (corresponding to four classes, i.e. 

70 samples per class) and 105 variables. It was simulated in such way that the samples 

are represented by random vectors chosen from multivariate normal distribution. 5 

variables are informative and 100 are irrelevant for the discriminating classes. The 

informative traits were incorporated with random noise (approximately 6% of informative 

signal). The data were simulated in such way that: classes 1 and 2 overlap with each 

other as well as classes 3 and 4, while classes 2, 3 and 4 are the most dissimilar one. In 

Figure 2S the scatters plot of the simulated data in the plane of variable 5 and 2 (both 

informative) and Principal Component Analysis (PCA) score plot are shown. As can be 

observed from Figure 2Sa these two variables allow for discriminating classes. On the 

contrary, the PCA score plot (of autoscaled data, see Figure 2Sb) does not reveal any 

groupings.  Indeed, the four classes completely overlap in the plane defined by PC1 and 

PC2. 
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Figure 2S. Visualization of simulated data: (a) the scatter plot in the plane defined by the 

informative variables 5 and 2; (b) PCA score plot in the plane of PC1 and PC2.  

 

The data were divided into model (52 samples per class) and independent test set (18 

samples per class) using Duplex algorithm. In order to perform HMF three PLS-DA 

models were constructed, namely class 1 vs. class 2, class 2 vs. class 3 and class 3 vs. 

class 4 for autoscaled data. They were selected based on the information how the 

classes were simulated. The correct classification rate for the independent test set was 

equal 94.4%, 100% and 94.4%, respectively for the PLS-DA models.  

These three PLS-DA models were next used to obtain three new scores following the 

HMF procedure. We started with PLS-DA model of class 1 vs. class 2. This step enables 

of creating Xscore. This allows one to separate class 1 from the rest. In the next step 

PLS-DA model of class 2 vs. class 3 was used. Similarly to the first step a second score 

is generated, i.e. Yscore. At this point class 2 is separated. In the final step PLS-DA 

model of class 3 vs. 4 was utilized leading to Zscore. By concatenating these three new 

scores a graphical representation is obtained, showing all classes at once. In Figure 3S 

the graphical representation of the HMF applied to simulated data is presented. Note 

that this figure shows where the test samples (18 samples per class) are projected into 

these new scores. As can be noticed the test samples are correctly projected (95.3% 

test samples are correctly predicted by HMF). This demonstrates the statistical 

relevance of the obtained results. To show if classification results are better than any 

other random classification a permutation test was made. Of 3000 runs none had correct 

classification bigger than 95.03%, leading to p-value 0.0003. 
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To evaluate the performance of HMF we constructed PLS2-DA model on the same 

training set used for HMF. The correct classification for the independent test set was 

equal to 83.3%.  This result shows that PLS2-DA underperforms compared to HMF. 

 

 
 
Figure 3S. Graphical representation of the results of the HMF obtained on the simulated data.  

 

Addition of different noise levels 

 

In order to represent the effect of noise we added different levels of homoscedastic and 

heteroscedastic noise to informative variables in the simulated data. We created 6 

different levels and we repeated it 60 times. Every noise level comprised different 

percentage of informative traits (see Figure 4S on x-axis). 6 noise levels and 60 

repetition leads to 360 runs. For each run PLS-DA models were recalculated and HMF 

was applied as described above. Moreover we performed permutation test (3000 runs) 

to reduce the possibility of random classification.  
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In Figure 4S the average correct classification and standard deviation obtained for HMF 

applied to simulated data with different levels of noise in informative traits is presented. 

As can be observed the higher the noise level the less accurate results have become. 

The algorithm performs well in terms of correct predictions for independent test set up to 

situation number 4 (i.e. data containing 35% of noise in comparison to informative traits).  

However, for data containing 35% of noise the results become unstable, since the 

outcome of permutation test shows that for 3000 runs some had higher correct 

classification than for the original classification. For the first three noise levels, of the 

3000 permutations none had a number of correct classifications higher than for original 

classification, leading to a p-value of 0.0003. 
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Figure 4S. Average correct classification rate and standard deviation obtained for simulated 

data with 6 different noise levels. In the x-axis amount of noise with respect to relevant variables 

is indicated. For each noise level the results from permutation test are included on top of the 

triangular.  
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Pseudo code for LOO CV used for variable selection and model optimization 

 

Assuming a data matrix X for training set of size (n x p, where n is a number of samples 

and p a number of variables) a LOO CV is performed (separately for plasma and CSF) 

according to the following scheme, which was repeated for each sample (i) in X: 

 

Beginning of LOO CV 

1. One object (i) is removed from training data matrix X 
2. Autoscaling of the data matrix X with remaining objects (of size m-1 x p) 

3. RFE is performed on the autoscaled data matrix X with remaining objects (of size m-1 

x p) 

4. A ranking of variables is obtained 

End of LOO CV  

 

In next step a final ranking for variables is obtained. 

CSF and plasma training sets are concatenated and variables ranking is again 

performed with LOO CV; note that here X corresponds to concatenated plasma and 

CSF data: 

 

Beginning of LOO CV 

1. One object (i) is removed from training data matrix X 
2. Autoscaling of the data matrix X with remaining objects (of size m-1 x p) 

3. RFE is performed on the autoscaled data matrix X with remaining objects (of size m-1 

x p) 

4. A ranking of variables is obtained 

End of LOO CV  

 

The final ranking for concatenated data is obtained. 
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Optimization of PLS-DA model complexity (number of latent variables) for data matrix X 

(repeated for each object (i) in X). Note that here X can correspond to CSF data, plasma 

data or fused data sets: 

Beginning of LOO CV 

1. One object (i) is removed from training data matrix X (m x p) 
2. Autoscaling of the data matrix X with remaining objects (of size m-1 x p) 

3. Autoscaling of removed object (i) with mean and standard deviation delivered from the 

data matrix X with remaining objects 

4. Fit PLS-DA model to autoscaled data matrix X with remaining objects (size m-1 x p) 

5. Classify removed object (i)  

6. Calculation of the root mean square error of cross-validation (RMSECV). 

End of LOO CV 

 Model complexity= min(RMSECV) -> first minimum  

 

 

 
 
Figure 5S. Graphical representation of the results of the HMF obtained on the fused CSF and 

plasma datasets with indication of training and test samples. 
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Table 1S. Correct classification rate for independent test set obtained for individual analysis of 

plasma data, CSF data and fused datasets by PLS2-DA. Complexity of PLS2-DA models LV=3. 

Number of variables: 20 variables for plasma and 20 variables for CSF. 

Groups plasma CSF fused (plasma and CSF) 
C10 50% 67% 80% 
P10 100% 67% 80% 
N10 0% 0% 67% 
C14 0% 0% 0% 
P14 80% 100% 67% 
N14 100% 100% 100% 

 

 

 
Table 2S. Correct classification rate for independent test set obtained for individual analysis of 
plasma data, CSF data and fused datasets by PLS-DA.  

PLS-DA model plasma CSF fused (plasma and CSF) 

C10 vs. P10 62.50% 62.50% 93% 

P10 vs. N10 75% 50% 100% 

C10 vs. N10 62.5% 100% 100% 

N10 vs. N14 62.5% 100% 100% 

C14 vs. N14 100% 100% 100% 

C14 vs. P14 100% 100% 100% 
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Figure 5S. Density distribution of PLS-DA scores of fused data: (a) “C10” vs. “P10”, the amount 

of y variance for 1 LV is equal 76.2%; (b) Regression coefficients of “C10” vs. “P10” PLS-DA 

model; (c) “N10” vs. “N14”, the amount of y variance for 1 LV is equal 94.04%; (d) Regression 

coefficients of “N10” vs. “N14” PLS-DA model. 
 



 

 



317 
 

 



318 
 

Table 1S. Metabolites  

Variable nr. Metabolite Variable nr. Metabolite 
1 citrate 39 leucine 
2 citrate 40 leucine 
3 glutamine 41 2-hydroxy-3-methylvalerate 
4 glutamine 42 unknown 
5 creatinine 43 unknown 
6 creatine 44 2-hydroxybutyrate 
7 lysine 45 2-hydroxybutyrate 
8 lysine 46 2-methyl-2-oxovalerate 
9 alanine 47 unknown 

10 arginine 48 1,5-anhydroglucitol 
11 choline 49 2,3-butanediol 
12 glucose+glyceric acid+ascorbate 50 3-methyl-2-hydroxybutanoic acid 
13 glucose+glyceric acid+ascorbate 51 Alanine 
14 glucose+unknown 52 Arabinose 
15 glucose+unknown 53 C16:0 fatty acid 
16 glucose +unknown 54 Citric acid 
17 glucose +unknown 55 Glucose 
18 glucose +unknown 56 Glutamine 
19 glucose+trimethylamine N-oxide 57 Glycerol 
20 glucose+carnitine 58 Lactic acid 
21 glucose+carnitine 59 Lysine 
22 glucose+phosphocholine 60 Mannose 
23 acetone 61 Myo-inositol 
24 acetate 62 Ornithine 
25 lactate 63 Phenylalanine 
26 lactate 64 Phosphate 
27 3-hydroxyisovaleriate 65 Pyruvic acid 
28 2-methyl-2-oxovalerate 66 Ribitol or arabitol 
29 unknown 67 Sucrose 
30 2-oxobutyrate 68 Threonine 
31 2-oxobutyrate 69 ascorbic acid derv 1 
32 valine 70 butanediol isomer 2 
33 2-oxobutyrate 71 erythronic acid 
34 valine 72 fructose 
35 unknown 73 inositol 
36 valine 74 meso-erythritol 
37 valine 75 sn-Glycerol-3-Phosphate 
38 leucine 76 urea 
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a) b)

c) d)

 
Figure 1S. Loading plot of pseudo samples trajectories for: (a) variables 1 till 19; (b) variables 

20 till 36; (c) variables 37 till 57 and (d) variables 58 till 76. Numbers correspond to variable 

numbers in Table 1S.   
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Figure 2S. The PLS-DA score plot of: (a)NMRdata; (b)GCMS data; (c) fused NMR and GC-MS 

in mid-level fashion. 

 

Clinical information  

Of the 26 patients in the MScl group in the NMR dataset, 19 patients had relapsing 

remitting (RR) MScl and 7 primary progressive (PP) MScl. In the GC-MS dataset of MScl 

patients, 7 patients were diagnosed with PP MScl and the others had PP MScl.  The 

number of patients with PP MScl in the overlap NMR/GC-MS set is equal to 4. In the 

NMR dataset, the group of the MScl patients contains 6 males and 20 females, while in 

the GC-MS MScl dataset 5 males and 19 females are found. In the NMR/GC-MS 



321 
 

overlap set (MScl) 4 patients are male. In the MScl NMR/GC-MS overlap set the median 

of the time of disease duration for the MScl patients at the moment of CSF sampling was 

4.5 years, while the average was 7.25 years with standard deviation of 6.6 years. For 

the complete NMR MScl set and GC-MS MScl set the disease duration was on average 

6 years with standard deviation of 5 years and 7.3 years with standard deviation of 5.7 

years, respectively. In the group of 20 patients with CIS, 5 are males and 15 are females 

in the NMR set. In the GC-MS dataset 4 patients are male. It is worthwhile to mention 

that all patients diagnosed with CIS have later developed MScl.  

 

 
Kernel transformations 
 Different kernels transformations, namely linear and polynomial (2nd and 3rd degree), 

were studied. However the correct classification did not extent 60% for independent test 

set. Moreover, these kernels transformation presented the lowest RMSECV for training 

set. 

 

Random division in training and independent test set 
 Random division (repeated 104 times) of the data was made and the MKL procedure 

was performed for each pair of training and independent test set. The average correct 

prediction of test set was equal to 90.5%. The average Receiver Operating 

Characteristics (ROC) curve of K-PLS-DA model is shown in Figure S3 with area under 

cure of 92.8%.   



322 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate (1-specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
bi

lit
y)

ROC curve - AUC: 92.8571 %

 
Figure 3S. Average Receiver Operating Characteristics derived from K-PLS-DA for random 

division of data. 
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