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ABSTRACT

Aims. The aim of this work is to obtain the cratering rate on Pluto and to estimate the size distribution of the population in the inner
trans-Neptunian region.
Methods. We find the intrinsic collisional probability and the mean collision velocity for the interaction between Pluto and the
projectile population crossing its orbit, using the L7 Synthetic Model from the CFEPS Project. The size distribution of this population
is found using the smallest satellite of Pluto, Styx, as a constraint, because it survives the collisional process for the solar system age.
Results. We find that the mean intrinsic collisional probability and mean collision velocity between Pluto and the projectile population
are 〈Pi〉 = 1.3098 × 10−22 km−2 yr−1 and 〈Vcol〉 = 2.005 ± 0.822 km s−1. If the projectile sample is separated between Plutinos and
non-Plutinos and the intrinsic collisional probability of these sub-populations are taken into account, we find a ratio of approximately
20:1 in favor of non-Plutinos resulting in the greatest contribution to the cratering rate on Pluto. The projectile population for the
inner trans-Neptunian belt is characterized using a double power-law mean-size distribution with exponents qA = 3.5 and qB = 5.14
for the small and large size end of the population, respectively, and break radius at rb = 11.86 km or 7.25 km for mean densities of
the projectiles ρ1 = 1.85 g cm−3 and ρ2 = 1 g cm−3. With this mean-size distribution we find that an object with radius of ∼28 km
produces a crater in Pluto with a diameter of ∼250 km in a time larger than the solar system age, indicating that this kind of large
structure has a very low probability of occurrence.

Key words. Kuiper belt: general – methods: numerical – planets and satellites: general

1. Introduction

Pluto is the largest and second-most-massive known dwarf
planet in the solar system, located in the inner region of the
trans-Neptunian belt. Pluto with its largest satellite, Charon,
was until recently considered the binary object with the largest
primary-to-secondary mass ratio in the solar system. Recently,
four new small satellites were discovered using the Hubble
Space Telescope: Nix and Hydra in 2005, Kerberos in 2011,
and Styx in 2012. The discovery of these small objects changed
the model that is used to explain the formation of the satel-
lite system around Pluto, which is based on a scenario similar
to that proposed for the formation of the Earth-Moon system
(Canup & Asphaug 2001; Canup 2004).

The current model of the Pluto-Charon system argues in fa-
vor of a giant impact wherein a binary system was formed from
an oblique low-velocity collision between the planet and a proto-
satellite (McKinnon 1989; Canup 2005) and in which Charon
arose from the reaccumulation of material on an intact portion
of the impactor. The discovery of the small satellites led Canup
(2011) to study the new scenario and find that it is possible to
form an intact Charon and the smaller satellites simultaneously
from the debris produced by a single impact.

Nevertheless, it is also important to study how the role of the
collisional process and its effects in the inner zone of the trans-
Neptunian belt could affect the objects in this region. Both Pluto

and its satellites show craters on their surfaces that are the result
of the collisional activity.

Weissman & Stern (1994) were two of the first authors that
studied the impact rate onto Charon and Pluto, motivated by the
improvement in knowledge of the radii and masses of the first
trans-Neptunian objects. They found that objects with diame-
ters d > 2.4 km could collide with Pluto in 1.9 Myr and with
Charon in 10 Myr. On the other hand, for the same impactor
size range and collisional process, Durda & Stern (2000) found
timescales of 0.39 Myr and 3.2 Myr for Pluto and Charon, re-
spectively. These seem to be an overestimation of the impact rate
produced by an incorrect evaluation of the projectile population
size distribution. Later, Zahnle et al. (2003) studied the cratering
rate in the outer solar system using two different size distribu-
tions and found values of 1 × 10−6 yr−1 and 2.6 × 10−6 yr−1 for
Pluto’s collisions with objects larger than 1.5 km.

Recently, de Elía et al. (2010) studied the interaction be-
tween Pluto and the population of Plutinos using numerical sim-
ulations and found that these objects strike Pluto on timescales
of 2.27 to 9.9 Myr, and proposed that this could be the pop-
ulation that dominate the collisional process on Pluto. How-
ever, Bierhaus & Dones (2015) argued against this conclusion
because they found that the impact flux on this dwarf planet
is not dominated by the Plutinos, suggesting that the projec-
tiles impacting on Pluto come mainly from another population.
Bierhaus & Dones (2015) found that the cratering rates for Pluto
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are 6.7 × 10−9 yr−1 and 4.6 × 10−7 yr−1, considering projectiles
with radius larger than 5 km and 0.5 km, respectively. Finally,
Greenstreet et al. (2015) modeled the size distribution for the
impactor population using different power-laws and found a cra-
tering rate on Pluto in the range 5 × 10−7 to 9 × 10−8 yr−1 for
projectiles with radius larger than 5 km.

In all of these works the largest uncertainty in comput-
ing the impact rates on Pluto arises from the extrapolation in
size from the known largest objects to the unknown smallest
objects needed to define the projectile size distribution. The
knowledge of the population size distribution in the inner re-
gion of the trans-Neptunian belt could provide clues about
the giant-planet formation process and the early solar sys-
tem environment (Davis & Farinella 1997; Gladman et al. 1998;
Kenyon & Bromley 2004). It also offers valuable information
about the evolutionary processes, the differences between the
size distribution in different regions of the trans-Neptunian
belt, and how these size distributions affect those populations
(Weissman et al. 2009; Fraser et al. 2008).

Recently, NASA’s spacecraft New Horizons flew over Pluto
in July 2015. It obtained important information about the sizes
of the objects in the Pluto system and found features on their
surfaces indicating an intense collisional process. The Pluto
radius determined by New Horizons is similar to that found
from Earth by means of stellar occultations (1190 ± 5 km,
Dias-Oliveira et al. 2015). The spacecraft also provided images
of the small satellites that were used to produce some good es-
timations for their sizes. Despite the intense collisional activity
that modified the surfaces of Pluto and Charon, this process did
not destroy the small satellites by means of a catastrophic colli-
sion. This fact can be used as a threshold to study the size distri-
bution of the projectile population in the inner trans-Neptunian
belt.

In this paper we present an estimation of the size distribution
for the population of small bodies crossing the orbit of Pluto
and the resulting collisional rate on this dwarf planet. We de-
scribe the method used for the selection process and simulations
in Sect. 2. In Sect. 3 we discuss our results and in Sect. 4 we
summarize the conclusions.

2. Methods

In order to determine the size distribution of the population
crossing Pluto’s orbit it is necessary to begin considering the
probability of collision p of a population of projectiles with a
certain target:

p = 〈Pi〉τ
2∆tN(>rp), (1)

where 〈Pi〉 is the mean intrinsic collisional probability of the tar-
get; τ = Rt + rp is the geometric cross section; Rt and rp are the
radius of the target and the projectile, respectively; and N(>rp) is
the number of projectiles with radius larger than rp. This equa-
tion implies that if p = 1 the target receives one collision by an
object with radius rp in a time span ∆t and under those condi-
tions we can estimate N(>rp), which is a function of the projec-
tile population size distribution.

The mean collision velocity and mean intrinsic collisional
probability of Pluto can be obtained using the method developed
by Marzari et al. (1996). In this method the target and the pro-
jectile population are numerically integrated during a time span
∆t and the encounter distance and velocity between the target
and any projectile are recorded. Once the list of encounters is
obtained, the accumulative number of encounters N(d < D) is

Fig. 1. Histogram of the collision velocities between Pluto and the pro-
jectile sample. The gray histogram is for the total sample and the white
histogram is for the Plutino subsample.

calculated where d is the approach distance and D is a reference
value. Because the cross-section is proportional to πd2 the accu-
mulative number of encounters is N(d < D) = P1D2 where P1 is
a constant that is found by a fit to the data. The mean intrinsic
collisional probability is related with P1 through the expression:

〈Pi〉 =
P1

npair∆t
, (2)

where npair is the total number of target-projectile pairs.
To apply the method of Marzari et al., we need orbital ele-

ments of the objects that cross the orbit of Pluto. Because the
L7 Synthetic Model from the Canada France Ecliptic Plane Sur-
vey (CFEPS)1 (Kavelaars et al. 2009) is a debiased model for the
TNO population down to Hg = 8.5 mag, we used it to extract the
objects with aphelia greater than 29.7 au and perihelia less than
49.3 au.

Using this sample of the inner trans-Neptunian belt we made
a synthetic population of 4950 objects that follows the orbital
element distribution obtained from the L7 model. The dynam-
ical evolution of this projectile population was followed dur-
ing 5 × 106 yr by a numerical integration using the symplectic
code EVORB (Fernández et al. 2002) with a time step of 0.1 yr,
and including Pluto and the four giant planets as perturbers. In
each time-step the code searches for encounters between Pluto
and the projectile population and at the end of the integration
730 encounters were found for 4948 objects that survive the in-
tegration period.

Using the synthetic population and applying the method of
Marzari et al. (1996) we calculated the current mean intrinsic
collisional probability and mean collision velocity for Pluto, ob-
taining 〈Pi〉 = 1.3098 × 10−22 km−2 yr−1 and 〈Vcol〉 = 2.005 ±
0.822 km s−1. The distribution of collisional velocities between
Pluto and the projectile population is shown in Fig. 1. The peak
in the distribution at Vcol ∼ 1.8 km s−1 is produced by non-
Plutinos reaching their aphelion approaching Pluto with very low
velocity. The tail of high collision-velocities could be produced
by projectiles with high eccentricity or inclination, indicating
that different populations are involved in the collisional process
on Pluto.
1 ftp:http://www.cfeps.net/tnodb/
the-l7-synthetic-model/
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Table 1. Number of objects (N), P1, 〈Pi〉, 〈Vcol〉, and the number of
encounters with Pluto for the Plutino and non-Plutino sub-samples.

Plutinos non-Plutinos
N 235 4715
P1 8444.42 64 511.7
〈Pi〉 3.225 × 10−22 1.223 × 10−22

〈Vcol〉 2.265 ± 0.988 1.975 ± 0.795
Encounters 77 653

Notes. 〈Pi〉 and 〈Vcol〉 are in units of km−2 yr−1 and km s−1, respectively.

The contribution of the different populations can be analyzed
dividing the sample into at least two sub-samples according to
whether the object is a Plutino or not. The values of 〈Pi〉 and
〈Vcol〉 for these sub-samples were calculated using the same pro-
cedure applied to the total sample and are shown in Table 1. In
the case of the Plutinos this result agrees very well with that pro-
posed by Dell’Oro et al. (2013), meaning that it confirms that the
high collision-velocity tail observed in Fig. 1 is a consequence of
the interaction of Pluto with the non-Plutino population. Despite
the fact that the intrinsic collisional probability of Pluto with the
Plutinos is approximately 2.5 times that of non-Plutinos, the
non-Plutino group is almost 20 times larger, producing 10 times
more encounters with Pluto and dominating the collisional rate
on it. This result does not agree with de Elía et al. (2010), who
propose that the Plutinos could be the population that dominates
the collisional process on Pluto. However, the result does agree
with Bierhaus & Dones (2015), who study the cratering rate on
Pluto and Charon and argues that the impact flux come mainly
from another population.

As we mention in the introduction, one important constraint
for the collisional process in the Pluto system is that Styx sur-
vives the collisional process during the solar system age in spite
of the fact that its size is very small. Showalter & Hamilton
(2015) found a radius of ∼2.1 km for this small satellite, but in a
recent work Weaver et al. (2016) obtained more accurate values
for the sizes of Pluto’s moons, proposing a radius of ∼5.2 km
for Styx. Using the latter value for the radius we can find the
minimum projectile size necessary to destroy Styx by using the
expression proposed by Benz & Asphaug (1999) to calculate
the specific energy required to break a body into fragments:

Q∗D = Q0ra
t + Bρrb

t , (3)

where rt is the target radius and we have for ice Q0 = 1.6 ×
107 erg s−1, B = 1.2 erg cm3 g−2, a = −0.39 and b = 1.26,
whereas for basalt Q0 = 3.5 × 107 erg s−1, B = 0.3 erg cm3 g−2,
a = −0.38 and b = 1.36. In both cases ρ is the density of the
target in g cm−3. Therefore the energy balance is:

Q∗DMt = Qmp, (4)

where Q is the specific kinetic energy of the projectile. Using
these expressions we can calculate the projectile mass and radius
by assuming that the collision velocity is 〈Vcol〉 and the target
has a density of ρ = 1.85 g cm−3, which is the density for Pluto
found by Dias-Oliveira et al. (2015). For the projectile we used
two different values for this parameter: ρ1 = 1.85 g cm−3 equal to
the density of the target, and ρ2 = 1 g cm−3 which corresponds to
a typical density of a binary trans-Neptunian object. Using these
values, the projectile radius able to destroy a target with a radius
of 5.2 km is rp1 = 0.578 km and rp2 = 0.710 km, respectively.

These results can be used in Eq. (1) to obtain the mean num-
ber of collisions received by Styx or how long it must wait to

receive at least one destructive collision. Then, using a time in-
terval ∆t equal to the solar system age (4.6 × 109 yr), the value
for N(>rp) can be found if we know the size distribution of the
projectile population. This size distribution can be modeled as-
suming a single power law of the form:

dNpro(>r) = Kr−qdr, (5)

where r is the projectile radius, q is a characteristic exponent of
the single power-law size distribution, and K is a proportionality
constant. In order to find the parameters K and q, it is neces-
sary to perform a least-squares fit to the synthetic sample ob-
tained from L7. A value of q = 5.14 was found for the expo-
nent of the size distribution and the proportionality constant was
K = 2.426629 × 1011.

This size distribution for the projectile population and Eq. (1)
indicate that Styx should wait 4.23 × 108 yr or 9.48 × 108 yr
to receive at least one destructive collision for rp1 = 0.578 km
or rp2 = 0.710 km, respectively. If the assumption of a single
power-law size distribution is correct, this result indicates that
Styx was formed or arrived to the Pluto system recently. How-
ever, if we accept that it was old and formed at the same time of
Charon because it has not yet been destroyed it is necessary to
obtain a smaller value for N(>rp), suggesting a projectile popula-
tion size distribution which could be modeled by a double power
law. This would allow a reduction in the number of projectiles
that could destroy Styx in a period equal to the solar system age.

Assuming that Styx formed early and that the size distribu-
tion could change for different size ranges, the number of pro-
jectiles with radius greater than rp can be represented by using a
double power-law:

Npro(>rp) = KA

∫ rb

rp

r−qA dr + KB

∫ r1

rb

r−qB dr, (6)

where KA and KB are proportionality constants, r1 is the radius of
the largest object in the population, and rb is the break radius of
the size distribution for two arbitrary size ranges with exponents
qA and qB, respectively.

To find the value of the radius at which the size distribution
changes, we assumed that the large end of the projectile popu-
lation follows the single power-law previously found, and that
KB = K and qB = q. In the case of the small end of the pop-
ulation we assumed qA = 3.5, which is the exponent proposed
by Dohnanyi (1969, 1971) for a steady-state population. Thus,
assuming as a constraint that Styx received less than one catas-
trophic collision (p < 1) in a time interval ∆t = 4.6 × 109 yr, we
found KA = 3.313341 × 1010 and rb = 2.4757 km for rp1, and
KA = 5.296306 × 1010 and rb = 1.8599 km for rp2.

The size distribution of the projectile population was ob-
tained assuming a population that is equal to the present one
and it does not change over time. However, the number of so-
lar system objects in the past must be larger than in the present
and the mean probability to receive a catastrophic collision dur-
ing the solar system age is also larger than that we just obtained.
Therefore a re-calculation that takes the time evolution of the
population into account was necessary.

As shown by several authors (Dohnanyi 1969; Farinella et al.
1985; Hellyer 1970), if the number of objects larger than r at an
epoch t can be expressed as C(t) N(t), the function C(t) has the
form:

C(t) = C(0)
[
1 +

(
C(0)
C(∆t)

− 1
)

t
(∆t)

]−1

, (7)
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where C(0) is the value at t = 0 and C(∆t) is the value at the
present time. This function gives the time evolution of the pop-
ulation and it must be integrated and promediated over the solar
system age to get a correction factor α:

α =
1

∆tC(∆t)

∫ ∆t

0
C(t) · dt =

[
1 −

C(∆t)
C(0)

]−1

ln
(

C(0)
C(∆t)

)
· (8)

Using this correction factor, Eq. (1) takes now the form:

p = 〈Pi〉τ
2∆tNpro(>rp)α. (9)

Considering recent studies of the dynamical structure of the
trans-Neptunian belt (Petit et al. 2011; Gladman et al. 2012) and
according with the CFEPS survey, there is a probability of cap-
ture in the Plutino region of P3:2 ∼ 1.3 to 1.5 × 104 in a period
equal to the solar system age (Nesvorný & Vokrouhlický 2016).
Using this value we find that C(0)/C(∆t) ≈ 1

P3:2
∼ 6700 for

the 3:2 resonant population, resulting in a correction factor of
α ∼ 8.8 for the inner trans-Neptunian region. With this value it
was possible to calculate a mean-size distribution for the projec-
tile population by assuming: p < 1 for Styx that is character-
ized by KB = 2.1354 × 1013; parameters KA = 3.3133 × 1010

and rb = 11.8606 km for rp1; and KA = 5.296306 × 1010 and
rb = 7.2538 km for rp2.

3. Results

Using a reformulation of Eq. (1), the projectile size distribu-
tion found and the results obtained in the previous section allow
us to calculate the cratering rate on Pluto produced by projec-
tiles crossing Pluto’s orbit. If we now consider Pluto as a tar-
get, it is necessary to take into account the effects of gravita-
tional focusing that increase the geometrical section by a factor
Γ = 1+ (vesc/v∞)2, where vesc is the escape velocity for Pluto and
v∞ is the relative velocity between Pluto and the projectile. For
v∞ we take the value of the mean collisional velocity obtained
above and obtain Γ = 1.2951. This result is similar to the value
found by Bierhaus & Dones (2015), which is a consequence of
the good agreement between our mean collision velocity and the
collision velocity calculated by Dell’Oro et al. (2013).

Then, using the mean-size distribution parameter KA for
rb = 7.2538 km and projectiles radii of 5 km, 1.5 km and 0.5 km,
to allow a comparison of our results with other authors, the
mean cratering rate on Pluto corrected by gravitational focus-
ing is 〈CR〉 ' 8.746 × 10−8 yr−1, 〈CR〉 ' 1.763 × 10−6 yr−1

and 〈CR〉 ' 2.745 × 10−5 yr−1, respectively. These results
agree fairly well with those of Bierhaus & Dones (2015) and
Greenstreet et al. (2015). However, the differences between our
work and theirs might arise from the difference in process used
by these authors to evaluate the size distribution of the popu-
lation. Bierhaus & Dones and Greenstreet et al. made extrapo-
lations from an assumed size distribution for the largest trans-
Neptunian objects down to those of sub-kilometer sizes, whereas
we used the present projectile population and a constraint on the
survival of Styx.

The cratering rate found in this work allows us to estimate
the age of the largest crater observed by the New Horizons
spacecraft on Pluto, a structure with a diameter of ∼250 km
(Moore et al. 2016). The size of the projectile that produced this
crater can be calculated with the cratering scaling law proposed
by Zahnle et al. (2003):

Ds = 13.4
(

V2

g

)0.217 (
ρ

ρPlu

)0.333 (
dp

km

)0.783

(cos θ)0.333, (10)

and,

D =

 Ds, for Ds ≤ Dc,

Ds

(
Ds
Dc

)ζ
, for Ds > Dc,

where D is the crater diameter in km, Ds is the diameter of a
simple crater in km, V is the collision velocity in km s−1, g is the
gravitational acceleration on the surface of Pluto in cm s−2, ρ is
the impactor density, ρPlu is Pluto’s density, dp is the projectile
diameter in km, θ is the incident angle measured from the nor-
mal to the surface, ζ = 0.13 (McKinnon et al. 1991), and Dc is
the transition diameter between simple and complex craters. As-
suming for Pluto Dc = 6 km, g = 64 cm/s2, V = 〈Vcol〉, θ = 45◦,
and using the same value for the densities of both Pluto and the
projectile, a crater with this diameter could be produced by a
collision with a projectile of rp = 28.39 km. Considering the
mean-size population obtained above, a crater of this size would
be produced in a time longer than the solar system age. If θ, ρ,
or V changes a little they do not produce a different result and
the time needed to receive this sort of a collision is always larger
than ∼4 × 109 yr.

Using the collisional rate on Pluto proposed here, a big crater
such as the Burney Crater (∼250 km) needs a period longer than
the solar system age to be produced. This implies that the prob-
ability of occurrence for these sorts of structures is very low
and could be the result of an intense bombardment produced
immediately after its formation due to a projectile population
several times the present one. However, it is difficult to date this
structure because there are several geological processes acting
that have the ability to significantly change the surface of Pluto
(Moore et al. 2016).

On the other hand, Weaver et al. (2016) studied the surfaces
of Pluto’s small satellites using images obtained by the New
Horizons mission. In particular, these authors find several fea-
tures on the surface of Nix, including an elongated object with
size 50 × 35 × 33 km and a high albedo of 0.56 ± 0.05, which
could indicate that this satellite is covered by water ice. Analyz-
ing a surface of 1000 km2 on Nix, they identify 11 features that
could be attributed to impact craters with diameters >1.7 km.
Considering only the six craters with diameters in the range
4–14 km and using the mean-size distribution obtained above,
these features must be the result of impacts with projectiles with
0.07 ≤ rp ≤ 0.213 km in a time interval of 2.672 × 107 to
2.147× 108 yr. This result indicates that the surface of this satel-
lite could be under a continuous resurfacing process that buried
the older craters under the new ones, a process that could be fa-
vored by the presence of water ice on its surface.

4. Conclusions

In order to obtain the cratering rate on Pluto, we present an es-
timate of the size distribution for the population of small bodies
crossing the orbit of this dwarf planet. The mean intrinsic col-
lisional probability and mean velocity of collision of Pluto with
the projectile population are 〈Pi〉 = 1.3098 × 10−22 km−2 yr−1

and Vcol >= 2.005 ± 0.822 km s−1. If the sample is separated
between Plutinos and non-Plutinos we find 〈Pi〉 = 3.225 ×
10−22 km−2 yr−1 and 〈Vcol〉 = 2.265 ± 0.988 km s−1 for Pluti-
nos, and 〈Pi〉 = 1.223 × 10−22 km−2 yr−1 and 〈Vcol〉 = 1.975 ±
0.7985 km s−1 for non-Plutinos. The result we find for Plutinos
is in good agreement with the values obtained by Dell’Oro et al.
(2013) and shows that the contribution from Plutinos and non-
Plutinos are almost the same because the number of non-Plutino
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objects is compensated with a lower intrinsic collisional proba-
bility, and viceversa.

Taking into account the ratio between the sub-populations,
we made and characterize a final projectile population using a
single power-law size distribution with exponent q = 5.14. How-
ever, we find that with this size distribution Styx received at
least one destructive collision in 4.23 × 108 yr and 9.48 × 108 yr
for the two projectile densities used. Thus, to obtain p < 1
we change to a double power-law mean-size distribution with
qA = 3.5 for the small size end of the population and break ra-
dius at rb = 11.8606 km or rb = 7.2538 km for mean densities
ρ1 = 1.85 g cm−3 and ρ2 = 1 g cm−3, respectively.

With this mean-size population we calculate the cratering
rate on Pluto for projectiles of different sizes and obtain results in
agreement with Bierhaus & Dones (2015) and Greenstreet et al.
(2015). With these results we search for the projectile which pro-
duces the largest structure observed on Pluto (a crater with size
∼250 km) and we find that an object with radius of ∼29 km pro-
duces a crater with that diameter in '8 × 1010 yr, indicating that
these kinds of large structures have a low probability of occur-
rence on Pluto within the solar system age.

Finally, analyzing the six largest craters observed on Nix’s
surface and using the size distribution found for the projectile
population, we find that these craters could be the result of im-
pacts with objects with 0.07 ≤ rp ≤ 0.213 km in a short time of
2.672 × 107 yr–2.147 × 108 yr. This indicates that the surface of
this satellite could be subject to a continuous resurfacing process
that erases the older craters by burying them under the new ones,
a process that could be facilitated by the presence of water ice on
its surface.
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