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Abstract: Early R-functions theory [1] combined with variational methods have been applied to 
linear [2] and nonlinear vibration problems [3,4] of the shallow shells theory of the constant 
thickness. In the present study, we first apply R-functions theory in order to investigate the 
geometrically nonlinear vibrations of orthotropic shallow shells of complex shape with variable 
thickness. Mathematical formulation is made in the framework of classical geometrically nonlinear 
theory of thin shallow shells. For a discretization of the original system in time, approximation of 
unknown functions is carried out by using a single mode approach. In order to construct a system of 
basic functions, the proposed algorithm includes sequence of the linear problems such as finding 
eigen functions of the linear vibrations of shallow shells with variable thickness and auxiliary tasks of 
the elasticity theory. The linear problems are solved by the R-functions method. The developed 
approach allows reducing the original problem to the corresponding problem of solving nonlinear 
ordinary differential equations (ODEs), whose coefficients are presented in analytical form. In order 
to solve the obtained system of ODEs the Bubnov-Galerkin method is applied. 

The proposed algorithm is implemented within an automated system POLE-RL [1]. Numerical 
examples of large-amplitude flexible vibrations of shallow orthotropic shells with complex shape and 
variable thickness are introduced demonstrating merits and advantages of the R-functions method. 
Comparison of the obtained results regarding shells with rectangular plans with the other methods 
confirms the reliability of the proposed method. 

 
 

1. Introduction 

Free nonlinear vibrations of open shallow shells having the constant thickness and with 

rectangular plan-form have been studied by a number of researches and are well documented 

and reviewed. However, this problem has received rather less attention for orthotropic 

shallow shells with complex shapes and variable thickness. A reason is mainly motivated by 

the complexities involved. We are going to deal with this problem the approach reported in 

paper [4] and referred further as RFM, which is based on application of both variational 

method and R-functions theory.  
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2. Mathematical formulation 

The present formulation of the problem is based on the classical shell theory which adopts 

Kirchhoff’s hypothesis (the rotary inertia phenomenon is not taken into account). According to this 

theory the non-linear strain-displacement relations at the mid-surface can be written as follows 
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In these expressions, the subscripts following comma stand for partial differentiation. The constitutive 

relations of the shell can be expressed as follows: 
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Here ,ij ijС D are the stiffness coefficients of the shell depending of x and y, if the shell has variable 

thickness.  

The equation of equilibrium for free geometrically nonlinear vibration of the shallow shells may be 

written in the following form  
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where u,v,w are displacements of the shell in directions Ox, Oy and Oz, respectively. In equations  

(5)-(7) the differential operators iij NlL ,  3,2,1, =ji  are defined in the similar way as in [5].  

The system of equations is supplemented by boundary conditions, the expressions of which are 

determined by the way of shell fixation.  

3. Method of solution 
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Applying the approach developed in references [4], we first solve the linear vibration problem and 

then we find the eigenfunctions. Let us denote the natural frequency and the corresponding 

eigenfunctions by Lω  and
( )cw , ( ) ( )cc vu , , respectively. Then displacements of the non-linear 

problem follow 
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where functions  ( ) ( )yxvyxu ,,, 1111  are solutions of the system being similar to the Lame’s system  

    ( )cwNlvLuL 111121111 =+ ,        ( )cwNlvLuL 211221121 =+ .                                              (10) 

 Observe that equations (5)-(6) are identically satisfied. Symbol ∆  in equations (9) is equal to 1 for 

shells, and zero for plates. The above mentioned problem is solved by RFM. In detail this method has 

been described in references [1-4]. 

Substituting expressions (8), (9) for ),,,( tyxu  ),,,( tyxv  ),,( tyxw  into equation (7) and 

applying the Bubnov-Galerkin procedure we obtain the following equation 
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In formulas (12)-(13) the expressions 
( ) ( ) ( )NpN

ij
L

ijij NNN ,,  are components of the following vectors 
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In order to find a backbone curve we take ( ) τωτξ NAcos= and apply the Bubnov-Galerkin 

procedure [2, 3]. Then the approximate dependence between maximum amplitude A and the ratio 

LN ωων /=  [2] is as follows:  
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4. Numerical results.   

 

The correctness of the developed method have been analyzed by solving a linear vibration problem 

for an orthotropic clamped spherical shallow shell with the square plan-form and variable thickness of 

the form 

 ( )( )2
0 1 6 6 1h h x xα= + − + .                      (18) 

The material properties of the shell are  

1 47.6E = GPа, 2 20.7E = GPа, 12 5.31G =  GPa, 12 0.149ν = .                  (19)  

The comparison of obtained results with similar results reported in reference [5] confirms the 

reliability of the developed approach. Now, let us study the non-linear vibration of the shell with 

complicated form shown in Figure 1 and 2. The varying thickness is defined by (18), where as 

material properties are given by (19).  The parameter α is varied in interval[ ]0.5;0.5− , 0h is 
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thickness of the shell corresponding to 0α =  . The following geometric parameters are taken: 

0 / 0.008h a = , / 1b a = , 6.0/,75.0/ == adac  

 

         Figure 1. Shape of the shallow shell                           Figure 2. Plan-form of the shell 

 

 The values of non-dimensional frequencies parameter ( )2

0 02 /i i a h Dλ ρΛ = for the clamped 

orthotropic spherical shallow shell ( 08.0
11 ==

yx RR
) are presented in Table 1.  

 

Table 1.  Influence of variable thickness parameterα   on frequencies ( )2

0 02 /i i a h Dλ ρΛ =   

(i=1,2,3,4) of the clamped spherical shallow shell  

 
α  

iΛ  

-0.5 -0.3. -0.1 0 0.1 
0.3 

 
0.5 

iΛ  117.78 118.74 119.39 119.61 119.75 119.83 119.62 

iΛ  125.82 129.04 131.55 132.60 133.55 135.11 136.42 

iΛ  131.95 133.53 134.68 135.16 135.58 136.34 136.85 

iΛ  144.18 144.69 144.32 143.87 143.28 141.76 140.05 

 

On the other hand we report in Figures 3 and 4 the influence of shell curvatures on 

backbone curves for different values of the thickness parameter α (-0.5; 0.5) obtained by our 

approach.  
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Figure 3. Effect of curvatures of the                 Figure 4.  Effect of curvatures of the spherical      

spherical shells on backbone curves                                 shells on backbone curves 

    )5.0( =α                                                                               )5.0( −=α  

5. Conclusions. 

 Analysis of geometrically non-linear vibration of the shallow shells with variable thickness and 

complex shapes has been carried out with a help of the R-functions theory and variational methods. 

Advantages of the proposed approach have been illustrated by examples including shells of variable 

thickness and complex shape. 
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