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Abstract

Extrinsic/abiotic and intrinsic/biotic factors can influence the connectivity and exploitation of 

reef fish. Coral reef fish from the genus Acanthurus have evolved different life history 

characteristics that can affect their connectivity and exploitation. The aim of this thesis is to 

explore the population genetic structure and growth parameters of Acanthurus triostegus and 

Acanthurus leucosternon in the Indian Ocean, to determine the influence of biotic and abiotic 

factors on the connectivity and exploitation of coral reef species. First, a 491bp fragment of 

cytochrome b and microsatellite loci was used to show that the long pelagic larval duration of 

acanthurids can confer widespread genetic connectivity to A. leucosternon in the Eastern Africa 

region. Although the global AMOVA (Analysis of Molecular Variance) involving all A. 

leucosternon Eastern African population is significant, the hierarchical AMOVA and 

STRUCTURE does not show any genetic breaks consistent with known Eastern African 

oceanographic and biogeographical barriers to dispersal. Second, a mitochondrial DNA fragment 

spanning the ATPase8 and ATPase6 gene regions is used to demonstrate that the genetic 

differentiation of A. triostegus is correlated with geographic distance throughout the Indo-Pacific. 

In addition, this study shows that populations of A. triostegus are significantly differentiated in 

the Indian Ocean (Western Indian Ocean and East Indian Ocean), but not in the Pacific Ocean 

(West, Central, and East Pacific). 

Third, using syntopic sampling of the spawning aggregating A. triostegus and monogamous 

pairing A. leucosternon this study determined the influence of mating behaviour on the 

connectivity of these two Acanthurus species. Contrary to expectations, DAPC (discriminant 

analysis of principal components), hierarchical AMOVA, and pairwise comparisons showed that 

the divergent mating behaviour does not lead to differences in the connectivity patterns of A. 

leucosternon and A. triostegus, but the two species experienced differences in their demographic 

history. A detailed analysis in BEAST (Bayesian Evolutionary analysis Sampling Trees) showed
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that A. leucosternon which is often restricted to coral reef habitats had a faster and more recent 

demographic expansion than the habitat generalist A. triostegus. Finally, the growth parameters 

and mortality of A. triostegus and A. leucosternon were estimated, to determine whether 

differences in mating behaviour can lead to differences in exploitation rate. Consistent with 

expectations, the length-based stock assessment showed that the A. triostegus, the species that 

often forms spawning aggregation has a higher exploitation rate than the monogamous pairing A. 

leucosternon, supporting previous studies indicating that spawning aggregation may increase the 

susceptibility of coral reef fish to fishing. 
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Zusammenfassung

Extrinsische/abiotische und intrinsische biotische Faktoren können die Konnektivität und 

Nutzung von Rifffischen beeinflussen. Die Konnektivität und Nutzung von Doktorfischen der 

Gattung Acanthurus wird durch verschiedene biologische Merkmale und ihren Lebenszyclus 

bestimmt. Ziel dieser Arbeit ist es die Populationsstruktur und Wachstumsparameter von 

Acanthurus triostegus und Acanthurus leucosternon im Indischen Ozean zu ermitteln, um den 

jeweiligen Einfluß der biotischen und abiotischen Faktoren auf Korallenriff Organismen 

festzustellen. 

Zunächst wurde mit einem 491bp großen Fragment der Cytochrome b Oxidase und genomischen 

Mikrosatelliten gezeigt, dass die lange pelagische Larvalphase A. leucosternon eine 

weitreichende genetische Konnektivität in der Ostafrikanischen Region verleiht. Obwohl die 

globale Analyse der molekularen Varianz (AMOVA) in der Ostafrikanischen Population von A. 

leucosternon signifikant ist, konnte mit der hierarchischen AMOVA und dem Programm 

STRUCTURE keine genetische Trennlinie gefunden werden, die mit bekannten 

ozeanographischen oder biogeographischen Verbreitungsgrenzen im Einklang steht.

Zweitens zeigt das mitochondrielle Fragment der Gene ATPase8 und ATPase6, dass die 

genetische Differenzierung bei A. triostegus mit der geographischen Distanz im Indopazifik 

korreliert. Zusätzlich wird gezeigt dass A. triostegus im Indischen Ozean (westlichen und 

östlichen Indischen Ozean) signifikant differenziert ist, im Gegensatz zu der Population im 

Pazifischen Ozean (West-, Zentral- und Ost-Pazifik).

Drittends wurde durch ein syntopes Sampeln des in Gruppen laichenden A. triostegus und des 

paarlaichenden A. leucosternon der Einfluß des unterschiedlichen Paarungsverhaltens auf die 

Konnektivität dieser beiden Acanthurus Arten untersucht. Entgegen der Erwartungen konnte 

weder die DAPC (discriminant analysis of principal components), hierarchische AMOVA oder 
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paarweise Vergleiche Unterschiede der genetischen Konnektivität bei A. triostegus und A. 

leucosternon aufzeigen, aber die beiden Arten weisen Unterschiede in ihrer demographischen 

Entwicklung auf. Eine genaue Analyse in BEAST (Bayesian Evolutionary Analysis Sampling 

Trees) zeigte, dass A. leucosternon, dessen Vorkommen auf Korallenriffe beschränkt ist, eine 

jüngere und schnellere demographische Expansion aufweist als der Generalist A. triostegus.

Zum Abschluss wurden Wachstumsparameter und Mortalität von A. triostegus und A. 

leucosternon bestimmt um festzustellen, ob die Unterschiede im Paarungsverhalten zu 

Unterschieden in Nutzungsraten führen. In Übereinstimmung mit den Erwartungen zeigte A. 

triostegus bei der längenbasierten Bestandsabschätzung eine stärkere Befischung als der 

paarbildende A. leucosternon. Dieses Ergebnis steht im Einklang mit früheren Studien die darauf 

hindeuten, dass in Gruppen laichende Korallenfische einer stärkeren Nutzung ausgesetzt sind.
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1. CHAPTER - General introduction

1.1. Connectivity of reef species

Connectivity in marine ecology refers to the extent to which populations in different parts of a 

marine species’ range are linked by exchange of larvae, recruits, juveniles or adults (Palumbi, 

2003; Sale et al., 2005). Regularly, this term is also used as an umbrella to show variations in the 

level of linkages in marine organisms from no connectivity (where all populations are self-

recruiting = closed populations) to high connectivity (where most of the recruitment occurs 

through exchange among populations = open populations). Knowledge of connectivity among 

marine organisms is vital because it has important implications to the natural processes that 

determine the growth and persistence of populations (Mora and Sale, 2002; Warner and Cowen, 

2002; Sale et al., 2005; Jones et al., 2009). In marine systems, however, the extent to which 

offspring disperse from natal locations or where juveniles recruiting at a particular reef come 

from remains largely unknown (Jones et al., 2009; Pinsky et al., 2017), because the dispersing 

propagules are minute and difficult to track (Thorrold et al., 2002; Thorrold et al., 2006).

For most benthic organisms such as reef species, dispersal and larval exchanges among disparate 

populations occurs mainly during the pelagic larval stage (Cowen et al., 2000; Cowen et al.,

2006). Traditionally, it was assumed that ocean currents are the sole driver of larval dispersal in 

the marine environment, with the implications that dispersal is extensive and that marine 

populations are homogeneous over ecological scales (Roberts, 1997). However, this appears to 

contradict the high biodiversity and species abundance found in coral reefs, which requires 

isolation for an extended period of time, be it physical or behavioural (Gerlach et al., 2007; 

Gaither et al., 2015).  Recent empirical studies also indicate that self-recruitment (the amount of 

offspring that are derived from parents in the same location) and larval retention in marine 

species is higher than was previously thought (Almany et al., 2007; Gerlach et al., 2007). Coral 
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reef species, in particular, have larvae that are efficient swimmers both in terms of speed and 

endurance (Leis and Carson-Ewart, 1997; Stobutzki and Bellwood, 1997), which can enable them 

to determine their dispersal distance in relation to ocean currents (Fisher et al., 2005; Fisher and 

Hogan, 2007). These new revelations have been enabled by the methodological and technological 

advancements in the field of population genetics, tagging, biophysical modeling, larval ecology, 

elementary chemistry, and adult ecology (Jones et al., 2009).

1.2. Estimators of connectivity in reef species

Given the importance of connectivity in coral reef ecosystems, a variety of approaches have been 

developed to identify the source and destination of reef species larvae. These approaches track 

the pelagic larvae either directly or indirectly and generally fall into ten broad categories: (i) 

larval tagging, (ii) population genetics, (iii) physical and biophysical dispersal models, (iv) 

parentage analysis, (v) larval behaviour, (vi) phylogeography, (vii) elemental chemistry, (viii) 

recruitment or adult ecology, (ix) post-recruitment studies,  and (x) spatial population models

(Jones et al., 2009; Leis et al., 2011). Although these ten methods can be used interchangeably,

they rarely measure the same thing and have intrinsic uncertainties, which depend on the 

analytical procedures, type of markers, and statistical methodology employed (Leis et al., 2011; 

Nolasco et al., 2018). For example, the otolith tagging method does provide unequivocal

estimates of larval dispersal, but its application has been limited to small spatial scales because it 

requires large sample sizes to determine the dispersal between distant sites. As a result, the output 

of the otolith tagging method may often underestimate the actual mean dispersal distance of coral 

reef species (Leis et al., 2011; Green et al., 2015). Physical and biophysical modeling, on the 

other hand, have a great capacity to estimate connectivity of reef species over broad spatial and 

temporal scales, but often assume an average natural mortality for the dispersing propagules (Leis

et al., 2011), which may compromise the results of this approach.
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Figure 1.1 Graph showing the frequency of connectivity studies modified from Jones et al., (2009).

Currently, the population genetic approach is the most frequently used to infer connectivity and 

dispersal in reef species (Jones et al., 2009; Lowe and Allendorf, 2010) (Figure 1.1), because it 

has the potential to measure connectivity at both evolutionary and ecological time scales (Leis et 

al., 2011). This approach uses genetic data to illustrate spatial differentiation in reef species as a 

result of genetic drift. Because the influence of genetic drift varies inversely with effective 

population size, the efficiency of this method to discern reef populations depends on the natural 

abundance of reef species being studied. For example, reef species with large natural abundance

can have weak genetic differentiation even in the absence of gene flow, because the magnitude of 

genetic drift is very low (Palumbi, 2003; Marandel et al., 2017).

Genetic differentiation in reef species can be characterized by haplotypes variants (mitochondrial 

DNA: mtDNA), protein variants (allozymes), simple sequence repeat variants (microsatellites), 

or single nucleotide polymorphisms (SNPs) (Hellberg et al., 2002; Jones et al., 2009; Leis et al.,

2011). Because the genetic structure of plants and animals is subject to change over time, the 

resolution of the molecular marker used should match the time scale of interest (Féral, 2002). For 

example, allozymes markers have slow mutation rates that tend to reduce the proportion of total 
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variation in the DNA sequence, leading to overestimation of the level of genetic connectivity 

among reef populations being studied (Leis et al., 2011). On the other hand, the high mutation 

rate of mitochondrial DNA (1-10 faster mutation rate than typical nuclear DNA) can saturate the 

haplotype differences between individuals, leading to the conclusion that connectivity is higher 

among reef population than is actually the case (Hellberg et al., 2002).

In the absence of gene flow, genetic drift can lead to non-adaptive divergence between 

populations, because of the loss or fixation of certain alleles. At this point, the fixation index (FST

ST) that measures genetic differentiation will be equal to 1, indicating that there is an absolute 

genetic partition between the different populations (Leis et al., 2011). This indicates that the 

fixation index is inversely related to the degree of resemblance among individuals within 

populations, but directly related to the variance of allele or haplotype frequency among 

populations. Therefore, if allele or haplotype frequencies within each population are similar, FST

or ST will be small, while large differences in allele or haplotype frequencies between 

populations will yield a higher FST (Holsinger and Weir, 2009; Leis et al., 2011).

1.3. Population genetics of reef species

Over the last decade, genetic tools have been widely used to study marine connectivity (Selkoe et 

al., 2016), because they offer insights into the scale of dispersal in species that cannot be

distinguished by means of other natural or artificial tags (Knowlton, 1992; Berumen et al., 2010).

This approach has also enabled testing of hypotheses that specifically ask questions about spatial 

patterns of larval exchange or drivers of larval exchange in marine species (Selkoe et al., 2016).

The ISI (International Scientific Indexing) search conducted by Selkoe et al. (2016), indicated 

that most of the population genetics studies (68 %) have been conducted in the temperate region,

while tropical (26%) and polar (6%) studies are still rare (Figure 1.2). Selkoe and colleagues also 
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found that the vast majority of the tropical population genetic studies were concentrated on coral 

reef species, with most focusing on subtidal (65%) as compared to the intertidal zone (15%). The 

findings of these previous studies have shown that many reef species have unique population 

genetic structure, possibly due to their ecological, environmental or distributional differences 

(Leis et al., 2011).

 

Figure 1.2 Global representation of seascape genetics adopted from Selkoe et al., (2016).

For example, across the Indo-Pacific invertebrate reef species such as the blue starfish Linckia 

laevigata (Crandall et al., 2008b; Kochzius et al., 2009; Crandall et al., 2014; Alcazar and 

Kochzius, 2015; Otwoma and Kochzius, 2016), crown-of-thorns Acanthaster planci (Benzie, 

1999), mantis shrimp Haptosquilla pulchella (Barber et al., 2002),  and giant clams Tridacna

species (Hui et al., 2016) exhibit genetic divergence between the Indian and Pacific populations, 

supporting the vicariance between the Indian and Pacific Oceans during the Pleistocene low sea 

level stands. In contrast, sea urchin of the genus Diadema, Tripneustus, and Eucidaris do not 

exhibit this genetic break between the Indian and Pacific population (Lessios et al., 1999; Lessios

et al., 2001; Lessios et al., 2003). Similar discordance in population structure across the Indo-

Pacific have also been indicated by vertebrate species, with species such as honeycomb grouper 

Epinephelus merra, humbug damselfish Dascyllus abudafur/Dascyllus aruanus (Borsa et al.,
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2016), and peacock grouper Cephalopholis argus (Gaither et al., 2011a) exhibiting genetic break 

between their Indian and Pacific populations, while lutjanids (Lutjanus kasmira and Lutjanus 

fulvus) and Naso species (Naso vlamingii and Naso brevirostris) are homogeneous across the two 

ocean basins (Horne et al., 2008; Gaither et al., 2010). This discordance in population structure 

of invertebrate and vertebrate reef species support the assertion that marine species respond 

uniquely to the dynamic marine environment (Crandall et al., 2008a; DiBattista et al., 2012).

Regardless of the pattern of structure, fish and invertebrate reef species show similar trends with 

regard to pelagic larval duration (PLD) and dispersal distance. An intuitive assumption across 

reef species studies is that long pelagic larval duration confers high genetic connectivity among 

species (Portnoy et al., 2012). Although the vast majority of studies support this assertion, a 

growing number of studies have found that individual PLDs are not correlated with net dispersal 

distance (Selkoe and Toonen, 2011). This discrepancy suggests that PLD is not the sole 

determinant of dispersal in reef species and factors such as ocean currents, historical effects, and

life history can lead to variation in genetic patterns (Selkoe et al., 2014). Nevertheless, the 

discrepancy between PLD and genetic connectivity was shown to be more pervasive in 

invertebrate species compared to fishes, because generally fish species have behaviors that 

promote dispersal (Eble et al., 2011a; Poortvliet et al., 2013; Selkoe et al., 2014).

1.4. Factors affecting the genetic connectivity of reef species 

As discussed above, the disagreement between gene flow and PLD indicate that connectivity in 

reef species is not only affected by the dispersal potential, but also by other intrinsic/biotic (local 

adaptation, larval behaviour, location of fertilization, egg mass production, mating behaviour, and 

mode of larval development) and extrinsic/abiotic (oceanographic conditions, historical 

processes, geographical distance, topographic features, and coastal pollution) factors (Imron et 
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al., 2007; Timm and Kochzius, 2008; Yasuda et al., 2009; Puritz and Toonen, 2011; Riginos et 

al., 2011; Crandall et al., 2014; Liggins et al., 2016; Otwoma and Kochzius, 2016).

1.4.1. Extrinsic factors

Coral reef species display some of the extreme genetic structure in the marine environment, with 

their populations being either completely closed (all recruits from within) or completely open (all 

recruits from other populations) (Jones et al., 2009). Ocean currents are among the most 

pervasive hydrographic features that play a significant role in shaping the genetic structure of reef 

species (Barber et al., 2006; SILVA et al., 2010a; White et al., 2010; Nakajima et al., 2014).

Currents may be circuitous, forming eddies, fonts, or gyres which can prevent larval mixing even 

in a population located at two adjacent sites. For example, in the Coral Triangle, the Halmahera 

eddy has been shown to prevent the mixing of stomatopods populations in the Celebes, Maluku 

and Banda Seas, which has led to the formation of diverged lineages in Haptosquilla pulchella,

Haptosquilla gylptocercus and Gonodactyellus viridis (Barber et al., 2006). Alternatively, ocean 

currents can act as dispersal corridors for the dispersing propagules, potentially linking 

widespread sedentary coral reef populations (Mitarai et al., 2009).

However, the influence of ocean currents on the connectivity of reef species is usually coupled 

with the effects of other extrinsic factors such as historical processes, geographic distance, habitat 

availability, coastal pollution, and topographic features. For example, Plane and Fauvelot (2002)

found that the exchange of migrants in a reef fish was much favoured between neighbouring

populations, while long-distance dispersal was more sporadic, suggesting that efficiency of ocean 

currents in shaping the genetic structure of reef species may be constrained by geographical 

distance (Planes et al., 2009; Saenz-Agudelo et al., 2011; Almany et al., 2013). The general 

pattern of increasing genetic differentiation with the increase in geographical distance is called 

isolation-by-distance (IBD) (Planes and Fauvelot, 2002; Palumbi, 2003; Puebla et al., 2009; 
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Riginos et al., 2011). IBD can result in stepping stone dispersal mechanisms, which often leads to

low genetic differentiation, but do not necessarily imply long-distance dispersal (Puebla et al.,

2012). Overall, the influence of geographical distance on reef species dispersal is more stable 

than ocean currents and its correlation with genetic distance usually indicates that populations 

have reached equilibrium between gene flow and drift (Hutchison and Templeton, 1999; Riginos 

and Liggins, 2013).

1.4.2. Intrinsic factors

The variation in the temporal and spatial genetic structure of reef species can also depend on

local adaptation, larval behavior, location of fertilization, egg mass deposition, mating behavior,

and mode of larval development. Although the influence of extrinsic factors may override the 

effect of intrinsic factors (Marko, 2004; Liggins et al., 2016), previous studies indicate that slight 

differences in the life history strategies of reef species can lead to strikingly different variation in 

their structuring patterns (Ayre and Hughes, 2000). For example, the populations of the brooding

corals Seriatopora hystrix and Stylophora pistilata exhibit higher genetic differentiation than the 

broadcast spawning Pocillopora darmiconis in the Great Barrier Reef. Ayre and Hughes, (2000) 

attribute these differences to the longer larval pre-competency period in the broadcast spawners

as compared to the brooding species. 

For reef fish species, the diverse reproductive mating behaviors have also been shown to 

determine the extent of larval dispersal and connectivity among populations (Antoro et al., 2006; 

Jackson et al., 2014). For instance, spawning aggregation events that are coupled with short-term

oceanographic conditions can enhance larval retention, leading to strong genetic differentiation 

among populations (Antoro et al., 2006; Jackson et al., 2014). This would suggest that species

spawning in a spatially diffuse manner in reefs may be expected to have more connected 

populations than their counterparts forming spawning aggregations (Portnoy et al., 2012).
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Although this prediction has been substantiated in two Epinephelus species (Antoro et al., 2006; 

Jackson et al., 2014), findings on red hind, Epinephelus guttatus and Coney, Cephalopholis fulva

indicate that the influence of mating system can sometimes be diminished by other biotic or 

abiotic factors (Portnoy et al., 2012).

Finally, the egg mass deposition and mode of larval development can determine the genetic 

structure of reef populations (Riginos et al., 2011; Riginos et al., 2014). In particular, species 

with benthic egg development tend to show weaker connectivity than their counterparts having 

pelagic egg development. This is because the mean dispersal distance for species with benthic 

eggs tends to be less than that of species with pelagic eggs (Riginos et al., 2011; Riginos et al.,

2014). Overall, the possibility that the genetic structure of reef species can be influenced by more 

than one abiotic/extrinsic or biotic/intrinsic factors, suggest that it is critical to disentangle the 

contribution of extrinsic and intrinsic factors in structuring genetic variation of reef taxa

(Papadopoulou and Knowles, 2016; DiBattista et al., 2017).

1.5. Study genus: Acanthurus

Acanthurus is the most conspicuous and dominant genus of the family Acanthuridae, containing 

40 species. Most of these species occupy the reef habitats of the Indo-Pacific, but four species are 

restricted in the Atlantic Ocean (Randall, 1956; Bellwood et al., 2014; Marshell and Mumby, 

2015). They have multi-denticulated teeth specialized for cropping the fast-growing epithelial 

algal community (Bellwood et al., 2014). Through their feeding Acanthurus species not only 

limit the establishment of algal communities that impede coral recruitment but also provide a link 

for energy flow to higher trophic levels in the reefs (Crossman et al., 2005; Marshell and 

Mumby, 2015). Their territorial behavior can also influence benthic communities and enhance 

within-territory coral diversity by providing protection against predators (Crossman et al., 2005; 

Comeros-Raynal et al., 2012).
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Acanthurus are broadcast spawners that reproduce throughout the year, but spawning has been 

shown to peak around February and March in some species (Robertson et al., 1979; Craig, 1998).

Mating in this genus involves either the formation of spawning pairs or resident spawning 

aggregation, with the release of pelagic fertilized eggs that are approximately 0.7mm (Robertson

et al., 1979). The pelagic larval duration (PLD) of Acanthurus ranges from 44 to 83 days 

(Thresher, 1984; McCormick, 1999; Fisher et al., 2005) and can confer widespread genetic 

connectivity among populations. However, after hatching the Acanthurus larvae becomes 

acronurus that exhibits swimming speeds that can reach up to 65.3 cm/s and can enhance larval 

retention (Figure 1.3), when the average swimming speed of the larvae exceeds the mean ocean 

current velocity (Leis and Carson-Ewart, 1997; Stobutzki and Bellwood, 1997; Fisher and 

Hogan, 2007). Therefore, species in the genus are excellent models to study the influence of 

biotic/intrinsic and abiotic/extrinsic factors on larval dispersal and connectivity of reef taxa.  

Figure 1.3 Image of acronurus stage of unidentified Acanthurus species.
de: dermethmoid, ds: dorsal-fine spine, dsr: dorsal-fin soft ray, pr: pectoral-fin rays, ps: pelvic-fin spine, pcl:
postcleithrum, pg: pelvic girdle, vmcr: ventral marginal caudal ray, vpcr: ventral principal caudal ray, ssc:
supraorbital sensory canal, ppsr: proximal portion of soft ray, soc: supraoccipital, pop: preopercle, hac: haemaxanal,
mx: maxilla, as: anal-fin spine. This figure is adopted from Tyler and Micklich, (2011).
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1.6. Exploitation status of Acanthurus
 

In many parts of the world, Acanthurus species are prized components of coral reef fisheries and 

ornamental trade (Craig et al., 1997). But the harvesting of these species typically occurs in poor 

developing countries such as in the Caribbean, Philippines, East Africa, and Malaysia where 

fishing pressure has continuously increased (Craig et al., 1997; Comeros-Raynal et al., 2012; 

Okemwa et al., 2016). There is already a concern that Acanthurus species may be driven to 

extinction as their exploitation increase and habitat disappears due to climate change (Comeros-

Raynal et al., 2012). In East Africa, for example, Under Visual Census (UVC) surveys indicate 

that the abundance of some of the Acanthurus species is significantly lower than records made 

thirty years ago (Samoilys et al., 2017). The overall decline in abundance can be risky in marine 

fish species that usually have effective population size (Ne)  that is several orders of magnitude 

smaller than the census population size (N) (Hauser et al., 2002; Turner et al., 2002; Hutchinson

et al., 2003). Nevertheless, a large data gap exists in the growth, mortality, and exploitation status 

of Indo-Pacific Acanthurus species, where they are widespread and abundant. So far, estimates of 

growth and mortality exist for only nineteen out of the forty Acanthurus species (Choat and 

Robertson, 2002), indicating that almost more than half of the species of this genus have not yet 

been evaluated.

1.7. Study region background: Indian Ocean
 

The Indian Ocean is comprised of coral reefs that exist in a wide range of environments, from 

fringing and patch reefs that grow in highly unstable environments to oceanic atolls found in the 

calm clear waters (Sheppard, 2000). However, extensive and abundant reefs occur mostly along 

the equatorial band of the Indian Ocean that stretches almost three-quarters of the earth’s 

circumference, while in the north part of the Indian Ocean, reefs are limited by the lack of hard 
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substrate, massive fresh water, and sedimentary inputs (Sheppard, 2000). According to Spalding 

et al. (2007), the Indian Ocean can be categorized into seven biogeographic provinces that

include Western Indian Ocean, Somalia/Arabian, West and South Indian Shelf, Central Indian

Ocean Islands, Bay of Bengal, Andaman, and Northwest Australia shelf. These biogeographic 

provinces coincide with geologic and oceanographic boundaries, which led to distinct reef faunas

(Obura, 2012; Borsa et al., 2016). Nevertheless, the heterogeneity of this region is constrained by 

ocean currents that transport larvae of endemic species across boundaries of different 

biogeographic provinces (Schott and McCreary Jr, 2001). These currents include those flowing 

throughout the year (South Equatorial Current, East African Coast Current, Northeast and 

Southeast Madagascar Current, and Leeuwin Current) or changing with the monsoon seasons 

(Somali Current and South Equatorial Counter Current) (Schott and McCreary Jr, 2001) (Figure 

1.4).

Several studies have examined the connectivity and exploitation of reef fishes in the Indian 

Ocean, showing different trends in different species (Horne et al., 2008; Gaither et al., 2010; 

Grandcourt et al., 2010; McClanahan and Hicks, 2011; Hicks and McClanahan, 2012; Borsa et 

al., 2016; Rehren et al., 2018). However, compared to other parts of the Indian Ocean, the 

population genetics and exploitation of the Western Indian Ocean reef fish fauna has received 

relatively little attention (Ridgway and Sampayo, 2005; Gaither et al., 2010; Visram et al., 2010),

despite this region experiencing rapid environmental degradation. Successful management of 

impacts facing reef fish fauna in the Western Indian Ocean and other parts of the Indian Ocean 

requires a better understanding of factors that shape their connectivity and exploitation.
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Figure 1.4 Map of the Indian Ocean with the main surface currents during the north monsoon period. SC: Somali 
Current, NMC: North Monsoon current, EACC: East African Coastal Current, MC: Mozambique Current, SEC: 
South Equatorial Current, SECC: South Equatorial Counter Current. Light grey colour indicate areas the Pleistocene 
sea-level low stands

1.8. Aims and thesis structure 
 

In this dissertation, I use molecular (mtDNA and microsatellites) and single stock assessment 

techniques to assess the influence of biotic and abiotic factors on the connectivity and 

exploitation of Acanthurus leucosternon and A. triostegus in the Indian Ocean. These two 

Acanthurus species were selected because they differ in aspects of their reproductive behaviour

that can be predicted to affect both connectivity and exploitation rate. A. triostegus forms resident 

spawning aggregations and spawn year-round in equatorial waters. During midday to dusk, fish 

migrate in dense streams to aggregation sites reaching tens of thousands in numbers, to spawn 

(Domeier and Colin, 1997). On the other hand, A. leucosternon spawn in a more spatially diffuse 

mode, with a single male and female pairing in their home territories. These two species,

therefore, offer an excellent opportunity to test the influence of biotic and abiotic factors on the 



CHAPTER 1 

14

connectivity and exploitation of Acanthurus species. For example, whether aggregate spawning

populations (A. triostegus) are less connected than non-aggregate spawners (A. leucosternon),

assuming that the site fidelity associated with spawning aggregation does enhance larval 

retention. In addition, a higher fishing mortality and exploitation rate would be expected in 

aggregate spawners compared to non-aggregate spawners, if fishing is efficient at capturing 

conspecifics individuals when they are gathered together. The specific objectives of the study 

were addressed through four research questions as follows:

1) What is the connectivity of Acanthurus species in the Western Indian Ocean? Do the 

connectivity patterns coincide with the known biogeographic and oceanographic 

boundaries of the Western Indian Ocean?

2) What are the connectivity patterns between the populations of Acanthurus species in 

Western Indian Ocean and their counterparts in the Indo-Pacific (the eastern Indian 

Ocean, west Pacific, central Pacific, and east Pacific)?

3) Does mating behaviour (biotic factors) affect the genetic connectivity of Acanthurus

species?

4) Do differences in species-specific traits (mating behaviour) lead to differences in the 

exploitation rate among Acanthurus species?

These questions are addressed through four research-based chapters (chapters two, three, four, 

and five) that are either published or in preparation and represent different topics with specific 

objectives, introduction, methods, results, and discussion. The current chapter (chapter one)

provides an overview of the thesis research topics and approaches that were used. In chapter two, 

I use mitochondrial DNA and microsatellite markers to examine the genetic connectivity and 

structure of A. leucosternon in the Western Indian Ocean, testing the hypothesis that its long 

pelagic larval duration of acanthurids can confer widespread genetic homogeneity. This chapter 
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has been published in the journal Hydrobiologia “L.M Otwoma, H. Reuter, J. Timm, A. Meyer 

(2018) Genetic connectivity in herbivorous coral reef fish (Acanthurus leucosternon) in the East 

African region. 806:237-250. doi: 10.1007/s10750-017-3363-4”. In chapter three, the genetic 

population structure and connectivity of convict surgeonfish A. triostegus is investigated in five 

Indo-Pacific biogeographic regions (Western Indian Ocean, eastern Indian Ocean, western 

Pacific, central Pacific, and eastern Pacific), using mitochondrial DNA spanning the ATPase8 

and ATPase6 gene regions. This chapter test the roles contemporary and historical barriers play 

in shaping the genetic structure of A. triostegus and has been published in the Journal of Fish 

Biology “L.M Otwoma, V. Diemel, H. Reuter, M. Kochzius, A. Meyer (2018) Genetic 

population structure of the convict surgeonfish, Acanthurus triostegus: a phylogeographic 

reassessment across its range. doi: 10.1111/jfb.13686”.

In chapter four, I compared the population genetics of A. leucosternon and A. triostegus, to 

determine whether the reproductive mating behaviour has an influence on the connectivity 

patterns of Acanthurus species. This chapter is currently in preparation for submission to a 

journal. Chapter five of this thesis compared the biological (growth) parameters and mortality of 

A. leucosternon and A. triostegus, to deduce whether the species-specific traits or differences 

would lead to different exploitation rate. Finally, in chapter six I summarize the finding of each 

chapter, indicate the implication for management and provide recommendations and future 

directions.
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2. CHAPTER - Connectivity of Acanthurus leucosternon

Genetic connectivity in a herbivorous coral reef fish (Acanthurus leucosternon Bennet, 

1833) in the Eastern African region

Levy Michael Otwoma1, 2, 3*, Hauke Reuter1, 2, Janne Timm2, Achim Meyer1

1Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany

2University of Bremen, Bremen, Germany
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A school of Acanthurus leucosternon in a Kenyan reef. © Tim McClanahan.
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Hydrobiologia 806, 237-250.
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Abstract

Knowledge of larval dispersal and connectivity in coral reef species is crucial for understanding 

population dynamics, resilience, and evolution of species. Here, we use ten microsatellites and 

one mitochondrial marker (cytochrome b) to investigate the genetic population structure, genetic 

diversity, and historical demography of the powder-blue tang Acanthurus leucosternon across 

more than 1000 km of the scarcely studied Eastern African region. The global AMOVA results 

based on microsatellites revealed a low but significant FST value  (FST = 0.00252 p < 0.001; DEST

= 0.025 p = 0.0018) for the 336 specimens sampled at ten sample sites, while no significant 

differentiation could be found in the mitochondrial cytochrome b dataset. On the other hand, 

pairwise FST, PCOA, and hierarchical analysis failed to identify any genetic breaks among the 

Eastern African populations, supporting the hypothesis of genetic homogeneity. The observed 

genetic homogeneity among Eastern African sample sites could be explained by the lengthy post-

larval stage of A. leucosternon, which can potentiate long-distance dispersal. Tests of neutrality 

and mismatch distribution signal a population expansion during the mid-Pleistocene period.

Keywords: Western Indian Ocean, Kenya, Tanzania, Mozambique, Seychelles, Surgeonfish
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2.1. Introduction 

Many reef species are sedentary as juveniles and adults and depend on their planktonic larval 

stage for dispersal. These sedentary species display highly variable dispersal capacity, from 

having long-lived larvae that drift for months along ocean currents to short-lived pelagic larvae 

that have limited dispersal capacity (Hellberg et al., 2002; Thorrold et al., 2006; Jones et al.,

2009). Species with long pelagic larval duration (PLD) tend to exhibit more extensive gene flow 

and have less structured populations than those with short PLDs (Duda Jr and Palumbi, 1999; 

Faurby and Barber, 2012; DiBattista et al., 2016). For example, the blue starfish (Linckia 

laevigata Linnaeus, 1758) has a long PLD (~22 days) and exhibits a higher gene flow across the 

Indo-Pacific than the crown-of-thorns starfish (Acanthaster planci Linnaeus, 1758), which has a 

shorter PLD (~14 days) (Benzie, 1999). However, evidence is accumulating in marine organisms 

that show little congruence between observed genetic structure and PLD even in closely related 

species with comparable life history characteristics (Barber et al., 2002; Imron et al., 2007; 

DiBattista et al., 2012),  suggesting that various factors other than PLD may also influence gene 

flow among marine populations e.g. ocean current systems (Yasuda et al., 2009), larval behavior 

(Bird et al., 2007), topographic features (Ahti et al., 2016), historical processes (Gaither et al.,

2010), habitat preference (Rocha et al., 2002), and habitat fragmentation (Pellissier et al., 2014).

Notably, the inconsistency between PLD and gene flow is more pronounced in invertebrates 

(Barber et al., 2002; Imron et al., 2007) than fishes, which indicates that besides having a pelagic 

larval phase, most fishes have also reproductive and ecological behaviours capable of enhancing 

long-distance dispersal (Eble et al., 2011a; Selkoe et al., 2014).

In marine organisms, discordant population structures may also arise due to the transient nature 

of marine barriers. These anomalous barriers cannot provide absolute vicariance between 

different populations because dispersal across them is usually possible when conditions are 

favourable (Mirams et al., 2011). Such porous barriers may be found in the Eastern African 
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region, which can be divided into three eco-regions: the North Monsoon Current, the Seychelles,

and the East African Coral Coast (Obura, 2012). These eco-regions have biogeographic and 

oceanographic boundaries that underlie the restriction of gene flow in the various coral reef and 

mangrove species (Ragionieri et al., 2010; Visram et al., 2010; Muths et al., 2015).

Nevertheless, some studies on taxa that disperse through their planktonic phase fail to document 

genetic discontinuity between the different Eastern Africa eco-regions (Silva et al., 2010b; Muths

et al., 2012; Huyghe and Kochzius, 2017), which indicates permeability of these Eastern African 

marine barriers to dispersing marine propagules. The sporadic permeability of these barriers may 

be influenced or enabled by the complex Eastern African current system (Schott and McCreary 

Jr, 2001; Benny, 2002).

The present-day oceanography in the Eastern African region is dominated by the South 

Equatorial Current (SEC) that flows westward across the Indian Ocean to the southern coast of 

Tanzania and northern coast of Mozambique. At the boundary of Mozambique and Tanzania, this 

current bifurcates to form the permanent northward flowing East African Coast Current (EACC) 

and complex eddies in the Mozambique Channel. The splitting of the SEC current at the Eastern 

African coast potentially creates an oceanographic barrier to dispersal between the southern and 

northern populations. On the other hand, the EACC, traveling up the Eastern African coastline, is 

strongly influenced by both monsoon winds and the Somali Current. During the northeast 

monsoon (November to March), the EACC is weakened, causing it to converge with the Somali 

Current that flows southward. This forms the seasonal eastward flowing South Equatorial 

Counter Current (SECC) and a strong upwelling wedge in areas North of Kenyan that extends up 

to the Somali coast. During the southeast monsoon, the Somali Current is weakened and it joins 

the EACC beyond Malindi in Kenya, where it develops into different gyres and cells that extend 

to the Horn of Africa (Figure 2.1) (Schott and McCreary Jr, 2001; Benny, 2002).
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Figure 2.1 Map of the eastern African coast with A. leucoternon sample sites (for abbreviations see Table 2.1), main 
ocean currents (solid lines), and seasonal changing current (dashed lines). EACC, East African Coast Current; SEC, 
South Equatorial Current; MC, Mozambique Current; SECC, South Equatorial Counter Current; NEMC, North 
Equatorial Madagascar Current; ME, Mozambique Current Eddies (Schott & McCreary Jr, 2001; Benny, 2002).

 

The powder-blue tang surgeonfish (Acanthurus leucosternon Bennet, 1833) is widely distributed 

along reef flats in the Indian Ocean; from the Eastern Indian Ocean (EIO) to the Western Indian 

Ocean (WIO) (Randall, 2002). The largest densities of A. leucosternon are observed in the 

Maldives, but the primary distribution area is at the Eastern African coastline. Acanthurus 

leucosternon is a prized ornamental species that is heavily traded by Kenyan exporters, in 

addition to being targeted by artisanal fishing (Okemwa et al., 2016). Fishing pressure results in 

significant density differences (up to 75%) between adjacent protected and unprotected reefs 

(McClanahan et al., 1999; McClanahan, 2015). Acanthurus leucosternon is considered an 

ecological indicator species because its abundance correlates with healthy coral reefs 

(McClanahan et al., 1999). Despite a presumably short generation time of only three to four 

years, a depleted stock needs about 20 years to recover to its previous density after the closure of 

a fishing area (McClanahan et al., 2007). Like congener species of the genus Acanthurus, its 
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feeding activity not only limits the establishment of algal communities in coral reef ecosystems,

but also provide a link for energy flow to higher trophic levels (Crossman et al., 2005; Mumby et 

al., 2007). Acanthurus leucosternon has, like many other reef organisms, a bipartite lifestyle, 

with sedentary adults and planktonic larval phase. Although the PLD of A. leucosternon has not 

yet been estimated, acanthurids are known for their long PLD of approximately 55 days 

(Thresher, 1984; McCormick, 1999; Fisher et al., 2005). The potentially high dispersal capacity 

of A. leucosternon offers an excellent opportunity to examine the patterns of connectivity across 

Eastern African biogeographical and oceanographic barriers.

Despite their contribution of substantial goods and services to coastal economies (Obura et al., 

2017), the genetic connectivity of coral reef species in Eastern Africa remains amongst the least 

studied globally (Gaither et al., 2010; Visram et al., 2010; Muths et al., 2015; Otwoma and 

Kochzius, 2016). These species are usually managed homogeneously (UNEP-WCMC, 2008; 

Obura et al., 2017), without taking into account that different populations may have restricted 

larval exchanges. However, such a uniform management strategy may lead to significant 

alteration of the genetic subdivisions, with reduced genetic variation and fitness. Therefore, 

increasing genetic connectivity studies in this region aim to identify a congruent pattern on how 

ocean currents and other factors interact to influence larval dispersal, which will be essential in 

devising effective conservation strategies (Almany et al., 2007; Jones et al., 2009). In this study,

we investigate the population genetic structure and connectivity of A. leuocsternon in the Eastern 

African region using microsatellite markers and the mitochondrial cytochrome b gene. In 

addition, we elucidate the genetic diversity and population expansion of A. leucosternon in the 

context of historical processes. The survey of microsatellite genotypes and mitochondrial 

sequences of A. leucosternon intend to answer two questions: (1) are there patterns of genetic 

population structure among populations of A. leucosternon in the Eastern African region? (2) do 

the structuring patterns coincide with the known Eastern African barriers to dispersal?
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2.2. Materials and methods

2.2.1. Sampling and DNA extraction 

A total of 336 fin clips were taken from adult A. leucosternon at ten sampling locations (n = 16-

51) along the Eastern African coastline between August and December 2015 (Table 2.1). The fish 

were obtained from local fishermen who use spear guns, basket traps, and reef seines. The 

sampled fin clips were preserved in 100% ethanol and stored at 4 °C prior to DNA extraction. 

Total genomic DNA was extracted using the standard salting-out protocol (Sunnucks and Hales, 

1996).

Table 2.1 Sample information and molecular diversity indices of the microsatellite dataset for A. 
leucosternon.Sample site, location code, number of specimens (n), mean number of alleles (Na), allelic richness (Ar), 
observed heterozygosity (HO), expected heterozygosity (HE), fixation index (FIS), and number of private alleles 
(PVA). Asterisks indicate significant deviations from the Hardy-Weinberg-Equilibrium (HWE). Sample sites are 
arranged from north to south

Sample site Code n Na ± SD Ar Ho ± SD HE ± SD FIS (10 loci) FIS (6 
loci)

PVA

Kiunga KU 25 10.33 ± 3.14 9.080 0.819 ± 0.040 0.858 ± 0.038 0.140*** 0.046ns 1
Malindi ML 40 13.50 ± 2.88 10.05 0.857 ± 0.076 0.867 ± 0.031 0.068*** 0.010ns 1
Kuruwitu KR 35 11.67 ± 2.58 9.030 0.856 ± 0.116 0.842 ± 0.040 0.057** -0.016ns 3
Mombasa MO 33 13.67 ± 4.23 10.82 0.865 ± 0.080 0.886 ± 0.024 0.079*** 0.024ns 0
Msambweni MS 35 13.33 ± 4.50 10.19 0.839 ± 0.070 0.861 ± 0.040 0.070*** 0.025ns 3
Kisite-Mpunguti KI 51 15.00 ± 4.19 10.27 0.819 ± 0.064 0.859 ± 0.045 0.095*** 0.047* 7
Tanga TA 29 11.50 ± 3.08 9.780 0.805 ± 0.116 0.850 ± 0.050 0.195*** 0.054* 3
Dar es Salaam DS 16 11.17 ± 2.14 10.86 0.864 ± 0.072 0.863 ± 0.034 0.061* -0.001ns 2
Mtwara MT 41 14.67 ± 4.13 10.28 0.875 ± 0.052 0.859 ± 0.042 0.053** -0.019ns 5
Kilindi KL 31 12.00 ± 2.68 9.530 0.818 ± 0.116 0.846 ± 0.078 0.082*** 0.034ns 1

P P P < 0.001; ns= not significant

2.2.2. Mitochondrial DNA amplification and sequencing

We amplified the mitochondrial cytochrome b gene using polymerase chain reaction (PCR) with 

the heavy-strand primer 5’ GTGACTTGAAAAACCACCGTTG 3’ (Song et al., 1998) and the 

light strand primer 5’ AATAGGAAGTATCATTCGGGTTTGATG 3’ (Taberlet et al., 1992).

The PCR reactions were performed in 20 μl volumes containing 2μl DNA template (50-100 ng), 

2 μl PCR buffer B (Roboklon), 13.4 μl H2O, 400 μm dNTPs, 1 μl BSA (10 mg/ml), 0.4 μl of 

reverse and forward primer each (10 μM), and a final concentration of 1μM MgCl. The PCRs 

were conducted with the following temperature profile: 95 °C for 3 minutes, followed by 35 
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cycles of 30 seconds denaturation at 94 °C, 45 seconds of annealing at 63 °C, and 45 seconds of 

extension at 72 °C. The final extension was done at 72 °C for 10 minutes (DiBattista et al., 2016).

The PCR products were analysed using the Dye Deoxy terminator (Applied Biosystems) and 

sequenced on an automated sequencer (ABI PRISM 310 and 3100, Applied Biosystems).

For mitochondrial DNA analysis, a total of 48 sequences were subsampled from the 336 

individuals. The 48 sequences from Kiunga, Dar es Salaam, and Kilindi were supplemented by 

30 published sequences from Mahe, Seychelles (DiBattista et al., 2016), altogether representing 

the three Eastern African eco-regions (the North Monsoon Current, the Seychelles, and the East 

African Coral Coast (Obura, 2012)) that are separated from each other by oceanographic and/or 

biogeographic boundaries known to disrupt gene flow in marine organisms (Ragioneri et al., 

2010; Visram et al., 2010; Muths et al., 2015). 

2.2.3. Microsatellite amplification and genotyping

Individuals were genotyped at 10 published microsatellite loci: Ahy49, Ahy54, Ahy65, Ahy75, 

Ahy112, Ahy119, Ahy170, Ahy178, Ahy182, and Ahy203 (DiBattista et al., 2011), using an 

M13-tailed primer PCR protocol (Schuelke, 2000). PCR amplification was conducted in 10 μl 

reaction volume containing 1 μl DNA template (50-100 ng), 1 μl PCR buffer B (Roboklon), 6.5 

μl H2O, 200 μm dNTPs, 0.5 μl BSA (10mg/ml), 0.2 μl of M13 fluorescent labeled tail primer (10 

μM), 0.2 μl of reverse primer (10 μM), 0.2 μl forward primer (2.5μM) with M13 tail, and 500nM 

of MgCl. The temperature profile consisted of 95 °C for 3 min, followed by 35 cycles of 30 

seconds denaturation at 94 °C, 45 seconds of annealing at a locus-specific temperature and 45 

seconds of extension at 72 °C. The final extension was done at 72 °C for 7 minutes (DiBattista et 

al., 2011).
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The PCR products were labelled with different dye colours and pooled for genotyping along with 

an AlexaFluoro660 (IBA GmbH) labelled oligo as an internal size standard. Generation of the 

LIZ size marker followed the protocol described in (DeWoody et al., 2004) using pUC19 as a 

template and resolved with an ABI 3730 genetic analyser (Applied Biosystems), at the Ludwig-

Maximilians-Universität München, Germany. The software Geneious version 8.1.6 (Kearse et al.,

2012) was used to manually assign allele sizes of the microsatellite loci. In total 336 individuals 

were genotyped from 10 sample sites (Table 2.1) along the Eastern African mainland coastline, 

while the published sequences from Mahe, Seychelles were only used in the cytochrome b dataset

(Table 2.2).

Table 2.2 Mitochondrial cytochrome b diversity characteristics of A. leucosternon in the Eastern African region. 
Sample size (n), number of haplotypes (Nhp), haplotype diversity (h), nucleotide diversity ( ), time since the recent 
population expansion (T), random sequence evolution (Tajima's D and FU's FS), sum of square deviation (SSD), and 
Harpending’s raggedness index (HRI).

Sample site Code n Nhp h T (yrs) Tajima's D FU's FS SSD HRI Source

Kiunga KU 16 12 0.97 0.005 n/a -1.39ns -7.15*** 0.013ns 0.08ns Present study
Dar es Salaam DS 16 12 0.96 0.004 n/a -1.67* -8.39*** 0.007ns 0.06ns Present study

Kilindi KL 16 10 0.87 0.004 n/a -1.06ns -5.35*** 0.004ns 0.03ns Present study
Mahe MH 30 17 0.91 0.005 n/a -1.62* -10.8*** 0.003ns 0.03ns DiBattista et al. 2016

All samples 78 35 0.92 0.005 143,000-287,000 -2.04** -26.81*** 0.0004n

s
0.03ns

P P P < 0.001; ns= not significant

2.2.4. Data analysis

Mitochondrial DNA

The cytochrome b sequences were edited using Geneious version 8.1.6 (Kearse et al., 2012) and 

aligned in BIOEDIT version 7.0.4.1 (Hall, 1999). To ensure that only functional mitochondrial 

DNA was used and not pseudogenes the sequences were translated into amino acids by the 

software Squint Alignment Editor version 1.02 (Goode and Rodrigo, 2007). The online services 

of FABOX (Villesen, 2007) were used to collapse sequences into haplotypes. Haplotype and 

nucleotide diversity were calculated in Arlequin version 3.5.1.2 (Excoffier and Lischer, 2010).
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The null hypothesis of neutral evolution of cytochrome b was tested using the Tajima D-test 

(Tajima, 1989) and Fu’s Fs tests (Fu, 1997). Significant negative Tajima’s D values indicate

population expansion following either selective sweeps, genetic bottleneck event or purifying 

selection (Tajima, 1989). Besides, population expansion was tested by comparing observed 

sequence mismatch distributions within sampling sites and those simulated under Rogers's (1995) 

sudden population expansion model (Schneider and Excoffier 1999) and the goodness-of-fit of 

observed to simulated distributions was tested using both the sum of square deviation (SSD) and 

Harpending's raggedness index (HRI) (Rogers, 1995). A multimodal mismatch distribution 

indicates a population under a demographic equilibrium while unimodal distribution suggests a 

recent and fast demographic expansion. 

The time (T) since the recent population expansion was determined using the formula T = /2u 

(Rogers and Harpending 1992), where Tau ( ) is the expansion parameter estimate and u equals 

the mutation rate x generation time x sequence length. The cytochrome b divergence rate range of 

1% to 2 % per million years in reef fish were used (Bowen et al., 2001; Lessios, 2008; Reece et 

al., 2010) together with a generation time of 3.4 years (estimated from Eastern African A. 

leucosternon length-frequency data; T.R McClanahan pers. comm.). The parameter Tau ( ) was 

estimated from Alerquin under a sudden population expansion hypothesis. 

We used Arlequin to run an analysis of molecular variance (AMOVA) to estimate the genetic 

ST values among populations of A. leucosternon (Excoffier et al.,

1992). A network of haplotypes was constructed with the program TCS version 1.21 (Clement et 

al., 2000), to infer the evolutionary relationships between populations of A. leucosternon, with 

the proportion of haplotypes found at each sample site being reflected in the pie diagrams.     
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Microsatellites

Genetic diversity was estimated as the mean number of alleles (Na), observed heterozygosity 

(HO), expected heterozygosity (HE), and private alleles in the program Arlequin version 3.5.1.3 

(Excoffier and Lischer, 2010). The program FSTAT version 2.9.3.2 (Goudet, 1995) was used to 

estimate the mean allelic richness (Ar) and fixation index (FIS). For each locus, an exact test for 

the departure from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) was 

estimated using Arlequin. The software MICRO-CHECKER version 2.2.3 (van Oosterhout et al.,

2004) was used to screen for possible genotypic errors, large allele dropout, and null alleles. 

Genotypic errors were further minimized by repeating PCR and fragment analysis in 132 

randomly selected individuals (39.3% of all analysed specimens) at all the 10 loci. 

Because null alleles have the likelihood of inflating FST values, the null allele corrected global 

AMOVA and pairwise FST values were estimated in the software FreeNA (Chapuis and Estoup, 

2007). FreeNA uses the ENA (Excluding Null Alleles) method to efficiently correct for null 

allele bias and FST overestimation. Since the estimates of FST have been observed to decline with 

increasing microsatellites polymorphism, Jost’s DEST was also estimated in this study in 

GenAlEX version 6.5 (Hedrick, 2005; Jost, 2008; Peakall and Smouse, 2012). The correlation 

between geographical and genetic distances in the A. leucosternon dataset was tested using the 

Mantel test in GenAlEX by utilising the pairwise FST and DEST values. 

A hierarchical AMOVA was carried out, testing for significant differences among groups of sites 

in Arlequin with composing groupings based on oceanographic conditions and the geographical 

locations of sites in the Eastern African region. In addition, a principal coordinate analysis 

(PCoA) was done in GenAlex, to examine the spatial variation among A. leucosternon

populations using the unbiased Nei genetic distance. The software STRUCTURE version

(Pritchard et al., 2000) was used to define genetic clusters (K) without a priori information on the 

geographical origin of specimens. To estimate the optimal number of homogeneous genetic units 



CHAPTER 2 

27

(K), STRUCTURE was run under the admixture model for K = 1-10, using 10 iterations, a burn-

in length of 100,000 and 1,000,000 MCMC (Markov chain Monte Carlo) replications. The most 

probable value of K was determined using the software STRUCTURE HARVESTER web 

version 0.6.94 (Earl and vonHoldt, 2012) (Evanno et 

al., 2005).

2.3. Results

2.3.1. Genetic diversity

Mitochondrial DNA

A 491 base pair (bp) fragment of cytochrome b was obtained after a sequence alignment, which 

did not contain indels and stop codons. The 78 sequences from Eastern Africa yielded 35 

haplotypes of which 26 were unique and nine were shared by 19 to 2 individuals (Figure 2.2). 

There were 35 polymorphic sites that included 33 transitions and 2 transversions. Overall, 

haplotype and nucleotide diversity estimates were similar among the Eastern African sampling 

sites, ranging from 0.87 to 0.97 and from 0.004 to 0.005 respectively (Table 2.2).

Figure 2.2 Haplotype network from cytochrome b sequences of A. leucosternon. Each circle represents a haplotype 
and its size is proportional to the total frequency. The lines show mutational steps while the smallest circles represent 
intermediate missing haplotypes.
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Microsatellites 

Based on within-

significantly from the expectations of the HWE; these differences were mostly represented by 

four markers (Ahy54, Ahy75, Ahy182, and Ahy203). Further analysis with MICROCHECKER 

indicated that the deviations at these four loci could be due to the presence of null alleles. The re-

amplification and re-genotyping results indicated negligible evidence of misamplification and 

genotyping disagreement, 0.76% of all re-genotyped loci (10 out 1320). Low levels of linkage 

disequilibrium were also noted after the removal of the four loci not conforming to HWE (14 out

of 150 within-site

Overall populations, mean number of alleles (Na) and Allelic richness (Ar) varied from 10.33 to 

15.00 and 9.03 to 10.86, respectively. The expected heterozygosity values ranged between 0.842 

and 0.886, while the observed heterozygosity values ranged between 0.805 and 0.875. Private 

alleles were detected in all sample sites, with exception of Mombasa, which shared all its alleles 

with the other sample sites. Populations from two sample sites (Kisite-Mpunguti and Tanga) 

exhibited significant FIS values even after the exclusion of the four loci (Ahy54, Ahy75, Ahy182, 

and Ahy203) not in HWE (Table 2.1). 

2.3.2. Historical demography

Overall, tests of neutral evolution of the cytochrome b marker revealed negative and significant 

Fu FS and Tajima’s D values, supporting population expansion following selective sweeps, 

genetic bottleneck or purifying selection (Table 2.2). The analysis of the sequence mismatch 

distribution revealed that the model of sudden expansion could not be rejected in the Eastern

African population, using both SSD and HRI goodness-of-fit (Table 2.2). The range of mutation 

rates and estimated for all sample sites revealed a demographic expansion that began between

143,000 and 287,000 years ago. 
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2.3.3. Genetic population structure

Mitochondrial DNA

The cytochrome b gene AMOVA results showed no genetic differences among Eastern Africa 

populations, even after inclusion of published sequences from Mahe, Seychelles ( ST = -0.021 P 

= 0.96), with 100% genetic variation being observed within populations. Similarly, pairwise ST

estimates were low and not significant, showing genetic homogeneity among all four sampling 

sites at the mitochondrial marker (Kiunga, Dar es Salaam, Kilindi, and Mahe). The evolutionary 

relationship of 35 A. leucosternon haplotypes found in Eastern Africa is presented in the 

haplotype network (Figure 2.2), showing a distinct star-like pattern of three common haplotypes 

surrounded by singletons. The distribution of the shared haplotypes throughout all four sample 

sites, provide further evidence of a single panmictic population.   

Microsatellites 

Global FST (FST = 0.00252 and FSTENA = 0.00249) and pairwise FST (Table 3) estimates from the 

ENA corrected and uncorrected dataset were not significantly different (t-test: p = 0.45), 

suggesting that null alleles had little influence on genetic differentiation estimates. The global 

AMOVA revealed a low but significant FST value (FST = 0.00252, p < 0.001, DEST = 0.025 p = 

0.0018), with most of the genetic differences being within locations (99%). Similarly, all 

pairwise FST and DEST estimates among populations were low and nonsignificant after Bonferroni 

correction (P < 0.001) (Table 2.3 and Supplementary Table 2.1). The hierarchical AMOVA 

grouping based on ocean currents and the geographical location of sample sites was not 

significant, supporting the hypothesis of panmixia in the Eastern African region (data not shown). 

The Mantel test revealed no significant correlation between geographic distance and pairwise FST

(R2 = 0.081, p = 0.32) and DEST (R2 = 0.0006, p = 0.42) estimates. 
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Table 2.3 Raw and ENA-corrected Pairwise FST values for populations of Acanthurus leucosternon in the Eastern 
Africa region (for sample site abbreviations see Table 2.1). Raw microsatellite estimates (below the diagonal) and 
ENA corrected estimates (above the diagonal).

KU ML KR MO MS KI TA DS MT KL
KU 0.00287ns 0.00826ns -0.00006ns 0.00605ns 0.00473ns 0.00634ns 0.00366ns 0.00139ns 0.00597ns

ML 0.00349ns 0.00444ns 0.00035ns 0.00073ns -0.00127ns 0.00281ns 0.00233ns -0.00085ns -0.00068ns

KR 0.00775ns 0.00481ns 0.00826ns 0.00239ns 0.00369ns 0.00216ns 0.00569ns 0.00484ns 0.00505ns

MO 0.00033ns 0.00029ns 0.00808ns 0.00231ns 0.00369ns 0.00209ns 0.00729ns 0.00257ns 0.00308ns

MS 0.00632ns 0.00046ns 0.00286ns 0.00191ns -0.00172ns -0.00221ns -0.00021ns 0.00261ns 0.00085ns

KI 0.00495ns -0.00185ns 0.00381ns 0.00367ns -0.00237ns 0.00155ns 0.00408ns 0.00254ns 0.00018ns

TA 0.00661ns 0.00409ns 0.00145ns 0.00361ns -0.00133ns 0.00291ns 0.00224ns 0.00204ns 0.00159ns

DS 0.00267ns 0.00209ns 0.00717ns 0.00776ns -0.00022ns 0.00332ns 0.00181ns 0.00521ns 0.00686ns

MT 0.00163ns -0.00091ns 0.00491ns 0.00224ns 0.00247ns 0.00232ns 0.00183ns 0.00496ns 0.00256ns

KL 0.00571ns -0.00039ns 0.00577ns 0.00271ns 0.00116ns 0.00021ns 0.00128ns 0.00692ns 0.00221ns

*P < 0.001 (after Bonferroni correction); ns= not significant

The software STRUCTURE HARVESTER identified the optimum

Figure 2.1), with few individuals within sample sites KR, MO, and TA being genetically distinct 

from the other Eastern African populations (Figure 2.3). On the other hand, the PCoA based on 

unbiased Nei genetic distances did not reveal any genetic breaks between the geographical 

locations, but two sample sites (KU and DS) were slightly separated from the other sample sites 

(Supplementary Figure 2.2). 

 

Figure 2.3 Structure analysis performed on A. leucosternon populations using 10 microsatellite loci with K = 2. For 
abbreviations, see Table 2.1.

2.4. Discussion 

This is the first study that examines genetic diversity and structure among populations of powder-

blue tang surgeonfish along the Eastern African coastline. The findings using microsatellite and 
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cytochrome b markers complement previous studies on coral reef fish species such as Scarus 

ghobban Forsskål, 1775, Lutjanus kasmira, and Amphiprion akallopisos (Visram et al., 2010; 

Muths et al., 2012; Huyghe & Kochzius, 2016). As expected, for a species with a lengthy post-

larval stage, our results based on microsatellites revealed a weak genetic differentiation (FST =

0.00252 p < 0.001, DEST = 0.025 p = 0.0018) among populations of A. leucosternon. However, 

pairwise FST, PCOA, and hierarchical analysis could not identify any genetic breaks among the 

eastern African populations, suggesting a homogeneous connectivity pattern.

2.4.1. Genetic diversity and historical demography

Marine species traditionally have high genetic diversity, which can be attributed to historically 

large population sizes and high reproductive potential (Carvalho and Hauser, 1995). Findings on 

A. leucosternon do not appear to deviate greatly from this generalization, both historically (h =

0.87-0.97) and contemporary (Ar = 9.03-10.86, HE = 0.842-0.886). The high levels of 

microsatellite genetic diversity (HO and HE) are similar in range to those reported for A. 

leucosternon populations in the Eastern Indian Ocean and its congeners Acanthurus nigricans

Linnaeus, 1758, Acanthurus achilles Shaw, 1803, and Acanthurus japonicus Schmidt, 1931 in the 

Pacific and Indian Oceans (DiBattista et al., 2016). The similarity in contemporary genetic 

diversity estimates could suggest analogous population dynamics in these relatively young 

species that have akin morphology, ecology, and biology (DiBattista et al., 2016). However, 

unlike the Eastern Indian Ocean populations where only two loci (Ahy54 and Ahy203) deviated 

from the HWE (DiBattista et al., 2016), in the Eastern African populations four loci (Ahy54, 

Ahy75, Ahy182, and Ahy203) deviated from the HWE. 

The range of haplotype and nucleotide diversity estimates observed in A. leucosternon are

comparable to the estimates found in other coral reef fish in the Eastern African region, such as L. 

kasmira (Muths et al., 2012) and Epinephelus merra Bloch, 1793 (Muths et al., 2015), which 
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also used the cytochrome b marker. On a global scale, these estimates are similar to those 

obtained for A. leucosternon in the Eastern Indian Ocean and other Acanthurus species in the 

Atlantic, Indian, and Pacific Oceans (Rocha et al., 2002; DiBattista et al., 2016). The high 

haplotype and low nucleotide diversity may suggest an expansion of the Eastern African 

populations after a bottleneck (Grant and Bowen, 1998), which is consistent with the results of 

the mismatch distribution of HRI and SSD tests as well as the star-like topology of the haplotype 

network. Based on the mismatch distribution analysis this population expansion is estimated to 

have begun between 143,000 and 287,000 years ago, which corresponds to the mid-Pleistocene. 

However, A. leucosternon does not have a well-calibrated molecular clock, suggesting that these 

estimates may not accurately reflect the absolute demographic expansion time of this species. 

Nevertheless, the range of these estimates is can indicate the epoch and the period in which the 

expansion most likely occurred. During the Pleistocene glacial sea level low stands, a large 

proportion of the continental shelf became emergent, leading to loss of habitats and increased

fragmentation within coral reef ecosystems of the Western Indian Ocean and Indo-Pacific (Grant 

and Bowen, 1998; Voris, 2000; Pellissier et al., 2014). The loss of habitats and increased

fragmentation may have led to the extirpation and drastic reduction of the A. leucosternon

population in Eastern Africa. Decline in fish population due to a shortage of habitats can occur on 

very short time scales and has been shown in contemporary reef monitoring studies, which 

indicate that 62% of fish disappeared within 3 years of reduction of at least 10% coral cover

(Wilson et al., 2006). When the sea-level subsequently rose, increased suitable coral reef habitats 

could have enabled the population growth of A. leucosternon. Evidence of demographic 

expansion after a bottleneck has been reported in other surgeonfish species e.g. Acanthurus 

nigrofuscus Forsskål, 1775 (Eble et al., 2011a), Zebrasoma flavescens Bennett, 1828 (Eble et al.,

2011b), and Ctenochaetus strigosus Bennett, 1828 (Eble et al., 2009). For Eastern Africa, the 

hypothesis of population expansion after a bottleneck has also been supported in other reef fish 
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such as the blue-barred parrotfish S. ghobban (Visram et al., 2010) and the skunk anemonefish A. 

akallopisos (Huyghe and Kochzius, 2017).

2.4.2. Genetic population structure

Microsatellite data showed a low but significant FST value (FST = 0.00252 p < 0.001, DEST = 0.025 

p = 0.0018) across our sampling area, which span potential biogeographic and oceanographic 

barriers in the Eastern African region. On the other hand, the mtDNA cytochrome b did not show 

significant structuring (Supplementary Table 2.2). The weak genetic differentiation revealed by 

microsatellites among A. leucosternon Eastern African population is in agreement with the 

finding reported for the Eastern Indian Ocean populations, albeit with a lower magnitude of 

genetic differentiation (Eastern Africa FST = 0.00252: distance of ~1500 KM and Eastern Indian 

Ocean FST = 0.0063: distance of ~ 6000 KM) (DiBattista et al., 2016). However, despite the 

significant FST and DEST value, results for pairwise FST, PCOA, and hierarchical AMOVA failed 

to identify any genetic break among the Eastern African population, supporting the hypothesis of 

genetic homogeneity. It is likely that a homogeneous genetic pattern in A. leucosternon is 

facilitated by its lengthy post-larval stage (Randall, 2002), which can provide a mechanism for 

long-distance dispersal. Furthermore, estimates of genetic dispersals in marine fish with a PLD 

greater than 2 days, have shown that over 50% of the variance in spatial genetic patterns can be 

attributed to the duration of planktonic phase (Kinlan and Gaines, 2003). The finding of weak 

genetic differentiation broadly matches previous studies on other reef fish such as L. kasmira

(Muths et al., 2012), A. akallopisos (Huyghe and Kochzius, 2017), and S. ghobban (Visram et al.,

2010). However, contrary to these findings Myripristis berndti Jordan & Evermann, 1903 (Muths

et al., 2011) and Epinephelus merra Bloch, 1793 (Muths et al., 2015) show pronounced genetic 

structures despite having relatively long PLDs (30-80 days). The discordant population structures 

among these coral reef species may be due to the sporadic permeability of Eastern African marine 
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barriers, which only restrict larval exchange but do not provide absolute vicariance in marine 

populations (Muths et al., 2011; Muths et al., 2015). On the other hand, the lack of a significant 

relationship between the genetic and geographic distance (FST R2 = 0.081, p = 0.32 and DEST R2 =

0.0006, p = 0.42) confirms that the observed weak genetic differentiation is not attributed to 

distance restricted dispersal. The general congruence between mitochondrial DNA and nuclear 

markers in inferences of genetic homogeneity may suggest that connectivity among Eastern 

African population of A. leucosternon occurred deep in the past and has persisted to 

contemporary times.   

Besides, having a lengthy post-larval stage, A. leucosternon populations are often found on the 

outer reef (seaward) habitats of Eastern African lagoons (Pers. obs.), an ecological characteristic

that can enhance genetic homogeneity because the spawned larvae have a high chance of 

occurring in the path of the permanent flowing EACC, which can facilitate long-distance

dispersal along the Eastern African coastline. Long distance dispersal among offshore Eastern 

African marine population has been supported by a recent model-based survey, which indicates 

that these populations exhibit a higher connectivity compared to their counterparts found in 

sheltered lagoons (Mayorga-Adame et al., 2017). However, recruitment and settlement of these 

dispersed larvae depend on the availability of suitable habitats as Alberto et al. (2010) showed 

that genetic distance increased with increasing habitat discontinuity and/or fragmentation. This 

suggests that the continuous Eastern African fringing reef that runs parallel to the Eastern African 

coastline from northern Mozambique (KL) to northern Kenya (KU), may also play a critical role 

in promoting larval exchange among different marine populations, preventing the deleterious 

outcomes of inbreeding and genetic isolation (Bowler and Benton, 2005; Keyghobadi, 2007). It is 

thus reasonable to argue that other factors (not only dispersal capacity) might also be responsible 

for the large-scale connectivity of A. leucosternon in Eastern Africa.
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Interestingly, the STRUCTURE results of K = 2 showed that a few individuals from KR, MO, 

and TA were genetically distinct from the other populations (Figure 2.3). This pattern of 

differentiation is not consistent with the effect of barriers to dispersal in the Eastern African 

marine realm and could suggest occurrence of chaotic genetic patchiness in A. leucosternon as a 

result of pre-settlement selection, post-settlement selection (Johnson and Black, 1984),

sweepstake reproduction success (Hogan et al., 2010), variable source of larvae (Selkoe et al.,

2006) or kinship aggregations (Selwyn et al., 2016). These phenomena can create an admixture 

of genetically differentiated individuals within a single local population by facilitating the 

accumulation of genetically distinct cohorts (Pusack et al., 2014). Alternatively, the few 

differentiated individuals in these sample sites could be potential hybrids between A. 

leucosternon and A. nigricans as these two species are known to hybridize beyond their suture 

zone (DiBattista et al., 2016). However, no morphological differences were detected among the 

336 individuals analysed in this study, suggesting that the potential hybrids will likely be 

backcrossed offsprings of F1 (without excluding F2 or later generations) hybrids and pure A. 

leucosternon parents. Most morphologically different hybrids were identified as an F1

generation, while no morphological difference was observed between backcrossed offsprings and 

pure parental species (DiBattista et al., 2016).      

In conclusion, the genetic homogeneity established among A. leucosternon populations separated 

by more than 1000 km suggests that substantial larval exchange occurs among distant

populations. Therefore, it is possible to manage these populations as a single unit, following a 

trans-boundary approach among the coral reef ecosystem of the four countries (Kenya, Tanzania, 

Mozambique, and Seychelles). This indicates that networks of marine protected areas (MPAs) are 

likely to be successful if they are implemented following a regional approach rather than a 

national approach because highly dispersive species such as A. leucosternon might have source 

and sink populations located in jurisdictions of two different Eastern African countries. The
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consistency between the findings of our study and a recent larval based modeling study 

(Mayorga-Adame et al., 2017) underpins the need to consider species life history characteristics 

(e.g PLD) in marine species conservation. 

The high level of genetic diversity displayed by A. leucosternon parallel to other regional studies 

on coral reef fishes indicates the ability of this species to withstand environmental changes 

among the sample sites. Nevertheless, the recovery of acanthurids after fisheries closure was 

remarkably slower compared to other fish families (McClanahan et al., 2007), which underscores 

the importance of monitoring and assessing artisanal and aquarium fisheries in Eastern Africa, 

especially with catch composition records from Kenyan reefs showing that A. leucosternon

contribute up to 16% of all Acanthuridae caught for ornamental export (Okemwa et al., 2016).   
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Abstract

This study investigates the genetic population structure and connectivity of Acanthurus triostegus

in five Indo-Pacific biogeographic regions (Western Indian Ocean, Eastern Indian Ocean, 

Western Pacific, Central Pacific, and Eastern Pacific), using a mitochondrial DNA marker

spanning the ATPase8 and ATPase6 gene regions. In order to assess the phylogeography and 

genetic population structure of A. triostegus across its range, 35 individuals were sampled from 

five localities in the Western Indian Ocean and complemented with 227 sequences from two 

previous studies (Lessios and Robertson, 2006; Liggins et al., 2016). Results from the overall 

analysis of molecular variance (AMOVA) without a priori grouping showed evidence of 

significant differentiation in the Indo- ST 

comparisons being significant. However, the hierarchical AMOVA grouping of Indian and 

Pacific Ocean populations failed to support the vicariance hypothesis, showing a lack of a genetic 

break between t ST values and 

geographic distance showed that dispersal of A. triostegus in Indo-Pacific follows an isolation-

by-distance model. Three haplogroups could be deduced from the haplotype network and 

phylogenetic tree, with haplogroup 1 and 2 dominating the Indian and the Pacific Ocean, 

respectively, while haplogroup 3 exclusively occurring in the Hawaiian Archipelago of the 

Central Pacific.

Key words: Genetic diversity, Kenya, Tanzania, Madagascar, mtDNA, Indo-Pacific Barrier
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3.1. Introduction

The Indo-Pacific Barrier (IPB) hinders the movement of tropical marine organisms between the 

Indian and the Pacific Ocean. Its exact location in the Indo-Australian Archipelago (IAA) is still 

being debated, but it is widely recognized that the efficacy of this barrier increased during the 

Pleistocene sea-level low stands (Gaither et al., 2010). During the Pleistocene (around 2.6 million 

to 11 700 years ago) glacial cycles, sea level repeatedly dropped up to 120 m below present, 

exposing the shallow Sunda and Sahul shelves. At the same time, the Torres Strait between New 

Guinea and Australia was closed and acted as a land bridge for 90000-100000 years until its 

inundation ~7000 years ago (Voris, 2000). The strong upwelling of cold water at the base of the 

Indonesian arc limited dispersal of tropical marine organisms through the few open narrow 

channels in the eastern Indonesian islands (Voris, 2000). This barrier divided populations that 

once freely exchanged migrants for tens of thousand years (Benzie, 1999). Although 

phylogeographic surveys across the Indo-Pacific are still at a nascent stage (Carpenter et al., 

2011), studies on several taxa have shown a concordant genetic partition between the Indian and 

the Pacific Ocean. These include teleosts (McMillan and Palumbi, 1995; Planes and Fauvelot, 

2002; Kochzius et al., 2003; Bay et al., 2004; Timm et al., 2008; Timm and Kochzius, 2008; 

Gaither et al., 2010; Mirams et al., 2011), echinoderms (Benzie, 1999; Crandall et al., 2008b;

Kochzius et al., 2009; Otwoma and Kochzius, 2016), molluscs (Kochzius and Nuryanto, 2008; 

Kochzius et al., 2009; Nuryanto and Kochzius, 2009; Hui et al., 2016), crustacean (Lavery et al.,

1996), and seagrass (Hernawan et al., 2017).

Although this concordant phylogeographic structure in numerous marine taxa may indicate that 

genetic divergence between the two ocean basins was caused by extrinsic factors such as the sea-

level fluctuations during the Pleistocene (Hernawan et al., 2017), a number of species lack this 

phylogeographic break. These include echinoderms Eucidaris metularia (Lamarck 1816)

(Lessios et al., 1999) and Diadema savignyi (Audouin 1809) (Lessios et al., 2001); marine 
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gastropods Echinolittorina reticulata (Anton 1838) (Reid et al., 2006) and Thyca crystallina

(Gould 1846) (Kochzius et al., 2009); and the teleost fishes Naso vlamingii (Valenciennes 1835)

(Klanten et al., 2007), N. brevirostris (Cuvier 1829) and N. unicornis (Forsskål 1775) (Horne et 

al., 2008). The lack of genetic divergence in some of the species that span the Indo-Pacific has 

been interpreted as the loss of one of the two divergent lineages due to local extinction or 

selective sweeps (Grant and Bowen, 1998), or reestablishment of gene flow after the barriers 

were dissipated by sea-level rise (DeBoer et al., 2008; Gaither et al., 2011a; Liu et al., 2012). On 

the other hand, it is also possible that the ranges of these species did not span the IAA during 

Pleistocene multiple glaciations (Crandall et al., 2008a).

Several studies on marine shallow water species show a higher degree of genetic differentiation 

among the Indian Ocean populations as compared to their counterparts in the Pacific (Williams 

and Benzie, 1998; Benzie, 1999; Hui et al., 2016; Otwoma and Kochzius, 2016; Huyghe and 

Kochzius, 2017). This suggests that not only are populations from the Indian and Pacific 

separated, but that species in each basin exhibit different patterns of population connectivity. The 

higher genetic differentiation in the Indian Ocean is attributed to the fewer reefs and island 

archipelagos available in this basin to facilitate long-distance dispersal through the stepping stone 

model (Williams and Benzie, 1998; Benzie, 1999). This is particularly true for species that 

disperse across the Indian Ocean while possessing a limited pelagic larval duration (PLD). Such 

species show limited larval exchange within the Indian Ocean (Williams and Benzie, 1998; 

Benzie, 1999; Hui et al., 2016; Huyghe and Kochzius, 2017), possibly due to the vast distance 

between their suitable habitats (Spalding et al., 2007). On the other hand, species with a PLD 

reaching 40 – 90 days show genetic uniformity across the Indian Ocean, suggesting that great 

dispersal ability may play a role in connecting Eastern and Western Indian Ocean population 

(Craig et al., 2007; Horne et al., 2008; Gaither et al., 2010; Gaither et al., 2011b; DiBattista et 

al., 2016). However, the relationship between PLD and genetic population structure is not always 
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straightforward (Selkoe et al., 2014), as a positive correlation between the two is reported in 

some studies (Gaither et al., 2010; Gaither et al., 2011b), but not in others (Barber et al., 2002; 

Weersing and Toonen, 2009). This ambiguity suggests that larval dispersal in marine species is 

not only influenced by PLD but also local oceanographic current conditions (Otwoma and 

Kochzius, 2016; DiBattista et al., 2017), larval behaviour (Fisher et al., 2005), and historical 

processes (Otwoma and Kochzius, 2016).   

The convict surgeonfish Acanthurus triostegus L. 1758 is widely distributed in the lagoon and 

seaward reefs of the Indo-Pacific. It feeds predominantly on filamentous algae growing on coral 

reefs, thus helps to keep them in the coral-dominated state. Reproduction in this species occurs 

through large spawning aggregations that result in clouds of pelagic fertilized eggs (Hartup et al.,

2013). Studies on its post-recruitment stages report an average larval swimming speed of 0.56 

m/s, which can be sustained for up to 194 hours (Leis and Carson-Ewart, 1997; Stobutzki and 

Bellwood, 1997; Fisher and Hogan, 2007). This suggests that A. triostegus larvae are capable of 

actively influencing their dispersal and settlement (Fisher et al., 2005). Otherwise, its pelagic 

larval phase of 40 to 60 days (McCormick, 1999) would facilitate long-distance dispersal, when 

the mean speed of ocean currents exceeds the average swimming speed of the larvae. The great

dispersal potential and wide distribution of A. triostegus make it a suitable model to investigate 

the forces that shape the genetic structure and evolution of marine organisms in the Indo-Pacific. 

Previous genetic analyses of this species were based on allozymes (Planes, 1993; Planes et al.,

1998; Planes and Fauvelot, 2002) or mtDNA (Lessios and Robertson, 2006; Mirams et al., 2011; 

Liggins et al., 2016) and mainly focused on assessing the genetic structure of A. triostegus in the 

Eastern Indian Ocean (EIO), Western Pacific (WP), Central Pacific (CP), and Eastern Pacific 

(EP) (Planes, 1993; Planes et al., 1998; Lessios and Robertson, 2006; Mirams et al., 2011; 

Liggins et al., 2016). Although the study by Planes and Fauvelot, (2002) covers the whole Indo-

Pacific, only one population was sampled from the Indian Ocean (Mozambique).
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In this study, newly sampled sequences from the Western Indian Ocean (WIO) were added to 

published sequences from two previous studies (Lessios and Robertson, 2006; Liggins et al.,

2016), in order to determine the genetic population structure of A. triostegus across its entire 

range. The aim was to assess the connectivity of A. triostegus among WIO reefs and the role

contemporary or physical barriers (long-distance between suitable habitats) play in shaping its 

genetic structure. In addition, the influence of historical barriers on the phylogeography of A. 

triostegus across the IAA was examined. Based on the great dispersal potential of A. triostegus

connectivity within Indian and Pacific basins was expected. However, the dispersal ability could 

have played a negligible role in connecting the Indian and Pacific A. triostegus populations 

during the Pleistocene sea-level low stands. Therefore, the intraspecific divergence between the 

two ocean basins was anticipated. 
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Figure 3.1 Map of Indo-Pacific (a) with A. triostegus sample sites, (b) Western Indian Ocean (WIO), (c) Eastern 
Indian Ocean (EIO), (d) Western Pacific (WP), (e) Central Pacific (CP), and (f) Eastern Pacific (EP). Light grey 
areas on the map indicate the Pleistocene sea-level low stands 120 m (Voris, 2000). (g) Majority rule consensus tree 
from the Bayesian phylogenetic analysis using the HKY +I + G model showing the three defined haplogroups. 
Posterior probabilities above 0.9 are shown at the respective nodes. (h) Minimum spanning network based on 
ATPase sequences. The filled circles represent haplotypes and their size proportional to their absolute frequencies. 
Lines represent single mutational steps, while small white circles are the missing intermediate haplotypes. Pie charts 
on the map (Figure 3.1(a)) illustrate the proportion of each haplogroup at different sampling sites. Abbreviation of 
sample sites is given in Table 3.1.
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3.2. Materials and methods

3.2.1. Sampling and DNA extraction

Adult A. triostegus were caught between June and December 2015 by local fishermen using spear 

gun, gill net, basket trap, and beach seine from 5 localities in the WIO region (Figure 3.1(b) and 

Table 3.I). Fin clips were cut from each individual and stored in 96% ethanol prior to DNA 

extraction. The genomic DNA was extracted by the standard salting precipitation method 

(Sunnucks and Hales, 1996).

Table 3.1 Summary of A. triostegus genetic diversity indices for the georeferenced sequence samples. Number of 
sequences (n), number
Indian Ocean, EIO: Eastern Indian Ocean, WP: Western Pacific, CP: Central Pacific, and EP: Eastern Pacific.

Sample site Biogeographical 
region

Sample 
code

n NhP h Source of sequences

Dar Es Salaam, Tanzania WIO DS 7 7 1 0.009 Present study
Kiunga, Kenya WIO KU 9 6 0.92 0.006 Present study
Mombasa, Kenya WIO MO 6 6 1 0.008 Present study
Mtwara, Tanzania WIO MT 4 4 1 0.005 Present study
Anakao, Madagascar WIO AN 9 6 0.89 0.005 Present study
Ashmore Reef, Indian Ocean EIO AR 15 6 0.71 0.002 Liggins et al., 2016
East Timor, Indonesia EIO ET 16 7 0.74 0.006 Liggins et al., 2016
Ningaloo, Australia EIO NI 18 9 0.84 0.005 Liggins et al., 2016
Kavieng, Papua New Guinea WP KG 15 7 0.82 0.005 Liggins et al., 2016
Lihou Reefs, Australia WP LR 15 9 0.89 0.004 Liggins et al., 2016
Lizard Islands, Australia WP LI 15 10 0.91 0.007 Liggins et al., 2016
Motupore Island, Papua New 
Guinea

WP MG 7 4 0.81 0.004 Liggins et al., 2016

Solomon Islands WP SI 15 7 0.82 0.005 Liggins et al., 2016
Cook Island CP CK 30 16 0.93 0.005 Liggins et al., 2016
Hawaii, USA CP HA 16 13 0.98 0.006 Liggins et al., 2016; Lessios & 

Robertson, 2006
Fiji CP FJ 11 7 0.87 0.004 Liggins et al., 2016
Johnston Island, USA CP JI 4 4 1 0.006 Lessios & Robertson, 2006
Kiritimati, Kiribati CP KR 5 3 0.8 0.006 Lessios & Robertson, 2006
Marquesas Islands, France CP MI 4 4 1 0.002 Lessios et al., 2006
Tonga CP TG 6 5 0.93 0.007 Liggins et al., 2016
Tuvalu CP TV 16 10 0.83 0.007 Liggins et al., 2016
Clipperton Island, France EP CF 5 4 0.9 0.003 Lessios & Robertson, 2006
Cocos Island, Costa Rica EP CI 4 3 0.83 0.003 Lessios & Robertson, 2006
Panama EP PA 5 3 0.7 0.002 Lessios & Robertson, 2006
Revillagigedos Islands, Mexico EP RI 5 2 0.4 0 Lessios & Robertson, 2006
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3.2.2. Amplification and sequencing

A fragment of 842 bp of the ATPase8 and ATPase6 gene regions was amplified through 

polymerase chain reaction (PCR) using the primers described by Lessios and Robertson, (2006): 

ATP8.2 (5’ AAAGCRTYRGCCTTTTAAGC 3’) and CO3.2 (5’ 

GTTAGTGGTCAKGGGCTTGGRTC 3’). All PCRs were conducted in a total volume of 25μl 

that included 2.5μl buffer C (Roboklon), 1μl dNTPs (10mM), 1μl MgCl2 (25mM), 0.5μl BSA 

(10mg/ml), 0.5μl of each primer (10μM), 0.125μl Taq DNA polymerase (5U/μl) and 1μl of DNA 

template (100-300ng). The temperature profile consisted of 94 °C for 5 minutes, 39 cycles of 94 

°C for 30 seconds, 54 °C for 40 seconds, 72 °C for 1 min and a final extension at 72 °C for 5 

minutes, as described by Lessios and Robertson, (2006). Purification of the PCR products was 

done using the ExoSAP clean-up kit (ThermoFisher scientific) following the manufacturer’s 

protocol. Sequencing was done using a DyeDeoxy terminator (Applied Biosystems) and an 

automatic sequencer (ABI PRISM 310 and 3100, Applied Biosystems).  

These 35 sequences from five WIO localities were combined with 227 sequences (GenBank 

accession numbers: KJ779682.1-KJ779871.1 and DQ111127.1-DQ111163.1) from two previous 

studies (Lessios and Robertson, 2006; Liggins et al., 2016) (Table 3.1).   

 

3.2.3. Data analysis

Genetic diversity

Sequences were edited, trimmed and aligned using Muscle (Edgar, 2004) as implemented in 

Geneious version 8.1.6 (Kearse et al., 2012). To ensure that only functional mitochondrial DNA 

sequences were used, all sequences were translated into amino acids in Squint Alignment Editor 

version 1.0.2 (Goode and Rodrigo, 2007). Thereafter, haplotypes were identified using the online 

web services of FaBox version 1.41 (Villesen, 2007). The haplotype (h) and nucleotide (

diversity were calculated in Arlequin version 3.5 (Excoffier and Lischer, 2010).
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Phylogenetic analysis

The phylogenetic inference was based on A. triostegus haplotypes, with sequences from the three 

sister species Acanthurus lineatus L. 1758 (EU273284.2), Acanthurus nigricans L. 1758 

(DQ111100 and DQ111099), and Ctenochaetus striatus (Quoy & Gaimard, 1825) (KU244260) 

being used as outgroups. Ctenochaetus striatus was used to root the tree. The Akaike and all 

other criteria implemented in jModelTest version 2.1.10 (Posada, 2008) suggested the HKY+I+G 

as the best-fit model of evolution for the ATPase sequences. Bayesian phylogenetic analyses 

were conducted using MrBayes version 3.2.6 x64 (Huelsenbeck and Ronquist, 2001). Priors were 

set according to the HKY model with a gamma distribution and allowing for invariable sites (lset

nst = 2 rates = invgamma). Two times four Markov chains run in parallel, three heated and one 

cold, using a random starting tree. All eight chains were run simultaneously for 10 million

generations, with trees being sampled every 1000 generations for a total of 80,002 trees. The first 

25 % of the trees were discarded as burn-in after confirming convergence of likelihood values of 

each chain using the commands sump and sumt. The majority-rule consensus tree containing the

posterior probabilities of the phylogeny was determined from 60,002 trees. A spreadsheet 

program (Microsoft Excel 2010) was used to generate pie charts of the contribution of the 

different biogeographical regions for identified haplogroups (Figure 3.1(g)).

A minimum spanning network was created using the software PopART version 1.7 (Bandelt et 

al., 1999) with default settings (Figure 3.1(h)).

Genetic population structure

The level of genetic differentiation among and between sampling locations was estimated by 

analysis ST values in 

Arlequin, with a significance level of 0.05 and 10,000 permutations. Sequences sampled in 
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different geographical locations were hierarchically grouped in the AMOVA, according to

specific biogeographic hypotheses. The division between the Indian and the Pacific Ocean was 

tested by contrasting Indian (all samples sites west of Torres Strait) and Pacific Ocean 

populations (all sample sites east of the Torres Strait). Division within each Indo-Pacific basin 

was tested by contrasting WIO and EIO populations in the Indian Ocean and WP, CP, and EP in 

the Pacific Ocean. The linear ST values and geographic distances 

was tested with the software car package in R version 3.2.2, with the shortest marine distance 

between sampling locations measured to the nearest 5 km in Google Earth. A multidimensional 

scaling (MDS) plot was drawn in XLstat version 7.5.2 to visualize the genetic differences 

between Indo-Pacific sample sites.    

3.3. Results

3.3.1. Genetic diversity

In total, 262 individuals were used in the analyses, including 35 new sequences from the WIO 

region (GenBank accession numbers: MF139577-MF139611). The sequence alignment was 

trimmed to 796 bp, yielding 89 unique haplotypes, 91 substitutions, and 88 polymorphic sites. On 

one sample site in the EP (Revillagigedos Islands). The nucleotide diversity values, on the other 

hand, ranged from 0 to 0.009 within sample sites. In particular, the EP region had lower 

nucleotide diversity values than the WIO region; while the CP and WP were characterised by 

3.1). 
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Figure 3.2 A multidimensional scale (MDS) plot of A. triostegus ST estimates among 25 georeferenced 
sample sites. Groups: I (Hawaii and Johnston Island), II (Western Indian Ocean), III (Central and Western Pacific), 
and IV (Eastern Pacific). Abbreviation of sample sites is given in Table 3.1.
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3.3.2. Genetic population structure

ST values were non- ST =

0.024, P > 0.05 and Table 3.2), supporting the hypothesis of genetic homogeneity. The genetic 

similarity between the WIO sample sites is also shown in the MDS plot, with all the five sample

sites clustering together (Figure 3.2).

Table 3.3 Hierarchical analysis (AMOVA) based on nucleotide diversity of A. triostegus with an alternative
grouping of samples sites in the Indo-Pacific. For sample sites and biogeographical abbreviation see Table 3.1.

In contrast, strong genetic differentiation was displayed when all sample sites from the Indian 

Ocean were considered (KU, MO, DS, MT, AN, AR, NI, and ST = 0.124, P < 0.05) (Table 

3.3). Further analysis of the hierarchical AMOVA indicated genetic differentiation between the 

CT = 0.152, P < 0.05) (Table 3.3).

ST value of 0.55 (P < 0.05), with 55 

% of variation being among populations and 45 % within populations. However, the hierarchical 

analysis involving the three biogeographical regions of the Pacific Ocean, i.e WP, CP, and EP did 

not reject the hypothesis of genetic homogeneity CT = -0.00738, P > 0.05) 

(Table 3.3). In particular, the Central Pacific showed genetic similarity to both the WP and EP 

Grouping Statistics P value

Indian Ocean
WIO (DS,KU,MO,MT,AN) ST = 0.024 > 0.05
Indian Ocean (DS,KU,MO,MT,AN,AR,ET,NI) ST = 0.124 <0.05
WIO (DS,KU,MO,MT,AN) EIO (AR,ET,NI) CT = 0.152 <0.05

Pacific Ocean
(KG,LR,LI,MG,SI,CK,HA,FJ,JI,KR,MI,TG,TV,CF,CI,PA,RI)           ST = 0.55 <0.05
WP (KG,LR,LI,MG,SI) CP (CK,HA,FJ,JI,KR,MI,TG,TV) EP (CF,CI,PA,RI)           CT = -0.00738 >0.05
WP (KG,LR,LI,MG,SI) CP (CK,HA,FJ,JI,KR,MI,TG,TV) CT = -0.04961 >0.05
CP (CK,HA,FJ,JI,KR,MI,TG,TV) EP (CF,CI,PA,RI) CT = 0.03 >0.05
WP (KG,LR,LI,MG,SI) EP (CF,CI,PA,RI) CT = 0.23 <0.05

Indo-Pacific
Indian (DS,KU,MO,MT,AN,AR,ET,NI) Pacific 
(KG,LR,LI,MG,SI,CK,HA,FJ,JI,KR,MI,TG,TV,CF,CI,PA,RI)           CT = -0.02 >0.05
(DS,KU,MO,MT,AN,AR,ET,NI,KG,LR,LI,MG,SI,CK,HA,FJ,JI,KR,MI,TG,TV,CF,CI,PA,RI)   ST = 0.53 <0.05
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(EP- CT = 0.03, P > 0.05, WP- CT = -0.04961, P > 0.05). However, the exclusion of the 

CP populations from the hierarchical grouping displayed a pronounced genetic structure (WP-EP

CT = 0.23, P < 0.05) (Table 3.3).

On the scale of the entire Indo-Pacific, the overall AMOVA without a priori grouping showed 

ST = 0.53, P <

25 (8.3%) significant pairwise comparisons after sequential Bonferroni correction, with 

differences being mostly represented by Hawaii and Johnston Island (Table 3.2). Nevertheless, 

the hierarchical grouping of Indian (all samples west of the Torres Strait) and Pacific (all samples 

east of the Torres Strait) populations failed to support the vicariance hypothesis, showing a lack 

of genetic differentiation CT -0.02  P > 0.05) (Table 3.3). 

However ST values and geographic distance was significant 

(r2 = 0.19 P < 0.05; Figure 3.3), indicating that dispersal of A. triostegus in Indo-Pacific follows 

an isolation-by-distance model. The isolation-by-distance was also supported by the MDS plot, 

which showed samples sites from respective biogeographic regions clustering together (Figure

3.2). 

 

Figure 3.3 A scatter plot of the correlation between the geographic distance (km) and A. triostegus ST

estimates for the 25 sampling locations in the Indo-Pacific (r2 = 0.19 P < 0.05).
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In total, three haplogroups can be deduced from the majority consensus tree of the Bayesian 

analysis (average standard deviation of split frequencies in the sampled trees = 0.007339) (Figure

3.1(g)). Haplogroup 1 (posterior probability = 0.98) and 3 (posterior probability = 0.99) are well 

supported, while haplogroup 2 appears like a conglomeration of haplotypes branching off 

haplogroup 1. With the exception of haplogroup 3, which is restricted to Hawaii and Johnston 

Island, the other two haplogroups are not arranged according to geographical locations. 

Haplogroup 1 has several shared haplotypes among the five biogeographical regions, with the 

most extreme sharing being between Panama (EP) and Kiunga (WIO) (Figure 3.1(g) and Figure

3.1 (h)). While haplogroup 2 is also shared between the two ocean basins, its frequency is higher 

in WIO sample sites (Figure 3.1(b) and Figure 3.1(g)). The haplotype network is characterised by 

a star-like structure, with dominant haplotypes connected to several singletons (Figure 3.1(h)).

3.4. Discussion 

3.4.1 Genetic population structure 

WIO and Indian Ocean connectivity

The AMOVA analysis reveals ST = 0.024, P > 0.05) across three WIO 

ecoregions: North Monsoon Current Coast (represented by Kiunga), East African Coral Coast 

(represented by Mombasa, Dar es Salaam, and Mtwara), and Western and Northern Madagascar 

(represented by Anakao) (Spalding et al., 2007). Gene flow among A. triostegus WIO population

is likely to be mediated by its pelagic larval phase and prevailing ocean currents in the WIO 

(supplementary Figure 3.1). Although the larvae of A. triostegus can swim at an average speed of 

0.56 m/s (Leis and Carson-Ewart, 1997; Stobutzki and Bellwood, 1997), this is considerably less 

than the mean speed of the East African Coast Current (1 m/s) and Mozambique channel eddies 

(> 0.5 m/s) (Swallow et al., 1991; Lumpkin and Johnson, 2013). The interaction of A. triostegus
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larvae with the strong WIO currents can limit their ability to influence dispersal and settlement 

(self-recruitment), favouring long-distance dispersal. However, it is unlikely that dispersal in A. 

triostegus is entirely a function of ocean currents (passive), as a large number of larvae would be 

lost through this mechanism, thinning out its population over ecological time scales (Cowen et 

al., 2000). It is, thus, possible that this species employ both active (short) and passive (long) 

dispersal mechanisms. Active dispersal between coral reef habitats in the WIO might be mediated 

primarily by the late stages of A. triostegus larvae (Leis and Carson-Ewart, 1997; Stobutzki and

Bellwood, 1997), which can sustain their swimming ability for up to 194 hours, covering a 

distance of 60 nautical miles in a single bout (Stobutzki and Bellwood, 1997). Overall, the results 

of genetic homogeneity in A. triostegus are consistent with the findings of biophysical modeling 

of connectivity, which indicates that population connectivity in the WIO increases with increase

in dispersal ability (Crochelet et al., 2016; Mayorga-Adame et al., 2017). Genetic homogeneity in 

the WIO has also been observed in other reef fish such as Lutjanus kasmira (Forsskål 1775)

(Muths et al., 2012), Scarus ghobban (Forsskål 1775) (Visram et al., 2010), Amphiprion 

akallopisos (Bleeker 1853) (Huyghe and Kochzius, 2017), Dascyllus trimacullatus (Rüppell 

1829) (O’Donnell et al., 2017), and Acanthurus leucosternon (Bennet 1833) (Otwoma et al.,

2018). Nevertheless, the findings of lack of structure in the WIO for A. triostegus have to be 

interpreted with caution as the number of individuals analysed for this region is low. 

The overall AMOVA involving all Indian Ocean sample sites show a strong genetic 

ST = 0.124, P < 0.05), rejecting the hypothesis of genetic homogeneity within 

the Indian Ocean. Further analysis in the hierarchical AMOVA suggests a differentiation between 

EIO and WIO A. triostegus CT = 0.152, P < 0.05). This genetic differentiation 

between EIO and WIO has previously been shown in species with PLDs not longer than 22 days 

such as Linckia laevigata L. 1758 (22 days; Williams and Benzie, 1998; Otwoma and Kochzius, 

2016), Tridacna spp -12 days; Hui et al., 2016), Amphiprion akallopisos (7-
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22 days; Huyghe and Kochzius, 2017), Acanthaster planci L. 1758 (14-21 days; Benzie, 1999; 

Vogler et al., 2012), and Penaeus monodon (Fabricius 1798) (~14 days; Duda Jr and Palumbi, 

1999; Benzie et al., 2002). However, species with PLDs reaching up to 40 to 90 days display 

genetic homogeneity across the Indian Ocean. These include Myripristis berndti (Jordan & 

Evermann 1903) (55 days; Craig et al., 2007), Naso spp. (60-90 days; Horne et al., 2008),

Acanthurus leucosternon (~55 days; DiBattista et al., 2016), Coris cuvieri (Bennett 1831) (53 

days; Ahti et al., 2016), and Lutjanus kasmira (20-44 days; Gaither et al., 2010). The findings of 

this study present the first report of an EIO-WIO differentiation in a species with great dispersal 

potential (A. triostegus; PLD 44-60 days), which is inconsistent with previous studies (Craig et 

al., 2007; Horne et al., 2008; Gaither et al., 2010; Ahti et al., 2016; DiBattista et al., 2016). This 

discordance of genetic patterns in different species spanning the Indian Ocean underpins the 

suggestion that marine species respond uniquely to the dynamic marine environment (Crandall et 

al., 2008a). Besides, marine barriers solely based on distance (e.g the barrier between WIO and 

EIO) are semipermeable in nature and may allow sporadic dispersal across them when conditions 

are favourable (DiBattista et al., 2012), leading to discordant population structures, even in 

species possessing similar life history characteristics (Lessios and Robertson, 2006; DiBattista et 

al., 2012). This also indicates that PLD alone cannot adequately predict the genetic population 

structure of marine populations.

Indo-Pacific

Despite the addition of sequences from two peripheral biogeographic regions (WIO and EP) to 

the Liggins et al., (2016) dataset (a largely EIO, WP, and CP dataset), the results of this study do 

CT -0.02, P > 0.05). This genetic pattern largely matches 

the findings of an earlier study on A. triostegus using COI as a marker (Mirams et al., 2011). The 

general concordance between ATPase (present study) and COI (Mirams et al., 2011) in 
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inferences of the phylogeographic pattern is due to the same mode of inheritance, as both markers 

are found on the mitochondrial locus. In contrast, an allozyme study on A. triostegus across the 

Indo-Pacific shows a significant genetic differentiation between the Indian and Pacific 

populations (Planes and Fauvelot, 2002). Similar discordances between mitochondrial DNA and 

allozymes have been shown in other marine organisms (Elliott, 1996; Williams et al., 2002), with 

allozymes displaying a higher level of genetic differentiation than mitochondrial DNA. A 

possible explanation for this difference is that allozymes (nuclear) take a longer time to reach 

equilibrium between genetic drift and migration than mitochondrial DNA (Williams et al., 2002; 

Larmuseau et al., 2010), thus, are more reflective of the effect of past historical barriers to 

dispersal than present-day gene flow. Overall, this finding adds to the growing number of studies 

that report a lack of genetic divergence at the Indo-Pacific Barrier (IPB) in other shallow water 

marine taxa (Lessios et al., 1999; Lessios et al., 2001; Reid et al., 2006; Klanten et al., 2007; 

Horne et al., 2008; Kochzius et al., 2009; Gaither et al., 2010; Gaither et al., 2011b) and is in 

contrast to the effect of lowered sea level during Pleistocene glacial cycles. Sea level repeatedly 

dropped to up to 120 m below present levels, limiting genetic exchange between the Indian and 

Pacific populations of various taxa (reviewed extensively by Carpenter et al., 2011). The absence 

of a genetic break in A. triostegus is not a confirmation that the Pleistocene sea-level low stands 

had no effect on this species, but most likely an indication of the quick re-establishment of 

substantial gene flow between the Indian and Pacific populations of A. triostegus since the last 

isolation by sea level low stands (Horne et al., 2008). This hypothesis is supported by A. 

triostegus great dispersal potential and generalist nature. Unlike other habitat-specific species, A. 

triostegus can occur in highly unstable environments such as tide pools, and bays that could have 

enabled it to quickly colonize the new habitats along the IPB during sea-level transgression

(Mirams et al., 2011).
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A lack of a genetic break between the Indian and the Pacific Ocean is also corroborated by the 

geographical distribution of haplogroups in the Indo-Pacific. On the one hand, haplogroup 1 is 

found at all samples sites albeit at a lower frequency in the WIO. On the other hand, haplogroup

2 dominates in the WIO but is found at a lower frequency in the EIO, WP, and CP and is absent 

in EP. Haplogroup 3 is the most divergent group and occurs exclusively in Hawaii and Johnston 

Island (Figure 3.1). These two sample sites are the documented range for the subspecies 

Acanthurus triostegus sandvicensis (Streets 1877). Streets (1877) noted the differences in the fin 

ray number, and colouration pattern of A. triostegus from Hawaii and Johnston Island, without 

intergradations to A. triostegus from other sites (Schultz and Woods, 1948). This observation led 

Streets to suggest a separate species Acanthurus sandvicensis. However, this is disputed by 

Randall (1956), who attributes the differentiation to differences in water temperature and 

geographical isolation of Hawaii and Johnston Island and suggests the rank of a subspecies 

(Acanthurus triostegus sandvicensis). Both Lessios and Roberts (2006) and Liggins et al. (2016) 

report a genetic divergence between Acanthurus triostegus sandvicensis and the remaining CP, 

WP, and EP populations (Acanthurus triostegus triostegus). The evolution of this subspecies in 

Hawaii and Johnston Island is consistent with recent evidence, indicating that peripheral habitats 

such as Hawaii and Johnston Island are not just evolutionary graveyards, but also produce and 

export new species to central biodiversity hotspot areas (Eble et al., 2011b; Fitzpatrick et al.,

2011; Bowen et al., 2013). The wide distribution of dominant haplotypes in the Indo-Pacific 

indicates genetic exchange at small and large scale (Figure 3.1 and Figure 3.4). This suggests that 

the genetic population structure of A. triostegus can be explained by a metapopulation migrant 

pool model, where each population has an equal chance of providing colonizers. Such a dispersal 

mechanism could have enabled frequent larval exchange between the Indian and Pacific 

populations, gradually eroding the genetic break between these two basins (Horne, 2014). The 

great dispersal ability and cosmopolitan nature of A. triostegus support this view (Stobutzki and

Bellwood, 1997; McCormick, 1999; Leis and Carson-Ewart, 1997; Fisher and Hogan, 2007). 
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Although the hierarchical AMOVA does not support the existence of a genetic break in the Indo-

Pacific, the overall AMOVA without a priori grouping display a strong genetic differentiation in 

the Indo- ST = 0.53, P < 0.05). This can be attributed to a dispersal model that follows 

isolation-by-distance in A. triostegus (r2 = 0.19 P < 0.05), which has also been demonstrated in a

previous allozymes study (Planes and Fauvelot, 2002). The finding of isolation-by-distance is not 

surprising given the sample sites of this study spread across a geographic distance of more than 

28,000 km that is characterised by discontinuous reef habitats. Notably, pairwise comparisons 

with Hawaii ST values even at a relatively short 

distance (Figure 3.3 and Table 2.2), possibly due to self-recruitment presumed to occur at these 

sites (Wren et al., 2016). The spatial arrangement of samples sites in the MDS plot corresponds

to the genetic similarity of sample sites, providing further evidence of isolation-by-distance 

(Figure 3.2). 

3.4.2. Genetic diversity

The genetic diversity estimates revealed mostly high haplotype and low nucleotide diversity 

values, a pattern common to other marine fishes. High haplotype diversity in this species could 

be a result of mixing between the Indian and Pacific populations, which is made possible by the 

great dispersal ability of A. triostegus. These molecular diversity indices and star-shaped network 

signal a population expansion after a period of small effective population size, which is 

consistent with the effect of Pleistocene multiple glaciations (Grant and Bowen, 1998).
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Abstract

Disentangling the contribution of biotic/intrinsic and abiotic/extrinsic factors in the structuring of 

the genetic diversity of reef species is critical to illuminating the diversification of evolutionary 

lineages in marine environments. However, previous studies have mainly focused on determining 

the influence of pelagic larval duration (PLD) on the connectivity of reef fishes, whereas few 

studies have examined the effects of other biotic factors such as mating behaviour, egg mass 

deposition, and mode of larval development. Here we use mitochondrial DNA (ATPase 6/8) and 

microsatellite loci to compare the population genetic structure of the spawning aggregating 

Acanthurus triostegus and monogamous spawning Acanthurus leucosternon, to determine 

whether mating behaviour has an influence on the connectivity of Acanthurus species. Given that 

the site fidelity associated with spawning aggregations can enhance larval retention, lower levels 

of genetic diversity and connectivity were expected in A. triostegus compared to A. leucosternon.

However, contrary to expectation both species displayed genetic homogeneity in the Western 

Indian Ocean, indicating that mating behaviour has no influence larval dispersal of these 

Acanthurus species. At the scale of the Indian Ocean, the survey of the two Acanthurus species

revealed divergent population structures, with populations of A. triostegus displaying significant 

genetic differentiation in the Indian Ocean, while A. leucosternon exhibits no genetic structure. 

However, the connectivity patterns displayed by A. triostegus was inconsistent with the influence 

of mating behaviour, suggesting the divergent population structures might be as a result of other 

factors such as differences in larval swimming ability.
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4.1. Introduction

Understanding dispersal in the marine environment is essential because it has a profound 

influence on species evolution and persistence (Mora and Sale, 2002). For most shallow marine 

species with a bipartite life cycle, dispersal through the pelagic larvae represents the only 

mechanism of linking populations between distant sites. However, tracking dispersal in the 

marine environment remains a major challenge, because marine larvae are minute and suffer high 

rates of mortality (Sale et al., 2005). Consequently, the application of genetic markers to infer 

dispersal in marine organisms is increasingly a common practice (Hellberg et al., 2002; Jones et 

al., 2009). Because larvae of most marine species spend times ranging from days to months in the 

pelagic marine environment (Sale et al., 2005; Almany et al., 2007), the population genetic 

approach predicts that species with a long pelagic larval duration (PLD) will have a high 

dispersal and weak genetic structure. Indeed, previous studies have shown a correlation between 

PLD and gene flow (Dawson et al., 2002; Teske et al., 2007; Faurby and Barber, 2012; Barbosa

et al., 2013; Riginos et al., 2014; DiBattista et al., 2016). But there is growing number of studies, 

which demonstrate that the influence of PLD on dispersal distance is often overestimated (Barber

et al., 2002; Weersing and Toonen, 2009; Selkoe and Toonen, 2011; Riginos et al., 2013).

Furthermore, other features such as past biogeographic events (Barber et al., 2002; Otwoma and 

Kochzius, 2016), ocean currents (DiBattista et al., 2017), larva swimming ability (Leis and 

Carson-Ewart, 1997; Fisher et al., 2005; DiBattista et al., 2017), differences in habitat (Rocha et 

al., 2002), and local adaptation (Imron et al., 2007) have been found to profoundly affect the 

genetic population structure of marine species. 

Comparative phylogeography offers invaluable insights into the factors that drive spatial genetic 

structuring in codistributed taxa (Papadopoulou and Knowles, 2016). This approach uses the 

concordance-discordance criterion to determine whether the genetic structure of sympatric 

species is impacted by abiotic or biotic factors (Papadopoulou and Knowles, 2016). The 



CHAPTER 4

62

assumption of most comparative phylogeographic studies is that taxa evolving in a certain 

environment respond the same way to extrinsic factors that cause genetic divergence. 

Nevertheless, co-occurring taxa often show discordant phylogeographic structures, suggesting 

that species respond uniquely to environmental changes or historical processes (Crandall et al.,

2008a; DiBattista et al., 2012; Weber et al., 2015; Puritz et al., 2017). According to 

Papadopoulou and Knowles, (2016), taxon-specific traits need to be incorporated into 

comparative phylogeography studies, so as to provide a better understanding of the mode and rate 

of phylogeographic diversification. For example, Puritz et al., (2017) compared the population 

genetics of the planktonic-developing Meridiastra calcar and benthic-developing Parvulastra 

exigua in the temperate waters of Australia and linked their divergent responses to Pleistocene 

glacial cycles to species-specific traits. Similarly, Weber et al., (2015) found that the brooding 

lineages of the brittle star, Ophioderma longicauda displays a higher genetic structure than the 

broadcast spawner lineage, suggesting that integrating species-specific traits into comparative 

phylogeographic tests can help to disentangle the existing discrepancy between dispersal ability 

and genetic structuring of marine species.

Many reef fishes have evolved a reproductive strategy that involves the temporal gathering of 

sexually mature males and females (100 to 10,000s) at a specific location to spawn (Claydon et 

al., 2014). Most of the reef fish species that form these temporal spawning gatherings (spawning 

aggregations) are found in the families Acanthuridae, Scaridae, Serranidae, Pomacentridae, 

Lethrinidae, Lutjanidae, and Siganidae (Sala et al., 2003; De Mitcheson Yvonne et al., 2008; 

Gerhardinger et al., 2009; Hartup et al., 2013; Claydon et al., 2014). These spawning 

aggregations occur at a specific location over a long period of time, indicating a strong degree of 

site-fidelity by aggregate spawners. Previous studies suggest that connectivity between multiple 

spawning aggregation sites may be restricted by ocean currents, philopatry (spawning site 

fidelity), and larval behaviour (Lobel and Robinson, 1988; Cherubin et al., 2011; Jackson et al.,
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2014). This suggests that substantial genetic differentiation between and among various spawning 

aggregations may exist among reef fishes (Beldade et al., 2014; Jackson et al., 2014) but see 

(Zatcoff et al., 2004; Portnoy et al., 2012; Bernard et al., 2016). Therefore, assuming that the site 

fidelity associated with spawning aggregation does enhance larval retention; species forming 

spawning aggregations would be expected to have lower genetic diversity and connectivity 

patterns than non-aggregate spawners (Beldade et al., 2014; Jackson et al., 2014).

To test the influence of reproductive behaviour on the genetic structuring of reef species, we 

focus on two phylogenetically related surgeonfishes, the powder blue-tang, Acanthurus 

leucosternon and convict surgeonfish, Acanthurus triostegus (Sorenson et al., 2013). These two 

species have clear differences in their range-sizes but are sympatric in large parts of the Indian 

Ocean (Randall, 1956). Despite being phylogenetically related (Sorenson et al., 2013), these two 

species differ in aspects of spawning behaviour. Acanthurus leucosternon forms monogamous 

pairings (1 male and 1 female) dispersed throughout the reef (Robertson et al., 1979; Kuiter and 

Debelius, 2001). In this mating system, the species do not leave their permanent territories to 

spawn; thus, avoids the risk of losing home territories to non-territory holders (Robertson et al.,

1979). Acanthurus triostegus, on the other hand, forms resident spawning aggregations, with 

dense streams of individuals (1000-10,000) migrating to specific sites to reproduce. Generally, 

the aggregation sites are located approximately 2 km away from the adult home range (Claydon

et al., 2014), suggesting that spawning aggregations in A. triostegus should occur in every reef 

where it is present. Previous studies suggest that resident spawning aggregation can persist at a 

specific site for 12 to ~20 of years (Colin, 1996; Claydon et al., 2014).

PLD estimates among Acanthurus species are not remarkably different and range between 40 and 

70 days (Thresher, 1984; McCormick, 1999; Rocha et al., 2002). However, Leis and Carson-

Ewart, (1997) observed that larvae of A. triostegus swam two times (55.7 cm/s) faster than other 

Acanthurus species (24.7 cm/s), suggesting that this species may be more capable of self-
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recruitment than other Acanthurus species. This prediction of high self-recruitment in A. 

triostegus is consistent with the genetic divergence reported between two geographically close 

sites (Moorea and Bora-Bora separated by approximately 259 KM) in the Pacific Ocean (Planes 

and Fauvelot, 2002). Given that the larvae of A. triostegus are concentrated at a particular 

aggregation site, connectivity between multiple spawning aggregations can be restricted by its 

strong swimming larvae. Therefore, using mitochondrial and nuclear DNA markers we compare 

the population genetic structure of A. leucosternon and A. triostegus, to determine whether the 

reproductive mating behaviour has an effect on the genetic structuring of these coral reef fishes. 

We expected a higher genetic structuring among populations of A. triostegus than A. 

leucosternon in the Indian Ocean because the larvae of the former are concentrated at specific 

locations during spawning and connectivity between spawning sites may be restricted by its 

efficient swimming larvae. In addition, we reconstructed the demographic history of these two 

species to determine whether differences in species-specific traits or habitats played a role in 

shaping their present phylogeographic structure.
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Figure 4.1 Maps showing (A) A. leucosternon sample sites in the Indian Ocean, (B) Western Indian Ocean, 
dominant surface ocean currents (For sample sites abbreviations see Table 4.1 and 4.2). NMC;   Northeast Monsoon 
Current, SECC; South Equatorial Counter Current, SEC; South Equatorial Current, SEMC; Southeast Madagascar 
Current, MC; Mozambique Current, EACC; East African Coastal Current, and SC; Somali Current. (C) Haplotype 
network constructed from 785bp fragment spanning the ATPase6 and ATPase8 gene regions of A. leucosternon. 
Large circles and lines represent haplotypes and one mutational step, respectively, while small circles represent 
intermediate missing haplotypes. (D) A section of a majority consensus Bayesian phylogenetic tree showing only the 
clade separation in A. leucosternon (for the full Bayesian tree see Figure 4.5).
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4.2. Materials and methods

4.2.1. Sampling and DNA extraction

Samples of adult A. triostegus and A. leucosternon were collected at 15 locations in the Indian 

Ocean, between 2011 and 2015 (Figure 4.1 and Figure 4.2).  Fin clips from individual fishes were 

obtained and stored in 96% ethanol or saturated salt-DMSO solution. DNA extraction was done 

following the standard salting-out protocol (Sunnucks and Hales, 1996).

4.2.2. Amplification and sequencing of ATPase fragment 

A partial fragment spanning the mitochondrial ATPase gene region was amplified for both 

species through the polymerase chain reaction (PCR) using ATP8.2 

(5AAAGCRTYRGCCTTTTAAGC 3’) and CO3.2 (5’ GTTAGTGGTCAKGGGCTTGGRTC 3’) 

primers (Lessios and Robertson, 2006). The PCR reactions were conducted according to the 

original protocol (Lessios and Robertson, 2006). Purification of the PCR products was done by 

incubating with 5U exonuclease I and 1U alkaline phosphatase (both Thermoscientific) following 

the manufacturer's protocol. Thereafter, sequencing was performed on a DyeDeoxy terminator 

(Applied Biosystems) and an automatic sequencer (ABI PRISM 310 and 3100, Applied 

Biosystems). The ATPase dataset for A. triostegus was supplemented with sequences from 

Otwoma et al., (2018) and Liggins et al., (2016) (Table 4.1).

4.2.3. Amplification and genotyping

Individuals of each species were amplified through PCR using 10 published microsatellites loci: 

Ahy49, Ahy54, Ahy65, Ahy75, Ahy, Ahy112, Ahy119, Ahy170, Ahy178, Ahy182, and Ahy203 

(Dibattista et al., 2011). PCR reactions and conditions followed protocol described in Otwoma et 

al. (2018). Labelled PCR products were pooled for genotyping and resolved on ABI 3730 genetic 

analyser alongside a labelled internal size standard (AlexaFluor 660 (IBA GmbH)-labelled). 

Microsatellite allele sizes were manually scored using Geneious version 8.1.6 (Kearse et al.,
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2012). Genotyping was repeated for 80 randomly chosen individuals for each species to check for 

possible misamplification and scoring errors. It should be noted that only samples from nine WIO 

samples sites were genotyped (Table 4.2), because the remainder of the samples either became 

available at a later stage of the study (Seychelles, Christmas Island, and Cocos-Keeling) or were 

completely not available to us (Ningaloo, Ashmore Reef, and East Timor). 

4.2.4. Data analysis  
ATPase

ATPase sequences were aligned and trimmed in Geneious version 8.1.6 (Kearse et al., 2012).

Thereafter, sequences were deposited in GenBank under accession numbers (xxx-xxx). Arlequin 

version 3.5 was used to calculate haplotype and nucleotide diversities at each sampling location 

and in each species. Genetic differentiation among and between sample sites was tested using 

single-level analysis of molecular variance (AMOVA), hierarchical AMOVA, and pairwise 

comparison in Arlequin. All analyses were permuted 10,000 times at a significance level of 0.05. 

We used the online IBDWS services to test the relationship between geographic distance and all 

ST estimates in both species. Corrected Akaike Information Criterion (AICc) 

implemented in jModelTest version 2.1.9 (Darriba et al., 2012) was used to select the best 

substitution model for our datasets: HKY+G for A. leucosternon and HKY+G for A. triostegus.

The neutral evolution of the ATPase marker was tested by FU’ FS tests for each species (Fu, 

1997). Significant negative FU’ FS values indicate either selective sweeps, purifying selection, or 

population expansion after a genetic bottleneck (Fu, 1997). The signature of population 

expansion after a bottleneck was confirmed by comparing simulated and observed mismatch 

distribution in Arlequin (Fu, 1997; Schneider and Excoffier, 1999). A unimodal mismatch 

distribution indicates a population that has undergone a recent and fast demographic expansion, 

while a multimodal mismatch distribution suggests a population under demographic equilibrium. 

The Bayesian Skyline Plot (BSP) in BEAST version 1.8.4 (Drummond and Rambaut, 2007) was 
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used to examine changes in effective population size (Ne) through time. The BSP analyses were 

run under HKY+G (A. leucosternon) and HKY+G (A. triostegus) substitution models, employing 

a strict clock. We used the ATPase 8 and 6 average within species substitution rate of 1.3 x 10-8

per site per year (Lessios & Robertson, 2006) under a fixed prior distribution. The program 

Tracer version 1.5 was employed to visualize the BSP (Drummond et al., 2005).

Phylogenetic and haplotype network analysis

Newly generated and all public available ATPase6/8 sequences from Acanthuridae plus 

Paracanthurus hepatus KT826539.1 (outgroup) were aligned using Mafft (Katoh et al., 2002)

with the default options (-linsi). The resulting alignment of 624 Sequences was trimmed to the 

same length of 785bp in BioEdit (Hall, 1999). The software Alter (Glez-Pena et al., 2010) was 

used to collapse identical haplotypes resulting in the final alignment of 217 sequences. 

Subsequently the best suited substitution model was selected using the corrected Akaike 

Information Criterion (AICc) as implemented in jmodeltest (Posada, 2008). A phylogenetic tree 

was constructed from MrBayes version 3.2.6 x 64 (Huelsenbeck and Ronquist, 2001). Priors 

were set according to the suggested HKY model with gamma distribution. Two times four 

Markov chains run in parallel, three heated and one cold, searching from a random starting tree.

All eight chains were run simultaneously for 10 million generations with sampling every 1000 

generations. The first 25% of the trees were discarded as burn-in after confirming convergence of 

likelihood values of each chain using the command sump. The majority-rule consensus tree with 

posterior probabilities was determined from the remaining 60,002 trees using the command sumt

conformat=simple and visualized in Mega 6.0 (Tamura et al., 2013).  A minimum spanning 

network was created using the software PopART version 1.7 (Bandelt et al., 1997) using the 

default settings.
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Microsatellites

The deviation from the expectations of Hardy-Weinberg Equilibrium (HWE) and linkage 

disequilibrium (LD) was examined for each locus and sample site using GENEPOP version 4.2 

(Raymond and Rousset, 1995; Rousset, 2008).  Micro-checker version 2.2.3 was used to screen 

for the presence of null alleles and large allele dropout (van Oosterhout et al., 2004). For each 

sample site, the mean number of alleles (Na), expected heterozygosity (He), observed 

heterozygosity (Ho), and private alleles were estimated in GenAlex version 6.5 (Peakall and 

Smouse, 2012). The average allelic richness (Ar) and inbreeding coefficient (FIS) were calculated 

for each sample site using FSTAT version 2.9.3.2 (Goudet, 1995).

The hypothesis of homogeneous allele frequency and genotype distributions among sample sites 

was tested using FreeNA (Chapuis and Estoup, 2007). FreeNA was chosen because it uses the 

ENA (Excluding Null Alleles) method to provide for an accurate estimation of FST in the 

presence of null alleles (Chapuis and Estoup, 2007). Additionally, the relationship between 

genotypes and geographical locations was evaluated using the discriminant analysis of principal 

components (DAPC) in Adegenet version 2.0.2 (Jombart et al., 2010). Unlike Bayesian 

clustering methods, DAPC can be performed in situations where the assumptions of Hardy-

Weinberg Equilibrium (HWE) and linkage disequilibrium (LD) have not been met. 
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Figure 4.2 Maps showing (A) A. triostegus sample sites in the Indian Ocean (B) Western Indian Ocean, dominant 
surface ocean currents (For sample sites abbreviations see Table 4.1 and 4.2). NMC;   Northeast Monsoon Current, 
SECC; South Equatorial Counter Current, SEC; South Equatorial Current, SEMC; Southeast Madagascar Current, 
MC; Mozambique Current, EACC; East African Coastal Current, and SC; Somali Current. (C) Haplotype network 
constructed from 785bp fragment spanning the ATPase6 and ATPase8 gene regions of A. triostegus. Large circles 
and lines represent haplotypes and one mutational step, respectively, while small circles represent intermediate 
missing haplotypes. (D) A section of a majority consensus Bayesian phylogenetic tree showing only the clade 
separation in A. triostegus (For the full Bayesian tree see Figure 4.5).

The sequential Bonferroni correction was used to adjust the confidence interval of all analysis 

involving multiple tests (Rice, 1989). The relationship between geographic and genetic distance 
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was evaluated using a Mantel test in GenAlex for both species. The distance between sampling 

locations was measured to the nearest 5 km in Google Earth.

4.3. Results

4.3.1. Genetic diversity

A total of 179 A. leucosternon and 169 A. triostegus were analysed. The sequence alignments 

were trimmed to 785 bp for A. leucosternon and 785 bp for A. triostegus, revealing 72 and 62 

unique haplotypes, respectively. Haplotype diversity was almost similar between the two species, 

ranging from 1 to 0.71 (mean = 0.94) in A. triostegus and 0.98 to 0.8 (mean = 0.89) in A. 

leucosternon sampling sites. Nevertheless, the mean nucleotide diversity was twofold higher in 

A. triostegus (0.0074 vs 0.0034) (Table 4.1). A two-sample t-test confirmed the significant 

difference between the nucleotide diversities of the two species (t = 2.11, df = 16, P = 0.0006).

Table 4.1 Genetic diversity of A. leucosternon and A. triostegus deduced from a fragment spanning 785 bp gene 
regions of ATPase8 and ATPase6. (n) the number of sequences, (Nhp) number of haplotypes, (h) haplotype 
diversity, ( ) nucleotide diversity, FU’FS, (SSD) sum of square deviations, and (HRI) Harpendig’s raggedness 
index.

Location code Biogeographical 
region

n Nhp h FU' FS SSD HRI

Acanthurus leucosternon
Kiunga KU WIO 25 14 0.86 0.0035 -7.27** 0.133* 0.025ns

Malindi ML WIO 21 15 0.94 0.0035 -10.54*** 0.002ns 0.033ns

Mombasa MO WIO 20 9 0.8 0.0034 -2.16ns 0.006ns 0.047ns

Kisite-Mpunguti KM WIO 19 10 0.84 0.0022 -5.71*** 0.0039ns 0.071ns

Dar es Salaam DS WIO 15 13 0.98 0.0037 -9.88*** 0.023ns 0.101ns

Mtwara MT WIO 25 15 0.89 0.0026 -11.31*** 0.004ns 0.064ns

Mahe MH WIO 25 13 0.88 0.0039 -4.99** 0.0078ns 0.049ns

Cocos-Keeling Island CK EIO 22 15 0.92 0.0049 -7.16** 0.039* 0.152ns

Christmas Island CI EIO 7 6 0.95 0.0032 -2.71* 0.044ns 0.224ns

All sample sites 179 72 0.89 0.0034 -26.49*** 0.0015ns 0.041ns

Acanthurus triostegus
Kiunga KU WIO 21 11 0.91 0.0065 -1.45ns 0.039ns 0.051ns

Malindi ML WIO 19 14 0.94 0.0062 -5.72** 0.039ns 0.051ns

Mombasa MO WIO 12 12 1 0.0084 -6.74** 0.015ns 0.026ns

Kisite-Mpunguti KM WIO 21 15 0.94 0.0076 -4.94* 0.0078ns 0.011ns

Dar es Salaam DS WIO 24 20 0.99 0.0085 -10.61** 0.0103ns 0.013ns
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Mtwara MT WIO 24 14 0.93 0.0066 -3.49ns 0.018ns 0.02ns

East Timor ET EIO 16 7 0.74 0.0059 0.69ns 0.052ns 0.13ns

Ashmore Reef AR EIO 15 6 0.71 0.0023 -1.06ns 0.059ns 0.17ns

Ningaloo NI EIO 18 9 0.84 0.0048 -1.31ns 0.019ns 0.041ns

All sample sites 169 62 0.94 0.0074 -25.01*** 0.0045ns 0.0073ns

Ns: not significant; *0.05 P 0.01; ** 0.01 > P 0.001; *** P < 0.001

All the ten loci amplified successfully in 305 A. leucosternon, while only four (Ahy 49, Ahy 119, 

Ahy 170, and Ahy 178) amplified consistently in 320 A. triostegus. After Bonferroni correction, 

1 out of 36 loci in A. triostegus and 19 out of 90 loci in A. leucosternon deviated from the 

expectations of HWE. Analysis in Micro-checker suggested that deviations at 5 markers (one in 

A. triostegus (Ahy170 (Tanga)) and four in A. leucosternon (Ahy 54 (all populations), Ahy 75 

(Malindi, Kuruwitu, Kisite-Mpunguti, and Kiunga) Ahy 182 (Mombasa, Tanga, and Kiunga), and 

Ahy 203 (Kisite-Mpunguti, Tanga, and Kiunga)) could be due to the presence of null alleles. 

Nevertheless, there was no evidence of linkage disequilibrium between the loci in both 

A.triostegus and A. leucosternon datasets. The mean allelic richness varied between 9.03 

(Kuruwitu) and 10.9 (Dar es Salaam) in A. leucosternon, and between 5.75 (Tanga) and 6.53 

(Mtwara) in A. triostegus. Observed and expected heterozygosity in A. leucosternon (Ho = 0.81-

0.88 and He = 0.84-0.89) were slightly higher than those of A. triostegus (Ho = 0.63-0.85 and He 

= 0.66-0.73) (Table 4.2). 

Table 4.2 Microsatellite genetic diversity characteristics of A. leucosternon and A. triostegus. (n) number of 
individuals, (Na) number of alleles, (Ne) number of effective alleles, (Ar) allelic richness, (Ho) observed 
heterozygosity, (He) expected heterozygosity, (PVA) private alleles, and (FIS) inbreeding index.

Acanthurus leucosternon Acanthurus triostegus
Location Code n Na Ne Ar Ho He PVA FIS n Na Ne Ar Ho He PVA FIS

Kiunga KU 25 10.3 6.62 9.08 0.82 0.86 1 0.05ns 32 10.75 5.56 6.33 0.82 0.72 1 -0.15ns

Malindi ML 40 13.5 7.17 10.1 0.86 0.87 1 0.01ns 47 12.5 5.76 6.05 0.68 0.66 1 -0.02ns

Kuruwitu KR 35 11.7 6.18 9.03 0.86 0.84 3 -0.02ns 46 11.25 6.16 6.19 0.79 0.68 2 -0.11ns

Mombasa MO 33 13.7 1.73 10.8 0.87 0.89 0 0.02ns 23 8.75 5.55 6.48 0.72 0.73 1 0.02ns

Msambweni MS 35 13.3 7.04 10.2 0.84 0.86 3 0.03ns 43 11 6.22 6.21 0.79 0.71 4 -0.11ns

Kisite-
Mpunguti

KI 51 15 7.21 10.3 0.82 0.86 7 0.05* 34 12 5.92 6.24 0.77 0.69 3 -0.17ns

Tanga TA 29 11.5 6.65 9.8 0.81 0.85 3 0.05* 26 6.75 3.95 5.75 0.63 0.67 0 0.063*
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Dar es
Salaam

DS 16 11.2 6.32 10.9 0.86 0.86 2 -0.01ns 33 10 5.66 5.96 0.85 0.71 1 -0.19ns

Mtwara MT 41 14.7 7.06 10.3 0.88 0.86 5 0.01ns 36 12.5 6.22 6.53 0.69 0.69 7 0.002ns

All sample
sites

305 12.7 6.93 10.1 0.84 0.86 25 0.01ns 320 10.61 5.67 6.31 0.75 0.69 20 -0.074ns

Ns: not significant; *0.05 P 0.01; ** 0.01 > P 0.001; *** P < 0.001

4.3.2. Genetic population structure

Analysis of molecular variance (AMOVA), based on the ATPase marker indicated genetic 

homogeneity among the samples of A. leucosternon ST = -0.0047, P = 0.72) and A. triostegus

ST = 0.0035, P = 0.35) in the WIO. Correspondingly, pairwise comparisons between and 

among WIO locations were all nonsignificant for both species (Table 4.3 and Table 4.4).

However, AMOVA involving all Indian Ocean locations (WIO and EIO), revealed significant 

ST ST = 0.15, P < 0.0001) among samples of A. triostegus, but 

remained nonsignificant in A. leucosternon ST = -0.00067, P = 0.49). Further analysis in the 

hierarchical AMOVA and pairwise comparison suggested that the heterogeneity in A. triostegus

CT = 0.27, P = 

0.01) (Table 4.3) ST estimates and 

geographic distance indicated a significant isolation-by-distance in A. triostegus (r2 = 0.75 P < 

0.0001), but not in A. leucosternon (r2 = 0.0082, P = 0.59) (Table 4.3, Table 4.4, Supplementary 

Figure 4.1, and Supplementary Figure 4.2) .

Table 4.3 Pairwise comparison between Indian Ocean populations of A. triostegus based on ST
estimates. For sample sites, abbreviations see Table 1 and 2.    

KU ML MO KM DS MT ET AR
ML 0.007ns

MO 0.048ns 0.049ns

KM 0.009ns -0.028ns 0.046ns

DS -0.001ns -0.015ns -0.026ns -0.009ns

MT 0.007ns -0.022ns 0.076ns -0.025ns 0.006ns

ET 0.191** 0.286*** 0.095* 0.237** 0.146** 0.275***

AR 0.315*** 0.454*** 0.272*** 0.396*** 0.288*** 0.428*** 0.092ns

NI 0.241*** 0.359*** 0.173** 0.312*** 0.214*** 0.346*** -0.023ns -0.002ns

Ns: not significant; *0.05 P 0.01; ** 0.01 > P 0.001; *** P < 0.001
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For microsatellites, ENA corrected estimates of AMOVA, revealed low but significant FST values 

among WIO samples of A. leucosternon (FST = 0.0025 P < 0.001) and A. triostegus (FST = 0.011 

P < 0. 001). Nevertheless, the majority of the variation was explained by differences within 

locations (A. leucosternon 99% and A. triostegus 95%). For A. leucosternon, the  ENA corrected 

pairwise FST estimates ranged from 0 to 0.0081 and were all not significant from zero after 

Bonferroni adjustment (significance level = 0.001) (Supplementary Table 4.1).

Table 4.4 Pairwise comparison between Indian Ocean populations of A. leucosternon ST
estimates. For sample sites, abbreviations see Table 1 and 2.

KU ML MO KM DS MT MH CI
ML -0.012ns

MO 0.009ns -0.005ns

KM 0.015ns -0.009ns -0.016ns

DS 0.028ns 0.006ns -0.003ns -0.014ns

MT 0.002ns -0.008ns -0.006ns -0.018ns 0.001ns

MH 0.002ns -0.017ns -0.026ns -0.014ns -0.005ns -0.009ns

CI -0.006ns -0.019ns -0.026ns 0.002ns -0.013ns -0.011ns -0.019ns

CK 0.046** 0.023ns -0.024ns 0.011ns 0.014ns 0.026ns -0.014ns -0.023ns

Ns: not significant; *0.05 P 0.01; ** 0.01 > P 0.001; *** P < 0.001

For A. triostegus, the ENA corrected pairwise FST estimates ranged between 0 and 0.0127, with 

only one pairwise comparison (between Malindi and Kuruwitu) remaining significant after 

Bonferroni adjustment (Supplementary Table 4.2). The DAPC assignment also supported the 

lack of significant spatial structure among WIO sample sites in both species (K = 1, Figure 4.3). 

The isolation-by-distance test using all the nine WIO samples sites analysed with microsatellites 

was similarly not significant in both species (A. triostegus r2 = 0.03 P = 0.28 and A. leucosternon

r2 = 0.07 P = 0.15) (data not shown).
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Figure 4.3 Scatter plots of the Discriminant analysis of principal components (DAPC) for (a) A. leucosternon and (b) 
A. triostegus, with the legend showing the corresponding locations.

4.3.3. Demographic and phylogeographic analysis

For A. leucosternon, the neutral evolution of the ATPase marker was rejected in all the sample 

sites with the exception of Mombasa in the WIO. On the contrary, negative and significant FU’ 

FS values were only revealed in 5 out of 9 A. triostegus sampling sites (Table 4.1). Nevertheless, 

the mismatch distribution analysis using both the SSD and HRI goodness-of-fit indicated that the 

model of sudden population expansion could not be rejected in all the Indian Ocean populations 

for both species (Table 4.1). Similarly, BSP rejected the hypothesis of constant Ne, indicating a 

population expansion that began ~ 60,000 years ago in A. leucosternon (Late Pleistocene) and ~ 

125,000 years ago in A. triostegus (Mid-Pleistocene) (Figure 4.4).

The phylogenetic analysis and haplotype network revealed two clades for each species (Figure

4.1, Figure 4.2, and Figure 4.5). While clade 1 in A. triostegus is found in both eastern and 

western Indian Ocean, clade 2 is mainly dominant in the western Indian Ocean (Figure 4.2). On 

the other hand, in A. leucosternon almost all individuals are components of clade 1 which is
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found throughout the Indian Ocean, while clade 2 appears to be A. leucosternon individuals with 

introgressed A. nigricans genes (Figure 4.1).  

 

Figure 4.4 Bayesian skyline plots showing the transition of effective population size in a) A. leuocsternon and b) A. 
triostegus Indian Ocean populations over time. The thick solid lines are the estimated medians, while the light grey 
lines represent the 95% posterior density interval.   

4.4. Discussion   

The present study investigated the genetic population structure of A. triostegus and A. 

leucosternon, to determine whether differences in their mating behaviour could lead to differing 
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connectivity patterns in the Indian Ocean. A triostegus aggregates during spawning (Hartup et al.,

2013; Claydon et al., 2014), while A. leucosternon spawns through the monogamous pairing of 1 

male and 1 female (Robertson et al., 1979). Given that the site fidelity associated with spawning 

aggregations can enhance larval retention, lower levels of genetic diversity and connectivity were

expected in A. triostegus compared to A. leucosternon.

4.4.1. WIO connectivity

Contrary to expectation pairwise comparisons and DAPC showed that both species exist as single 

panmictic populations in the WIO, rejecting the hypothesis that populations of A. triostegus are 

more structured than A. leucosternon. Similar patterns of connectivity in these two Acanthurus

species can be explained by two common factors. First, the long PLD and year-round spawning 

of acanthurids (Randall, 1956; Thresher, 1984; Craig, 1998; McCormick, 1999; Rocha et al.,

2002), could expose the larvae of these two species to the full spectrum of the prevailing ocean 

currents in the WIO, promoting long-distance dispersal. Interestingly, almost all the WIO sample 

sites are located in the vicinity of the permanent north-flowing East African Coastal Current 

(EACC), which flows faster (mean velocity of EACC = 100 cm/s) than A. triostegus (55.7 cm/s) 

or other Acanthurus species larvae (24.7 cm/s) (Swallow et al., 1991; Leis and Carson-Ewart, 

1997). This suggests that the effect of ocean currents (EACC) could override the influence of 

other factors in determining the dispersal distances for larvae of both species. 
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Figure 4.5 A majority consensus Bayesian phylogenetic tree based on combined dataset (A. leucosternon and A. 
triostegus) and reference sequences from GenBank. The tree is rooted using Paracanthurus hepatus downloaded 
from GenBank. Only posterior probabilities above 0.5 (50%) are shown

Second, the linear arrangements of coral reef habitats along the Eastern African coastline may be 

acting as stepping stones for active larval dispersal (through larval swimming) between the 
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different sampling locations or multiple spawning aggregations, leading to genetic connectivity 

among A. triostegus and A. leucosternon populations. However, such a dispersal mechanism 

often results in isolation-by-distance (Puebla et al., 2009), which was not detected in our 

microsatellite datasets of the two species. Nonetheless, the magnitude of FST value revealed by 

the overall AMOVA in the WIO was far higher in A. triostegus (microsatellite: FST = 0.01 and 

ST = 0.0035, P = 0.35) than in A. leucosternon (microsatellite: FST =

0.0025 and m ST = -0.0047, P = 0.72), indicating there are additional factors, 

which might affect dispersal that differs between these two species. Previous studies on other 

shallow water marine species have also shown a lack of genetic differentiation between multiple 

spawning aggregations (Zatcoff et al., 2004; Shaw et al., 2010; Carson et al., 2011; Portnoy et 

al., 2012; Bernard et al., 2016) but see (Beldade et al., 2014; Jackson et al., 2014).

4.4.2. Indian Ocean divergence

The survey of the two surgeonfishes across the Indian Ocean (EIO and WIO) revealed divergent 

population structures. Populations of A. triostegus display significant genetic differentiation in 

the Indian Ocean, while A. leucosternon exhibits no genetic structure. Although these results are 

generally consistent with our predictions that A. triostegus will have a higher genetic 

differentiation than A. leucosternon, it seems unlikely that these differences stem from behaviour

related to their mating strategies. Spawning aggregation events in A. triostegus draws individuals 

to a spawning site located approximately 2 km away from the adult home range (Robertson et al.,

1979; Claydon et al., 2014), suggesting that each sampling locations analysed for this species (in 

the present study) represent a spawning aggregation site. Therefore, if the signature of genetic 

differentiation in A. triostegus is driven by fidelity to spawning aggregation sites, we would 

expect spatial genetic differences between nearby and distant sampling locations. These 

expectations are contradicted by A. triostegus pairwise comparison (Table 4.3) estimates, which
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ST values were between distant sites (EIO and WIO 

sampling localities), rather than within biogeographical regions.  

A more feasible explanation for the disparity in the phylogeographic structures could be that the 2 

species differ in their larval swimming capabilities. Leis and Carson-Ewart, (1997) determined 

the average swimming speed of A. triostegus larvae (55.6 cm/s) to be twofold higher than that of 

other Acanthurus species (24.7 cm/s). Given that East Timor, Ashmore Reef, Christmas Island, 

and Cocos-Keeling are located in the slow flowing South Equatorial Current (6.5o S - 12o S, mean 

velocity = 20 - 24cm/s) (Schott and McCreary Jr, 2001; Lumpkin and Johnson, 2013), it is 

possible that the larvae of A. triostegus interacting with this current have the potential to limit 

their dispersal distances, while A. leucosternon larvae are transported to the WIO. The finding of 

an isolation-by-distance signature in A. triostegus seems to support this prediction, indicating that 

its strong swimming larvae may favour dispersal between geographically near populations 

(Puebla et al., 2009), while long distance dispersal may be more sporadic (Planes and Fauvelot, 

2002). Acanthurus leucosternon, on the other hand, does not exhibit a significant isolation-by-

distance, possibly due to substantial long-distance dispersal. In fact, declining populations of A. 

leucosternon at Cocos Keeling and Christmas Island (Marie et al., 2007) may indicate that long-

distance dispersal (passive dispersal) exceeds self-recruitment (active dispersal) at these sites, 

because the latter is required to sustain stable populations at a given location (Cowen et al.,

2006). In general, our prediction on the effect of larval swimming capability is consistent with 

emerging empirical and biophysical models, which suggest that active larval dispersal favour

philopatry, larval retention, and self-recruitment (Jones et al., 1999; Cowen et al., 2000; Gerlach

et al., 2007; Burgess et al., 2016). Nevertheless, without direct estimates of larval dispersal in A. 

triostegus and A. leucosternon, this hypothesis remains largely speculative.

The phylogenetic analysis revealed two clades for each species. In A. triostegus, clade 1 is 

distributed throughout the Indian Ocean, while clade 2 is mainly found in the WIO and occurs at 

a lower frequency in the EIO. The dominance of clade 2 in the WIO could suggest that it 
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developed there, after a long-term absence of gene flow between EIO and WIO. But its 

appearance in the EIO (at lower frequencies) and the wide-distribution of clade 1 in the Indian 

Ocean, suggest that separation between EIO and WIO populations of A. triostegus was not 

absolute (Figure 4.5). In A. leucosternon, the two clades are non-geographic but clade 1 is 

dominant in all sampling locations, while Clade 2 is rare and appears to be individuals with 

introgressed A. nigricans genes. The occurrence of clade 2 at Mombasa and Mahe in the WIO is 

consistent with available evidence, suggesting that introgression of A. leucosternon with A. 

nigricans genes is more widespread (DiBattista et al., 2016; Otwoma et al., 2018) than 

previously thought and may result in the merging of the two species into one (Marie et al., 2007).

4.4.3. Demographic history

Both species experienced demographic expansion that dates back to the Pleistocene period when 

sea-level fluctuations profoundly affected habitat availability (Lambeck and Chappell, 2001; 

Lambeck et al., 2002). In the Indian Ocean, reef habitats may have been reduced by 

approximately 90%, when the sea level dropped up to 130 m below present levels (Ludt and 

Rocha, 2014). This loss of habitats could have restricted the population growth of A. triostegus

and A. leucosternon, which started to expand after the habitats were restored as the sea-level rose. 

However, the demographic expansion was more dramatic and recent in A. leucosternon

(expansion time ~ 60,000 years ago: Late Pleistocene) than in A. triostegus (expansion time

~125,000 years ago: mid-Pleistocene), possibly due to the differences in species-specific habitat 

requirements. Unlike A. leucosternon, which is often restricted to coral reef habitats, A. triostegus

can be found inhabiting turbid waters in bays, harbors, and tide pools (Randall, 1956; Robertson 

et al., 1979). According to Kotiaho et al. (2005), species with narrow niche breadth are usually 

sensitive to habitat disturbance and face a higher risk of extinction. It is, thus, possible that the 

strict dependence of A. leucosternon on coral reefs may have lagged its population expansion 
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until suitable habitats were available. In contrast, the older expansion time in A. triostegus

suggests that it may have been able to colonize the unstable and low-quality habitats that became 

available immediately when sea-level started to rise. This inference is supported by the findings 

of higher nucleotide diversity in A. triostegus than in A. leucosternon (Table 4.1), which suggest 

that the former might have had multiple isolated populations in different refugia that came into 

contact as sea-level rose to inflate its genetic diversity (Ludt et al., 2012).

In principle, the differences in the levels of nucleotide diversity values may also indicate 

divergent evolutionary histories in the two Acanthurus species (Delrieu-Trottin et al., 2017).

Acanthurus leucosternon is a young species that diverged from its ancestral clade in the mid-

Pleistocene (~600,000 years ago) (Sorenson et al., 2013; DiBattista et al., 2016) and low 

nucleotide diversity could suggest recent extinction or recolonization events in the Indian Ocean 

(Pellissier et al., 2014). In contrast, A. triostegus diverged from the Acanthurus and Ctenochatus

clade in the Miocene (>20Mya) (Sorenson et al., 2013) and the high nucleotide diversity may 

suggest that it has had a stable and long demographic history in the Indian Ocean (Pellissier et 

al., 2014).
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Abstract

Growth parameters (length at first maturity, length at optimum yield, asymptotic length, growth 

constant, and growth performance index) and mortality from two Acanthurus species were 

compared, to deduce whether differences in species-specific traits (spawning mating behaviour)

could lead to differences in exploitation rate. Despite comparable estimates of the von 

Bertalanffy asymptotic length ( ) in the two species (A. triostegus (27.9-29.6) and A. 

leucosternon (26.1-27.4)), the growth coefficient constant (K) estimates for A. triostegus (0.85-

1.23) were almost three to fivefold higher than those of A. leucosternon (0.29-0.38), suggesting 

that A. triostegus attains its maximum length faster than A. leucosternon. Length at first maturity

(Lm), length at optimum yield (Lopt), and exploitation rate (E) were also different between the 

two species, specifically indicating exploitation beyond the sustainable yield in A. triostegus but 

not in A. leucosternon. These results are consistent with other findings in the Western Indian 

Ocean, which report an exceptionally higher exploitation rate in spawning aggregating species 

compared to the counterparts forming monogamous pairs and may suggest that regardless of 

body size spawning aggregation increases the susceptibility of species to exploitation.
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5.1. Introduction

As fish landings continue to decline in lagoonal reef fisheries (Samoilys et al., 2017), the focus is 

shifting towards smaller and less preferred species to sustain the increasing effort (Pauly et al.,

1998). Among the small-sized individuals under pressure from the increasing fishing effort are 

surgeonfishes from the family Acanthuridae (Hicks and McClanahan, 2012; Rehren et al., 2018).

Although the majority of the individuals in this family are considered low valued, they play 

important functional roles in maintaining coral reef resilience. In particular, they exhibit a wide 

range of feeding behavior that includes the consumption of algal and plant communities, which 

not only facilitate coral recruitment but also provide a linkage for energy flow to higher trophic 

levels (Crossman et al., 2005). Overharvesting of herbivorous Acanthuridae can impair the 

ability of the reef ecosystem to maintain its resilience against change to algal-dominated state 

(Marshell and Mumby, 2015), yet considerably less is known about the demographic information 

and the exploitation status of most the species in this family.

The genus Acanthurus is the most conspicuous and dominant in the family Acanthuridae, 

representing 40 nominal species. Most of these species occur in the Indian and Pacific Ocean, 

where they are abundant and occupy more reef habitats than any other fish genus (Randall, 1956; 

Bellwood et al., 2014; Marshell and Mumby, 2015). Acanthurus species are distinguished by the 

presence of multi-denticulate teeth specialized for cropping the fast-growing reef epilithic algal 

community (Wismer et al., 2009; Bellwood et al., 2014). However, they display a wide range of 

length sizes (11 cm in Acanthurus polyzona to 70 cm in Acanthurus xanthopterus) and 

demographic or growth parameters (asymptotic length and growth constant) (Choat and Axe, 

1996; Choat and Robertson, 2002), suggesting that some species in this genus might be more 

vulnerable to exploitation than others. More specifically, larger species (in terms of length and 

weight) may be more vulnerable to exploitation than smaller ones (Taylor et al., 2014). But

vulnerability to exploitation among these species may also vary with natural abundance, life 
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history characteristics, or ease of capture (Sadovy de Mitcheson et al., 2013). Regardless of the 

causes of vulnerability,  it is important to understand the growth parameters and exploitation rate 

of individual Acanthurus species, because application of a uniform management strategy on 

species with different responses or vulnerability to exploitation would be inappropriate. 

To test the species-specific response to exploitation among Acanthurus species, we focus on the

powder blue-tang (Acanthurus leucosternon) and the convict surgeonfish (Acanthurus 

triostegus). These two species are amongst the most conspicuous and dominant groups of coral 

reef fishes. Acanthurus triostegus occurs throughout the Indo-Pacific, whereas A. leucosternon is 

restricted to the Indian Ocean (Randall, 1956). Like other Acanthurus species, these two species 

are primarily herbivores, feeding on benthic algae that inhibits coral recruitment (Crossman et al.,

2005). However, they differ in important aspects of their reproductive behaviour, which might

affect their susceptibility to fishing. Acanthurus triostegus forms massive spawning aggregations 

of 1000 to 10,000s individuals throughout the year (Hartup et al., 2013), while A. leucosternon

spawns through monogamous pairing that usually involves one female and one male (Robertson

et al., 1979). Because fishing is efficient at removing a large proportion of conspecific 

individuals when they are gathered at a specific site (Grüss et al., 2014), A. triostegus is likely to 

be more vulnerable to capture and exploitation than the pair occurring A. leucosternon. In 

addition, these two species also appear to differ in their habitat-specificity, while A. leuocsternon

is often restricted to coral reef habitats; A. triostegus can also be found inhabiting turbid waters in 

bays, lagoons, and harbours (Randall, 1956), which could suggest that A. triostegus is able to 

maintain it is optimum growth performance over a wide range of habitats in marine environments 

than A. leucosternon.

In Kenya, A.triostegus and A. leucosternon are important components of subsistence, 

commercial, and aquarium fishery (McClanahan and Hicks, 2011; Hicks and McClanahan, 2012; 

Okemwa et al., 2016), providing essential protein and income for livelihoods of coastal 
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communities. The harvesting of these species in Kenya presents an opportunity to assess species-

specific response to exploitation in the genus Acanthurus. Therefore, in this study, we use 

fisheries dependent data collected along the Kenyan coastline to evaluate the life history status of 

A. leucosternon and A. triostegus. The main objective of the study was to compare the growth 

parameters (Length at first maturity, length at optimum yield, asymptotic length, growth constant, 

and growth performance index) and mortality of the two species, to deduce whether differences 

in species-specific traits (spawning behaviour) could lead to differences in exploitation rate. We 

expected the exploitation rate of A. triostegus to be higher than that of A. leucosternon because 

the former’s spawning aggregating behaviour can make it more susceptible to fishing.          

5.2. Materials and methods

5.2.1 Study area, state of fishery, and fishing gears

The study was conducted at four sampling sites located along a stretch of approximately 120 km 

of the southern Kenyan coastline. Two of the landing sites Bamburi and Vipingo are located 

north of Mombasa city, while Msambweni and Shimoni are found south of Mombasa (Figure

5.1). The four sites were chosen because they represent typical artisanal reef fisheries in Kenya. 

Marine artisanal fishing in Kenya is mainly carried out in the coral reef ecosystem, with 

fishermen using human power and simple gear technology to generate large catches 

(McClanahan and Mangi, 2004; Hicks and McClanahan, 2012). Current estimates on overall 

artisanal landings show a declining trend despite the increase in effort (McClanahan and Mangi, 

2001; Samoilys et al., 2017). To compensate for the dwindling stock, Kenyan fishermen are 

increasingly adopting fishing gears that are less selective in terms of fish species and size 

(McClanahan and Mangi, 2004; Samoilys et al., 2017). Gears that are currently used by artisanal 

fishermen include basket trap, spear gun, beach seine, gillnet, and hand line. Although beach 
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seine and spear gun are currently banned by fisheries laws (Kenya Gazette Notice No. 7565), 

they are still in use in large parts of the coastline (Hicks and McClanahan, 2012).    

In general, fishermen have a preference for certain species, but small and low valued species are 

rarely discarded (Obura, 2001). Consequently, small-sized species have become an important 

component of fishermen harvest, putting them at risk of decline. Nevertheless, previous life 

history characteristics and exploitation studies in Kenya have focused on species that dominates 

fishermen catch such as Siganus sutor, Lethrinus lentjan, Lutjanus fulviflamma, and Leptoscarus 

vaigensis (McClanahan and Hicks, 2011; Hicks and McClanahan, 2012; Tuda et al., 2016), while 

there is no evaluation of the status of Acanthurus species despite long-term Under Visual Census 

(UVC) surveys, indicating that the abundance of Acanthuridae is significantly lower than 

estimates made during the last three decades (Samoilys et al., 2017).

 

Figure 5.1 Map of the Kenyan coastline showing the four fish landing sites sampled in the present study.
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5.2.2. Catch assessments 

Landings of A. leucosternon and A. triostegus were recorded over a period of one year (between 

September 2015 and April 2017) at the four sites (Figure 5.1). At each sampling site, a data 

collector measured the total length (distance between the snout and the tip of the longest lobe of 

the caudal fin) of A. leucosternon and A. triostegus to the nearest 0.1cm and recorded the type of 

gear used. Because only two species were being monitored, specimens were identified or 

confirmed using photographic images of the two species that were made available to every data 

collector. In total 2432 fish specimens were measured, representing 489 A. leucosternon and 

1943 A. triostegus.

5.2.3. Data analysis

Length-frequency distributions and fishing gears

Length-frequency data (LFQ) of the two species was binned into thirty 1 cm size classes, ranging 

from 5 cm to 31 cm. The size class of 1 cm was determined based on the maximum length of the 

fish species (Neumann et al., 2012), which maximized the spread of the data for the length-

frequency distributions. The quantity of fish landed for each species was graphically examined 

between gears, with relative abundance (%) being used to represent the numerical dominance of

each gear and length groups.

Life history calculations

The length at first maturity (Lm) and length at maximum possible yield (Lopt) were calculated to 

determine whether growth or recruitment overfishing was occurring in A. leucosternon and A. 

triostegus. While growth overfishing occurs when there are not enough juveniles left in the stock 

to mature and spawn, recruitment overfishing occurs when too many reproductively immature 

individuals are taken from the stock causing the recruitment potential to be impaired (Hilborn and
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Walters, 2001). Both Lm and Lopt were estimated as a function of the asymptotic length (L as

shown in equation 1 and 2 (Froese and Binohlan, 2000):

Log10 Lm = 0.8979*Log10L - 0.0782                                                                                    (1) 

Log10 Lopt = 1.042* Log10L – 0.2742                                                                                (2) 

The estimated Lm and Lopt were compared to the length frequency distributions so as to 

determine the effect of fishing on the size structure of each species (growth and recruitment 

overfishing).

The main von Bertalanffy Growth Function (VBGF) parameters ø’ (growth performance 

index), and K (growth constant) of the two species were estimated from the LFQ data, using the 

R package TropFishR (Mildenberger et al., 2017). This package not only implements the Powel-

Wetherall and ELEFAN (Electronic Length Frequency Analysis) methods in R program but also 

introduces two new algorithms in ELEFAN i.e ELEFAN_SA (simulated annealing algorithm)

(Xiang et al., 2013) and ELEFAN_GA  (genetic algorithm) (Scrucca, 2013). These new 

algorithms optimise the VBGF growth curve fitting through the specifications of C (constant 

indicating the amplitude of oscillation) and ts (the fraction of the year where the sine wave 

oscillation turns positive) values, which reduce the stochasticity of the search process to find the 

(Mildenberger et al., 2017; Taylor and Mildenberger, 2017).

The Powel-Wetherall method (Wetherall, 1986) was used to obtain the initial estimate of the 

asymptotic ( ) in TropfishR. Thereafter, the range of the estimates from the Powel-

Wetherall method was used as seed values to determine the optimum growth coefficient constant 

(K) and asymptotic length ( ) in K-scan, response surface analysis (RSA), simulated annealing 

(SA), and genetic algorithm (GA). All the ELEFAN functions modelled growth parameters 

following the VBGF equation (3): 

Lt = * [1 – e (-K (t – to)] (3)                
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Where Lt is the total length of the fish at a particular age (t), L is the theoretical asymptotic 

length, K is the VBGF growth constant, and t0 is the theoretical age when the fish has a length = 

0.

Mortality and exploitation rates

The total instantaneous mortality (Z) was estimated by the linearized length converted catch 

curve (equation 4) described by Pauly, (1984) and as implemented in TropfishR.   

Ln (C/dti) = a + b*ti                                                                                                       (4)

Where C is the fish catch grouped in length class, dt is the time change needed for fish to grow 

through the length class, ti is the relative age of fish of a given length class, and b is the 

instantaneous total mortality (Z).

Because the empirical estimation of imstantaneous natural mortality (M) varies widely between 

methods, it is a common practice to employ multiple estimators to characterize the uncertainty 

(Then et al., 2015). In this study, we used both the one parameter K (equation 5) and the updated 

Pauly, (1980) (equation 6) methods to determine the natural mortality of A. leucosternon and A. 

triostegus in the absence of tmax (maximum age) as follows:

M = 1.692K (5)

M = 4.118K0.73 0.33                                                              (6)

The instantaneous fishing mortality (F) was obtained by subtracting the instantaneous natural 

mortality (M) calculated in equation 5 and 6 above from the total instantaneous mortality (Z) 

estimated in equation 4 as follows:

F = Z-M                                                                                                                      (7)

The exploitation rate (E) for each fish species was calculated based on the (Pauly, 1984) method 

as follows: 

E = F / Z                                                                                                                    (8)
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Where E is the exploitation rate, M is the natural mortality, and F is the fishing mortality. The 

exploitation rate values were compared to the (Gulland, 1971) index, to characterize the stock as 

either underexploited, optimum, or overexploited.

5.3. Results

5.3.1. Length-frequency distributions and fishing gears

Landings of A. leucosternon and A. triostegus were recorded from the four common Kenyan 

gears i.e. beach seine, gillnet, spear gun, and traditional trap. Among the gears, beach seine 

caught the highest proportion of A.leucosternon individuals below Lm (64%), while gill net 

captured the most A. triostegus individuals under the Lm (46%) (Figure 5.2). 

 

Figure 5.2 Catch composition and size distribution by gear for a) A. leucosternon and b) A. triostegus caught along 
the southern Kenyan coastline.

Thirty-one percent of all A. leucosternon caught were below the Lopt (15.9 cm), whereas twenty-

seven percent were below the Lm (15.6cm) calculated from ELEFAN GA growth parameters 
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(Table 5.I), suggesting neither growth nor recruitment overfishing was occurring in this species 

(Figure 5.3). In contrast, seventy-one percent of all caught A. triostegus were below Lm (17.5

cm) and seventy-six percent were below the Lopt (18.2 cm) calculated from ELEFAN GA 

growth parameters (Table 5.1), indicating both growth and recruitment overfishing were 

occurring in this species (Figure 5.3). 

 

Figure 5.3 Length-frequency distribution histograms for (a) A. leucosternon and (b) A. triostegus caught off the 
southern Kenyan coastline.

5.3.2. Growth parameters, mortality, and exploitation 

The estimates of VBGF parameters varied slightly between the four ELEFAN methods as shown 

in Table 5. A. leuocosternon (26.1 - 27.4) 

and A. triostegus (27.9-29.6), the estimated growth coefficient constants (K) were higher in A. 

triostegus (0.85-1.23) compared to A. leucosternon (0.29-0.35), suggesting that A. triostegus
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attains its maximum length faster than A. leucosternon. The growth performance index values for 

A. triostegus (2.88-2.98) were slightly higher than those estimated for A. leucosternon (2.33-2.38)

(Table 5.1).

The instantaneous total mortalities (Z) estimate from the length converted catch curves for A. 

triostegus (2.91-4.98) were almost three to fivefold higher than those of A. leucosternon (0.79-

0.82). This translated to fishing mortalities (F) range of 1.47 to 3.41 for A. triostegus and 0.17 to 

0.33 for A. leucosternon, indicating an exploitation rate ranging from 0.20 to 0.40 in A. 

leucosternon and 0.51 to 0.68 in A. triostegus. The two natural mortality (N) estimators yielded 

contrasting estimates in the two species. The updated Pauly (1980) formula estimator revealed 

lower estimates than the one parameter K estimator in A. triostegus, while A. leucosternon

estimates from the updated Pauly (1980) formula were higher than the estimates of the one 

parameter K estimator (Table 5.1, Figure 5.4, and Figure 5.5). 

Table 5.1 The von Bertalanffy growth parameters and mortality estimates of A. leucosternon and A. triostegus, using 
one parameter and two parameter natural mortality estimators’ in TropFishR package (Then et al.. 2015; Mildenberg 
et al., constant), M (natural mortality), Z (total mortality), F (fishing 
mortality), and E (exploitation rate).

Species K ø’
Updated Pauly nls-T
M         Z        F        E

One parameter K
M          F      E Status Lm Lopt

A. leucosternon
ELEFAN with K scan 27.2 0.29 2.33 0.56 0.79 0.23 0.29 0.49 0.30 0.38 Underexploited 16.2 16.6
ELEFAN with RSA 27.4 0.31 2.37 0.59 0.82 0.24 0.29 0.53 0.29 0.35 Underexploited 16.3 16.8
ELEFAN with SA 27.2 0.29 2.35 0.57 0.82 0.24 0.30 0.49 0.33 0.41 Underexploited 16.2 16.6
ELEFAN with GA 26.1 0.35 2.38 0.66 0.82 0.17 0.20 0.59 0.23 0.28 Underexploited 15.6 15.9
Powell-Wetherall 27 ± 3
A. triostegus
ELEFAN with K scan 27.9 1.23 2.98 1.59 4.98 3.38 0.68 2.08 2.89 0.58 Overexploited 16.6 17.1
ELEFAN with RSA 28.0 1.21 2.98 1.58 4.98 3.41 0.68 2.05 2.93 0.59 Overexploited 16.6 17.1
ELEFAN with SA 29.6 0.85 2.88 1.21 2.91 1.71 0.59 1.44 1.47 0.51 Overexploited 17.5 18.2
ELEFAN with GA 29.6 0.98 2.96 1.33 3.34 2.02 0.60 1.65 1.69 0.51 Overexploited 17.5 18.2
Powell-Wetherall 28 ± 4
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5.4. Discussion

We compared the life history characteristics, mortality, and exploitation of A. triostegus and A. 

leucosternon, to deduce whether differences in their spawning behaviour (pairing or aggregation) 

could lead to differences in their exploitation rate. Consistent with expectations, our results 

demonstrate that the species that forms spawning aggregations (A.triostegus) year around had a 

higher exploitation rate than the pair spawning species (A. leucosternon). Furthermore, estimates 

of length at maturity and length at optimum yield also indicated that growth and recruitment 

overfishing were occurring in A. triostegus, but not in A. leucosternon.

Despite comparable estimates of the von Bertalanffy asymptotic length ( ) in the two species

(A. triostegus (27.9-29.6) and A. leucosternon (26.1-27.4)), the growth constant (K) estimates for 

A. triostegus (0.85-1.23) are almost three to fivefold higher than those of A. leucosternon (0.29-

0.38), suggesting that A. triostegus attains its maximum length faster than A. leucosternon. Intra-

genera differences in growth coefficient constant (K) have previously been shown in other reef 

fishes genus such as Lutjanus, Lethrinus, and Plectropomus (Currey et al., 2013; Prince et al.,

2015) and can be due to differences in habitat preferences, but exploitation can also lead to 

different growth rates (Gust et al., 2002). Considering estimates from FishBase (Froese and

Pauly, 2018), the growth performance index (ø’) value 2.76 reported for A. leucosternon in 

Lakshawdeep India is slightly higher than the range (2.33-2.38) reported for the Kenyan 

population, which suggest superior growth conditions in the Indian reefs. However, A. triostegus

Kenyan populations displayed slightly higher growth performance indices (2.88-2.96) than the 

Lakshawdeep Indian population (2.60), underlining the ability of this species to maintain its 

optimum growth in a wide range of habitats. Unlike A. leucosternon which is restricted to coral 

reef habitats, A. triostegus can be found living in turbid marine environments such as coastal 

bays, ship harbors, and creeks (Mirams et al., 2011).
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Our length at maturity estimates for A. triostegus (16.6-17.5) were clearly larger than the 12 cm 

reported by (Mangi and Roberts, 2006) and may reflect the increasing area closures and gear 

management at the Kenyan coastline (McClanahan and Hicks, 2011). Nevertheless, the finding of 

growth and recruitment overfishing in A. triostegus indicates that either this species has not fully 

recovered from previous overexploitation or that the study by Mangi and Roberts (2006) did not 

capture its entire size distribution at the southern Kenyan coastline. Unfortunately, there are no 

published Lm and Lopt estimates for A. leucosternon to compare with the estimates presented in 

our study. Overall, the length at maturity and length at optimum yield estimates differed 

marginally in both species, indicating that both species may be adapted to start egg production at

maximum biomass (Beverton, 1992).

Mortality (F, M, and Z) and exploitation rates (E) were different between the two species, with

Acanthurus triostegus experiencing a higher level of exploitation (E = 0.51 – 0.68) than A. 

leucosternon (E = 0.20 – 0.41). The finding of a high level of exploitation in A. triostegus is 

unlikely to be due to differences in consumer preference because both species are considered to 

be of low value by local fishermen and fetch only ~1USD per Kg (Pers. obs.). It is also unlikely 

that the observed differences in the exploitation rate (E) are as a result of differences in natural 

abundance of the two species. Because the most abundant species in Kenya’s fishing grounds are 

rarely landed by fishermen (McClanahan et al., 2010), suggesting that natural abundance has 

little influence on the species caught by local fishermen. A plausible explanation for the high-

level exploitation in A. triostegus is its spawning and mating behaviour. Unlike A. leucosternon,

A. triostegus is less territorial and forms large spawning aggregations throughout the year that 

might be susceptible to fishing (Robertson et al., 1979; Hartup et al., 2013; Claydon et al., 2014).

Indeed, individuals of A. triostegus were landed en mass by a particular fishing crew (Pers. obs.), 

indicating they were most likely fished in groups. Although this rationale might explain why A. 

triostegus is the most abundant Acanthurus spp. caught in Kenya, where it contributes

approximately 3% of the total number of fish landed (Hicks and McClanahan, 2012), Acanthurus 
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nigrofuscus also often forms spawning aggregation but constitutes lower proportion fishermen 

catch in Kenya (Hicks and McClanahan, 2012). This suggests that other factors not explored by 

the present study may also influence the catch composition of Kenyan fishermen. 

In general, the modified Pauly (1980) method yielded higher natural mortality estimates than the 

one parameter K method in the underexploited A. leucosternon, whereas in A. triostegus the one 

parameter K method displayed higher natural mortalities than the modified Pauly (1980) method. 

This pattern is consistent with the observation made by Rehren et al. (2018) on Siganus sutor,

Lethrinus borbonicus, Leptoscarus vaigiensis, Lethrinus lentjan, Lutjanus fulviflamma, and 

Scarus ghobban and may suggest that the one parameter K method tends to overestimate natural 

mortality in overexploited species.

In Kenya, the use of spear gun and beach seine is forbidden by fisheries laws because of their

destructive nature (McClanahan and Mangi, 2004). However, compliance by fishermen has been 

challenging as both gears involve low expenditure and high economic return (Mangi et al., 2007; 

Tuda et al., 2016). Sixty-four percent of A. leucosternon catch from beach seine comprised of 

individuals below the Lm, supporting previous reports that this gear captures a large proportion 

of immature individuals (Hicks and McClanahan, 2012; Tuda et al., 2016).

On the contrary, a large proportion of A. triostegus individuals under the Lm were captured by 

gill net, indicating a possibility that fishermen were using gill nets with a mesh size smaller than 

the recommended 6cm size limit. This underlines the minor difference existing between beach 

seine and gill net, when the mesh size of the latter is too small (McClanahan and Mangi, 2004).

Nevertheless, the application of mesh size restriction in a multispecies fishery is often 

challenging, considering that different species mature at different sizes (Tuda et al., 2016). In 

Kenya, the difficulty of enforcing the required mesh size is also exacerbated by the loose 

arrangement of landing sites along the coastline.

Even though unabated fishing activities are predicted to cause collapse of large, long-lived 

species that form large aggregations like Serranidae (Sadovy de Mitcheson et al., 2013; Robinson
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et al., 2015) and Trachichthyidae (Clark, 2001), our findings of high level exploitation in A. 

triostegus suggests that fast life histories species might also be at risk of declining to lower 

abundance just as larger, slower-growing species. This means that fast-growing species should 

not be overlooked by fisheries management plan that aims to protect fish species from collapse.
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6. CHAPTER - General discussion and synopsis

 
The general aim of this thesis was to assess the genetic population structure (connectivity, 

demographic history, and genetic diversity) and growth parameters of A. leucosternon and A. 

triostegus, to determine the influence of biotic and abiotic factors on the connectivity and 

exploitation patterns of these species in the Western Indian Ocean and the Indian Ocean at large. 

In particular, I evaluated the influence of mating behaviour on the connectivity and exploitation 

of these two species. In the following sections, I summarize and discuss the main findings of this 

thesis to provide insights into the factors that drive connectivity and the exploitation of 

Acanthurus species in the Western Indian Ocean and other parts of the Indian Ocean. Finally, I 

draw conclusions from these findings, their implications for marine resource management and 

recommendations for future studies.

6.1. Major findings and discussion

6.1.1 Connectivity of A. leucosternon and A. triostegus in the Western Indian Ocean and 

Indo-Pacific

The Western Indian Ocean (WIO) was recognized as one of the richest marine biodiversity areas 

in the Indo-Pacific region, hosting about 11,200 marine species, including 2,200 fish species, 

over 350 coral species, 11 species of mangroves, 12 species of seagrass, 3,000 species of 

mollusks, 450 species of crabs, and 300 species of echinoderms (WWF, 2004; WWF, 2006). 

Over the last two decades, genetic and taxonomic studies in the WIO have helped us to 

understand the origin of this diversity. However, these inferences have been based on only a few 

taxa, limiting our understanding of the historical and contemporary processes responsible for the 

distribution of this diversity (Borsa et al., 2016). The limited number of genetic studies in the 

WIO has also precluded the use of this information in biodiversity conservation and management. 
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While aiming to increase the number of genetic surveys in the WIO, chapter 2 of this thesis 

investigated the genetic population structure of A. leucosternon in three WIO countries (Kenya, 

Tanzania, and Mozambique). The data from mitochondrial and nuclear DNA showed widespread 

genetic homogeneity in A. leucosternon WIO populations, substantiating the prediction that long 

PLD do confer high connectivity to marine species. The pelagic larval duration of acanthurids 

ranges from 40 to 60 days and could expose the larvae of A. leucosternon to the full spectrum of 

prevailing WIO currents (Schott and McCreary Jr, 2001), facilitating long-distance dispersal. 

These findings are consistent with other studies on high dispersal reef fishes in the WIO such as 

Lutjanus kasmira (Muths et al., 2012), Scarus ghobban (Visram et al., 2010), Lutjanus 

fulviflamma (Dorenbosch et al., 2006), and Dascyllus trimacullatus (O’Donnell et al., 2017).

However, the relationship between PLD and genetic population structuring remains tenuous 

(Bernardi et al., 2003; Kelly and Palumbi, 2010; Riginos et al., 2011), as some life history traits 

that are hard to evaluate such as the larval swimming ability, egg type, and spawning strategies 

have been shown to influence the realized dispersal in marine species (Riginos et al., 2011). 

Genetic surveys comparing the WIO to other regions in the Indo-Pacific have uncovered complex 

phylogeographic structures. While some studies designate this region as a possible source of 

haplotypes (Muths et al., 2015; Huyghe and Kochzius, 2017), others show it sharing dominant 

haplotypes with all Indo-Pacific biogeographies (Craig et al., 2007; Klanten et al., 2007; Horne et 

al., 2008; Gaither et al., 2010; Ahti et al., 2016). Nevertheless, the sampling in WIO and central-

Indian Ocean has been substantially low, indicating that more systematic work is required to fully 

understand the evolutionary and dispersal processes that shape the phylogeographic structure of 

this region (Borsa et al., 2016). Chapter 3 of this thesis used Acanthurus triostegus as a model 

species to explore the connectivity of WIO populations to other Indo-Pacific biogeographies (the

eastern Indian Ocean, Western Pacific, Central Pacific, and Eastern Pacific). The results from the 

AMOVA, haplotype network, and the phylogenetic tree did not support the hypothesis of genetic 
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differentiation between Indian and Pacific A. triostegus populations, but WIO populations were 

significantly different from the Eastern Indian Ocean and appeared to harbor a unique haplogroup 

that was only present at lower frequencies in other biogeographies. The unique haplogroup that 

dominates the WIO is likely to have arisen there, after a long-term absence of gene flow between 

the WIO and the other Indo-Pacific populations. This finding seems to corroborate other studies 

that indicate that the WIO is a centre of origin (Borsa et al., 2016; Huyghe and Kochzius, 2017),

but it is unlikely the diversification and persistence of species in the WIO occurs through only 

one mechanism, especially with the finding that the four hypotheses used to explain speciation 

(centre of origin, centre of accumulation, centre of survival, and centre of overlap) are not 

mutually exclusive (Barber, 2009; Gaither and Rocha, 2013).

 

6.1.2. Exploring the links between mating behaviour and genetic population structure in A. 

leucosternon and A. triostegus

Chapter 4 of this thesis compared the genetic population structure of A. triostegus and A. 

leucosternon, to determine whether differences in their mating behaviour could lead to different 

connectivity patterns in the Indian Ocean. These two species share several behavioural and 

feeding ecologies (Randall, 1956), but have major differences in their mating and spawning 

strategies. While A. leucosternon spawns through monogamous pairing, A. triostegus forms 

massive spawning aggregations (Robertson et al., 1979; Whiteman and Côté, 2004; Hartup et al.,

2013; Claydon et al., 2014). Because the site fidelity associated with spawning aggregations can 

enhance larval retention, lower genetic diversity and connectivity patterns were expected in A. 

triostegus as compared to A. leucosternon. The results from mitochondrial and nuclear DNA 

revealed intriguing genetic patterns in the two Acanthurus species, but a common pattern 

consistent with the effect of divergent mating systems was not evident at both local (WIO) and 

broad (Indian Ocean: EIO and WIO) scales. At the scale of Western Indian Ocean, both species 
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are found to exhibit panmixia, rejecting the prediction that populations of A. triostegus will be 

more structured than A. leucosternon. Panmixia in both Acanthurus species is likely to be 

facilitated by the permanently north-flowing East African Coast Current, which flows faster than 

the average swimming speed of Acanthurus larvae (24 cm/s). This may indicate that EACC 

overrides the influence of other factors such as mating behaviour, larval swimming ability, or 

geographic distance in determining dispersal distances of sedentary marine species.

Across the Indian Ocean (EIO and WIO), analysis of mitochondrial DNA reveals divergent 

population structures in the two Acanthurus species, while A. leucosternon display panmixia 

across the Indian Ocean, A. triostegus exhibit significant genetic partition between the WIO and 

EIO. However, the spatial structuring observed in A. triostegus seems to be inconsistent with the 

effect of resident spawning aggregation of A. triostegus which are reef restricted (Hartup et al.,

2013; Claydon et al., 2014). Thus, if the genetic partition between EIO and WIO in A. triostegus

is driven by spawning aggregation, we would expect spatial genetic differences at finer scales, 

including between sample sites that were separated by 20 km e.g. between Kisite Mpunguti and 

Msambweni. Yet the pairwise comparisons in chapter 4 indicate that the genetic differences were 

mainly between EIO and WIO sample sites. These findings seem to confirm previous studies on 

groupers, snappers, and squids, which also found no relationship between mating behaviour and 

genetic population structure (Zatcoff et al., 2004; Shaw et al., 2010; Carson et al., 2011; Portnoy

et al., 2012; Bernard et al., 2016).

Contrary to expectation, A. triostegus was also found to exhibit higher nucleotide diversities than

A. leucosternon. This difference in nucleotide diversities is likely to suggest that the two species 

had a contrasting evolutionary history. A reconstruction of their past demographic history using 

the BEAST software indicates that both species experienced demographic expansion during the 

Pleistocene (11,700- 2.5 Mya), but the demographic expansion in A. leucosternon (demographic 

expansion time 60,000 years ago) was more recent and sudden than A. triostegus (demographic 
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expansion time 125,000 years ago). This seems to reflect their differences in habitat 

requirements. A. triostegus is a generalist species, which can be found inhabiting turbid waters in 

bays, tide pools, and harbor, whereas A. leucosternon is often restricted to coral reef habitats 

(Randall, 1956). The strict dependence of A. leucosternon on coral reefs may have restricted or 

lagged its population growth during the sea level low stands, while A. triostegus may have been 

able to colonize low-quality habitats that became available immediately when the sea level 

started to rise. This might suggest that A. triostegus had multiple isolated populations in different 

refugia that came into contact when sea level rose increasing its current nucleotide diversity.

6.1.3. Mating behaviour and vulnerability of A. leucosternon and A. triostegus to 

exploitation

In chapter 5, fisheries dependent data were used to test the influence of mating behavior on the

exploitation rate of A. leucosternon and A. triostegus. Because fishing is efficient at removing 

conspecific individuals when they are gathered at a given place, a higher exploitation rate was 

expected in the aggregate spawning A. triostegus as compared to the monogamous spawning A. 

leucosternon. Consistent with these expectations, the length converted catch curve in TropfishR 

(Mildenberger et al., 2017) shows that the exploitation rate is beyond the critical level of 0.5 

(Gulland, 1971) in A. triostegus but not in A. leucosternon, suggesting that the former is being 

exploited unsustainably (over-exploited) at the southern Kenyan coastline. These findings are 

also confirmed by the empirical relationship between Length at maturity (Lm), Length at 

optimum yield (Lopt), and Length at instantaneous (L ), which indicate that growth and 

recruitment overfishing are occurring in A. triostegus but not in A. leucosternon. Growth 

overfishing occurs when fish are harvested before they grow to an optimal size, while recruitment 

overfishing occurs when fishing impairs the recruitment potential of an exploited stock. 

The results of chapter 5 seem to be supportive of previous research findings in the western Indian 

Ocean, which report an exceptionally higher exploitation rate in the spawning aggregating 
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Siganus sutor compared to the monogamous spawning species such as Scarus ghobban (Rehren 

et al., 2018), confirming that spawning aggregation increases susceptibility of species to 

exploitation. However, other factors such as consumer preferences and natural abundance have 

been shown to influence the reef fish catchability (Sadovy de Mitcheson et al., 2013). In the case 

of A. triostegus and A. leucosternon, both species fetch approximately 1 USD per kg at the

southern Kenyan coastline, suggesting that consumer preference is not likely to explain the 

differences in exploitation rate reported. Potential differences in natural abundance seem also 

unlikely to account for the observed differences in the exploitation of the two Acanthurus species 

because underwater visual census studies indicate that the most abundant species in Kenya’s 

fishing ground are not necessarily those commonly landed by fishermen, suggesting that natural 

abundance does not influence catch composition in Kenya (McClanahan et al., 2010). A. 

triostegus was typically landed en masses using mainly gillnets and beach seine, indicating that 

the caught individuals occurred in aggregates (Per. Obs.). In contrast, A. leucosternon were 

mostly landed singly by spear gun fishermen. Besides local fishermen suggested that spear gun 

was inefficient at capturing A. triostegus because it notably dispersed individuals of this species 

when they were gathered. This anecdotal evidence reinforces the notion that A. triostegus were 

mainly targeted in aggregates or occurred mostly in aggregates. However, in some rare cases, 

both species can gather for purposes of foraging, shelter, or resting, which might be exploited by 

fishermen. But unlike spawning aggregations that are predictable in space and time, gathering for 

purposes of foraging, shelter, or resting occurs spontaneously or opportunistically, making it 

difficult for fishermen to target them (Robinson et al., 2014).  

6.2. Conclusions and implications for management

Coral reef species have undergone severe decline due to global warming, overfishing, and coastal 

pollution (Hughes et al., 2017a; Hughes et al., 2017b) such that their baselines today is 

dramatically different from 500 or 100 years ago (Gardner et al., 2003). These shifts are difficult 
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to reverse and often affect local communities in numerous ways, including loss of fishing 

livelihoods, loss of tourism revenue, increased coastal erosion, and protein deficiencies (Bruno 

and Valdivia, 2016). Although sound management strategies can be successful in 

reversing/mitigating this trend, they have often relied on population dynamics models to 

determine stock-recruitment dynamics and to define sustainable harvesting limits (Bernatchez et 

al., 2017). These strategies are usually confined to particular administrative units, which are often 

not aligned with the structure and dynamics of the ecological systems and population biology of 

several species (Osio et al., 2015; Borja et al., 2016). Consequently, vulnerable populations that 

are intermingled with abundant ones during parts of their life history may not be fully protected. 

The western Indian Ocean comprising of 10 countries (Comoros, France, Kenya, Madagascar, 

Mauritius, Mozambique, Seychelles, Somalia, South Africa, and Tanzania) is an example of a 

region where conservation actions are often planned and undertaken by individual countries 

independently of their neighbouring countries (Mazor et al., 2013; Levin et al., 2018), with the 

exception of a few recent projects such as WIO-SAP (Western Indian Ocean Strategic Action 

Plan) and Smart Fish. Although country-based initiatives are important for sustainable 

management of local marine resources, they are often deficient in protecting highly dispersal 

species that cross international boundaries, because the source and sink populations of these 

species may be located in the jurisdictions of two different countries. For example, a recent study 

on whale sharks (Rhincodon typus) found that their population off the coastline of Mozambique 

acted as a source for the Seychelles population (Andrzejaczek et al., 2016). Similarly, genetic 

studies in the WIO indicate that the population structure of sedentary species is mainly shaped by 

ocean currents, which flow across international boundaries and several ecoregions (Visram et al.,

2010; Muths et al., 2012; Otwoma and Kochzius, 2016; Huyghe and Kochzius, 2017; Otwoma et 

al., 2018; Ratsimbazafy and Kochzius, 2018). This suggests that collaboration between and 
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among mainland and island countries in the region is necessary for the effective conservation of 

species and ecosystems that are continuous across their borders.

The results presented in chapter 2, 3, and 4 of this study indicate that A. triostegus and A. 

leucosternon exist as single panmictic populations in the five WIO countries (Kenya, Tanzania, 

Mozambique, Madagascar, and Seychelles) sampled. This suggests that a network of 

transboundary MPAs and common fisheries regulations in the region would ensure the source 

and sink populations of A. triostegus and A. leucosternon in different countries are protected, 

maintaining a high genetic diversity in their populations. So far two transboundary MPA’s have 

been proposed in Eastern Africa (WIO), the future Ruvuma-Palma National Reserve (between 

southern Tanzania and northern Mozambique borders) and Lubombo Ponta do Ouro-Kosi Bay 

and Coastal Transfrontier Conservation and Resource Area (between southern Mozambique and 

northern South Africa borders) (Guerreiro et al., 2010; Grilo et al., 2012; Levin et al., 2018). The 

proposed Ruvuma-Palma National Reserve is particularly important because this location seems 

to be the entry point for propagules coming from the larger Indian Ocean (Obura, 2012). Chapter 

2 and 3 showed that A. triostegus and A. leucosternon individuals collected at this location are 

not distinct from northern Tanzania and Kenyan population, which indicate that it might be the 

source populations for other East African reef fauna given that dispersal is mainly driven by 

EACC which permanently flows northwards up to the border of Kenya and Somali. On the other 

hand, propagules from the WIO mainland region are exported to other parts of the Indian Ocean 

through the South Equatorial Counter Current (SECC), which arises when EACC converges with 

Somali Current at the border between Kenya and Somali. Consequently, establishing a 

transboundary MPA at the border between Kenya and Somali would ensure the reef fauna that 

export propagules to the larger Indian Ocean are protected. However, insecurity and absence of 

central government in Somali make this currently impossible to achieve (Levin et al., 2018). A 

solution might involve the extension of the Kiunga Marine National Reserve (1°42.25’S 



CHAPTER 6

111

41°31.78’E to 2°2.58’S 41°14.80’E) further south to ensure that a large proportion of coral reef, 

mangrove, and seagrass habitats are protected.  

While conservation actions should be taken at the regional level, attention should also be paid to 

the differences in life history traits among reef fauna, because different life history strategies can 

lead to different exploitation rate. For example, chapter 5 of this study demonstrates that 

exploitation rate is higher in the spawning aggregating A. triostegus compared to monogamous 

spawning A. leucosternon, despite both species having similar length sizes. This suggests that 

regardless of body size, spawning aggregation can increase vulnerability to exploitation. 

However, previous studies have emphasized protection of larger, long-lived species that form 

spawning aggregation from uncontrolled fishing (Clark, 2001; Sadovy de Mitcheson et al., 2013),

overlooking the fact that small-sized species forming spawning aggregation may also be at risk of 

declining to lower abundance just as the larger species. Therefore, formulating fisheries laws and 

regulations that consider species life history characteristics rather than body size could greatly 

improve fisheries management in the Western Indian Ocean and the Indian Ocean at large. 

6.3. Recommendations and future directions

This thesis investigated the genetic population structure and growth parameters of A.

leucosternon and A. triostegus, to determine whether species-specific traits can lead to different 

connectivity and exploitation patterns among Acanthurus species. The findings attempted to 

disentangle the contribution of biotic/intrinsic and abiotic/extrinsic factors in the genetic 

structuring and exploitation of Acanthurus species, but much work remains to be done. Chapter 2 

and 3 demonstrate genetic homogeneity in A. leucosternon and A. triostegus in Kenya, Tanzania, 

northern Mozambique, and southwest Madagascar. However, recent findings on lethrinids 

(Lethrinus nebulosus and L. mahsena) have shown that their southern Mozambican, South 

African, and Seychelles populations were genetically different from Kenyan, Tanzanian, 

Malagasy and Mauritian populations (Healey et al., 2018a; Healey et al., 2018b). It is thus 
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possible that additionally sampling of A. triostegus in southern Mozambique, South Africa, 

Mauritius, and eastern Madagascar could reverse the conclusion of genetic homogeneity in the 

WIO, but this is unlikely to be the case in A. leucosternon that exhibits widespread genetic 

homogeneity througout the whole Indian Ocean.

In Chapter 4, mitochondrial DNA and microsatellite datasets showed that mating behaviour has 

no influence on genetic connectivity pattern of A. leucosternon and A. triostegus. However, with 

the increase of next-generation sequencing in population genetics, it will be interesting to see if 

the results using larger SNP datasets are comparable to the current findings using traditional 

markers (mtDNA and microsatellites). There is already evidence indicating that the higher 

resolution SNPs marker is capable of detecting structuring patterns that are not visible in 

mitochondrial DNA or microsatellites datasets (DiBattista et al., 2017).

Finally, the finding of a higher exploitation rate in A. triostegus as compared to A. leucosternon is

based on one-year monitoring data, but McClanahan and Hicks, (2011) showed that the length of 

most coral reef fishes off the Kenyan coast changes with time, suggesting that the results 

presented in chapter5 of this thesis may not be definitive. Therefore, future studies testing the

influence of mating behaviour on the exploitation of Acanthurus species should consider 

increasing the temporal resolution of the study.
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Supplementary materials for chapter 2

Supplementary Table 2.1 Pairwise  DEST values among populations of Acanthurus leucosternon in Eastern Africa. 
Sample codes are presented in Table 1.

After Bonferroni correction, P < 0.05*, ns = not significant

Supplementary Table 2.2 ST values among populations of Acanthurus leucosternon in Eastern Africa. 
Sample codes are presented in Table 3.

   

ns= not significant

ML DS KL MT MO KR KM TA KU
DS 0.019ns

KL -0.001ns 0.057ns

MT -0.008ns 0.044ns 0.019ns

MO 0.003ns 0.078ns 0.024ns 0.021ns

KR 0.043ns 0.061ns 0.049ns 0.042ns 0.070ns

KM -0.017ns 0.030ns 0.003ns 0.020ns 0.035ns 0.035ns

TA 0.037ns 0.029ns 0.019ns 0.019ns 0.035ns 0.023ns 0.027ns

KU 0.030ns 0.024ns 0.049ns 0.013ns 0.003ns 0.059ns 0.043ns 0.054ns

MS 0.004ns -0.002ns 0.012ns 0.023ns 0.020ns 0.028ns -0.020ns -0.002ns 0.056ns

KU DS KL MH

KU 0.000

DS -0.017ns 0.000

KL -0.031ns -0.018ns 0.000

MH -0.019ns -0.022ns -0.019ns 0.000
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Supplementary Figure 2.1 Plot of Delta K against the K (clusters), the highest value of Delta K indicates the likely 
number of cluster (K=2) for Eastern African A. leucosternon populations.

Supplementary Figure 2.2 Principle coordinates analysis  (PCoA) for Acanthurus leucosternon using unbiased Nei 
genetic distance based on 10 loci. The percentage variation of the PCoA is represented by axis 1 (47.62%) and 2 
(25.34%). For sample sites, abbreviation see Table 1.  
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Supplementary materials for chapter 3

Supplementary Figure 3.1 Map of Indo-Pacific with prominent ocean currents. Abbreviations: SC, Somali current; 
SECC, South Equatorial Counter Current; EACC, East African Coast Current; NEMC, Northeast Madagascar 
Current; MCE, Mozambique Channel Eddies; MC, Mozambique Current; ITF, Indonesian Throughflow; LC, 
Leeuwin Current; EAC, East Australian Current; NGCU, New Guinea Under Current; NECC, North Equatorial 
Counter Current; and JC, Java Current.

Supplementary materials for chapter 4

Supplementary Table 4.1 Pairwise  FST values among populations of Acanthurus leucosternon in the Western 
Indian Ocean. Sample codes are presented in Table 1.

KU ML KR MO MS KM TA DS MT
KU 0.003485 0.007748 0.000325 0.006316 0.004949 0.006608 0.002667 0.001632
ML 0.002873 0.004807 0.000298 0.000459 -0.001854 0.004091 0.002094 -0.0009
KR 0.008264 0.004438 0.008075 0.002855 0.003811 0.001448 0.007166 0.00489
MO -0.000059 0.000352 0.00826 0.001906 0.003672 0.003607 0.007762 0.002204
MS 0.006055 0.000728 0.002389 0.002303 -0.002366 -0.001327 -0.00022 0.002471
KM 0.004729 -0.00127 0.003695 0.003694 -0.00172 0.002907 0.003315 0.002321
TA 0.006335 0.002805 0.002155 0.002085 -0.00221 0.001554 0.001812 0.001833
DS 0.00366 0.002328 0.005699 0.00729 -0.00021 0.00408 0.00224 0.004956
MT 0.001399 -0.000849 0.004837 0.002574 0.002614 0.002542 0.002037 0.005204

Supplementary Table 4.2 Pairwise  FST values among populations of Acanthurus triostegus in the Western Indian 
Ocean. Sample codes are presented in Table 1.

KU ML KR MO MS KM TA DS MT
KU 0.005974 0.012695 0.001408 0.007225 0.006242 0.007315 0.0043 0.004488
ML 0.006481 0.003049* 0.005846 -0.002731 0.005405 -0.006485 0.003172 0.008028
KR 0.012684 0.002094 0.012618 0.001034 0.003153 -0.001443 0.007133 0.005052
MO 0.001665 0.005528 0.012428 0.002278 0.004866 0.003428 0.000965 0.004059
MS 0.007934 -0.003245 0.000839 0.002749 -0.002758 -0.005795 0.004 0.003307
KM 0.0072 0.005794 0.003371 0.005217 -0.002494 -0.000071 -0.00088 0.004455
TA 0.008674 -0.004168 0.000649 0.003325 -0.004769 0.001013 0.002371 0.002742
DS 0.004658 0.002931 0.006838 0.001298 0.003945 -0.00052 0.003192 -0.000393
MT 0.004668 0.008027 0.004821 0.004175 0.003451 0.004764 0.003448 -0.00031
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Supplementary Figure 4.1 A scatter plot of the correlation between the geographic ST
estimates for the 9 sampling locations of A. triostegus in the Indian Ocean (r2 = 0.75 P < 0.0001).
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Supplementary Figure 4.2 A scatter plot of the correlation between the geographic ST

estimates for the 9 sampling locations for A. leucosternon in the Indian Ocean (r2 = 0.19, P = 0.5
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