
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/94132

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16178586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/94132

The SmartLogic Tool:
Analysing and Testing Smart Card Protocols

Gerhard de Koning Gans and Joeri de Ruiter
Institute for Computing and Information Sciences

Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{gkoningg,joeri}@cs.ru.nl

Abstract—This paper introduces the SmartLogic, which is a
flexible smart card research tool that gives complete control
over the smart card communication channel for eavesdropping,
man-in-the-middle attacks, relaying and card emulation. The
hardware is available off-the-shelf at a price of about 100
euros. Furthermore, the necessary firm- and software is open
source. The SmartLogic provides essential functionality for
smart card protocol research and testing. This is demonstrated
by reproducing two attack scenarios. The first attack is on
an implementation of the EMV payment protocol where a
payment terminal is forced to do a rollback to plaintext PIN
instead of using encrypted PIN. The second attack is a relay
of a smart card payment over a 20 km distance. We also show
that this distance can be increased to at least 10.000 km.

Keywords-Smart card testing; Man-in-the-Middle; Protocol
analysis; Relay attack; EMV

I. INTRODUCTION

Since the introduction of smart cards back in the early
seventies [1], a lot of progress has been made in the capa-
bilities of smart cards. Nowadays there are cards on the mar-
ket that support computationally expensive cryptographic
operations [2]. These impressive capabilities allow a wide
range of applications that involve complicated protocols.
A tool that allows to test these protocols in all kinds of
adversarial setups is essential to smart card research and
testing. However, to the best of our knowledge such tools
are not widely available or are limited in their capabilities.
This paper introduces the SmartLogic, which is a smart card
research tool that can be used in different modes such as
eavesdropping, card emulation, man-in-the-middle attacks
(or so-called “wedge” attacks) and relaying.

We demonstrate the capabilities of the SmartLogic by
two attack scenarios. First, we reproduce the man-in-the-
middle attack of Barisani et al. [3] on an implementation
of the EMV1 protocol in the Netherlands. The success of
this attack depends on the system specific parameters of the
terminal in the field. In the attack a rollback from encrypted
to plaintext PIN is forced on a genuine payment terminal.
In other words, the terminal is convinced to send the PIN

1The EMV standard contains smart card specifications for payment
systems by Europay, MasterCard and VISA.

in plaintext to the card while this should not happen. In
our second demonstration we use the SmartLogic to relay a
smart card payment over a distance of approximately 20 km.
Furthermore, we show that this distance can be increased to
at least 10.000 km. The standard for smart cards, ISO/IEC
7816, does not contain any countermeasures against relay
attacks.

A. Related Work
Here we describe smart card tools that are related to the

SmartLogic. Some of the tools are not publicly available,
while others are limited in their functionalities or are targeted
at specific card types like SIMs2. Table I gives an overview
of non-commercial smart card research tools. The first
column indicates whether the tool is publicly available. By
eavesdropping we mean that it can passively overhear the
smart card communication. Support for an active man-in-
the-middle setup is indicated by the column active MitM.
The column baudrate detection refers to the ability of the
tool to automatically detect the data transfer rate. This is
essential for a correct interpretation and manipulation of the
intercepted data. Some tools explicitly need to be configured
at the right speed as they cannot detect this automatically.
Furthermore, distance relaying means that the terminal and
card are not required to be at the same physical location,
e.g. the communication is relayed over the Internet. Finally,
a tool supports sharing when it is possible to use one smart
card simultaneously at multiple locations.

The RebelSim APDU Scanner [4] can be used to passively
sniff the communication between a smart card and a reader.
As the name suggests its main focus is on SIM cards,
presumably to analyse and undo SIM locking. It provides
SIM interfaces as depicted in Figure 1. The communication
is intercepted with an UART3 chip and can be read out using
standard terminal software. A drawback of the RebelSim is
that the baudrate needs to be set beforehand in order to
capture the communication.

The Osmocom SIMtrace [5] is a piece of hardware and
software in the OsmocomBB project. This project aims to

2Subscriber Identification Module
3Universal Asynchronous Receiver/Transmitter

Tool Pu
bl

ic
ly

Av
ai

l.

E
av

es
dr

op
pi

ng

A
ct

iv
e

M
itM

B
au

dr
at

e
D

et
ec

tio
n

D
is

ta
nc

e
R

el
ay

in
g

Sh
ar

in
g

1) RebelSim APDU Scanner X X - - - -
2) Osmocom SIMtrace X X - X - -
3) Leon Device - X X X - -
4) Season3 X X X - - -
5) Smart Card Detective X X X X - -
6) SmartLogic X X X X X X

Table I
SMART CARD RESEARCH TOOLS

produce an open source GSM baseband software imple-
mentation. The Osmocom SIMtrace tool is used within this
project to eavesdrop on communication between a SIM card
and a mobile phone. It uses the SIM connector from the
RebelSim (see Fig. 1).

Figure 1. SIM Interface

Examples of active man-in-the-
middle tools are the Leon De-
vice [6], developed at the Uni-
versity of Michigan, and the Sea-
son3 [7]. As far as we know no
hardware design or software for
the Leon Device has been made
public. The Season3 can be con-
trolled over a serial connection
where the baudrate needs to be
pre-configured.

Lastly, the Smart Card Detective (SCD) [8] is a more
recent tool that supports active man-in-the-middle attacks.
The SCD has been developed by Choudary as a hand-held
EMV interceptor. The resulting traces can be stored in EEP-
ROM which is read out over a USB connection. Although
the SCD was designed specifically for EMV protocols it
might be used for other protocols as well. However this
requires modification of the firmware. Both the hardware
design and the software for the SCD are publicly available.

B. The SmartLogic Tool

The main focus of the SmartLogic is to provide a highly
flexible setup. Part of its flexibility is achieved by its client-
server architecture. The server gives the client, equipped
with SmartLogic Hardware, access to either a real smart
card, connected via a standard reader, or one emulated by
the server. This architecture allows to easily setup relay
attacks over the Internet and makes it possible to share a
smart card between different clients, at different locations.
The SmartLogic Hardware consists of an FPGA4 and USB
microcontroller. No knowledge of the hardware is required

4Field-Programmable Gate Array

in order to implement the different attack scenarios, i.e. no
microcontroller or FPGA programming is needed.

The FPGA firmware, USB firmware and PC software
for the SmartLogic are released [9] under the terms of the
GNU General Public License version 3. The hardware is
available [10] off-the-shelf at a price of about 100 euros.

C. Outline of this Paper

This paper first describes the basic design of the Smart-
Logic in Section II. This section starts with a brief explana-
tion of the ISO/IEC 7816 standard on smart cards. Then, the
SmartLogic setup and hardware components are discussed.
The section concludes with the software and functionalities
of the SmartLogic. To demonstrate these functionalities,
Section III describes an attack on the EMV protocol and
Section IV describes relaying smart card traffic over larger
distances. Finally, we conclude with Section V and discuss
further research that can be done using the SmartLogic.

II. SMARTLOGIC DESCRIPTION

This section discusses the different components of the
SmartLogic. First, a short introduction to the ISO/IEC 7816
standard is given. This standard specifies the physical char-
acteristics and the different protocol levels of smart cards.
The implementation of the SmartLogic Hardware follows
the ISO/IEC 7816 protocol specification.

A. ISO/IEC 7816

The ISO/IEC 7816 standard defines identification cards as
integrated circuit cards with contacts. This section presents
a quick overview on the standard. For a more detailed
description we refer to the standard [11], [12]. ISO/IEC
7816 was introduced in 1998 and defines circuit cards (or
smart cards) on different levels. We will mainly focus on Part
3 [11] where the smart card contact interface is explained.
It can be said that this part mainly covers the physical layer
of the protocol. Besides normative references, electrical
characteristics and some basic card operation procedures, the
ISO/IEC 7816 standard defines the transmission protocols
T=0 and T=1.

1) Answer to Reset: The Answer to Reset (ATR) is
always sent after a signal on the reset pin of the card. The
ATR conveys information about the supported protocols
and possible configurations. Protocols are referred to by
T=x where x stands for a transmission protocol.

2) T=0 and T=1 Protocols: The SmartLogic supports
both the T=0 and the T=1 protocol. The T=0 protocol is
widely used in smart cards and implements half-duplex
transmission of characters. It is configured in a master-slave
setting where the reader is always first to initiate a command
and the card is in slave mode. A reader command consists of
five bytes. This is defined in more detail in ISO/IEC 7816-
3 [11].

Figure 2. SmartLogic Setup

CLA INS P1 P2 P3

Here CLA is the class byte which indicates the class of the
command. Then, INS is the instruction byte followed by
two parameter bytes P1 and P2. Finally, P3 is the length
byte which indicates the length of a possible data message.
Depending on the command, a data message can be send by
either the reader or the card. The direction might differ from
application to application. This means that in an active setup,
like the SmartLogic, one should learn these directions in
order to successfully relay a protocol run. If there is any data
to be sent or received in response to a command execution
the card indicates that it is ready to send or receive data by
repeating the instruction byte.

The T=1 protocol specifies a half-duplex transmission of
blocks. It is very similar to T=0, the main difference is that
commands and their data are now wrapped into blocks that
contain header information and a final check byte.

B. SmartLogic Setup

The SmartLogic consists of hardware and software parts.
Figure 2 shows a typical SmartLogic setup where the
ZTEX Board is the hardware that emulates the smart card
communication on the lowest level. This board is directly
connected to a smart-card-sized circuit board that can be
inserted into a genuine terminal. A PC that controls the
SmartLogic Hardware, the SmartLogic Client, relays the
smart card communication to the SmartLogic Server. The
SmartLogic Server controls a standard smart card reader
with a genuine smart card and forwards all communication
to it. Note that it is also possible to run both the SmartLogic
Client and Server on the same host machine. This is in most
cases sufficient enough to set up a simple man-in-the-middle
attack.

There are some major advantages of the SmartLogic
setup. First, the application layer of the protocol is imple-
mented as host software in the SmartLogic Client and Server.
This means that all protocol logic can be programmed in
Java. The low-level parts like the firmware for the hardware
can remain untouched, i.e. there is no need to flash or
re-program the hardware. Another advantage is that the
SmartLogic Server is able to emulate a card or may function
as a proxy that caches smart card communication in order to
limit smart card access. Furthermore, an inventive new idea
of this architecture is the concept of smart card sharing at
different locations at the same time. This can help to find

out whether a system checks for location-based conflicts. In
order to do this the SmartLogic Server can handle multiple
SmartLogic Clients simultaneously.

C. SmartLogic Hardware

The general purpose hardware (see Fig. 2) that is used is
an FPGA evaluation board from ZTEX [10]. The ZTEX
Board is a small programmable device that is equipped
with an FPGA and USB microcontroller chip. There are
different versions of the ZTEX Board available5. This sec-
tion describes the main hardware components which is a
combination of a smart card circuit board and the ZTEX
Board.

1) Smart Card Circuit Board: The smart card circuit
board is a smart-card-sized board that contains the smart
card connectors on the physical locations as described in
the ISO/IEC 7816 standard. The connectors of the smart
card circuit board are depicted in Figure 3. The power (VCC)
and ground (GND) connectors are not logically connected
but only use the circuitry and ground from the ZTEX Board.
Connectors C4, C6 and C8 are not used and the remaining
three connectors, reset (RST), clock (CLK) and input-output
(I/O), are logically connected to the ZTEX Board.

C4

C3

C2

C1

C6

C5

C7

C8

VCC GND

VPPRST

CLK

RFU RFU

I/O

Figure 3. Smart Card Interface

2) ZTEX Board: The main component of the ZTEX
Board is an FPGA which can be seen as a piece of hardware
that is able to simulate a hardware design. Since the FPGA
chip can be flashed it allows to change hardware designs and
test different configurations which makes it multi-functional.
The hardware design can be described in a hardware descrip-
tion language such as VHDL or Verilog. The input-output
line is a half-duplex channel which makes use of a pull-up
register. This means that both parties pull the line to a high
voltage when they are not communicating. The party that
communicates pulls the line to a low voltage in order to

5We tested the SmartLogic with ZTEX USB-FPGA-Module 1.2 and
1.11c.

send a ‘0’ and pulls it up again to send a ‘1’. Since the line
is half-duplex, only one party can communicate at a time.

48 MHz clock

External clock

I/O line

USB line
Process 1

Process 2
Reset line

Figure 4. FPGA Processes

The FPGA is responsible for the communication on bit-
level. Since it uses the clock of the genuine terminal it is able
to snap in on the correct bitrate by counting the clock cycles.
By default one bit period is 372 clock cycles according to the
ISO/IEC 7816. Concretely, the FPGA runs two processes,
see Figure 4. The first process controls the input and output
buffers that contain the raw bits for sending and receiving.
This process runs at the main clock of 48 MHz. The second
process snaps to the clock frequency of the external genuine
terminal. The speed of this process varies but is typically
a couple of megahertz and it makes sure that the bits are
communicated at the right speed on the I/O line (C7).
The communication between the FPGA and the SmartLogic
Client is controlled by an USB chip.

D. SmartLogic Software

Apart from the firmware for the ZTEX Board, the soft-
ware for the SmartLogic consists of a client and server
implementation in Java. The SmartLogic Client controls the
ZTEX Board and establishes a connection with the Smart-
Logic Server. In its turn the SmartLogic Server controls a
standard smart card reader and forwards all communication
to a genuine smart card. Alternatively, the SmartLogic Server
can be programmed such that all smart card responses are
emulated.

Figure 5 shows two abstract classes ProtocolMitm and
ProtocolEmulator that are used in the SmartLogic Server.
These classes can be extended for a specific application
like the man-in-the-middle attack on the EMV protocol that
is presented in this paper. By default there are some ex-
ample implementations available like ProtocolMitmDefault
that intercepts and displays plaintext PIN codes in an alert
box. In order to set up new man-in-the-middle or emulation
setups, only an extension on either the ProtocolMitm or
ProtocolEmulator class has to be written.

1) Smart Card Sharing: One of the features of the
SmartLogic Server is that it can accept multiple connections.
Depending on the smart card application that is being
shared, some additional checks are needed to keep the output
consistent. For example, the SIM application contains a

directory structure. First the directory is chosen by a select
command before a read or write command is issued. To
prevent inconsistent output the server needs to keep track of
which client wants to access which directory.

2) Set Answer To Reset: According to ISO/IEC 7816 a
smart card needs to send an Answer to Reset when it receives
a reset signal from the reader. This ATR should be sent
within 400 to 40.000 clock cycles after the reset signal. The
ATR is cached in the SmartLogic Hardware after startup
in order to keep control over the response time. All other
communication is relayed to the genuine card or emulated
by the SmartLogic Server.

ProtocolEmulatorProtocolMitm

ProtocolMitmDefault DefaultEmulator

ChipknipEmulator

Figure 5. Man-in-the-middle and Emulator Java classes

3) Speed and Baudrate Detection: Unlike with tools as
the RebelSim it is not necessary to set the baudrate for the
SmartLogic since it connects directly to the clock of the
genuine terminal. Tools such as the RebelSim need to be pre-
configured before eavesdropping with a baudrate that varies
for different smart card readers. By using the internal clock
of the ZTEX Board, which runs on 48 MHz, and comparing
its difference in cycles with the clock of the genuine terminal
it is possible to approximate and communicate the clock
speed of the terminal to the PC.

III. INVESTIGATING THE EMV PROTOCOL

In this section we discuss a man-in-the-middle attack on
an EMV protocol. The attack was presented by Barisani
et al. [3] using dedicated hardware. Usually these kind of
attacks are not reproduced because it is a time consuming
and tedious job. The SmartLogic lowers the effort needed
to mount such an attack. By writing an extended class
ProtocolMitmEMV in Java we were able to easily reproduce
the attack.

A. The Protocol

EMV is a standard for electronic payments using smart
cards [13]–[16]. The initiative for EMV was taken by
Europay, MasterCard and Visa in the 1990s. Currently the
EMV standard is maintained by EMVCo, a company jointly
owned by MasterCard, Visa, American Express, and JCB.
According to EMVCo, the number of EMV cards in use
reached 1 billion in 2010.

An EMV session consists of four phases:
1) initialisation
2) data authentication (optional)

Sender Original Run Modified Run Info
READER : 00 B2 01 0C 8A 00 B2 01 0C 8A ← READ RECORD
CARD : B2 70 81 87 5F 25 03 10 06

17 5F 24 03 15 04 30 9F 07
02 FF C0 5A 0A XX XX XX XX
XX XX XX XX XX XX 5F 34 01
08 8E 12 00 00 00 00 00 00
00 00 42 01 02 04 04 03 02
03 01 00 9F 0D 05 B8 70 BC
80 00 9F 0E 05 00 00 00 00
00 9F 0F 05 B8 70 BC 98 00
8C 21 9F 02 06 9F 03 06 9F
1A 02 95 05 5F 2A 02 9A 03
9C 01 9F 37 04 9F 35 01 9F
45 02 9F 4C 08 9F 34 03 8D
0C 91 0A 8A 02 95 05 9F 37
04 9F 4C 08 5F 28 02 05 28
9F 4A 01 82 90 00

B2 70 81 87 5F 25 03 10 06
17 5F 24 03 15 04 30 9F 07
02 FF C0 5A 0A XX XX XX XX
XX XX XX XX XX XX 5F 34 01
08 8E 12 00 00 00 00 00 00
00 00 01 00 02 04 04 03 02
03 01 00 9F 0D 05 B8 70 BC
80 00 9F 0E 05 00 00 00 00
00 9F 0F 05 FF 70 BC 98 00
8C 21 9F 02 06 9F 03 06 9F
1A 02 95 05 5F 2A 02 9A 03
9C 01 9F 37 04 9F 35 01 9F
45 02 9F 4C 08 9F 34 03 8D
0C 91 0A 8A 02 95 05 9F 37
04 9F 4C 08 5F 28 02 05 28
9F 4A 01 82 90 00

Two CVM bytes 42 01 are adjusted
to 01 00

One Action Code - Online byte B8 is
adjusted to FF

READER : 00 88 00 00 04 ← Card Authentication
CARD : 88
READER : 36 25 2E 81
CARD : 61 87
READER : 00 C0 00 00 87
CARD : C0 77 81 84 9F 4B 81 80 79

0F 64 83 96 9D FC 5F 17 09
1B 6E ...98 CC B3 18 83 E0
63 A5 90 00

READER : 00 84 00 00 00 ← GET CHALLENGE
CARD : 6C 08
READER : 00 84 00 00 08
CARD : 84 5A 6F E6 FA A5 78 87 9D

90 00
READER : 00 20 00 88 80 00 20 00 80 08 ← VERIFY PIN
CARD : 20 20
READER : 51 62 E3 B7 98 D6 42 79 58

54 EB 9B D1 46 53 62 3C BA
6A EF ...17 3C A9 2A B8 58
A1 22 DA 9B

24 12 34 FF FF FF FF FF ← Plaintext PIN 1234

CARD : 90 00 90 00

Figure 6. EMV Payment: Card Authentication and PIN Verification

3) cardholder verification (optional)
4) the actual transaction

In the initialisation, the terminal selects the EMV application
on the smart card and retrieves the data necessary for the
transaction.

The data authentication phase is used for authentication
of data that is residing on the smart card. This at least in-
cludes a signature over static data, for example, the account
number and expiry date of the card. The optional dynamic
part of the authentication is achieved by either running a
challenge-response protocol or retrieving a signature over
the transaction data. If the verification of the signature on
the static data fails, the dynamic part is not performed and
the data authentication is aborted.

There are several methods for cardholder verification
of which only two involve the card in the verification
process: off-line encrypted PIN and off-line plaintext PIN.
Off-line plaintext PIN is supported for older smart cards,
that do not support asymmetric cryptographic operations.
In the initialisation phase the card provides a list with
supported cardholder verification methods (CVM List) in

order of preference and with possible additional conditions.
For example, Dutch banking cards prefer off-line encrypted
PIN over off-line plaintext PIN.

In the actual transaction phase, the card computes a MAC,
using a key shared with the bank, over relevant data, e.g. the
amount and cardholder verification results. If required for
the data authentication, this is combined with an additional
signature that can be verified by the terminal.

Exception Handling: When an exception occurs during
an EMV session, so-called Action Codes determine how the
terminal should react. An Action Code is basically a list
of exceptions. Both the card and the terminal can contain
Action Codes, the Issuer Action Codes and the Terminal
Action Codes respectively. If an exception occurs, it is first
checked against the Action Code - Denial of both the card
and the terminal. When the exception is listed in one of these
Action Codes the transaction is aborted. If the exception
is not listed in an Action Code - Denial, the Action Code
- Online is checked to determine whether the transaction
should be forced online.

B. The Attack

Recently a method was shown by Barisani et al. [3] to
force a rollback from encrypted PIN to plaintext PIN using
a man-in-the-middle attack. Their method makes use of the
fact that after a failed data authentication, the transaction
might still continue and be performed online depending on
the Action Codes.

In the attack the CVM List is modified such that off-
line plaintext PIN is the preferred method for cardholder
verification. The Issuer Action Codes are modified such that
in case of a failed data authentication the transaction is not
aborted but performed online. Since modifying the CVM
List and Issuer Action Codes might result in a failed data
authentication, it depends on the Terminal Action Codes
whether the transaction is then aborted or performed online.
If the transaction is not aborted, the terminal continues with
the data it received from the card, including the modified
CVM List, as it cannot tell which data was modified. This
results in the PIN code being sent to the card in plaintext,
which can then be intercepted by a man-in-the-middle.

C. Using the SmartLogic

To test whether the forced fall-back also could be applied
in the Netherlands we used the SmartLogic to intercept
and modify the communication between a point-of-sale
terminal and a Dutch banking card. The Dutch banking
card supported the challenge-response mechanism as data
authentication method. After the presentation by Barisani et
al. [3] the Dutch banks rolled out a fix to their terminals to
prevent the attack. In the initialisation phase we modified
the CVM List and Issuer Action Codes, both which are
included in the static data that is retrieved during the data
authentication phase.

The Action Codes are modified such that on failed data
authentication the transaction is performed online. The rest
of the communication is passed on unchanged. In Fig-
ure 6, part of an original transaction is compared with a
modified one. The modified data in the READ RECORD
command is indicated in bold. After modifying the data, the
challenge-response part of the data authentication was no
longer performed. This is as expected, as data authentication
already fails when verifying the signature over the static
data. Although the transaction was denied by the back-end,
the modification of the data still resulted in a plaintext PIN
code transmission (see Fig. 6) to the card, as opposed to the
claim of the banks. According to the bank, the terminal we
encountered was one of the few terminals that had not been
patched yet.

IV. INCREASING THE CARD-TERMINAL DISTANCE

An interesting question is whether it is possible to increase
the distance between a genuine card and the terminal, and
moreover, to what distance. For this experiment we used the
Chipknip, a Dutch smart card payment scheme. Comparable

RTD Sender Location Message
READER Nijmegen BC B0 00 00 08

68ms CARD Arnhem B0 00 00 00 00 00 00 00 00
90 00

READER Nijmegen BC A4 00 00 02
41ms CARD Arnhem A4

READER Nijmegen 29 01
66ms CARD Arnhem 90 00

READER Nijmegen BC B0 00 00 64
268ms CARD Arnhem B0 52 80 01 01 00 20 62 ...

... B0 7D 90 00
READER Nijmegen BC B0 00 19 20

119ms CARD Arnhem B0 D2 0C 2E E9 67 30 10 ...
... 00 00 90 00

READER Nijmegen E1 B4 00 01 05
76ms CARD Arnhem B4 00 06 D1 09 78 90 00

Figure 7. Relay over 20 km between Arnhem and Nijmegen

systems are, for example, the Geldkarte from Germany and
Proton from Belgium. These systems are designed for micro
payments and function like an electronic wallet. No PIN is
needed to perform payments using a Chipknip card. The only
transaction that involves a PIN is when money is transferred
from a regular bank account to the Chipknip card. It is
possible to buy anonymous Chipknip cards that are not
linked to a bank account; these cards cannot be charged.

In a practical setup we were able to relay a payment
between two Dutch cities that are situated about 20 km
apart. In Arnhem we installed a SmartLogic Server with a
genuine smart card and in Nijmegen we used a SmartLogic
Client to buy candy from a vending machine. The client
was connected to the Internet through a wireless connection
and the server was directly connected through an ADSL
connection. Round-trip times of the messages in the relayed
protocol run are depicted in Figure 7.

ISO/IEC 7816-3 defines the waiting time WT as the
maximal delay between the leading edge of a character that
is transmitted by the card and the leading edge of the last
character of a message that was transmitted by either the
card or the reader. When no signal is received within time
WT, a card is considered to be unresponsive. It is possible
to define the WT in the ATR of a card. We tested some
terminals without setting WT and using 372 cycles per bit
period. According to the standard the default WT would then
be 9600 × 372

f ms where f is the clock frequency of the
terminal.

Table II shows the results of the observed maximal delay
times. We measured the maximal delay that could be intro-
duced while keeping a successful protocol run. The results
for the default configuration show that it is possible to run
protocols over huge distances. For instance, we measured a
round-trip time to an IP address in Osaka (Japan) of about
270 ms which is at a distance of approximately 10.000 km
from our testing location. Note that the Chipknip terminal
allows a delay that is almost twice as long. To conclude,
the waiting time is not a boundary when it comes to relay
attacks. If good connection speeds are available at both the

Terminal/Reader Clk. speed WT Measured
VASCO DIGIPASS 810 1.05 MHz 3410 ms 3560 ms
e.dentifier2 2.00 MHz 1790 ms 1910 ms
Ingenico 5300 4.91 MHz 730 ms 1100 ms
Chipknip Charging Terminal 3.69 MHz 970 ms 1200 ms
Chipknip Payment Terminal 4.92 MHz 730 ms 500 ms

Table II
MAXIMUM MEASURED DELAY TIMES

location of the client and the server, a relay attack can be
mounted from one side of the world to the other. Several
solutions to this problem of relaying have been proposed
and are known as distance bounding protocols [17]–[19].
Practical attacks like demonstrated in this paper show the
need for such protocol implementations.

V. CONCLUSIONS

In this paper we have presented the SmartLogic, a generic
and highly flexible smart card research tool, for which
the hardware and software are open source and publicly
available. The SmartLogic allows to execute all types of
common attacks on protocols. The added value of the
SmartLogic is a flexible design that can be quickly modified
to a certain protocol and logical processing. In order to set up
a specific attack, only a small extension needs to be written
in Java, which is for most programmers more comfortable
than programming a microcontroller or FPGA.

Apart from performing specific attacks, the SmartLogic
can also be used to discover new security vulnerabilities.
One way to do this is using real-time fuzzing. Doing this
in real-time is useful if, for example, a genuine card and
terminal are needed to successfully authenticate before the
actual fuzzing will take place. Fuzzing is not built into the
tool yet, but could easily be added. A different approach
would be to try to infer the internal state machines of
smart cards and terminals. Using this method, ‘undesired’
states, that introduce security vulnerabilities, could be dis-
covered. In related work, models are inferred for smart
cards like banking cards [20] and electronic passports [21].
Furthermore, additional testing can be done by supplying
the learned model as input for model-based testing.

The use and practicality of the SmartLogic is demon-
strated by mounting two practical attacks. The first one
is an attack on EMV, forcing a rollback from encrypted
to plaintext PIN. The second attack is a successful relay
of a payment transaction over a distance of 20 km. Fur-
thermore, we showed that these relay attacks have a high
potential range and can bridge 10.000 km. Apart from the
two experiments described in this paper, we also successfully
used the SmartLogic to emulate smart cards in e-banking
readers and shared one SIM card between two mobile phones
simultaneously.

To conclude, using low-cost off-the-shelf hardware, the
SmartLogic allows smart card testing in many different

setups including eavesdropping, man-in-the-middle attacks,
relaying, card emulation and card sharing.

REFERENCES

[1] W. Rankl and W. Effing, Smart Card Handbook, 2nd Edition.
Wiley, 2000.

[2] N. Semiconductors, P5Cx012/02x/40/73/80/144 Family: Se-
cure Dual Interface and Contact PKI Smart Card Controller,
NXP, June 2010.

[3] A. Barisani, D. Bianco, A. Laurie, and Z. Franken, “Chip &
PIN is definitely broken,” 2011, presentation at CanSecWest
Applied Security Conference, Vancouver 2011. Slides avail-
able at http://dev.inversepath.com/download/emv/emv 2011.
pdf.

[4] “RebelSim APDU Scanner,”
http://rebelsimcard.com/network-sim-apdu-scanner.html.

[5] “Osmocom SIMtrace,” http://www.osmocom.org.

[6] “Smartcards: Leon Devices,”
http://www.citi.umich.edu/projects/smartcard/leon.html, Cen-
ter for Information Technology Integration (CITI).

[7] “Season3,” http://www.cardman.com/loggers.html.

[8] O. Choudary, “The Smart Card Detective: A Hand-
Held EMV Interceptor,” Master’s thesis, 2010, http://www.
smartcarddetective.com.

[9] G. de Koning Gans, “SmartLogic Tool,”
http://gerhard.dekoninggans.nl/smartlogic.

[10] S. Ziegenbalg, “ZTEX Hardware,” http://ztex.de.

[11] ISO/IEC 7816-3:2006, Identification cards — Integrated cir-
cuit cards with contacts — Part 3: Cards with contacts
— Electrical interface and transmission protocols. ISO,
Geneva, Switzerland, 2006.

[12] ISO/IEC 7816-4:2005, Identification cards — Integrated cir-
cuit cards with contacts — Part 4: Organization, security and
commands for interchange. ISO, Geneva, Switzerland, 2005.

[13] EMVCo, “EMV– Integrated Circuit Card Specifications for
Payment Systems, Book 1: Application Independent ICC to
Terminal Interface Requirements,” 2008.

[14] ——, “EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 2: Security and Key Management,” 2008.

[15] ——, “EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 3: Application Specification,” 2008.

[16] ——, “EMV– Integrated Circuit Card Specifications for Pay-
ment Systems, Book 4: Cardholder, Attendant, and Acquirer
Interface Requirements,” 2008.

[17] S. Brands and D. Chaum, “Distance-Bounding Protocols,” in
Advances in Cryptology – EUROCRYPT’93. Springer, 1994,
pp. 344–359.

[18] S. Drimer and S. Murdoch, “Keep your enemies close:
Distance bounding against smartcard relay attacks,” in Pro-
ceedings of 16th USENIX Security Symposium on USENIX
Security Symposium. USENIX Association, 2007, pp. 1–16.

[19] G. Hancke and M. Kuhn, “An RFID Distance Bounding
Protocol,” in Security and Privacy for Emerging Areas in
Communications Networks, 2005. SecureComm 2005. First
International Conference on. IEEE, 2005, pp. 67–73.

[20] F. Aarts, E. Poll, and J. de Ruiter, “Formal models of banking
cards for free,” 2012, unpublished.

[21] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and
abstraction of the biometric passport,” in Proceedings of the
4th international conference on Leveraging applications of
formal methods, verification, and validation - Volume Part I,
ser. ISoLA’10, 2010, pp. 673–686.

APPENDIX

APPENDIX A: EMV ATTACK IMPLEMENTATION

This is the attack implementation that was used for an
EMV terminal in the Netherlands. The extended class Pro-
tocolMitmEMV was written to set up the man-in-the-middle
attack as described in this paper using the SmartLogic.
import javax . smar tcard io . Card ;
import javax . smar tcard io .CommandAPDU;
import javax . smar tcard io . ResponseAPDU ;

import net . sourceforge . scuba . smar tcards . CardService ;
import net . sourceforge . scuba . smar tcards . CardServiceException ;

/∗∗
∗ ProtocolMitmEMV . java − EMV p l a i n t e x t PIN a t t a c k
∗/
c la s s ProtocolMitmEMV extends ProtocolMitm {

public ProtocolMitmEMV () {
t h i s . s e tAc t iva t ed (true) ;

}

public void r e s e t () {
}

public byte [] getResponse (CardService card , byte []
readerMessage) {

byte [] empty = {};
byte [] rep ly ;
CommandAPDU command ;
ResponseAPDU response ;

rep ly = empty ;

try {
command = new

CommandAPDU(readerMessage) ;
response = card . t r ansmi t (command) ;
rep ly = response . getBytes () ;

i f (readerMessage . l eng th == 5 &&
reply . l eng th > 0) {

byte CLA = readerMessage [0] ;
byte INS = readerMessage [1] ;
byte P1 = readerMessage [2] ;
byte P2 = readerMessage [3] ;
byte P3 = readerMessage [4] ;

i f (CLA == (byte) 0x00 &&
INS == (byte) 0xB2 &&
P1 == (byte) 0x01 &&
P2 == (byte) 0x0C &&
P3 == (byte) 0x8A) {

rep ly [46] = (byte)
0x01 ;

rep ly [47] = (byte)
0x00 ;

rep ly [75] = (byte)
0xFF ;

}
}

} catch (Exception e) {
rep ly = empty ;

}

return rep ly ;
}

}

