N, N-Dimethoxy- N-tert-alkylamines: new synthesis methods and the crystal structure of the precursor ${ }^{\dagger}$

Vasiliy G. Shtamburg, ${ }^{a}$ Alexander V. Tsygankov, ${ }^{a}$ Evgeny A. Klots, ${ }^{a}$ Ivan V. Fedyanin, ${ }^{b}$ Konstantin A. Lyssenko ${ }^{b}$ and Remir G. Kostyanovsky*c
${ }^{a}$ Department of Chemistry, Dnepropetrovsk National University, 49050 Dnepropetrovsk, Ukraine
${ }^{b}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 495135 5085; e-mail: kostya@xrlab.ineos.ac.ru
${ }^{c}$ N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
Fax: +7 495137 8284; e-mail: kost@chph.ras.ru

DOI: 10.1070/MC2006v016n02ABEH002222
Under the methanolysis of N-methoxy- N-(1-pyridinium)amines salts 1a-c, nucleophilic substitution occurs at the nitrogen atom to form N, N-dimethoxyamines $\mathbf{2 a}, \mathbf{b}$; the crystal structure of precursor $\mathbf{1 c}$ has been studied.

Nucleophilic substitution at the nitrogen atom is known for different N-chloro- N-alkoxy- and N-acyloxy- N-alkoxy geminal systems. N, N-Dialkoxyamines are formed under the alcoholysis of N-chloro- N-alkoxy- N-tert-alkylamines ${ }^{2}$ and N-acyloxy- N-alkoxy-N-tert-alkylamines. ${ }^{3}$ The corresponding N, N-dialkoxyamides were obtained by the alcoholysis of N-chloro- N-alkoxyureas, ${ }^{4} \mathrm{~N}$-chloroN -alkoxybenzamides, ${ }^{5} \mathrm{~N}$-chloro- N -alkoxycarbamates, ${ }^{6} \mathrm{~N}$-acyloxyN -alkoxyureas ${ }^{3}$ and N -acyloxy- N -alkoxycarbamates. ${ }^{3,6}$ Nucleophilic substitution at the nitrogen atom takes place in the reactions of N-acyloxy- N-alkoxybenzamides with amines ${ }^{7,8}$ and $\mathrm{NaN}_{3},{ }^{9,10}$ under their alkaline hydrolysis; ${ }^{11}$ in reactions of N-acyloxy- N-alkoxyamides with K and Na carboxylates. ${ }^{12}$ However, nucleophilic substitution at the central nitrogen atom in the RO- $N-\mathrm{N}^{+}$geminal system was unknown. Prepared from N-chloro- N -alkoxy-amines, ${ }^{13} \mathrm{~N}$-methoxy- N -(pyridinium)amine salts $\mathbf{1}$ are stable in the methanol solution at room temperature and nucleophilic substitution at the central N atom in this geminal system was not studied. ${ }^{13}$

We found presently that salts 1a-c under methanolysis in the presence of AcONa at $100^{\circ} \mathrm{C}$ (in a sealed glass tube) are converted into corresponding N, N-dimethoxyamines ${ }^{2}$ 2a (74% yield from 1a) and 2b (67% and 70% yields from $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively) (Scheme 1) \ddagger

Scheme 1 Reagents and conditions: ~ 100 equiv. of $\mathrm{MeOH}, \sim 10$ equiv. of AcONa, $100^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$.

Pyridine was liberated in the form of acetate. Thus, the first example of nucleophilic substitution at the nitrogen atom for this kind of geminal systems was developed. The N-pyridinium

[^0]substituent in salts 1a-c can be considered as a protective group that substantially stabilises these geminal systems in comparison with N-chloro- N -alkoxyamines. Based on this new method of synthesis, the first optically active compounds with asymmetric nitrogen in open chains have been obtained. ${ }^{2}$ Obviously, the above method might be extended to the synthesis of cyclic N, N-dialkoxyamines ${ }^{14,15}$ and trialkoxyamines (orthonitrites). ${ }^{16}$

The configurational stability of salts 1a,c ($\Delta G_{\text {inv }}^{\#}=14.3-$ $15.3 \mathrm{kcal} \mathrm{mol}^{-1}$ at $\left.2-27^{\circ} \mathrm{C}\right)^{13}$ is noticeably lower than that of dialkoxyamines $\left(\Delta G_{\text {inv }}^{\#}=21.9-24.6 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ at $\left.20^{\circ} \mathrm{C}\right) .{ }^{2}$ To understand the nature of this decrease, an XRD study of salt 1c was performed (crystals were grown from MeOH). ${ }^{\S}$

Compound 1c crystallises as a racemate (space group $P \overline{1}$). The $\mathrm{N}(2)$ atom is characterised by pronounced pyramidality with the deviation of $N(2)$ from the plane of $O(1), C(7)$ and $\mathrm{N}(1)$ atoms equal to 0.531 (2) A ; the sum of bond angles at the $\mathrm{N}(2)$ atom is 322.8°. The latter value is noticeably higher than those of $(\mathrm{MeO})_{2} \mathrm{NH}\left(311.6^{\circ}\right),,^{16(a)}(\mathrm{MeO})_{2} \mathrm{NN}(\mathrm{OMe})_{2}\left(311.5^{\circ}\right),{ }^{16(b)}$ 2-metoxy-3,3-dicarbamoyl-1,2-oxazolidine (312.1 $\left.{ }^{\circ}\right)^{14(a)}$ and N-substituted perhydro-1.3.2-dioxazine (317.5°)..$^{15(b)}$ Alhough it was reasonable to propose that the configuration stability of $\mathbf{1 c}$ is the consequence of conjugation between the electron lone pair (Lp) of $\mathrm{N}(2)$ with the pyridine π system, the pseudotorsion angle $\mathrm{Lp}-\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(1)(\phi)$ is equal to 27.3°. On the other hand, the observed conformation can be stabilised by stereoelectronic interaction between the Lp and the σ^{*} orbital of the $\mathrm{N}(1)-\mathrm{C}(5)$ bond. However, the lengths of the $\mathrm{N}(1)-\mathrm{C}(5)$ and $N(1)-C(1)$ bonds are almost equal. Finally, cation conformation can be influenced by crystal packing effects. Nevertheless, the
§ Crystallographic data for 1c: at 120 K crystals of $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{7}$ are triclinic, space group $P \overline{1}, a=5.9922(7), b=8.216(1), c=15.162(2) \AA$, $\alpha=90.534(5)^{\circ}, \beta=92.939(5)^{\circ}, \gamma=91.281(5)^{\circ}, V=745.3(2) \AA^{3}, Z=2$, $M=324.72, d_{\text {calc }}=1.447 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{MoK} \alpha)=2.90 \mathrm{~cm}^{-1}, F(000)=340$. Intensities of 7719 reflections were measured with a Smart 1000 CCD diffractometer at $120 \mathrm{~K}\left[\lambda(\mathrm{MoK} \alpha)=0.71072 \AA, \omega\right.$-scans with a 0.3° step in ω and 8 s per frame exposure, $2 \theta<56^{\circ}$], and 3569 independent reflections ($R_{\text {int }}=0.0290$) were used in the further refinement. The structure was solved by a direct method and refined by the full-matrix leastsquares technique against F^{2} in the anisotropic-isotropic approximation. The positions of hydrogen atoms were calculated and refined in an isotropic approximation in a riding model. The analysis of the Fourier electron density synthesis revealed that ClO_{4}^{-}anions are disordered by two positions with relative oxygen atom occupancies of 7:3. The refinement converged to $w R_{2}=0.1106$ and GOF $=0.997$ for all independent reflections $\left[R_{1}=0.0459\right.$ was calculated against F for 2748 observed reflections with $I>2 \sigma(I)]$. All calculations were performed using SHELXTL PLUS 5.0.

Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). These data can be obtained free of charge via www.ccdc.cam.uk/ conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336 033; or deposit@ccdc.cam.ac.uk). Any request to the CCDC for data should quote the full literature citation and CCDC reference number 299193. For details, see 'Notice to Authors', Mendeleev Commun., Issue 1, 2006.

Figure 1 General view of the cation of $\mathbf{1 c}$. The selected bond lengths (\AA) : $\mathrm{N}(1)-\mathrm{C}(5) 1.345(2), \mathrm{N}(1)-\mathrm{C}(1) 1.348(2), \mathrm{N}(1)-\mathrm{N}(2) 1.466(2), \mathrm{N}(2)-\mathrm{O}(1)$ $1.4142(16), \mathrm{N}(2)-\mathrm{C}(7) 1.505(2), \mathrm{O}(1)-\mathrm{C}(6) 1.440(2), \mathrm{C}(7)-\mathrm{C}(8) 1.524(2)$, $\mathrm{C}(7)-\mathrm{C}(9) 1.526(2), \mathrm{C}(7)-\mathrm{C}(10) 1.540(2), \mathrm{C}(10)-\mathrm{O}(2) 1.199(2), \mathrm{C}(10)-\mathrm{O}(3)$ $1.331(2)$; bond angles $\left({ }^{\circ}\right): \mathrm{N}(2)-\mathrm{O}(1)-\mathrm{C}(6)$ 107.86(12), $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ 122.79(14), $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{N}(2) 122.35(13), \mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2) 114.7(1), \mathrm{O}(1)-$ $\mathrm{N}(2)-\mathrm{N}(1) 106.6(1), \mathrm{O}(1)-\mathrm{N}(2)-\mathrm{C}(7) 105.3(1), \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(7) 110.9(1)$.

B3PW91/6-31G* calculation ${ }^{\text {II }}$ has revealed that the above conformation is also preserved in the isolated cation $\left(\phi\right.$ is $\left.33.8^{\circ}\right)$. In addition, note that the potential energy scan along the ϕ coordinate for the cation has revealed that the difference in energy between the minimum and a conformer with $\phi=90^{\circ}$ is $11.49 \mathrm{kcal} \mathrm{mol}^{-1}$.

In order to estimate the inversion barrier, we have carried out the additional optimization of the transition state (TS) with the planar $N(2)$ atom. The additional verifications of transition state localization have been obtained within the frequency calculation: one imaginary frequency ($146 \mathrm{i} \mathrm{cm}^{-1}$) corresponding to the out-of-plane bending of the $\mathrm{N}(2)$ atom was found. The energy difference between the minimum and transition state with the ZPE correction according to B3PW91/6-31G* optimization is $6.81 \mathrm{kcal} \mathrm{mol}^{-1}$, which is about two times lower than the experimental estimation.

Surprisingly, the analysis of TS geometry has revealed that, in spite of a lower barrier of inversion, the mutual disposition of the Lp of the $\mathrm{N}(2)$ atom and the pyridine π system found in the isolated cation retains in the transition state $\left(\phi=33.8^{\circ}\right)$. Such a conformation in the TS is a fortiori unexpected assuming the Lp is totally p in nature according to NBO analysis [for comparison in the isolated cation the Lp of $\mathrm{N}(2)$ has $30 \% s$-contribution]. Thus, the significant shortening of the $N(1)-N(2)$ bond from $1.451 \AA[1.466(2) \AA$ in crystal] in an energy minimum down to $1.380 \AA$ in TS resulted from the s-orbital contribution decrease rather than conjugation. In addition, the role of stereoelectronic interactions, namely, between oxygen of the methoxy group and the $\mathrm{N}-\mathrm{N}$ bond, can be mentioned. Indeed, according to NBO analysis, the energy of $\mathrm{LpO}(1) \rightarrow \sigma^{*}[\mathrm{~N}(1)-\mathrm{N}(2)]$ orbital is equal to 11.32 or $10.18 \mathrm{kcal} \mathrm{mol}^{-1}$ for isolated cation or TS, respectively. Such a value of stereoelectronic interaction in part explains that the torsion angles $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{O}(1)$ in a crystal $\left(148.8^{\circ}\right)$ and an isolated molecule $\left(145.6^{\circ}\right)$ are almost equal.

This work was supported by the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant nos. 03-03-04010 and 06-03-32840).

References

1 (a) D. A. Lenev, K. A. Lyssenko, D. G. Golovanov, V. Buss and R. G. Kostyanovsky, Chem. Eur. J., 2006, DOI: 10.1002/chem.200501532; (b) R. G. Kostyanovsky, O. R. Malyshev, K. A. Lyssenko, Yu. A. Strelenko, G. K. Kadorkina, V. R. Kostyanovsky, O. G. Nabiev and I. V. Fedyanin, Mendeleev Commun., 2004, 315.

II DFT calculations of 1c and its transition state were performed with the Gaussian 98 program package ${ }^{17}$ at the B3PW91/6-31G* level of theory. As convergence criteria, the normal threshold limits of 2×10^{-6} and 6×10^{-6} were applied for the maximum force and displacement, respectively. To enhance the B3LYP calculation accuracy, the pruned (99590) grid was used

2 R. G. Kostyanovsky, V. F. Rudchenko, V. G. Shtamburg, I. I. Chervin, and S. S. Nasibov, Tetrahedron, 1981, 37, 4245.
3 V. G. Shtamburg, E. A. Klots, A. P. Pleshkova, V. I. Avramenko, S. P. Ivonin, A. V. Tsygankov and R. G. Kostyanovsky, Izv. Akad. Nauk, Ser. Khim., 2003, 2132 (Russ. Chem. Bull., Int. Ed., 2003, 52, 2251).
4 V. F. Rudchenko, V. I. Shevchenko and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 598 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 543).
5 (a) M. Buccigross, S. A. Glover, J. P. Hammond and C. A. Rowbottom, Aust. J. Chem., 1995, 48, 353; (b) S. A. Glover, Tetrahedron, 1998, 54, 7229.

6 V. G. Shtamburg, A. P. Pleshkova, V. N. Serdiuk and S. P. Ivonin, Zh. Org. Khim., 1999, 35, 1120 (Russ. J. Org. Chem., 1999, 35, 1096).
7 J. J. Campbell and S. A. Glover, J. Chem. Soc., Perkin Trans. 2, 1992, 1661.

8 (a) J. J. Campbell and S. A. Glover, Chem. Res. (S), 1999, 8, 474; (b) J. J. Campbell and S. A. Glover, Chem. Res. (M), 1999, 8, 2075.

9 S. A. Glover and G. Mo, J. Chem. Soc., Perkin Trans. 2, 2002, 1729.
10 S. A. Glover and A. Rauk, J. Chem. Soc., Perkin Trans. 2, 2002, 1740.
11 A. M. Bonin, S. A. Glover and G. P. Hammond, J. Org. Chem., 1998, 63, 9684.
12 V. G. Shtamburg, A. V. Tsygankov, E. A. Klots and R. G. Kostyanovsky, Mendeleev Commun., 2004, 208.
13 (a) V. G. Shtamburg, V. F. Rudchenko, S. S. Nasibov, I. I. Chervin and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1981 2327 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 1914); (b) V. F. Rudchenko, S. M. Ignatov, V. S. Nosova, I. I. Chervin and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 2272 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 2076).
14 (a) R. G. Kostyanovsky, V. Schurig, K. A. Lyssenko, O. Trapp, G. K. Kadorkina, V. R. Kostyanovsky and B. B. Averkiev, Mendeleev Commun., 2004, 306; (b) R. G. Kostyanovsky, V. F. Rudchenko, O. A. D'yachenko, I. I. Chervin, A. B. Zolotoi and L. O. Atovmyan, Tetrahedron, 1979, 35, 213.
15 (a) G. V. Shustov, A. B. Zolotoi and R. G. Kostyanovsky, Tetrahedron, 1982, 38, 2319; (b) A. B. Zolotoi, O. A. D’yachenko, I. I. Chervin, V. F. Rudchenko, L. O. Atovmyan and R. G. Kostyanovsky, Khim. Geterotsikl. Soedin., 1985, 1341 [Chem. Heterocycl. Compd. (Engl. Transl.), 1985, 21, 1098].
16 (a) M. Yu. Antipin, Yu. T. Struchkov, I. F. Shishkov, A. V. Golubinsky, T. L. Elfimova, L. V. Vilkov, A. A. Bredikhin, A. N. Vereshchagin, S. M. Ignatov, V. F. Rudchenko and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 2235 (Chem. Abstr., 1987, 107, 175223e); (b) M. Yu. Antipin, Yu. T. Struchkov, V. F. Rudchenko, S. M. Ignatov and R. G. Kostyanovsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 1825 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1989, 38, 1672).

17 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. HeadGordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.

[^0]: \dagger Asymmetric Nitrogen. Part 95. Geminal Systems. Part 54. Previous communications see ref. 1.
 \ddagger Methanolysis of N -methoxy-N-(1-pyridinium)-N-tert-alkylamines salts. A solution of $1 \mathrm{a}^{13}(0.55 \mathrm{~g}, 2 \mathrm{mmol})(9 \mathrm{ml})$ and $\mathrm{AcONa}(1.5 \mathrm{~g}, 9 \mathrm{mmol})$ in methanol was heated at $100^{\circ} \mathrm{C}$ in a sealed glass tube for 2.5 h . Then, the solid was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the filtrate was concentrated in vacuo. The residue was extracted by hexane $(10 \mathrm{ml})$. The extract was evaporated in vacuo and after distilling in vacuo 0.284 g (74\%) 2a was obtained as a colourless liquid and identified by ${ }^{1} \mathrm{H}$ NMR spectroscopy with an authentic sample. ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $1.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{C}\right), 2.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.74[\mathrm{~s}$, $6 \mathrm{H}, \mathrm{N}(\mathrm{OMe})_{2}$].
 In a similar manner, $\mathbf{2} \mathbf{b}^{2}$ was obtained from $\mathbf{1 b}$ and $\mathbf{1 c}$ in 67 and 70% yields, respectively.

