Kristallstruktur des "supramolekularen" Silber(I)thiocyanat-Cyclam-Komplexes $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}]$

Crystal Structure of the "Supramolecular" Silver(I)thiocyanate Cyclam Complex $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}]$

Joachim Pickardt*, Jing Shen

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin

Z. Naturforsch. 49 b, 211-214 (1994); eingegangen am 12. Oktober 1993

1,4,8,11-Tetraazacyclotetradecane, Silver(I) Thiocyanate Complex, Crystal Structure

Colourless crystals of the 1,4,8,11-tetraazacyclotetradecane (cyclam) silver(I) thiocyanate complex [Ag(SCN) \cdot (C₁₀H₂₄N₄)_{1/2}] were obtained by diffusion of a solution of cyclam in ethanol into an aqueous solution of K[Ag(SCN)₂]. The crystals are tetragonal, space group P4₂/n, Z = 8, a = b = 1256.0(4), c = 1185.5(9) pm. The SCN groups act as μ_3 ligands, the S atoms of two SCN groups bridge two neighbouring Ag ions, which are only 297.5 pm apart, forming butterfly-like Ag₂S₂ moieties, the N atoms of the SCN groups form bonds to Ag atoms of adjacent Ag₂S₂ moieties. Two Ag₂S₂ units are again connected by cyclam molecules which act as two-dentate bridging ligands. Thus a complicated three-dimensional "supramolecular"

Einleitung

1,4,8,11-Tetraazacyclotetradecan ("Cyclam") ist wohl das am meisten verwendete monocyclische Polyamin, es bildet mit vielen zweiwertigen Übergangsmetallionen stabile Komplexe, von denen die mit Nickel(II)-Salzen am besten untersucht sind [1]. Dagegen ist seine Tendenz. Komplexe mit einwertigen Kationen zu bilden, weitaus geringer. 1972 fanden Kestner und Allred [2], daß bei der Umsetzung von AgClO, oder AgNO, mit C- und N-substituierten Derivaten des Cyclams, z.B. 5.5.7.12.12.14-Hexamethyl-1.4.8.11-tetraazacyclotetradecan, in wasserfreiem Acetonitril die entsprechenden Silber(I)-Komplexe, 7 B $Ag(C_{10}H_{36}N_4)ClO_4$, in Form feinkristalliner, weißer Niederschläge, die in den gebräuchlichen Lösungsmitteln unlöslich sind, gebildet werden. In Gegenwart von Wasser disproportioniert das Silber(I) dagegen unter Bildung metallischen Silbers und eines gelben Komplexes des Liganden mit Silber(II). Die Kristallstruktur des Silber(II)nitrat-Komplexes wurde von Mertes [3] bestimmt. Die Tendenz zur Bildung dieser Ag(II)-Komplexe wird aufgrund stereochemischer Gesichtspunkte, etwa des kleineren Ionenradius von Ag(II) und der Bevorzugung der Koordinationszahl vier, erklärt.

Verlag der Zeitschrift für Naturforschung,

D-72072 Tübingen 0932-0776/94/0200-0211/\$ 01.00/0

Abweichend von dieser Beobachtung haben wir nun durch Umsetzen von wäßriger AgSCN/KSCN-Lösung mit Cyclam einen Silber(I)-thiocyanat-Cyclam-Komplex der Zusammensetzung $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}]$ in kristalliner Form erhalten und seine Kristallstruktur bestimmen können. In diesem Komplex sitzt das Metallion jedoch nicht wie etwa bei den Ni(II)-Komplexen im Ligandenhohlraum, sondern das Cyclam fungiert als zweizähniger, verbrückender Ligand. Die Thiocvanatliganden zeigen eine ungewöhnliche Koordinationsweise: sie wirken als dreizähnige Liganden und verbrücken Silberionen sowohl über die S-Atome, als auch über - SCN-Brücken, so daß eine "supramolekulare" Raumnetzstruktur ausgebildet wird.

Experimentelles

Eine wäßrige K[Ag(SCN)₂]-Lösung (c = 0.85 mol/l), hergestellt durch Zugabe von KSCN zu einer wäßrigen AgNO₃-Lösung, wurde mit Cyclam/Ethanol (c = 0.4 mol/l) überschichtet. Nach einem Tag hatten sich farblose Einkristalle an der Grenzfläche der Lösungen gebildet. Die Verbindung wurde durch IR- und CHN-Analysen sowie durch die Röntgenstrukturanalyse charakterisiert.

Analyse: $AgSC_6N_3H_{12}$ (266,15 g/mol) Ber. C 27,1 H 4,5 N 15,8%, Gef. C 24,6 H 3,9 N 16,2%.

Ein geeigneter Einkristall wurde in ein Markröhrchen eingeklebt und auf einem Vierkreisdif-

^{*} Sonderdruckanforderungen an Prof. Dr. J. Pickardt.

Summenformel	AgSC ₆ H ₁₂ N ₃
M _r	266,15
Kristallsystem	tetragonal
Raumgruppe	$P4_2/n$ (Nr. 86)
Gitterkonstanten	a = 1256,0(4) pm
	b = 1256,0(4) pm
	c = 1185,9(2) pm
Zellvolumen	$1870,80 \cdot 10^{-30} \text{ m}^3$
Ζ	8
Dichte (berechnet)	1,89 g cm ⁻³
Kristallgröße	$0,5 \times 0,42 \times 0,49 \text{ mm}$
F(000)	1056
Meßbereich	$0 \le 2 \theta \le 55^{\circ}$
Abtastung	ω-Scan
hkl-Bereich	+16, +16, +15
Gemessene Reflexe	2479
Symmetrieunabhängige	2166 ($R_{int} = 0.0188$)
Reflexe	
Verwendete Reflexe	1580 F \geq 4 σ (F)
Absorptionskoeff. μ (Mo-K _a)	21,7 cm ⁻¹
Verfeinerung	Minimieren von $\Sigma w(F_0 - F_c)^2$
Wichtung	$w = 1/\sigma^2(F)$
Parameterzahl	148
$R = \Sigma F_{o} - F_{c} / \Sigma F_{o} $	0,037
$wR = \Sigma \tilde{w}(F_0 - F_c)^2 / \Sigma w F_0^2]^{1/2}$	0,046
$\Delta \varrho_{\text{fin.}} (\text{max./min.})$	0,57/-0,88 e/Å ³

fraktometer SYNTEX P2₁ untersucht (MoK α -Strahlung, $\lambda = 71,069$ pm, Graphitmonochromator, Raumtemperatur). Die Kristalldaten sind in Tab. I zusammengefaßt. Die Intensitäten wurden einer Lorentz- und Polarisationskorrektur unterworfen, eine Absorptionskorrektur wurde nicht durchgeführt. Die Schwermetallpositionen wurden mit Patterson-Methoden ermittelt (SHELXS-86 [4]). Die restlichen Atome wurden mit Differenz-Fourier-Synthesen lokalisiert (SHELX-76 [5]). Geometrieberechnungen und graphische Darstellungen erfolgten mit den Programmen PLATON und PLU-TON [6]. Die Atomparameter sind in Tab. II, wichtige Bindungsabstände und -winkel in Tab. III zusammengestellt. Abb. 1 zeigt einen Ausschnitt aus dem Netzwerk, Abb. 2 einen Cyclamring mit zwei koordinierten [(AgSCN)₂]-Einheiten*.

Ergebnisse und Diskussion

Die Atome besetzen allgemeine Lagen in der Elementarzelle, die Cyclam-Liganden liegen jedoch mit ihrem Schwerpunkt auf Inversionszentren, besitzen also selbst die Symmetrie C_i . Sie fungieren als zweizähnige, brückenbildende Liganden. Die Thiocyanatgruppen sind dagegen dreizähnige Liganden, sie bilden einerseits Ag-SCN-Ag'-Brücken, jedes Schwefelatom verbrückt darüber hinaus unsymmetrisch zwei benachbarte Silberionen. Auf diese Weise entsteht eine komplizierte "supramolekulare" Raumnetzstruktur. Die Silberionen besitzen die Koordinationszahl vier, sie sind jeweils an die Schwefelatome zweier SCN-Liganden und zwei Stickstoffatome, eines aus dem Cyclam-Liganden und eines aus einem SCN-Liganden, koordiniert.

Tab. I. Kristallstrukturdaten von $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}].$

Tab. II. Atomkoordinaten und äquivalente isotrope Temperaturfaktoren $B_{eq}\,({\AA}^2)$ für $[Ag(SCN)\cdot(C_{10}H_{24}N_4)_{1/2}].$

Atom	x	у	z	\mathbf{B}_{eq}
Ag	0,72433(4)	0,13439(3) 0,13230(3)	0,0525(2)
S	0,5927(1)	0,2939(1)	0,0597(1)	0,0421(3)
N1	0,6236(4)	0,2731(4)	-0,1734(4)	0,052(2)
N2	0,6442(3)	-0,0267(3)	0,0944(3)	0,035(1)
N3	0,4148(3)	-0,0050(4)	0,1443(3)	0,041(1)
C1	0,6133(3)	0,2823(3)	-0,0770(4)	0,034(1)
C2	0,4983(4)	0,0018(5)	0,2301(4)	0,045(1)
C3	0,7547(4)	-0,0698(5)	-0,0722(5)	0,051(2)
C4	0,7153(4)	-0,1050(4)	0,0412(5)	0,047(2)
C5	0,5911(4)	-0,0686(4)	0,1953(4)	0,043(2)
C6	0,3301(5)	0,0722(5)	0,1643(5)	0,049(2)

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 400356, der Autoren und des Zeitschriftenzitats angefordert werden.

Tab. III. Wichtige Bindungsabstände (pm) und -winkel (°) in $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}]$.

$\begin{array}{c} Ag = S \\ Ag = N2 \\ Ag = N1^{iii} \\ Ag = Ag^{ii} \\ Ag^{ii} = S \\ S = C1 \\ N1 = C1 \\ N2 = C5 \\ N2 = C4 \\ N3 = C2 \\ N3 = C6 \\ C2 = C5 \\ C3 = C4 \\ C3 = C6^{i} \end{array}$	$\begin{array}{c} 273,6(1)\\ 230,4(4)\\ 230,8(5)\\ 297,5(1)\\ 261,5(1)\\ 164,9(5)\\ 115,6(7)\\ 146,7(6)\\ 147,1(6)\\ 146,3(6)\\ 145,9(8)\\ 152,0(7)\\ 150,0(8)\\ 152,6(8) \end{array}$	$\begin{array}{c} S-Ag-N2\\ S-Ag-N1^{iii}\\ S-Ag-S^{ii}\\ N1^{iii}-Ag-N2\\ S^{ii}-Ag-N2\\ S^{ii}-Ag-N1^{iii}\\ Ag-S-C1\\ Ag-S-Ag^{ii}\\ Ag^{ii}-S-C1\\ Ag-N1^{i}-C1^{ii}\\ Ag-N2-C5\\ Ag-N2-C4\\ S-C1-N1 \end{array}$	$\begin{array}{c} 108,5(1)\\ 111,4(1)\\ 100,1(1)\\ 98,6(2)\\ 128,5(1)\\ 109,7(1)\\ 98,6(1)\\ 67,5(1)\\ 102,5(1)\\ 102,5(1)\\ 172,8(4)\\ 110,8(3)\\ 113,9(3)\\ 177,3(4) \end{array}$
--	--	---	---

Symmetriecode: i = -x, -y, -z; ii = 1/2-x, 1/2-y, z; iii = -y, x-1/2, 1/2+z.

Abb. 1. Ausschnitt aus der "supramolekularen" Struktur von $[Ag(SCN) \cdot (C_{10}H_{24}N_4)_{1/2}]$.

Abb. 2. Baueinheit des Komplexes: zwei [(AgSCN)₂]-Einheiten mit verbrückendem Cyclamliganden (Wasserstoffatome nicht eingezeichnet, Symmetriecode s. Tab. III).

Die Ag-S-Abstände betragen 261,5(1) und Agii-S 273,6(1) pm, sie sind damit erheblich länger als die Ag-S-Bindung in AgSCN (243 pm), in dem das Silber allerdings nur zweifach koordiniert ist [7], dagegen kürzer als die Ag-S-Abstände von 299 und 363 pm in catena-µ-Thiocyanato-bis(thiosemicarbazid)silber(I), in dem die SCN-Gruppen zweizähnige Brückenliganden sind [8], und sie sind größenordnungsmäßig vergleichbar mit den Abständen in den Addukten von Silberthiocyanat mit 2- und 3-Methylpyridin (255-264 pm) [9]. Der Stickstoff-Silber-Bindungsabstand Ag-N_{Cvclam} beträgt 230,4(4) pm, er ist damit länger als die Abstände, die in zahlreichen Silber(I)-Komplexen mit aromatischen Stickstoffliganden gefunden wurden, z.B. Bis(imidazol)-silber(I)nitrat [10] (212-213 pm), und auch länger als im Silber(I)-N,N'-di-p-tolylformamidinato-Komplex (209-212 pm) [11], jedoch vergleichbar mit den Ag-N-Abständen in den bereits erwähnten AgSCN-Methylpyridin-Komplexen (233-234 pm). Der Bindungsabstand Ag-N_{NCS} beträgt 230,8(5) pm; in AgSCN ist der Ag-N-Abstand 222 pm, in den AgSCN-Methylpyridin-Komplexen 227-229 pm. Im 3-Methylpyridin-Komplex [Ag(SCN)(3Me-py)] [9] fungieren die Thiocyanat-Gruppen ebenfalls als dreizähnige Liganden, die Struktur enthält als wesentliche Bauelemente gewellte (-Ag-SCN-)2-Achtringe, die S-Atome bilden Brücken zu den Ag-Atomen benachbarter Achtringe, derart, daß eine zweidimensionale Struktur resultiert; der Abstand benachbarter Ag-Atome ist jedoch relativ groß (ca. 450 pm). Dagegen ist die Koordinationsweise der SCN-Gruppen im hier untersuchten Cyclam-Komplex unterschiedlich: die Schwefelatome zweier SCN-Liganden verbrücken jeweils zwei dicht benachbarte Ag-Atome derart, daß eine "schmetterlingsförmige" Anordnung gebildet wird, wobei die CN-Reste in etwa senkrecht auf den durch die zwei Ag-Atome und das verbrückende S-Atom gebildete Ebenen stehen (vgl. Abb. 2). Die N-Atome der SCN-Liganden bilden eine Bindung zu einem oberbzw. unterhalb liegenden Ag-Atom der nächsten Ag₂S₂-Einheit aus, wodurch eine dreidimensionale Struktur resultiert. Der Ag-Ag-Abstand innerhalb einer Ag₂S₂-Einheit beträgt 297,5(1) pm, ist also nur geringfügig größer als der Ag-Ag-Abstand in metallischem Silber (289 pm). Die Frage, ob ein derart kurzer Abstand eine Metall-Metall-Bindung repräsentiert, ist des öfteren diskutiert worden. Bei

213

d¹⁰-Ionen wie Cu⁺ und Ag⁺ gibt es keine Möglichkeit für d–d-Metallbindungen, für Wechselwirkungen stünden lediglich *s*- und *p*-Orbitale zur Verfügung. Cotton *et al.* [11] haben an Hand von MO-Berechnungen am Silber(I)-N,N'-di-*p*-tolylformaminato-Komplex, bei dem der Ag–Ag-Abstand sogar nur 270,5 pm beträgt, jedoch gezeigt, daß sich auch bei Berücksichtigung dieser Orbitale keine wesentlichen Ag–Ag-Bindungsanteile ergeben. Eine Metall–Metall-Bindung im Cyclam-Komplex ist demnach wohl ebenfalls auszuschließen. Der S–C-Bindungsabstand im Thiocyanatliganden beträgt 164,9(5) pm. Er ist etwas kürzer als der Abstand in ionischen Thiocyanaten, z.B. 168,9 pm in KSCN [12], entspricht aber gut den Abständen, wie er in den komplexen Methylpyridin-AgSCN-Addukten gefunden wurde (164–167 pm). Der C–N-Abstand im SCN-Liganden beträgt 115,6(7) pm und ist geringfügiglänger als der entsprechende Abstand in KSCN (114,9 pm), aber wiederum vergleichbar mit dem Abstand von 114–117 pm in den Methylpyridin-Komplexen. Der Cyclamligand liegt in einer sesselförmigen Konformation vor; die Bindungsabstände sind durch die Komplexbildung nur wenig beeinflußt und entsprechen den Erwartungswerten.

Dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung dieser Arbeit.

- G. De Santis, L. Fabbrizzi, M. Licchelli, P. Pallavicini, in S. R. Cooper (Herausg.): Crown Compounds, S. 147–166, VCH Verlagsges., Weinheim (1992).
- [2] M. O. Kestner, A. L. Allred, J. Am. Chem. Soc. 94, 7189 (1972).
- [3] K. B. Mertes, Inorg. Chem. 17, 49 (1978).
- [4] G. M. Sheldrick, SHELXS 86, Program for crystal structure solution, Univ. Göttingen (1986).
- [5] G. M. Sheldrick, SHELX 76, Program for crystal structure determination, Univ. of Cambridge, England (1976).
- [6] A. L. Spek, Acta Crystallogr. A 46, C 34 (1990).

- [7] A. F. Wells, Structural Inorganic Chemistry, 5. Aufl., S. 936, Clarendon Press, Oxford (1984).
- [8] L. C. Capacchi, G. F. Gasparri, M. Ferrari, M. Nardelli, J. Chem. Soc. Chem. Comm. 1968, 910.
- [9] N. K. Mills, A. H. White, J. Chem. Soc. Dalton Trans. 1984, 229.
- [10] C.-J. Antti, B. K. S. Lundberg, Acta Chem. Scand. 25, 1758 (1971).
- [11] F. A. Cotton, X. Feng, M. Matusz, R. Poli, J. Am. Chem. Soc. 110, 7077 (1988).
- [12] C. Akers, S. W. Peterson, R. D. Willett, Acta Crystallogr. B 24, 1125 (1968).