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Abstract 

 

Normal rat kidney (NRK) fibroblasts exhibit growth-dependent changes in 

electrophysiological properties and intracellular calcium dynamics. The transition 

from a quiescent state to a density-arrested state results in altered calcium entry 

characteristics. This coincides with modulation of the expression of the genes 

encoding the calcium channels Trpc1, Trpc6 and Orai1, and of the intracellular 

calcium sensor Stim1. In the present study we have used gene selective short hairpin 

(sh) RNAs against these various genes to investigate their role in a) capacitative store-

operated calcium entry (SOCE); b) non-capacitative OAG-induced receptor-operated 

calcium entry (ROCE); and c) prostaglandin F2α (PGF2α)-induced Ca2+-oscillations in 

NRK fibroblasts. Intracellular calcium measurements revealed that knockdown of the 

genes encoding Trpc1, Orai1 and Stim1 each caused a significant reduction of SOCE 

in NRK cells, whereas knockdown of the gene encoding Trpc6 reduced only the 

OAG-induced ROCE. Furthermore, our data show that knockdown of the genes 

encoding Trpc1, Orai1 and Stim1, but not Trpc6, substantially reduced the frequency 

(up to 60%) of PGF2α-induced Ca2+ oscillations in NRK cells. These results indicate 

that in NRK cells distinct calcium channels control the processes of SOCE, ROCE 

and PGF2α-induced Ca2+ oscillations. 
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1. Introduction  

In many cell types activation of phospholipase C (PLC)-coupled receptors does not 

only result in an IP3-mediated increase in intracellular calcium concentration, but also 

in enhanced calcium entry across the plasma membrane. In general, two distinct 

mechanisms for calcium uptake can be discriminated; one is referred to as receptor-

operated calcium entry (ROCE), which involves non-selective calcium channels that 

are activated by phosphatidylinositol 4,5-bisphosphate (PIP2) metabolites. The other 

mechanism is referred to as store-operated calcium entry (SOCE) and involves 

calcium channels that are activated by IP3-induced depletion of intracellular calcium 

stores [1-4]. Despite intensive studies the calcium channels specifically involved in 

ROCE and SOCE have not been identified yet in a conclusive manner. 

During the last decade, the mammalian homologues of Drosophila canonical 

Transient Receptor Potential Channels (TRPCs) have been proposed to be involved in 

both SOCE and ROCE [5]. There are seven related members of the TRPC family, 

designated in humans as TRPC1-7. Based on biochemical and functional similarities, 

the TRPC family of ion channels can be divided into a number of subfamilies, one 

consisting of TRPC1, TRPC4 and TRPC5, and another one consisting of TRPC3, 

TRPC6 and TRPC7[6]. Based on overexpression and knockdown studies, as well as 

on pharmacological approaches, it has been proposed that TRPC1 is particularly 

involved in SOCE and becomes activated upon depletion of intracellular calcium 

stores. Moreover, there is general agreement that members of the 

TPRC3/TRPC6/TRPC7 subfamily are involved in ROCE, since they can be activated 

by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) [7-9].  

The recent identification of two new protein families has helped greatly to 

better understand the nature and regulation of ion channels involved in SOCE. It has 

been shown that STIM1 (Stromal Interaction Molecule 1) acts as a Ca2+ sensor inside 

the cell, which links the filling state of the intracellular Ca2+ stores to the regulation of 

plasma membrane Ca2+ channels [10-13]. Knockdown of STIM1 gene expression by 

siRNA reduced SOCE in HEK293, SH-SY5Y, Jurkat T, and HeLa cells significantly, 

indicating that STIM1 plays an essential role in the regulation of this process. In 

contrast, over-expression of the STIM1 gene only modestly enhanced SOCE in 

HEK293 cells, indicating that physiological levels of STIM1 are already optimal for 

SOCE control [14]. 
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Secondly, a new calcium release-activated calcium channel (CRACM1 or 

ORAI1) has been identified, which acts as a STIM-1 activated calcium channel in 

lymphocytes [15]. Experimental evidence indicates that knockdown of the ORAI1 

gene decreases SOCE.[16, 17]. A mutation in the ORAI1 gene, resulting in an R91W 

substitution, has been shown to be responsible for a familial form of Severe 

Combined Immunodeficiency (SCID) in humans [18]. Interestingly, human cells 

transfected with the R91W-ORAI1 mutant gene did not only show a reduction in 

SOCE, but also in ROCE [19]. Furthermore, there is increasing evidence that STIM1 

and ORAI1 can form dynamic complexes with both TRPC1 and TRPC6 [20, 21]. 

Several recent studies have revealed that STIM1 regulates the opening of ORAI and 

TRPC channels. Whereas STIM1 is obligatory for the functioning of ORAI channels 

[22, 23], TRPC channels appear to be able to function both as STIM1-dependent and 

STIM1-independent channels. Structural studies have indicated that binding of the so-

called SOAR domain of STIM1 is sufficient to mediate activation of ORAI1, but that 

in the case of TRPC channels this requires the additional binding of the STIM1 

polylysine domain [24]. However, the exact mechanism by which STIM1 and ORAI1 

regulate SOCE and ROCE, both in the presence and absence of TRPC proteins, is still 

largely unknown. 

Normal rat kidney fibroblasts (NRK) represent an excellent in vitro model 

system for studying the control mechanisms of cellular growth and phenotypic 

alterations upon cellular transformation [25]. Normal rat kidney (NRK) fibroblasts 

have intracellular calcium dynamics that strongly depend on their growth stage NRK 

cells can be grown to confluence in monolayer culture and made quiescent by serum 

deprivation. The exposure of these quiescent cells to prostaglandin F2α  (PGF2α) 

causes individual cells in the monolayer to exhibit calcium oscillations at variable 

frequency, in spite of their metabolic and electrical, gap junction-mediated coupling 

When grown to density-arrest following incubation with EGF and insulin, these 

fibroblasts start to exhibit spontaneous firing of repetitive calcium action potentials, 

which are associated with near-synchronous Ca2+ transients [26, 27]. We have 

previously shown that PGF2α plays an important role in both processes, since 

knockdown of the FP receptor gene (Ptgfr), which is specifically activated by PGF2α, 

completely abolishes both the Ca2+ transients and the action potentials [28].  



 

5 
 

Previous studies have shown that in NRK cells SOCE is essential for 

maintaining intracellular calcium homeostasis, including membrane excitability and 

the refilling of calcium stores [29]. We have recently presented pharmacological 

evidence that in NRK fibroblasts SOCE and ROCE are differentially regulated in 

quiescent and density-arrested cultures [30]. The aim of the present study was to 

investigate the role of TRPCs, STIM1 and ORAI1 in these calcium entry mechanisms 

and in PGF2α-induced calcium oscillation in NRK cells, by using a knockdown 

approach against their individual genes. 

 

 

Abbreviations: 

SOCE, store-operated calcium entry; ROCE, receptor-operated calcium entry; TRPC, 

Transient Receptor Potential Channels; STIM1, Stromal Interaction Molecule 1; 

NRK, normal rat kidney; PGF2α, Prostaglandin F2α; OAG, 1-oleoyl-2-acetyl-sn-

glycerol; BHQ, 2,5-di-t-butyl-1,4-benzohydroquinone; ER, endoplasmic reticulum; 

IP3, inositol 1,4,5-trisphosphate; Q-cells, quiescent NRK cells; DA-cells, density-

arrested NRK cells.  

http://www.google.nl/url?sa=t&source=web&ct=res&cd=3&url=http%3A%2F%2Fwww.scbt.com%2Fdatasheet-200417.html&ei=xw7ASo__C8ONjAfRutk5&usg=AFQjCNFNDISab3fyKE9VibFuW3i-9ilJ6Q
http://www.google.nl/url?sa=t&source=web&ct=res&cd=3&url=http%3A%2F%2Fwww.scbt.com%2Fdatasheet-200417.html&ei=xw7ASo__C8ONjAfRutk5&usg=AFQjCNFNDISab3fyKE9VibFuW3i-9ilJ6Q
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2. Materials &Methods 

2.1 Cell culturing 

Normal rat kidney fibroblasts (NRK clone 49F, American Type Culture Collection, 

Manassas, VA) were cultured in bicarbonate-buffered Dulbecco’s modified Eagle’s 

medium (DMEM; Invitrogen, Paisley, UK) supplemented with 10% newborn calf 

serum (NCS; HyClone Laboratories, Logan, UT). Confluent cultures were made 

quiescent by subsequent incubation for 2-3 days in serum-free DF medium (1:1 

mixture of DMEM-Ham’s F-12 medium; Invitrogen) supplemented with 30 nM 

Na2SeO3 and 10 μg/ml human transferrin. Density-arrested monolayers were obtained 

by a subsequent 2-days incubation in the presence of 5 ng/ml EGF (Collaborative 

Biomedical Products, Bedford, MA) in combination with 5 µg/ml insulin (Sigma-

Aldrich, St. Louis, MO).  

 

2.2 Total RNA extraction and reverse transcription Polymerase Chain Reaction 

analysis 

Total RNA was isolated and purified by applying Trizol reagent (Invitrogen) to NRK 

monolayer cells according to the manufacturer’s instructions. For complementary 

DNA (cDNA) synthesis, 2 µg of total RNA were reverse transcribed from random 

hexamer primers using the SUPER SCRIPT II Ribonuclease H- reverse transcriptase 

kit (Invitrogen). Reverse transcriptase PCR was performed in order to determine 

mRNA levels of Stim1 and Orai1 in NRK cells. Specific primers were designed using 

Oligo Perfect designed tool (Invitrogen). PCR amplification was performed on a 

PERKIN ELMER Gene Amp PCR System 2400 (Norwalk, CT, USA) using 2 μl of 

first-stranded cDNA reaction, 150 pmol of each degenerate primer, 50 µM dNTPs, 2 U 

Bio Therm Taq polymerase and 2.5 mM MgCl2 in total volume of 50 µl. Following a 

hot start (3 min at 94 0C), the sample was subjected to 30 cycles of 30 sec at 94 0C, 

followed by 30 sec at 60 0C, 30 sec at 72 0C, and a final extension for 7 min at 72 0C. 

Reaction products were separated by standard agarose gel electrophoresis and cloned 

into the pCR-2.1 TOPO vector (Invitrogen) using the protocol supplied by the 

manufacturer. The identity of the inserts was subsequently confirmed by ABI PRISM 

sequencing. Table 1 shows the designed primers used for Stim1 and Orai1 (rat 

sequences) with their amplified product size, whereby the identity of the products was 

confirmed by direct sequencing. 
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2.3 Real-Time quantitative PCR analysis  

For real-time quantitative RT-PCR analysis, the ABI Prism Sequence Detection 

System 5700 and Primer Expressk software (Applied Biosystems, Carlsbad, CA) 

were used. For each gene, a set of primers was designed using sequences obtained 

from Genbank (Table 2). Prior to complementary DNA (cDNA) synthesis, 2 µg of 

total RNA were treated with DNase for 15 min at 37 0C, after which RNA was reverse 

transcribed from random hexamer primers using the SUPERSCRIPTk II reverse 

transcriptase kit (Invitrogen). Subsequently, 0.2 µg of total cDNA was amplified 

using SYBR Green PCR Mastermix (Applied Biosystems) under the following 

conditions: initial denaturation for 10 min at 95 0C, followed by 40 cycles consisting 

of 15 sec at 94 0C and 1 min at 60 0C. Expression values were calculated from 

threshold cycles at which an increase in reporter fluorescence above baseline signal 

was first detected (Ct). 

 

2.4 shRNA constructs, virus production and cell infections   

In order to knockdown the expression of rat Trpc1, Trpc6, Stim1 and Orai1, at least 

two different sets of siRNAs sequences were chosen by entering the nucleotide 

sequence of each gene into the web-based design tool from Dharmacon 

(http://design.dharmacon.com). Verification of these siRNA sequences for their 

specificity by BLAST database search did not show significant homology to any other 

known gene sequence in the human, mouse and rat genome. Specific and control short 

hairpin (shRNA) template oligonucleoties were designed by entering the siRNA target 

sequences into the siRNA Wizard web-based design tool 

(http://www.sirnawizard.com/construct.php) (Table 3). The obtained complementary 

oligonucleotides were synthesized by Sigma-Aldrich, annealed, and ligated into the 

linearized pSUPER.retro puro vector (Oligo Engine, Seattle, WA) according to 

pSUPER RNAi system protocol.  

The resulting constructs, shRNA-Trpc1, shRNA-Trpc6, shRNA-Stim1, 

shRNA-Orai1 and control shRNA, were transfected into the Phoenix packaging cell 

line (Nolan Lab, Stanford, CA) in order to produce ecotropic retroviral supernatants. A 

negative control vector, expressing a hairpin shRNA with limited homology to any 

known sequences in rat genome, was used as a control. Phoenix cells were seeded in 

http://design.dharmacon.com/
http://www.sirnawizard.com/construct.php
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tissue culture dishes in DMEM supplemented with 10% NCS and pre-treated with 

chloroquine at a final concentration of 25 μM. One day before transfection, Phoenix 

cells were seeded in culture dishes at a density of 4.0x104 cells/cm2 in order to reach 

60% confluence at the time of transfection. Cells were then transfected with 20 µg of 

viral vector DNA using the calcium–phosphate precipitation method [31, 32]. After 48 

hours of transfection, the culture medium was filtered through a 0.45 µm filter and the 

viral supernatant was used for infection of NRK cells pre-treated with 4 µg/ml of 

polybrene (Sigma-Aldrich). After infection, NRK cells were incubated for 24 hours at 

37 0C. Subsequently, the medium was replaced by fresh virus-free medium and NRK 

cells were allowed to recover for 48 hours at 37 0C. Infected cells were selected by 

culturing them in the presence of puromycin (6 µg/ml) for 5 days. Target gene 

expression in NRK wild-type cells, empty vector cells and shRNA producing cells was 

analyzed by real-time quantitative RT-PCR and Western blot analysis, as described in 

detail below.  

 

2.5 Western blot analysis  

NRK cells were plated in dishes at a density of 1.9x104 cells/cm2 under the conditions 

described above. Cells were then lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 2 mM 

EDTA, 100 mM NaCl, 1% Triton X-100 and protease inhibitor mixture), 

supplemented with 50 mM NaF, 1 mM Na3VO4, and 10 mM β-glycerol phosphate. 

Cell lysates were incubated for 1 hour on ice and centrifuged at 12,000xg to collect 

supernatants. Protein concentration in the supernatants was measured by the Bradford 

method [33, 34]. After addition of sample buffer and boiling of this suspension, 75 µg 

of the denatured proteins were separated on 10% SDS–PAGE gels and subsequently 

transferred to nitrocellulose papers. After a 1-hour blocking period, nitrocellulose 

papers were incubated with specific antibodies. The primary antibodies used were: 

monoclonal anti-Stim1 and polyclonal anti-Trpc1, both form Santa Cruz 

Biotechnology (Santa Cruz, CA); polyclonal anti-Orai1 antibodies from BioCat GmbH 

(Heidelberg, Germany) and polyclonal anti-Trpc6 and anti-Actin antibodies from 

Sigma-Aldrich. HRP-conjugated secondary antibodies were purchased from Santa 

Cruz Biotechnology. Immunolabelling was visualized using the ECL procedure 

(Amersham Biosciences, Uppsala, Sweden). Bands were quantified by densitometric 

image analysis software (Image Master VDS, Pharmacia Biotech, Uppsala, Sweden).  
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2.6 Intracellular Ca2+ measurements 

Glass coverslips grown with quiescent monolayers of NRK fibroblasts were placed in 

a Leiden cell chamber and loaded for 30 min at room temperature with 4 µM Fura-

2/AM (Invitrogen) in serum-free DF medium. Medium was replaced by Ca2+-free 

HEPES-buffered saline (Ca2+-free HBS, containing 143 mM NaCl, 5 mM KCl, 1 mM 

MgCl2, 10 mM glucose, 10 mM HEPES-KOH, pH 7.4). Ca2+-containing HEPES-

buffered saline  (Ca2+-containing HBS, containing 128 mM NaCl, 10 mM CaCl2) was 

added to an equal amount of Ca2+-free medium to obtain a 5 mM Ca2+-containing 

medium in the Leiden chamber. Dynamic calcium video imaging was performed as 

described [34]. Excitation wavelengths of 340 nm and 380 nm (bandwidth 8-15 nm) 

were provided by a 150 W Xenon lamp (Ushio UXL S150 MO, Ushio, Tokio, Japan), 

while fluorescence emission was monitored above 440 nm, using a 440 nm DCLP 

dichroic mirror and a 510 nm emission filter (40 nm bandwidth) in front of the 

camera. Image acquisition, using a camera pixel binning of 4 and computation of ratio 

images (F340/F380), was every 4 sec and operated through Metafluor software v.6.2 

(Universal Imaging Corporation, Downingtown, PA, US). Camera acquisition time 

was 100 msec per excitation wavelength. 

 

2.7 Data analysis 

Each experiment was performed at least 5 times; per experiment 50 to 60 cells were 

recorded. The traces of these cells were averaged per experiment and further 

analyzed. Mean values of cytosolic calcium increase via release and influx was 

determined by dividing the mean value of 5 data points before increase (R0 and R2 

for respectively Ca2+-release and –influx) by the mean value at maximum ratio levels 

after release and influx (R1 and R3 respectively). Student’s t-test was used for 

statistical comparisons. Numeric data are represented as mean ± SEM throughout this 

article, whereby n represents the number of replicates of each experiment. Frequency 

of calcium oscillations was determined by counting the peaks using ‘pick peak’ 

algorithm of Origin 6.0 (Microcal, Northampton, MA), using a minimal peak height 

of 10% of the total signal as selection criteria. 
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3. Results  

3.1 Effect of knockdown of Trpc1 and Trpc6 on SOCE in NRK cells 

We recently reported on the differential role for SOCE and ROCE in the calcium 

dynamics of quiescent and density-arrested NRK fibroblasts. Furthermore, we have 

shown that NRK fibroblasts express Trpc1 and Trpc6, and that expression of these 

proteins depends on the growth stage of the NRK fibroblasts [30]. In the present study 

we have investigated the role of these various calcium channel proteins in mediating 

Ca2+ entry during the different NRK growth stages. For this we employed an shRNA 

approach to generate stable NRK cell lines in which the expression of specific Trpc 

genes was targeted and the resulting mRNA and protein levels were subsequently 

monitored by quantitative RT-PCR and Western blotting. Fig.1A shows that in NRK 

cells transfected with shRNA against Trpc1 gene (dTRPC1 cells) the mRNA level of 

Trpc1 was reduced to 37.6 ± 5.8 % (n=4), when compared to control cells that were 

transfected with control shRNA, while no effect on Trpc1 expression was observed in 

cells transfected with shRNA against Trpc6 (dTRPC6 cells). On the other hand, Trpc6 

expression was reduced to 39.8 ± 2.6 % (n=4) in dTRPC6 cells, while no reduction 

was observed in dTRPC1 cells (Fig. 1B). Western blot analysis showed a significant 

reduction in expression of Trpc1 protein in dTRPC1 cells, without affecting the 

protein level of Trpc6 (Fig.1C,D). Similarly, the protein level of Trpc6, but not of 

Trpc1, was reduced in dTRPC6 cells (Fig. 1E,F), when compared to the expression 

level of smooth muscle α-actin. These results indicate that expression of Trpc 

channels can be selectively repressed by an shRNA-mediated knockdown approach.  

 

3.2 Effect of knockdown of Trpc1 and Trpc6 on store-operated Ca2+ entry (SOCE)  

In order to study the role of specific Trpc channels on SOCE in quiescent NRK cells, 

single-cell Ca2+ imaging experiments were performed, in which BHQ-treated cells 

were changed from a nominal calcium-free medium to a medium containing 5 mM 

Ca2+, and the resulting increase in Fura-2 fluorescence was quantified. Fig. 2A shows 

the obtained traces for control cells, dTRPC1 cells and dTRPC6 cells. Upon 

averaging (Fig. 2B) our data show that in quiescent NRK cells the increase in calcium 

uptake was significantly reduced in dTRPC1 cells (to 44.7 ± 9.2%; n=5) when 

compared to control cells, while no significant effect was observed in dTRPC6 cells. 

Also in density-arrested cells, in which expression of Trpc6 is upregulated six-fold 

[30], we observed no difference in SOCE between BHQ-treated control and dTRPC6 
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cells, which was assayed in the presence of nifedipine to prevent spontaneous calcium 

action potentials (Fig. 2C,D). This observation argues against the possibility that 

expression levels of Trpc6 are too low to contribute significantly to SOCE. On the 

other hand, similarly as in quiescent cells the uptake of calcium in density-arrested 

dTRPC1 cells was significantly reduced (to 38.3  ± 2.2%; n=4) when compared to 

control cells. These results are againindicative for the involvement of Trpc1, but not 

Trpc6, in SOCE of NRK cells. 

 

3.3 Effect of knockdown of Trpc1 and Trpc6 on receptor-operated Ca2+ entry (ROCE)  

We have recently shown that both quiescent and density-arrested NRK cells exhibit 

SOCE, while only density-arrested cells exhibit ROCE. In order to determine the role 

of Trpc1 and Trpc6 in ROCE of density-arrested NRK cells, the increase in 

intracellular calcium was measured following addition of OAG, a membrane 

permeable DAG analogue, to nifedipine-treated dTRPC1, dTRPC6 and control cells. 

Fig. 3A (traces) and 3B (statistics) show that in dTRPC6 cells OAG-induced calcium 

entry was significantly reduced (to 54.1% ± 8.9%; N=4) when compared to control 

cells, while no reduction was observed in dTRPC1 cells. These result show that 

Trpc6, but not Trpc1, is involved in ROCE in density-arrested NRK cells, which is in 

line with the observation that Trpc6 expression is upregulated six-fold when quiescent 

NRK cells are grown to density-arrest.  

 

3.4 Knockdown of Stim1 and Orai1in NRK fibroblasts  

In order to determine the potential involvement of Stim1 and Orai1 in Ca2+ entry in 

NRK cells, we stably transfected these cells with an shRNA-expressing vector to 

target either of these genes. Figure 4A shows that in cells expressing Stim1 shRNA 

(dSTIM1 cells) the Stim1 mRNA level was reduced to 41.3 ± 5.3% (n=3) compared to 

control transfected cells, while Fig. 4B shows that in cells expressing Orai1 shRNA 

(dORAI1 cells) the Orai1 mRNA level was reduced to 49.2 ± 2.4% (n=3) compared 

to control transfected cells. Western blot analysis confirmed that a reduction in 

mRNA level resulted in a specific reduction of Stim1 (Fig. 4C,D) and Orai1 (Fig. 

4E,F) protein levels in dSTIM1 and dORAI1 cells, respectively.     
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3.5 Effect of knockdown of Stim1 and Orai1 on SOCE in NRK cells 

Figures 5A,B show that addition of 5 mM Ca2+ to BHQ-treated dSTIM1 and dORAI1 

cells in the quiescent state resulted in a significantly reduced Ca2+ uptake, when 

compared to control NRK cells. When averaging over 225 cells in 5 independent 

experiments, a reduction in calcium influx to 65.1 ± 6.4% was observed for dSTIM1 

cells, and to 56.9 ± 4.1% for dORAI1 cells. These results show that both Orai1 and 

Stim1 are directly involved in store-operated Ca2+ entry in NRK cells. 

 

3.6 Effect of knockdown of Stim1, Orai1, Trpc1 and Trpc6 on PGF2α -induced Ca2+ 

oscillations 

We have previously shown that addition of PGF2α to quiescent NRK cells induces 

calcium oscillations in more than 90% of the cells in the monolayer, with a frequency 

that is highly variable between individual cells. The initial calcium peak results from 

intracellular calcium release from IP3-sensitive stores, whereas the subsequent 

calcium transients are mediated by an interplay between IP3-sensitive calcium stores 

and an influx of extracellular calcium [26]. Since constitutive Ca2+ entry is needed for 

sustained Ca2+ oscillations and our above data show that Trpc1, Orai1 and Stim1 are 

all three involved in capacitative Ca2+ entry of NRK cells, we hypothesized that these 

proteins may play an important role in the maintenance of Ca2+ oscillations induced 

by PGF2α.  

To investigate this hypothesis, we examined the effects of knockdown of 

Stim1, Orai1, Trpc1 and Trpc6 on the Ca2+ oscillations induced by 100 nM PGF2α in 

quiescent NRK monolayers. Figure 6A shows a typical example of PGF2α-induced 

Ca2+ oscillations in NRK control monolayers, whereby the oscillations in individual 

cells differ in their frequency, but show a sustained character as long as 1 mM Ca2+ is 

present in the extracellular medium. In dSTIM1, dORAI1 and dTRPC1 cells (Fig. 6B, 

6C and 6D, respectively) the frequency of these PGF2α-induced oscillations was 

significantly reduced, whereas no reduction was observed in dTRPC6 cells (Fig. 6E). 

Because of the high variability of these oscillations, we analyzed 253 

individual cells in 5 independent monolayer cultures. The PGF2α-induced calcium 

responses were divided into three categories, characterized as either: (i) no secondary 

transients after an initial calcium transient, (ii) less than five secondary transients after 

an initial calcium transient within a time frame of 15 min, (iii) five or more secondary 

calcium transients within a time frame of 15 min (Fig. 6F). The data show that in 
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control populations the majority of cells (89.0 ± 9.2%) have a dominant response of 5 

or more secondary transients within 15 min after stimulation with PGF2α. In contrast, 

in dSTIM1, dORAI1 and dTRPC1 cultures the cells predominantly showed less than 

5 transients within 15 min: 82.5 % of the dSTIM1 cells, 75% of the dORAI1 cells and 

55% of the dTRPC1 cells. On the other hand, no significant difference in oscillation 

frequency was observed between dTRPC6 and control cells, which both showed more 

than 90% of the cells with more than 5 transients within 15 min. The observation that 

knockdown of either Stim1, Orai1 or Trpc1 results in a reduced frequency of PGF2α- 

induced Ca2+ oscillations supports our previous conclusion that constitutive calcium 

entry across the plasma membrane is required for maintaining calcium oscillations 

[29]. Moreover, these data underline that Stim1, Orai1 and Trpc1 are all three 

involved in store-operated calcium entry in NRK cells.  
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4. Discussion 

The aim of the present study was to investigate the molecular components that play a 

role in the influx of extracellular Ca2+ in NRK fibroblasts. Here we show that NRK 

cells express various members of the Trpc family of calcium transporters, as well as 

Stim1 and Orai1, which have both been involved in capacitive calcium entry. Using 

an shRNA approach against these various transporters, we have shown that Trpc1, 

Stim1 and Orai1 are particularly involved in store-operated calcium entry, while 

Trpc6 is mainly involved in receptor-operated calcium entry in these cells. Our data 

furthermore indicated that knockdown of either Trpc1, Stim1 or Orai1 results in a 

reduced frequency of PGF2α-induced Ca2+ oscillations in NRK cells, indicating that 

uptake of extracellular calcium is important for continuation of these oscillations. In 

combination, our data indicate that Trpc1, Stim1 and Orai1 interplay in regulating 

calcium uptake in NRK cells under conditions that intracellular calcium stores have 

become depleted.    

Initially, we tested at least three different shRNA constructs for each gene to 

downregulate its expression, and chose the one which induced the highest reduction in 

mRNA level, as measured by quantitative PCR, and protein level, as measured by 

Western blotting. In none of the cases did stable transfection with an shRNA against 

one of these genes affect expression of any of the other transport genes. This was also 

true for the various Trpc genes, in spite of their sequence homology (see Fig. 1).  

Our previous studies have indicated that density-arrested NRK cells produce 

and secrete low amounts of PGF2α [27]. This prostaglandin is able to activate a Gq-

protein-coupled FP receptor, which results in PLC-dependent hydrolysis of PIP2 into 

IP3 and DAG. As a result density-arrested NRK cells can show an increased level of 

intracellular DAG, which is sufficient to activate ROCE. Our observation that 

density-arrested cells but not quiescent NRK cells exhibit ROCE, may be related to 

the six-fold increase in Trpc6 expression which is observed when quiescent cells are 

grown to density-arrest [30]. Our observation that Trpc6 is involved in ROCE is in 

agreement with the general hypothesis that members of the TRPC3/TRPC6/TRPC7 

subfamily form receptor-operated and not store-operated calcium channels [8, 9]. 

However, several other studies have recently reported that TRPC6 may also be 

involved in SOCE [35, 36]. The other OAG-inducible channels, Trpc3 and Trpc7, are 

not detectable in NRK cells, but we have shown that in addition to Trpc1 and Trpc6, 

these cells also express Trpc5 [30]. We were able to generate knockdown of Trpc5 by 
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a specific shRNA that resulted in 85% reduction of the Trpc5 transcript (data not 

shown). However, we did not observe any effect on either the BHQ-induced calcium 

entry (SOCE) or on the OAG-induced calcium entry (ROCE) in NRK cells. The latter 

result may be explained by the observation that TRPC5 may become desensitized by 

PKC upon treatment of cells with the DAG analogue OAG [37]. Moreover, TRPC5 

overexpression studies in HEK293 and DT40 cells have shown that this channel is not 

activated upon depletion of intracellular calcium stores following addition of 

thapsigargin [9].   

 We have previously shown that the Trpc6 mRNA level increases six-fold upon 

growing NRK cells from a quiescent to the density-arrested state, while that of 

Trpc1does not change significantly [30]. Still, the present knockdown studies show 

that Trpc1, and not Trpc6 controls the frequency of calcium oscillations in both 

quiescent and density-arrested cells. Although mRNA levels determined by 

quantitative PCR cannot readily be compared for different genes, it appears that 

mRNA level for Trpc1 is higher than that of Trpc6, under all growth conditions 

tested. Therefore, it can be safely assumed that either the contribution of the Trpc6 

channels is additive to Trpc1 or that Trpc1 exerts the major contribution to the Ca2+ 

entry and consequently to the modulation of the frequency of the Ca2+ oscillations. 

 The present observation that a reduction of Trpc6 levels by shRNA has no effect 

on the PGF2α-induced Ca2+ oscillations in quiescent NRK cells, contrasts a previous 

report [38] in which it has been shown that siRNA-mediated knockdown of Trpc6 in 

rat A7r5 vascular smooth muscle cells results in a strong suppression of vasopressin-

induced Ca2+ oscillations. Again, this discrepancy might be explained by the fact that 

in NRK cells Trpc1 provides a major route for Ca2+ entry in the presence of the 

PGF2α. On the other hand, recent studies have shown that in native vascular myocytes 

stimulation by angiotensin II resulted in inhibition of Trpc6 channels by Trpc1/c5 

channel activity through a Ca2+- and PKC-dependent mechanism [39]. In conclusion, 

these findings indicate that the function of specific Trpc channels may be strongly 

cell-type dependent. 

Finally, our results show that individual knockdown of Trpc1, Orai1 or Stim1 

reduced SOCE in NRK cells to a similar extent. This may indicate that a complex of 

these three proteins mediates SOCE. Although TRPC6 and ORAI1 can clearly 

function independently of each other and have different channel properties when 
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activated by STIM1 [40], abundant evidence supports the formation of heteromeric 

complexes of these proteins. First, overexpression of ORAI1 into TRPC1 expressing 

cells induced enhanced SOCE, which suggests a functional association between 

ORAI1 and TRPC channels [20]. Biochemically it has been shown that ORAI1 

interacts with both the C- and N-terminal region of TRPC channels [41]. Furthermore, 

it has been shown in human salivary gland cells that STIM1 assembles with the 

ORAI1/TRPC1 complex and that all three proteins are essential for generation of 

SOCE in these cells [21]. This important finding could indicate that in NRK cells 

Trpc6-mediated ROCE functions independently of Stim1 activity, while SOCE may 

require the assembly of a Trpc1-Stim1-Orai1 ternary complex. Verification of these 

hypotheses will require further research, as well as of the mechanism whereby DAG 

and IP3 can activate the two modes of calcium entry upon FP receptor activation. 
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Legends to figures 
 
Fig.1. Assessment of Trpc1 and Trpc6 expression in NRK cells stably expressing 

shRNA targeting specific Trpc genes. (A and B) NRK cells stably expressing 

shRNA constructs specific for Trpc1 (dTRPC1 cells, dark grey), Trpc6 (dTRPC6 

cells, white) and control shRNA (control cells, black) were established. Quantitative 

PCR analysis of mRNA levels for Trpc1 (A) and Trpc6 (B) is shown for each of the 

three cell lines and expressed relative to control cells. Data represent mean and SEM 

of at least four independent experiments. Asterisk denotes a significant difference 

(p<0.05) compared to control cells. (C and D) Western blot analysis of Trpc1 levels in 

whole cell lysates of three cell lines, as visualized by specific antibodies against rat 

Trpc1. A typical example is shown, as well as the statistics (mean ± SEM) for 

triplicate experiments. Asterisk denotes a significant difference (p<0.05) compared to 

control cells. (E and F) Similar for Trpc6 using specific antibodies against Trpc6. 

Staining with antibodies against rat α-actin was used as a loading control.  

 
Fig. 2. Effect of knockdown of Trpc1 and Trpc6 on store-operated calcium entry 

in quiescent NRK cells. 

BHQ-induced store-operated calcium entry in quiescent cells (A) and density-arrested 

cells (C) of control (black), dTRPC1 (dark gray) and dTRPC6 (light gray) cultures. 

Cells were loaded with Fura 2-AM for 30 min and treated with BHQ (50 µM) in the 

absence of Ca2+. After depletion of the calcium stores (first phase of calcium 

increase), 5 mM of extracellular Ca2+ were added and ion uptake was measured as a 

function of time (second phase of calcium increase). The traces are averages of 45 

cells from a single experiment. All recordings in density-arrested cells were 

performed in presence of nifedipine to prevent entry of calcium through L-type 

calcium channels. The gray band around the traces represents the SEM-error bars for 

every data point. (B and D) Data summarized for the amplitude of the calcium influx 

(second phase), expressed as mean ± SEM for at least 4 independent experiments. 

Asterisk denotes a significant difference (p<0.05) compared to control cells.  

 

 

 

 

Met opmaak: Engels (V.S.)
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Fig.3. Effect of knockdown of Trpc1 and Trpc6 on receptor-operated calcium 

entry in density-arrested NRK cells.  

(A) Density-arrested control (black), dTRPC1 (dark gray) and dTRPC6 (light gray) 

cells were loaded with Fura-2AM and treated with OAG (100 µM) and nifedipine (1 

µM), after which the amplitude of the influx of Ca2+ was measured. The traces are 

averages of 45 cells from a single experiment, as representative for four independent 

experiments. (B) Data summarized for the amplitude of OAG-induced Ca2+-entry 

upon addition of 5 mM-extracellular Ca2+ (peak-entry). Data represent mean ± SEM 

for at least 3 independent experiments, whereby the asterisk denotes a significant 

difference (p<0.05) compared to control cells. 

 
Fig. 4. Effect of knockdown of Stim1 and Orai1 on expression levels in NRK 

fibroblasts.  

NRK cells were stably transfected with either shRNA against Stim1 (dSTIM1 cells) or 

against Orai1 (dORAI1 cells). (A) Quantitative PCR analysis of Stim1 RNA levels in 

quiescent NRK control cells and dSTIM1 cells. (B) Quantitative PCR analysis of 

Orai1 RNA levels in quiescent NRK control cells and dORAI1 cells. Single PCR 

products were identified in NRK cells for Stim1 (A) and Orai1 (B) of the expected 

size. Data are representative of three independent experiments, carried out in 

duplicate. Asterisk denotes a significant difference (p<0.05) compared to control 

cells. (C and D) Western blot analysis of Stim1 levels in control cells and dSTIM 

cells, using antibodies against rat Stim1. A typical example is shown , as well as 

statistics (mean ± SEM) for triplicate experiments.  (E and F) Western blot analysis 

of Orai1 in control cells and dORAI1 cells, using antibodies against rat Orai1. A 

typical example is shown, as well as statistics (mean ± SEM) for triplicate 

experiments.  Asterisk denotes a significant difference (p<0.05) compared to control 

cells. Antibodies against rat α-actin were used as a loading control. 

 
Fig. 5. Effect of knockdown of Stim1 and Orai1 on store-operated Ca2+ entry in 

NRK fibroblasts.  

(A) Comparison of 5 mM Ca2+-induced calcium entry in BHQ-treated NRK control, 

dSTIM1 and dORAI1 cells.  Each trace is the average of 45 cells from a single 

experiment, which is representative for five distinct experiments. (B) Data 

summarized for control cells, dSTIM1 and dORAI1 cells, whereby the peak values of 
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Ca2+ entry were averaged over all 5 experiments (mean ± SEM). Asterisk denotes a 

significant difference (p<0.05) compared to control cells. 

 
Fig. 6. Effect of knockdown of Stim1, Orai1, Trpc1 and Trpc6 on PGF2α- induced 

calcium oscillations in NRK fibroblasts.   

Single cell dynamic calcium video imaging measurements were carried out on Fura-2 

AM loaded quiescent NRK control cells (A), dSTIM1 cells (B), dORAI1 cells (C),  

dTRPC1 cells (D) and dTRPC6 cells (E), after stimulation with 100 nM PGF2α in the 

presence of 1 mM of extracellular Ca2+. (F) For each individual cell, the oscillation 

frequency was determined by the number of Ca2+ spikes during a 15 min interval after 

the initial peak induced by agonist treatment. Based on these data cells were divided 

into three categories: no oscillations; 1-5 oscillations; 6 or more oscillations.  At least 

40 to 50 traces were analyzed in each preparation of 5 independent experiments for 

each cell line and data are presented as the mean ± SEM. 
 
  Met opmaak: Engels (V.S.)
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Table.1.  Oligonucleotide sequences of primers used for Quantitative RT-PCR    
Gene Accession No. Size 

bp 
Primers Location 

rTrpc1 
 

AF061266 105 For: 5-GGCAGAACAGCTTGAAGGAG-3 
Rev:5-GTCGCATGGAGGTCAGGTAT-3 

2057-2161 

rTrpc6 NM_053559   114 For: 5-GCATCATCGATGCAAATGAC-3 
Rev:5-TGATCTGAGGATCGGTAGGG-3 

1664-1777 

rOrai1 NM_001013982 117 For: 5-TCACTTCTACCGCTCACTGG-3 
Rev:5-AGAGAATGGTCCCCTCTGTG-3 

859-975 

rStim1 XM_341896  100 For: 5-AGCTCCTGGTATGCTCCTGA-3 
Rev:5-GCCTCTCTGCATTTTGCTTC-3  

1583-1682 

Rat 18s 
rRNA 

XM_341896  109 For: 5-CGGCTACCACATCCAAGGAA-3 
Rev:5-GCTGGAATTACCGCGGCT-3 

462-571 

 
 
Table.2. Target sequences for constructing shRNA specific for TRPC homologs  

Gene Accession No. Hairpin oligonucleotide sequences (5’-3’) 
target sequence printed in bold 

Location 

rTrpc1 
 

AF061266 For:GATCCCCGGGTGACTATTATATGGTTTTCA
AGAGAAACCATATAATAGTCACCCTTTTTA 
Rev:AGCTTAAAAAGGGTGACTATTATATGGTTTC
TCTTGAAAACCATATAATAGTCACCCGGG 

246-264 

rTrpc6 NM_053559   For:GATCCCCTCGAGGACCAGCATACATGTTCA
AGAGACATGTATGCTGGTCCTCGATTTTTA 
Rev:AGCTTAAAAATCGAGGACCAGCATACATGT
CTCTTGAACATGTATGCTGGTCCTCGAGGG 

670-678 

rOrai1 NM_001013982 For:GATCCCCGCAACGTCCACAACCTCAACTTT
CAAGAGAAGTTGAGGTTGTGGACGTTGCTTTTT
A 
Rev:AGCTTAAAAAGCAACGTCCACAACCTCAAC
TTCTCTTGAAAGTTGAGGTTGTGGACGTTGCGGG 
3 

543-563 

rStim1 XM_341896  For:GATCCCCGCATGGAAGGCATCAGAAGTGT
ATATTCAAGAGATATACACTTCTGATGCCTTCCA
TGCTTTTTA 
Rev:AGCTTAAAAAGCATGGAAGGCATCAGAAGT
GTATATCTCTTGAATATACACTTCTGATGCCTTC
CATGCGGG 
 

635-655 

control  For:GTACCCCAATTCTCCGAACGTGTCAGTTCA
AGAGACTGACACGTTCGGAGAATTTTTTTA 
Rev:AGCTTAAAAAAATTCTCCGAACGTGTCAGTC
TCTTGAACTGACACGTTCGGAGAATTGGG  
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