
This version is available at https://doi.org/10.14279/depositonce-7578

© © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Victor, Friedhelm; Zickau, Sebastian (2018): Geofences on the Blockchain: Enabling Decentralized 
Location-based Services. In: BlockSEA 2018 – The 1st Workshop on Blockchain and Sharing Economy 
Applications (co-located with The 18th IEEE International Conference on Data Mining (ICDM 2018) 
Singapore, November 17, 2018). Piscataway, New Jersey: IEEE.

Friedhelm Victor, Sebastian Zickau

Geofences on the Blockchain: Enabling 
Decentralized Location-based Services

Accepted manuscript (Postprint)Conference paper  |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/161784622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Geofences on the Blockchain:
Enabling Decentralized Location-based Services

Friedhelm Victor and Sebastian Zickau
Service-centric Networking

Telekom Innovation Laboratories | Technische Universität Berlin
Berlin, Germany

friedhelm.victor@tu-berlin.de, sebastian.zickau@tu-berlin.de

Abstract—A decentralized ride- or carsharing application
is among the early proposals of what smart contracts on
blockchains may enable in the future. To facilitate use cases in
the field of location-based services (LBS), smart contracts need
to receive trustworthy positioning information, and be able to
process them. We propose an approach on how geofences can be
defined in smart contracts, and how supplied positions can be
evaluated on whether they are contained in the geofence or not.
The approach relies on existing location encoding systems like
Geohashes and S2 cells that can transform polygons into a grid
of cells. These can be stored in a smart contract to represent
a geofence. An oracle run by a mobile network provider can
submit network-based positioning information to the contract,
that compares it with the geofence. We evaluate the location
encoding systems on their ability to model city geofences and
mobile network cell position estimates and analyze the costs
associated with storing and evaluating received oracle-positions in
an Ethereum-based smart contract implementation. Our results
show that S2 encodings perform better than Geohashes, that the
one-time cost of geofence definition corresponds linearly with
the number of grid cells used, and that the evaluation of oracle-
submitted locations does not incur high costs.

I. INTRODUCTION

In recent years the sharing economy has given rise to
new companies. They enable the provisioning, use, and con-
sumption of services and goods between individuals, typically
coordinated through an online platform. Well known examples
include AirBnB – which allows anyone to rent out their
apartment – and Uber, which facilitates ride sharing and taxi
services. Whereas the sharing economy is frequently described
with peer-to-peer activity or marketplaces [1], [2], [3], the
platforms that enable it are very centralized systems.

With the advent of blockchain technology, new oppor-
tunities for decentralized systems in the sharing economy
emerge. Smart contracts – program code that is executed in a
redundant, decentralized fashion – allow for novel application
scenarios and business models. These typically cut out inter-
mediaries that traditionally provided trustworthy interaction
between parties. Smart contracts can provide trustworthy in-
teraction, but in many use cases also need trusted information
about the outside world, that isn’t readily available in a
blockchain context. For example, a contract designed to insure
against flight delays needs information about delays as they
are happening in the real world. It cannot simply request
this information from a webserver on its own. All blockchain

participants would need to perform the request on behalf
of the contract, retrieving the same result. This would also
have to be reproducible by anyone at any time. As this is
not possible, such outside information can be submitted into
the blockchain through prediction markets, where participants
vote on a question posed by an inquirer, or through so-called
oracles that are single entities claiming that certain events
occurred in the outside world. Once external data is inserted,
smart contracts can make decisions based on the available
information.

To facilitate a use case such as a decentralized ride-sharing
service, it would be very beneficial if a user’s location infor-
mation were accessible to a smart contract. Assuming such a
contract is designed to automatically charge a user based on
time and distance travelled, information about the start and
end location would be needed. When sharing a car, it may be
desirable to restrict the allowed driving area geographically.
For example, a smart contract could enforce financial penalties
if a specified geographic area is exceeded or the car has not
been returned to a certain location in time.

While these are specific examples of location-based services
(LBS) in which trustworthy location data may be useful,
there are many other scenarios in which they would pose an
advantage. To name a few:

• In supply chains, for the verification of the origin or
processing locations of certain products and materials.

• In logistics, for cargo tracking and delay verification.
• In smart cities, for the authorization of social benefits or

the restriction of local currency distribution.
For the use cases described above, a geographic region

needs to be defined that can be compared with an inserted
position inside a smart contract. Such inserted positions cannot
necessarily be trusted, if they are a user’s or a device’s
self reported position (as GPS positions for example can be
spoofed [4]). The recently published Geocoin platform [5]
for example, relies on a smartphone’s GPS position. Location
information that is hard to manipulate would prevent its users
from tricking the system. The likelihood of attacks will depend
on the magnitude of a potential monetary gain when forging
a submitted location.

In this paper, we propose the approach of using an oracle op-
erated by a mobile network operator, that can submit network-
based position estimates to a smart contract. The resulting



position claims are not made by the users or devices, but on
behalf of them, through an existing, reliable infrastructure that
is significantly harder to manipulate. We further address the
representation of geographical areas as geofences for smart
contracts, and how received positions can be determined to be
part of the geofence or not, so that additional contract routines
can be triggered accordingly. Our key contributions are the
following:

1) We provide an approach to represent geofences within
smart contracts to facilitate blockchain-supported LBS.

2) We compare Geohashes and S2 cells for geofence and
mobile network cell encodings in smart contracts, find-
ing that S2 cells need less grid cells while achieving a
similar polygon estimation performance.

3) We evaluate the system with an Ethereum-based imple-
mentation with respect to smart contract execution costs
both for geofence definition and location insertion.

II. BACKGROUND AND RELATED WORK

A. Smart contracts and the EVM

Smart contracts are computer programs that can be deployed
onto a blockchain that supports it. The original idea of
enforceable rules without a third party was first proposed
by Nick Szabo [6]. Once deployed to a blockchain, users
can interact with the program by sending transactions to
it. Thereby functions can be specified, and parameters be
submitted. The Ethereum Virtual Machine (EVM) is one of the
most popular smart contract runtimes. It is used not only on the
main Ethereum blockchain [7], but also on other blockchains
that support it or provide compatibility. Programs can be
written in high level languages like Solidity or Serpent, and
are compiled to EVM bytecode. Each bytecode instruction has
a cost attached to it that is measured in units of gas. Users
need to pay for the amount of gas that is consumed by their
transactions. As the most expensive EVM instruction is the
creation or modification of storage variables, smart contracts
need to be designed to use permanent storage sparingly.

B. Geofences, Background Tracking, and Positioning

Greenwald et al. use the term geofencing when messages
are pushed to a subscriber triggered by an individual crossing
a virtual border [8]. This virtual border is referred to as a
geofence. Küpper et al. [9] describe the necessary technologi-
cal device capabilities and protocols which enable geofencing
applications and use cases through background tracking of
devices. Current geofencing frameworks also include infor-
mation about previously visited areas, Rodriguez Garzon and
Deva call these types geofencing 2.0 [10].

To determine whether a geofence applies or not, a given
position must be determined to be inside or outside of it.
Given that spoofing should not be easy, we consider mobile
network position estimations, as provided by mobile network
operators. Cellular positioning methods range from >10km
in rural areas to 50m-1,000m in urban areas [11]. Multiple
positioning techniques like Angle of Arrival (AOA), Time of
Arrival (TOA) and Time Difference of Arrival (TDOA) [12]

offer improved accuracy over basic cell sector positioning
systems. Frattasi and Della Rosa state that the median area
of uncertainty for network-based positioning in urban areas is
between 0.4-0.5km2 [13]. Wymeersch et al. [14] give an out-
look that with the future introduction of 5G networks potential
performance of positioning could be down to <10cm, due to
the combination of high carrier frequencies, large bandwidths,
large antenna arrays, device-to-device communication, and
ultra-dense networking.

C. Blockchain location protocols and startups

Several startups propose to use blockchain technologies that
make use of location data. To the best of our knowledge, they
do not rely on a mobile network operators infrastructure or
implement geofences so far.

1) FOAM: FOAMs1 core project is the introduction of
a decentralized protocol for Proof of Location (PoL) on
the Ethereum blockchain. FOAM introduces a crypto spatial
coordinate that make use of Geohashes, a proof of location
protocol, and a spatial index web app. It wants to incentivise
the deployment of Low Power Wide Area Networks (LPWAN)
hardware, employing techniques such as TOA and triangula-
tion, to determine the location of a participant.

2) SIKORKA: Sikorka2 is also based on the Ethereum
blockchain technology. The approach is centered around the
idea of proving presence at a certain location, by QR-code
interaction or question-answering schemes. In 2018 Sikorka
plans to integrate dedicated tamper-proof hardware in their
protocol deployed at locations where smart contracts can be
used to interact with museums and tourist sights for example.

3) Platin: Platin3 is a PoL protocol that detects spoofing
attempts using anomaly detection on the sensors obtained from
a users mobile device. Additionally, they want to leverage
high-trust users and dedicated devices as trust-anchors.

Finally, several ridesharing startups like DACSEE, Chasyr
and Helbiz exist, that claim to reduce costs by employing
blockchain technology. However, there seems to be very little
information on whether blockchain-enabled LBS will be part
of the solution.

D. Proof of location blockchains

Brambilla et al. [15] propose a decentralized, infrastructure-
independent PoL scheme based on blockchain technology,
including privacy preservation. The scheme considers a peer-
to-peer network with connected mobile devices that also have
an enabled short-range communication technology, such as
Bluetooth. In this network there are Prover nodes (connected
to the Internet) and Witness nodes. A Prover node i sends
a signed location request with an identifier to a Witness j
including the hash of the latest block on the blockchain.
The location of the Prover must not be further away, then
the maximum distance of the short-range protocol used. The
Witness node signs its reply with its geographic location

1https://foam.space/
2http://sikorka.io/
3https://platin.io/



0x47a851: True
0x47a84f: True
0x47a833: False
0x47a825: False
...

0x47a84f: True

0x47a833: False

0x47a825: False

1. Original Geofence                                        2. Encoding (S2)                                    3. Storing cells in smart contract

Fig. 1. A geofence is encoded with S2 cells and stored in a key-value map within a smart contract. Undefined and invalid keys are False (0).

and the identifier. The Prover verifies the response. If the
verification is correct the PoL is broadcasted to the network.

Dasu et al. [16] propose a different approach for PoL.
In order to increase scalability and security, they divide a
blockchain infrastructure into a hierarchical tree of smaller,
localized ledgers. Servers or cellular towers that have a well-
defined location can issue location certificates and participate
in proof of location mining. Trustworthiness is achieved by
using cryptographically-signed IP packets.

E. Location Encoding Systems

For the representation of geofences and mobile network
positioning estimates, a location encoding system, also known
as geocoding systems, is required and needs to fulfill the
requirements of a given use case. For blockchain use cases,
storage and computational efficiency is of primary concern.
Therefore, geofences need to be approximated using as little
storage as possible, while maintaining the ability to determine
whether a given location is inside or outside of it.

The most common location representation is the longitude
and latitude coordinate system of the World Geodetic System
(WGS 84) [17]. Most other systems encode these coordinates
into a single code, the most famous being the Geohash4. Other
systems partition the earth into tiles and present a representa-
tion of them, such as what3words5. Location encoding systems
are designed with various requirements in mind, such as
human memorizable, avoidance of similar characters, multiple
resolutions with various numbers of digits, comparability,
on/offline de/encoding, static, and license free usage. Here,
we reduce the set of encoding systems to those that offer a
hierarchical spatial data structure, and employ space filling
curves.

a) Geohash: Example: u33db2m. The key characteristic
of a Geohash are its use of alphabetic characters and numerals
and a z-order space-filling curve. There are 12 precision
levels, one for each character. Removing characters from the
end of the code reduces the precision and increases its size.
Geohashes have been used to represent Geofences [18].

4http://geohash.org/
5https://what3words.com/

b) Google S2: Example: 5163463834198867968, corre-
sponding to the hex value 0x47a84f0000000000, often ab-
breviated to the token 47a84f. S2 cells have been developed
by Google employee Eric Veach6 to be used for geospatial
indexing. It makes use of the idea of a hierarchical decom-
position of a sphere. S2 cells are a compact representation of
regions or points using a Hilbert space-filling curve. They can
be represented with 64-bit integers, allowing for 31 precision
levels. Similar to Geohashes, S2 cells can be reduced in terms
of their precision, while providing more distinct precision
levels. Each cell is represented by an 64 bit integer value
(examples shown in Table I).

III. CONCEPT

In this section we describe how we can specify geographical
areas such as geofences within smart contracts. In combination
with supplied geopositions, the contract can determine whether
the supplied position overlaps with the geofence, and trigger
actions accordingly. We then provide details on how a mobile
network-based location oracle can provide suitable location
information. Finally, we present several interaction strategies
between the oracle and the smart contract and provide an
algorithm that compares a provided location with the geofence.

A. Geofences in smart contracts

As illustrated in the related work, there are a multitude of
options available to encode locations. To use and query geolo-
cations in smart contracts, a hierarchical, grid encoding such
as Geohashes or Google S2 cells are practical, because point
in polygon can be performed quickly due to the hierarchical
nature. To prepare a geofence for storage, we approximate it
by encoding the covered area into grid shaped cells. S2 cells or
Geohashes offer different cell sizes from one resolution level
to the next. As shown in Figure 1, the process results in a set of
identifiers, where each one describes a subset of the geofence.
By increasing the number of cells used for the encoding, i.e.
by modifying the minimum and maximum resolution level to
be used, the approximation can be adjusted. Each cell identifier
is stored in a key value map within a smart contract, where

6https://github.com/google/s2geometry



A: 0x47a851ac

B: 0x47a851b

C: 0x47a851c

Fig. 2. Hierarchical S2 cell levels. Cell A can be reduced hierarchically
to cell B and C. Highlighted is the token representation, that corresponds to
Table I, in which the hierarchy can be seen in binary form.

TABLE I
EXAMPLE S2 CELLS AND RESOLUTION LEVELS

In Fig. 2 S2 cell binary S2 cell level

A 0100 0111 1010 1000 0101 0001 1010 1100
0000 0000 0000 0000 0000 0000 0000 0000 13

B 0100 0111 1010 1000 0101 0001 1011 0000
0000 0000 0000 0000 0000 0000 0000 0000 12

C 0100 0111 1010 1000 0101 0001 1100 0000
0000 0000 0000 0000 0000 0000 0000 0000 11

each defined value is set to True (1). The default value for
undefined keys is to return False (0).

In order to determine whether a given cell position is
contained in the geofence, the key value map can be queried.
If the exact cell has been used to define part of the geofence, a
single lookup provides a positive answer. In the naive scenario
that uses the same cell size for the entire geofence, such a
single lookup would always suffice. However, as the geofence
may be defined with varying cell resolutions in order to reduce
the number of identifiers needed, it may also contain some
large cells. As the provided cell location will be smaller, there
may not be an immediate, direct match. Figure 2 illustrates the
issue: assuming cell C is the geofence, a query for whether
A is part of the geofence won’t find a direct match in the
key value map. To find a match, we increase the cell size
by reducing its resolution level step by step until there is a
match (cf. Table I), or the lowest geofence resolution has been
exceeded.

B. The mobile network operator as a location oracle

To perform location tracking, the smart contract needs to
be supplied with reliable updates of the location of a device.
In our approach we rely on the existing infrastructure of a
mobile network operator. An operator typically has a vast
network of cell towers to offer widespread connectivity. At the
same time, a terminal belonging to a user or an IoT device,

Fig. 3. A simplified mobile network cell displayed on the left, is encoded
to be fully contained within two grid cells on the right.

must be locatable in terms of the network cell that provides it
with connectivity. The network cell in turn has a geographical
coverage area that indicates where the terminal must be located
at. With the existing mobile network protocols, a mobile device
can report its cell location with a location update. The network
can also request the current cell by paging the terminal. Further
positioning techniques have been introduced in the related
work section II-B. Given the existing mobile network protocols
and infrastructure, a mobile network operator can act as a
location oracle. A shortcoming may be that an operator can
only provide information about a terminals location when it
is inside a serviced area. If the device is roaming, positioning
may not be possible. To resolve the issue, multiple mobile
network operators could collaborate to provide an oracle that
covers multiple countries, and could therefore also be used for
international transport tracking.

C. Resolution alignment

To make cell coverage areas compatible with the geofence
definition in the smart contract, again an encoding process
needs to be applied. Here, a choice needs to be made at what
resolution the area is encoded. As illustrated in Figure 3,
the process can lead to a set of multiple grid cells. While
sometimes significantly extending the coverage and thereby
the position claim, the fact that it is only an approximation
can be beneficial for network operators as they typically want
to keep information about exact cell coverage areas private.

An important consideration is the alignment of encoding
resolutions between geofence and network position estimate.
The maximum grid cell size used in the position estimate,
determines the smallest grid cell size of the geofence. As
we will show in the evaluation, this has direct consequences
accuracy of the geofence encoding.

D. Oracle-contract interaction strategies

The location oracle run by the mobile network operator
is a regular blockchain participant that sends transactions
to compatible smart contracts when set up accordingly. The
oracle needs an initial configuration for the following:

• A mobile terminal that is to be tracked
• At least one smart contract address that is to be notified

about the position of the mobile terminal



• The maximum cell level resolution of the geofence de-
fined in the smart contract

• An interaction strategy describing when to submit new
location information to the smart contract

The smallest resolution (maximum cell level) of the ge-
ofence needs to be defined upfront, as the oracle should not
submit grid cells that are larger. If it were to submit these,
it cannot be stated with certainty that the mobile terminal is
within the geofence (cf. Figure 2). Turning to the interaction
strategy, there are three approaches that can be taken. The
terminal position can be submitted:

• in regular intervals: This has the benefit that a full
position history will be created and can be traced at later
points in time. If the terminal does not send location
update messages to the network in periodic intervals,
paging requests may be necessary that potentially create
significant signaling overhead. At the same time, this
approach may lead to a high number of blockchain
transactions leading to increased storage costs.

• on events triggered in the smart contract: For example,
when a shared car is returned, a smart contract may want
to ensure that it is parked within a serviced area. During
a conceivable deposit reclaim initiated by the driver, the
location oracle could submit the location of the car.

• on a distance moved: To reduce the number of updates
sent to the contract, the oracle could monitor the distance
moved and only supply an updated position estimate if
the terminal has moved a certain distance.

• only on violation of the geofence: To keep the number
of transactions initiated by the oracle to a minimum, the
oracle could monitor the terminal’s position off-chain and
only submit the location in case of a violation of the
geofence.

• on a combination of the above: during the intial renting
process a position update may be desirable, that is then
followed by periodic updates.

E. Oracle position overlap with geofence

As visualized in Figure 3, the oracle provided position
may consist of multiple grid cells. To determine whether the
oracle-provided position overlaps with the geofence, each grid
cell needs to be checked, potentially with multiple reduced
cell levels. As long as one cell version is contained in the
geofence, an overlap exists. The corresponding algorithm is
listed in Algorithm 1. It would also be feasible to enforce full
containment by requiring every cell to find a match in the
geofence.

Examining the algorithm, we observe that the number of
cells used in the geofence has no impact on the number of
key value lookups that need to be performed.

If c is the number of grid cells to be checked, and l the
number of levels the grid cell needs to be reduced by at most,
then an overlap can be determined in at most c · l lookups.
The lookup therefore only depends on the number of different
resolution levels used in the geofence, and how many cells are
supplied by the location oracle.

Fig. 4. An example car trace of mobile network position estimates (left),
converted to S2 cell encodings (right).

F. Decentralized Car sharing

In contrast to the existing blockchain-based car sharing
applications, a truly decentralized approach would allow users
to set up their own smart contracts, so that they can specify
their own requirements, without having to rely on a central
contract or platform that can dictate terms and take comissions.
To facilitate individual car sharing restrictions, the car owner
can define a geofence for a city such as Berlin, perhaps in-
cluding or removing certain regions. Further time and deposit
constraints are conceivable. A potential renter would be able to
search for all smart contracts that offer to share a car, browsing
their current locations and renting conditions. Ideally, the
smart contract supports utility functionality like inspecting the
geofence, and renting it - whereby a deposit may be stored in
the contract. To verify that the location oracle works properly,
the user could request the cars position, confirming the result
in the real world. During driving, the terminal built into the car
enables periodic location updates via the mobile network, that
are sent to the smart contract. If the user leaves the geofence,
the deposit is retained.

Figure 4 illustrates a car trace obtained from simplified
mobile network cell positions. In this scenario, a gap exists in
the middle of the map that is not due to missing information.
Instead, if a periodic location update has been chosen, the car
may have passed several network cells before the correspond-
ing smart contract is notified about a new position.

Algorithm 1: hasOverlap(locationList)
Predefined: geofenceMap, minLevel of geofenceMap
Input : Key-value map of the geofence,

list of geolocations to be checked
Output : Boolean indicating whether the locationList

is at least partially inside the geofence
for cell in locationList do

while level(cell) ≤ minLevel do
if cell in geofenceMap then

return True
else

cell = reduceLevel(cell)
end

end
end
return False



58 392

30 216

18 130

14 67

<
 150%

<
 200%

<
 300%

<
 400%

1 10 100

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%F
ra

ct
io

n 
of

 m
ob

ile
 n

et
w

or
k 

ce
lls

Location encoding system: Geohash S2

Number of grid cells needed

Fig. 5. Cumulative distribution of grid cells needed to model a coverage of
less than the number indicated on the right. The vertical dashed lines indicate
at which point 100% are reached. For example, the second plot indicates that
at most 30 S2 grid cells are needed to encode any mobile network cell with
less than twice (200%) of its original coverage area. For the same coverage
constraint, 10 S2 grid cells are sufficient to encode 25% of the cells.

IV. EVALUATION

To evaluate the proposed solution, we compare the Geohash
and S2 location encoding systems for modelling mobile net-
work cell coverage areas and city-wide geofences. The aim is
to encode areas with as few grid cells as possible, as they
will lead to one-time storage and transaction costs for the
blockchain. Only the initial setup can be costly, later data
access is comparativly cheap. We identify the optimal grid cell
sizes to configure a smart contract accordingly. Secondly, we
measure actual execution costs based on an implementation
for the EVM, which can also be translated to dollar costs
based on current pricing circumstances of the public Ethereum
blockchain.

A. Cell tower coverage area encoding

We model cell tower coverage areas obtained with an
Android application [19], that collects cell tower information
and resolves it using Google APIs. The location estimates
consist of a latitude, longitude and an horizontal accuracy.
The Android developer documentation defines this accuracy
as the radius of 68% confidence7. In other words, there is a

7https://developer.android.com/reference/android/location/Location

Geohash S2

<
 150%

<
 200%

<
 300%

<
 400%

5 6 7 10 12 14

0%

25%

50%

75%

0%

25%

50%

75%

0%

20%

40%

60%

80%

0%

20%

40%

60%

Min. Geohash length         Min. S2 level       

F
ra

ct
io

n 
of

 m
ob

il
e 

ne
tw

or
k 

ce
ll

s

Fig. 6. Distribution of shortest Geohash lengths and minimum S2 levels for
each cell tower area encoding, over all encodings. For example, roughly 80%
of the Geohash encodings with a coverage of < 150% are of length 6 or
longer. For the same coverage, about 10% of S2 encodings are of level 11 or
higher.

68% likelihood that the device within a circle defined by the
location and the radius. In reality such estimates aren’t likely
to be circles, but their accuracy will have the same order of
magnitude.

We collected 4,505 of these cell towers position estimates
in Germany, that have radius values ranging from 500m to
5000m. Figure 7 displays the distribution. The majority of
mobile network cells has a horizontal accuracy between 500m
and 2000m.

We encode all cell tower coverage areas using S2 and
Geohash grid cells, while permitting a range of minimum and
maximum Geohash lengths, and S2 levels. For each result we
count how many grid cells are needed to represent the given
polygon. We measure the coverage, that describes how much
of the original polygon area has been covered. For example,
a coverage of 130% implies an additional 30% of excess area
is covered, that does not belong to the original polygon. The
best possible value would be 100%.

Figure 5 illustrates the results. For four different coverage
contstraints, a cumulative distribution of mobile network cells
indicates how many Geohash or S2 grid cells are needed
to encode them. By relaxing the coverage constraint, e.g.,
accepting a coverage of < 400%, the number of grid cells



0

100

200

300

1000 2000 3000 4000 5000

Horizontal accuracy in meters

C
ou

nt

Fig. 7. Distribution of horizontal accuracy values (radius) obtained for cell
tower position estimates from the Google location API.

needed decreases. In all constraint scenarios, the S2 encodings
perform better than Geohashes. This is likely due the more
limited set of grid cells resolutions available for Geohashes.
For example, reducing a length 6 Geohash to length 5,
increases its area by a factor of 32, whereas reducing an S2
level 12 to level 11 leads to an area increase by a factor of 4.

Corresponding with Figure 5, Figure 6 shows the distri-
bution of shortest Geohash lengths and minimum S2 levels
(largest areas) over all encodings. We can observe that in S2
encodings, four different levels emerge, whereas Geohashes
mostly consist of lengths 5 and 6 as the shortest lengths seen.
By relaxing the coverage constraints, the distribution shifts
towards shorter Geohashes and smaller S2 levels, meaning
larger grid cells are observed more frequently.

For both coverage constraints < 150% and < 200%, the
maximum grid cell areas (Geohash length 5, S2 level 11)
correspond to about 5 × 5km and 3 × 5km. This determines
the choice for the lowest grid cell size that can be used for
the geofences, as a larger oracle-provided grid cell cannot be
inside a smaller geofence grid cell.

B. City geofence encoding

Following the results of the previous section, we continue by
encoding the 7 largest cities by population in Germany: Berlin,
Hamburg, Munich, Cologne, Frankfurt am Main, Stuttgart and
Düsseldorf. We restrict the encoding to use at most a Geohash
length of 5, and S2 level 11, to maintain compatibility with
the mobile network cell area encoding. The results are shown
in Figure 8. We observe that a Geohash encoding achieves a
similar coverage compared to S2 encodings, while requiring
more grid cells. Due to the minimum grid cell size constraint,
no encoding can achieve a coverage below 150%. For example,
using a maximum S2 level of 11 to cover Berlin leads to the
best score of 160% coverage when using 30 S2 cells.

C. EVM gas costs

To determine smart contract execution costs, we imple-
mented the system for the EVM, based on the S2 location
encoding scheme. We measured the gas costs for storing

●

●

●
●

●

●

●

●●

●

●

4

5

5
5

4

5

4

55

4

5

9

10

11

10

11

10

11

10

11

8

9

10

11

9

10

11

9

10

11

10

11

10

11

10

11

100%

200%

300%

400%

500%

1 10 100

Number of grid cells needed

P
er

ce
nt

ag
e 

of
 c

it
y 

co
ve

re
d

Location encoding system: ● Geohash S2

Fig. 8. Each circle represents an encoding of one of the top 7 most populated
cities in Germany, where the number displays the the max. cell resolution.
Indicated are the number of grid cells needed (Geohash and S2 encodings) to
achieve a certain coverage (closer to 100% is better). A constraint is applied
that the maximum Geohash length be 5 and the maximum S2 level be 11.

geofences and the location evaluation algorithm introduced
earlier. We observe that the gas costs for storing a geofence
increase linearly with the number of grid cells defined. As a
single mapping entry requires an SSTORE instruction, the cost
for each grid cell corresponds to 20,000 gas. Combined with
base transaction costs and some overhead costs for looping,
a geofence consisting of 100 grid cells leads to a gas cost of
2,088,102 gas. As of August 16th, 2018, this would translate
to $1.89 on the main Ethereum blockchain.

An oracle submitted location that is evaluated according
to Algorithm 1, leads to multiple storage access instructions
(SLOAD), that cost 200 gas each. Therefore, a transaction
specifying a grid cell location that does not need to be reduced
costs only 22,442 gas, of which 21,000 are the base transaction
costs of the transaction. Additional reduction steps for the S2
implementation cost roughly 1,500 additional gas per step.
Assuming the oracle supplies 15 positions, that each may have
to be reduced by up to 3 levels, the maximum gas cost will be
88,500. For the main Ethereum blockchain, this comes down
to at most $0.08 per update.

Depending on the strategy employed for providing the smart
contract with location updates, these costs will add up. If 100
updates are sent to the smart contract, the corresponding cost
would be $8 at current prices, but could be much higher
when the public network is under heavy load. In general,
the proposed solution can be implemented not only on other
EVM-compatible blockchains, but also different smart contract
platforms such as EOS8 or NEO9, where costs may differ.

8https://eos.io/
9https://neo.org/



V. DISCUSSION

In a real world scenario, a mobile network operator can
make use of multiple position estimation techniques that sur-
pass the accuracy of what Google cell tower position estimates
provide. If the accuracy is increased, the resolution of the grid
cells can be improved, allowing for more accurate position
claims and geofences. Transaction costs will slightly increase,
as additional resolution levels need to be checked.

While our approach is also feasible on other smart-contract
enabled blockchain platforms, we only implemented it for
the Ethereum Virtual Machine. Transaction costs may vary
depending on the platform used, and the real world costs for
the main Ethereum blockchain could be much higher if such a
system would be used on a larger scale on the main network.
It may also be a good idea to use a private blockchain for this
specific use case.

As transparency and traceability are inherent properties
of most of todays blockchains that support smart contracts,
location privacy is not maintained with our approach. Al-
though the position updates would be coarse and not very
specific, movements could be extracted from the blockchain
to deanonymize users.

For the proposed use cases, a blockchain identity needs to
be linked to a sim card. Therefore, a blockchain address is
then associated to an identity in the real world. For scenarios
that need location information that does not change frequently,
it can be argued that an identity system is sufficient. For
example, in supply chains, a factory location may be implicitly
given, if the identity of the signing entity is known. This is
because we know that the identity is stationary in the known
location. Similarly, for use cases that depend on city-level
location information such as residence, the information is
implicitly known if they rarely change and are attached to
the identity.

VI. FUTURE WORK

Scalability efforts are an ongoing aspect in blockchain
research. Our proposed solution could perhaps benefit from
off-chain scaling solutions such as state channels. The state
channel could be maintained while the geofence isn’t violated,
only to be settled on the main chain on violation.

As part of the question for incentives, economic aspects
and threat modelling for blockchain-based proof of location
systems are an open topic.

In order to improve privacy aspects, it may be of interest to
determine whether zero knowledge proofs can be combined
with geofences in smart contracts. For example, being able
to prove that the terminal’s current position is among the
permitted positions (set membership), without revealing its
true position could be of great benefit.

Finally, a location oracle does not need to be limited to
providing position estimates. Depending on the location of the
network cells, it may also be possible to provided enhanced
information. For example if a terminal is moving between
cells that only cover subway tunnels, the oracle may provide
information on the mode of transport that is used.

VII. CONCLUSION

We have proposed an approach to enable LBS for smart
contracts. It relies on a mobile network operator to act as
an oracle, submitting location estimates of a terminal to a
smart contract. The position can be evaluated to be inside
or outside of a smart contract-defined geofence. We have
evaluated Geohashes and S2 cells for their suitability to model
position estimates and city wide geofences, with the finding
that S2 cells perform better. After estimating transaction costs
for the EVM, we conclude that LBS for smart contracts are not
only feasible, but comparatively cheap for position evaluation.

REFERENCES

[1] J. Hamari, M. Sjöklint, and A. Ukkonen, “The sharing economy:
Why people participate in collaborative consumption,” Journal of the
association for information science and technology, vol. 67, no. 9, pp.
2047–2059, 2016.

[2] M. Cohen and A. Sundararajan, “Self-regulation and innovation in the
peer-to-peer sharing economy,” U. Chi. L. Rev. Dialogue, vol. 82, p.
116, 2015.

[3] S. P. Fraiberger and A. Sundararajan, “Peer-to-peer rental markets in
the sharing economy,” NYU Stern School of Business Research Paper,
2017, available at SSRN: https://ssrn.com/abstract=2574337.

[4] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 75–86.

[5] B. Nissen, L. Pschetz, D. Murray-Rust, H. Mehrpouya, S. Oosthuizen,
and C. Speed, “Geocoin: Supporting ideation and collaborative design
with smart contracts,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM, 2018, p. 163.

[6] N. Szabo, “The idea of smart contracts,” Nick Szabos Papers and Concise
Tutorials, vol. 6, 1997.

[7] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” Ethereum Project White Paper, 2014.

[8] A. Greenwald, G. Hampel, C. Phadke, and V. Poosala, “An economically
viable solution to geofencing for mass-market applications,” Bell Labs
Technical Journal, vol. 16, no. 2, pp. 21–38, 2011.

[9] A. Küpper, U. Bareth, and B. Freese, “Geofencing and background
tracking–the next features in lbss,” in Proceedings of the 41th Annual
Conference of the Gesellschaft für Informatik eV, 2011.

[10] S. Rodriguez Garzon and B. Deva, “Geofencing 2.0: taking location-
based notifications to the next level,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 2014, pp. 921–932.

[11] A. Küpper, “Location-based services: Fundamentals and applications,”
John Willey & Sons, ISBN: 0-470-09231-9, 2005.

[12] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal processing magazine,
vol. 22, no. 4, pp. 41–53, 2005.

[13] S. Frattasi and F. Della Rosa, Mobile positioning and tracking: from
conventional to cooperative techniques. John Wiley & Sons, 2017.

[14] H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and
F. Tufvesson, “5g mmwave positioning for vehicular networks,” IEEE
Wireless Communications, vol. 24, no. 6, pp. 80–86, 2017.

[15] G. Brambilla, M. Amoretti, and F. Zanichelli, “Using blockchain for
peer-to-peer proof-of-location,” arXiv preprint arXiv:1607.00174, 2016.

[16] T. Dasu, Y. Kanza, and D. Srivastava, “Unchain your blockchain,” in
Proc. Symposium on Foundations and Applications of Blockchain, vol. 1,
2018, pp. 16–23.

[17] O. Survey, “A guide to coordinate systems in great britain: An intro-
duction to mapping coordinate systems and the use of gps datasets with
ordnance survey mapping,” Technical Rep. v2. 2, 2013.

[18] S. Xu and K. Kamath, “Dynamic geohash-based geofencing,” Aug. 23
2016, uS Patent 9,426,620.

[19] F. Victor, S. R. Garzon, and A. Küpper, “Smartphone-collected mobile
network events for mobility modeling,” in Proceedings of the 14th IEEE
International Conference on Ubiquitous Intelligence and Computing.
IEEE, 2017, pp. 871–878.


