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Significance Statement 

 

Ribosome profiling is a high-throughput technique that captures actively translating ribosomes 

and isolates the short nucleic acid fragments bound by these ribosomes. Mapping sequences of 

these short fragments to a reference genome allows for the discovery of novel translated regions 

or exploration of how translation efficiency is affected under certain conditions. GWIPS-viz is a 

ribosome profiling dedicated genome browser that allows users to freely explore thousands of 

ribosome profiling datasets that were uniformly processed to produce alignments to 24 different 

reference genomes. This protocol describes how to explore and interpret these data within the 

browser and how to download the relevant data for local use. 

 

 

Abstract  

 

GWIPS-viz is a publicly available browser that provides Genome Wide Information on Protein 

Synthesis through the visualisation of ribosome profiling data. Ribosome profiling (Ribo-seq) is a 

high throughput technique which isolates fragments of messenger RNA that are protected by the 

ribosome. The alignment of the ribosome protected fragments or footprint sequences to the 

corresponding reference genome and their visualisation using GWIPS-viz, allows for unique 

insights into the genome loci that is expressed as potentially translated RNA. The GWIPS-viz 

browser hosts both Ribo-seq data and corresponding mRNA-seq data from publicly available 

studies across a number of genomes avoiding the need for computational processing on the user 

side. Since its initial publication in 2014, over 1885 tracks have been produced across 24 genomes. 

This unit describes the navigation of the GWIPS-viz genome browser, the uploading of custom 

tracks, and the downloading of the Ribo-seq/mRNA-seq alignment data. 

 

Keywords (3-7): GWIPS-viz, ribosome profiling, genome browser, translation, mRNA-seq, protein 

synthesis, gene expression 

 

 

Introduction 

 

Since the inception of ribosome profiling in 2009 (Ingolia, Ghaemmaghami, Newman, & Weissman, 

2009), the number of studies that produce ribosome profiling data has been steadily increasing. 

Processing these data often requires downloading large raw alignment files, removing adapter 

sequences along with read sequences that map to ribosomal RNA (rRNA), and then aligning the 

remaining read sequences to a reference genome. These steps can be quite time consuming and 

computationally expensive. The GWIPS-viz genome browser (Michel et al., 2014) was developed 

so that users could easily explore publicly-available Ribo-seq and mRNA-seq data for a large 

number of prokaryotic and eukaryotic genomes without the need to download, pre-process and 
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align raw sequencing data. Created as a customised mirror of the UCSC Genome Browser (Tyner et 

al., 2017), researchers familiar with using the UCSC Genome Browser will find that using GWIPS-viz 

is quite similar. 

 

Depending on the approach used to arrest ribosomes, the Ribo-seq technique can capture 

elongating ribosomes or initiating ribosomes - see the following reviews for a comprehensive 

overview of the technique, its applications and limitations: (Andreev et al., 2017; Aramayo & 

Polymenis, 2017; Bartholomaus, Del Campo, & Ignatova, 2016; Baudin-Baillieu, Hatin, Legendre, & 

Namy, 2016; Brar & Weissman, 2015; Calviello & Ohler, 2017; Gobet & Naef, 2017; Ingolia, 2014; 

Michel & Baranov, 2013; Mumtaz & Couso, 2015; Parsons & Myler, 2016; Stern-Ginossar, 2015; 

Stern-Ginossar & Ingolia, 2015). Data tracks for both initiating and elongating ribosomes are 

hosted on GWIPS-viz. The total mRNA (or total RNA) datasets that are generated in parallel to 

Ribo-seq are also provided in GWIPS-viz (referred to as mRNA-seq). For Saccharomyces cerevisiae, 

data tracks for translation complex profile sequencing (TCP-seq) which captures scanning 

ribosomes (Archer, Shirokikh, Beilharz, & Preiss, 2016) are also available. In addition, for each 

genome GWIPS-viz provides an aggregate of data from multiple studies which boosts the signal of 

genuine translation and helps reduce noise. 

 

The basic protocol for this unit details how to navigate the GWIPS-viz browser to view and explore 

the hosted Ribo-seq data and corresponding mRNA-seq data for a given organism along with gene 

annotations of interest. Support protocol 1 details how a user could upload their own data as a 

custom track to view it through the browser. Support protocol 2 describes how to use the Table 

Browser to access the underlying database tables including gene annotations. Support protocol 3 

describes how to use the Downloads page to download the Ribo-seq/mRNA-seq data alignment 

files. 

 

 

Basic Protocol 1  

Using the GWIPS-viz browser 

 

This protocol describes the use of the GWIPS-viz browser for exploring pre-populated alignment 

tracks of publicly available Ribo-seq and mRNA-seq data. The GWIPS-viz browser can be accessed 

at https://gwips.ucc.ie. 

 

Necessary Resources 

 

An Internet connected device such as a PC or laptop, capable of running an up-to-date Internet 

browser that supports JavaScript, such as Firefox, Chrome or Safari.  

 

1. Open the GWIPS-viz home page at https://gwips.ucc.ie in a web browser. 

 

The GWIPS-viz home page consists of 3 panels in the center of the page (About GWIPS-viz, 

News and Conditions of use), a navigation bar at the top of the page (topbar) and a menu 

to the left of the page. The topbar contains several links: Genomes for the main GWIPS-viz 

Genome browser page; Table Browser where data can be downloaded from different tracks 

in text format; Downloads where Ribo-seq and mRNA-seq alignment files can be 

downloaded in bigWig format; Sessions where your current session can be saved and 

shared with others; Forum where users can discuss various topics related to GWIPS-viz and 

ribosome profiling in general; Help which gives a tutorial on how to use the browser. 
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The menu to the left of the page also gives links to the GWIPS-viz Genome Browser page, 

the Table Browser and the Downloads page. In addition it provides links to RiboSeq.Org a 

portal for ribosome profiling (https://riboseq.org/), and RiboGalaxy 

(https://ribogalaxy.ucc.ie/) (Michel et al., 2016), a freely-available Galaxy-based platform 

(Afgan et al., 2016) where researchers can pre-process, align and analyse their own Ribo-

seq/mRNA-seq data and with the functionality to explore their data in GWIPS-viz. 

 

2. Click on the Genomes link in the topbar or the Genome Browser link on the sidebar of the 

home page. 

 

The Gateway page will be displayed (Fig 1.). On the left of this page, the list of species 

available in GWIPS-viz (currently 24) is displayed with icons of the most popular species 

displayed at the top. Between these, a text box is provided for the species or common name 

to be entered. Clicking on either one of the Popular species icons, entering a species in the 

text box or clicking one of the organisms in the Represented species list will display the 

corresponding assembly on the right-hand side of the page (e.g. Human assembly) with a 

dropdown menu of assembly versions available in GWIPS-viz for that species (e.g. the hg38 

and hg19 assemblies are available for human).  

 

3. Enter genomic co-ordinates or the name of a gene in the Position/Search term text box 

and press the Go button. 

 

The text box labelled Position/Search term determines which region of the genome will be 

seen upon hitting the submit button. A position, gene symbol or search term can be used. A 

genomic position can be entered in the following format: 

 

<chromosome>:<start_position>-<end_position>  

 

For example, if you wish to view from position 110,874,784 to position 110,895,712 on 

chromosome 6 then enter  

 

chr6:110874784-110895712 

 

in the text box. 

 

A gene name (e.g AMD1) can also be entered in this box in which case a page will be 

displayed with a list of annotations associated with the gene. Leaving the Position/Search 

term text box empty will display either the default genomic location or the most recently 

cached location if appropriate. 

 

Upon pressing the Go button, the GWIPS-viz Genome Browser page will be displayed. 

 

4. Explore the GWIPS-viz Genome Browser page. 

 

The GWIPS-viz Genome Browser page consists of a main central window pane with a white 

background in which the data are displayed (see Fig. 2). Data are displayed in the form of 

one or more tracks which are stacked vertically within the main window. By default the 

Global aggregate for Elongating Ribosomes (A-site) is displayed. This track is coloured red 
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for the majority of genomes except for bacterial genomes where strand orientation is used 

so that reads aligning to the forward strand are coloured red and reads aligning to the 

reverse strand are blue. By default the Global aggregate for mRNA-seq data is also 

displayed. This track is coloured green (see Fig. 2) for all organisms except bacteria where 

the mRNA-seq reads are coloured in a strand dependent manner similarly to the Ribo-seq 

reads. Depending on the selected organism there will be one or more gene annotation 

tracks displayed by default. In Figure 2, for example, the RefSeq (O'Leary et al., 2016) gene 

annotations for human are displayed in blue. 

 

How to set, use and modify the display of these data tracks along with the other data track 

groups is explained in step 10. 

 

Both above and below the main window, a number of button options exist for navigation 

and display configuration. 

 

5. Shift the view left/right and zoom in/out by clicking the buttons at the top of the GWIPS-

viz Genome Browser page. Navigate to a new position by entering co-ordinates in the 

search box and pressing the go button. 

 

In order to move your view left or right along the genome you can either place your mouse 

cursor in the center of the main window (where the icon will change to a hand), and click 

and drag left or right. Alternatively you can use the buttons near the top of the page 

labelled <<<, <<, <, >, >>, >>> which will shift the display window along the genome 

upstream or downstream, in steps proportional to the size of your current display window. 

 

The buttons at top of the page labelled 1.5x, 3x, 10x and base are used for zooming in and 

1.5x, 3x, 10x and 100x are used for zooming out. Alternatively, if the cursor is placed at the 

top of the main window, clicked and dragged left or right, a pop-up will display asking if the 

user wants to zoom in to (or highlight) this region. A drop down menu within the pop up 

allows you to select the colour of the highlight. Multiple highlights can also be displayed in 

the same window using the Add Highlight button.  

 

Use the move start or move end buttons located below the main window to increase or 

decrease the breadth of the displayed co-ordinate range, or to shift one or both ends of the 

co-ordinate range to the left or right. 

 

It is also possible to jump directly to another region on the genome by entering genomic co-

ordinates or a gene name/transcript ID in the text box labelled enter position, gene symbol 

or search term and pressing the go button. 

 

6. Configure the parameters for displaying the data tracks on the GWIPS-viz Genome 

Browser page. 

 

A number of button options below the main window can be used to configure the displayed 

data (see Fig. 2): 

Use track search to search for one or more specific terms in the entire set of track names, 

descriptions, and track groups for the current assembly. 

Click default tracks to reset the current display to the default data tracks for the region 

currently displayed. 
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Click default order to restore the order of the tracks to the default order for the current 

assembly. 

Click hide all to hide all the tracks for the current assembly. 

Use add custom tracks to upload your own Ribo-seq/mRNA-seq data for exploration in the 

context of published Ribo-seq/mRNA-seq data (see Support Protocol 1). 

Use track hubs to explore tracks hosted by third parties. You can also create your own 

private track hub. 

Use configure to change the settings related to the GWIPS-viz Genome browser display 

configuration and the presented tracks (see step 7). 

Use multi-region to slice track viewing (e.g. display exonic regions only -see step 12). 

Click reverse to display the reverse strand of the current location or the forward strand if 

the reverse is currently displayed. 

Click resize to restore the default window size. 

Click refresh to update the window display if changes have been made to the track settings. 

 

Note to reset to the overall default settings, including the default genomic locations for all 

genomes, mouse-over View in the topbar in the GWIPS-viz Genome Browser page and click 

on Reset All user Settings. Alternatively, from any page, mouse-over My Data in the top 

bar and click on My Sessions. Click on the Click here to reset link in the Session 

Management page. 

 

7. Click the Configure button below the main window to open an options page for configuring 

the main window image display and the data tracks display. Click the Submit button on the 

configuration page to apply the changes and return to the GWIPS-viz Genome Browser 

page. 

 

In the Configure image section, options exist to modify the image width, label area width, 

and text size. A number of checkbox options are also available to control the display 

characteristics.  

 

The Configure Tracks on GWIPS-viz section includes options to show or hide data tracks 

from the different GWIPS-viz track groups (see step 10).  

 

Note that in addition to the Configure button below the main window in the GWIPS-viz 

Genome Browser page, the configuration page can be accessed by placing the mouse cursor 

over the Genome Browser tab in the topbar and selecting Configure. Another approach is 

to mouse-over the View tab in the topbar and select Configure Browser.   

 

8. Explore the GWIPS-viz data track groups. 

 

On the GWIPS-viz Genome Browser page the track groups are denoted by green rectangular 

banners with the group name in white. Listed below are the currently available GWIPS-viz 

track groups. Depending on the genome, the available track groups will differ as it depends 

on the type of ribosome profiling data available for that genome. But at a minimum, all 

genomes will contain elongating ribosome profiling data along with mRNA-seq.  

 

Initiating Ribosomes (P-site) in which treatments are used to capture initiating ribosomes, 

with an expected peak enrichment at translation initiation codons. The P-site in the group 
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name reflects that each read is given an offset that approximates the P-site of the ribosome 

at that position. The initiator tRNA is recognized in the P-site during initiation. 

Elongating Ribosomes (A-site) captures elongating ribosomes and an offset is applied to 

approximate the A-site locations. The recognition of tRNAs during elongation of the nascent 

peptide occurs in the A-site. 

Elongating Ribosomes (Footprints) is also used for Ribo-seq data but with every position of 

the read represented. No offset is applied. 

mRNA-seq Reads displays the mRNA-seq data generated in parallel to the Ribo-seq data (if 

available). Every position in the read is represented. 

Annotation Tracks and External Data is used for displaying gene annotations specific to the 

assembly such as RefSeq (O'Leary et al., 2016), Ensembl (Aken et al., 2016), Gencode 

(Harrow et al., 2012), SGD (Cherry, 2015) , FlyBase (Gramates et al., 2017), TAIR (Berardini 

et al., 2015), MaizeGDB (Andorf et al., 2016). This track group also hosts other external 

data including conservation data such as phyloP (100 way) (Pollard, Hubisz, Rosenbloom, & 

Siepel, 2010). 

 

The Small Ribosome Subunits (Footprints) track group for scanning ribosome data (Archer 

et al., 2016) is currently only available for Saccharomyces cerevisiae. It is likely, however, 

that this type of data will soon be generated for other organisms (Andreev et al., 2017) and 

our intention it to integrate it into GWIPS-viz as it becomes available.  

 

9. Explore the individual Ribo-seq and mRNA-seq data tracks. 

 

Each Ribo-seq and mRNA-seq data track group provides the names of the published studies 

from which the Ribo-seq/mRNA-seq data originated. For all genomes, the first author name 

and publication year are provided for each study. For human, mouse and rat, the cell line or 

tissue for which the Ribo-seq data was generated is also included in the study label. 

 

Once the study name is clicked a new page showing that study’s track settings will be 

displayed with details specific to that study. This consists of the title of the study at the top 

of the page, followed by the option to view the data quality using RUST plots (see step 13), 

followed by a number of options related to viewing the tracks (called subtracks) for that 

study. Below the list subtracks radio button there will be one checkbox for each individual 

data track for the study and one checkbox for the aggregate of All tracks within the study. 

When checked, the track will be displayed on the main GWIPS-viz Genome browser page.  

 

In addition, a Global aggregate track is provided for each Ribo-seq and mRNA-seq track 

group. A Global aggregate track contains the All data tracks from the different studies 

aggregated into a single display track. The advantage of aggregating all tracks is that 

inconsistent individual study biases tend to be diluted while consistent genuine translation 

signals tend to be aggregated into stronger signals. It needs to be noted that such 

aggregation does not guard against systematic biases pertinent to the majority of the 

datasets. 

 

Typically the Global aggregate for Elongating Ribosomes (A-site) and Global aggregate 

for mRNA-seq Reads, along with the gene annotations, are the individual data tracks that 

are displayed by default for each genome. This helps you to first determine if/where 

translation occurs in your gene or genomic region of interest before refining your search. 
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You can then determine the study or studies from which the Ribo-seq reads originated by 

clicking the Global aggregate track name which opens a new page called Global Aggregate 

Track Settings where you can view the All tracks specific to each study. The individual All 

tracks can be viewed by ticking the corresponding checkbox and setting the Display mode 

to full. 

 

As the Global aggregate tracks are updated when new datasets are added, a list of the 

studies contributing to the current versions of each Global aggregate track (e.g. version 1) is 

provided in the Description section of the Global Aggregate Track Settings page. Also 

included is a link to the global aggregate log file which provides the study list of previous 

versions.  

 

10. Select one or more of the individual track display checkboxes. Set the Display mode 

dropdown menu to full. Press submit. 

 

Dropdown menus for setting the track displays are available below each study’s entry on 

the GWIPS-viz Genome Browser page as well as for the Global aggregate tracks. These 

Display mode menus are also on each study’s track settings page beside the subtrack 

checkboxes. 

 

For example, to display the individual All tracks for each study in the Global Aggregate 

track settings page, select one or more of the checkboxes and set the Display mode option 

to full in the dropdown menu. Click on the submit button (next to the Display mode 

dropdown at the top of the page) to display the GWIPS-viz Genome Browser page. New 

tracks should now be visible corresponding to those selected on the Global Aggregate track 

settings page. 

 

There are 5 options in the Display mode dropdown menu: hide, dense, squish, pack and 

full. The dense mode conveys differences in peak height through shades of gray (darker 

regions correspond to higher peaks); squish mode which is the same as dense but more 

compact; pack mode which is the same as full but more compact. Usually the full mode is 

used for displaying the Ribo-seq and mRNA-seq data tracks. 

 

Note that the above approach is also used for displaying Ribo-seq/mRNA-seq data for each 

study’s individual conditions. 

 

11. Configure the annotation track display in the Annotation Tracks and External Data track 

group. 

 

Depending on the selected organism there will be one or more gene annotation tracks 

displayed by default. These vary depending on the organism. For example, for human, 

RefSeq (O'Leary et al., 2016) and Gencode (Harrow et al., 2012) annotations are displayed 

by default. 

 

Gene annotations are graphically represented by bars of varying thickness: the thickest bars 

represent annotated protein coding regions, the thinner bars represent 5' leaders (5’ UTRs) 

and 3' trailers (3’ UTRs), while the thinnest bars with arrows represent introns, with the 

arrows indicating the direction of transcription and translation.  
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To configure the gene annotations display, click on the gene annotations database name in 

the Annotation Tracks and External Data track group. This will open that particular gene 

annotations track settings page where a number of configuration options will be provided. 

The main configuration option is the Display mode which is set in the same way as the data 

tracks (see step 10). 

 

In addition to gene annotations, the Annotation Tracks and External Data track groups 

contain additional external data that may help in the interpretation of the Ribo-seq data. 

The type of external data available depends on the genome. For example, for the human 

hg38 assembly, phyloP 100-way conservation data (Pollard et al., 2010) is provided. 

 

 

Optional Steps: 

 

12. Use the multi-region option to hide intronic regions. 

 

Many genes, particularly in higher eukaryotes, can contain numerous intronic regions or 

extremely long intronic regions which makes visual interpretation of the Ribo-seq data 

difficult. To alleviate this problem the multi-region option can be used. This option can be 

accessed by clicking on the multi-region button below the main window in the GWIPS-viz 

Genome Browser page or mouse-over the View tab in the topbar and select Multi-region. 

 

When selected, this option will show a pop-up with 4 radio buttons, the first of which is 

simply Exit multi-region mode, the others are as follows:   

 

Show exons using RefSeq Genes. Note the gene annotation database proposed will vary 

according to the default database for each genome. When the option is selected, intronic 

regions will be hidden (see Fig. 7 in the section guidelines for understanding results). The 

text box to the right allows you to enter a padding between exons. So if left at the default 

value of 6 there will be a gap of 6 nucleotides between all exons. We recommend putting a 

value of 0 here. We wish to mention that this option works best for gene loci that have few 

transcript isoform predictions. The display can, however, be improved further by entering 

custom regions (see below).  

 

Show genes using RefSeq Genes. When this option is selected, intergenic regions will be 

hidden meaning neighbouring genes will appear as if directly next to each other on the 

chromosome with only the specified padding between them.  

 

Enter Custom regions as BED, or a URL to them. This section allows you to enter multiple 

genomic regions in the provided text box. Only the regions supplied by you will be displayed. 

This option can be particularly useful when trying to view the Ribo-seq data for a specific 

transcript isoform when a gene locus has many isoforms. The genomic regions can be 

entered in the format  

 

<chromsome_name> <start_position> <end_position>  

 

with a space separating each. If multiple regions are required each should be given its own 

line in the text box: 
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<chromsome_name1> <start_position1> <end_position1> 

<chromsome_name2> <start_position2> <end_position2>  

<chromsome_name3> <start_position3> <end_position3>  

  

 

Beneath the 4 radio buttons lies a checkbox labelled Highlight alternating regions in multi-

region view which if checked will colour every second region in blue, allowing for easy 

visual interpretation of exon junctions. When you have made your selection press the 

submit button to view the relevant changes.  

 

 

13. Explore the RUST profiles for individual tracks. 

 

This is an optional step to explore the quality of individual Ribo-seq datasets by viewing the 

profiles that have been generated using the Riboseq Unit Step Tranformation (or RUST) tool 

(O'Connor, Andreev, & Baranov, 2016). RUST profiles are available for the majority of recent 

Ribo-seq datasets generated in eukaryotes and can be viewed by clicking on the label for a 

particular study in the Elongating Ribosome (A-site) track group in the GWIPS-viz Genome 

Browser page. This will open the study’s track settings page near the top of which will be a 

button labelled View Data Quality (RUST plots). Clicking this button will display a pdf file 

where each Ribo-seq file from that study will have its own page as in Figure 3. Each page 

consists of the following plots: 

 

Metafootprint profile with Kullback-Leibler divergence (top panel). The RUST 

metafootprint profiles in GWIPS-viz show the differences between the observed and 

expected codon RUST statistics (reflecting frequencies of codons) in the region of the 

ribosome footprint for each Ribo-seq dataset. The Kullback-Leibler (K-L) divergence of RUST 

statistics ratios of all 61 codons at a single codon position is represented by the blue line. 

The green line shows the K-L divergence at adjacent codons. Typically the highest K-L values 

(reflecting variation in codon frequencies) is expected to occur at the ribosome decoding 

center (A- and/or P- site). The position of the A-site is indicated with the red vertical line, 

see Figure 3. If a high variation occurs near the ends of the footprints, it likely represents 

sequencing biases (Fig. 3). In this way, the metafootprint profiles can be used to assess 

biases in individual datasets. In the top-right of this panel, the total number of mapped 

reads for the individual dataset is also displayed.  

 

Relative inferred A-site dwell time (bottom left panel). The y-axis shows the ratio of 

ribosome occupancy (relative to the minimum occupancy) i.e. the amount of time that the 

ribosome spends at that codon (dwell time). The x-axis groups the codons according to their 

corresponding amino acids.  

 

Triplet Periodicity (bottom right panel). This plot shows the Ribo-seq counts for each of the 

three possible reading frames, here labelled zero, one and two. These are broken down by 

read length which is displayed on the x-axis. Ideally the triplet signal of the decoding 

ribosome should be strong in Ribo-seq data (Bazzini et al., 2014; Ingolia et al., 2009; Michel 

et al., 2012). The more random the distribution of footprints across the sub-codon positions, 

the weaker the periodicity signal.  

 

14. Use the PDF/PS option to generate images of GWIPS-viz data tracks. 
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This is an optional step to generate images of GWIPS-viz data tracks for use in manuscripts, 

posters, etc. In the GWIPS-viz Genome Browser page, mouse-over the View tab and click on 

the PDF/PS option. 

 

In the PDF Output page, click on the link to download the current browser graphic in PDF 

format. Another option is to download the graphic in EPS format. 

 

 

Support Protocol 1: Uploading a custom track 

 

The custom track functionality allows users to upload their own Ribo-seq and/or mRNA-seq data 

to GWIPS-viz and explore their data in the context of published data. Only the user that uploads a 

custom track can view it (unless the user shares it with collaborators). In other words, the custom 

track is not accessible to anybody but the person who uploads it. Typically the uploaded data will 

be Ribo-seq data, mRNA-seq data or gene annotation data. These tracks are only temporary, being 

automatically removed after 7 days.  

 

The following support protocol will cover the steps needed to upload a custom track. 

 

Necessary Resources 

 

An Internet connected device such as a PC or laptop, capable of running an up-to-date Internet 

browser that supports JavaScript, such as Firefox, Chrome or Safari. 

 

 

1. Before uploading your alignment data as a custom track, convert your alignment file to 

either the bedGraph format or the compressed bigWig format if your file is large. 

 

As the custom track feature is inherited from the UCSC Genome Browser (Tyner et al., 

2017), a number of data formats are supported. Alignment files in SAM format, or the 

compressed BAM format, can be displayed as custom tracks. Their display, however, will be 

different to the public Ribo-seq and mRNA-seq tracks in GWIPS-viz. For this reason we 

recommend converting alignment data to the bigWig format as it is suitable for dense, 

continuous data that will be displayed as a graph in the browser. It is also the format used 

for all public alignment tracks in GWIPS-viz. The bedGraph format can also be used if the 

alignment file is not too large. However, converting to the compressed bigWig format will 

decrease the time taken to upload the file to GWIPS-viz.  

 

One way to generate a bigWig file is to use RiboGalaxy (http://ribogalaxy.ucc.ie) (Michel et 

al., 2016) which is a Galaxy-based platform (Afgan et al., 2016) for pre-processing, mapping 

and analysing Ribo-seq and corresponding mRNA-seq data through a browser. The ‘Convert 

formats’ suite of tools in RiboGalaxy contains utilities to convert a SAM alignment file to 

BAM format and then convert the BAM file to bigWig. There are also a number of published 

workflows in RiboGalaxy that are tailored for the most commonly used genomes in GWIPS-

viz and automatically output the alignment files in bigWig format with a direct link for 

exploration as a GWIPS-viz custom track.  
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Alternatively command line utilities exist for converting the BAM format to bed format and 

then from bed to bigWig (e.g. http://hgdownload.soe.ucsc.edu/admin/exe/). 

 

2. Click on the add custom tracks button either on the GWIPS-viz Genome Browser page or 

mouse-over the My Data tab in the topbar and select Custom Tracks. 

 

There are multiple ways to upload a custom track (Fig. 4). Here we will focus on the 

standard approaches for uploading bedGraph and bigWig file formats, the most suitable for 

exploring Ribo-seq data. For other file formats, we recommend checking the documentation 

on the GWIPS-viz custom track help page 

https://gwips.ucc.ie/goldenPath/help/customTrack.html and also 

https://genome.ucsc.edu/goldenpath/help/customTrack.html, since the custom track 

functionality is inherited from the UCSC Genome Browser. 

 

First select the clade, genome and assembly from the dropdown menus at the top of the 

Custom Track Management page. 

• When uploading a bedGraph file, use the Choose file button to navigate to the file 

on your computer and click the Submit button.  

 

• A bigWig file can only be uploaded via a URL. The file (e.g bigWigExample.bw) needs 

to be copied to a web-accessible http, https, or ftp location. Paste the URL into the 

custom track text box and click Submit. Alternatively, construct a track line in the 

text box that references the bigWigExample.bw file:  

 

track type=bigWig name="Example One" description="A bigwig file" 

bigDataUrl=https://gwips.ucc.ie/goldenPath/help/examples/bigWigExample.bw 

 

You can customize this track line further and define certain parameters on how your 

custom data should display (see 

https://gwips.ucc.ie/goldenPath/help/customTrack.html#TRACK). 

 

3. Then explore the Ribo-seq and mRNA-seq custom track data as per the instructions outlined 

in the Basic Protocol: Using the GWIPS-viz browser. 

 

Custom tracks can be shared with other users using a custom track URL. Note that 

the functionality to share a custom track as a Session is not available on GWIPS-viz. 

An alternative option is to create a track hub (see 

https://gwips.ucc.ie/goldenPath/help/hgTrackHubHelp.html) as a track hub may be 

shared privately with colleagues or shared publicly. 

 

 

Support Protocol 2: Using the Table Browser 

 

The GWIPS-viz Table Browser can be accessed at https://gwips.ucc.ie/cgi-bin/hgTables. 

 

The GWIPS-viz Table Browser is a graphical user interface which provides the ability to download 

tracks from the GWIPS-viz browser. This includes Ribo-seq and mRNA-seq data that has already 

been processed and aligned to a reference genome, as well as annotation data. It also provides 
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the ability to apply filters to this data such as returning specific chromosomes. There are a number 

of output formats available depending on the type of data being retrieved. 

 

Necessary Resources 

 

An Internet connected device such as a PC or laptop, capable of running an up-to-date Internet 

browser that supports JavaScript, such as Firefox, Chrome or Safari. 

 

 

1. Click on the Table Browser link in the topbar or in the navigation bar on the left hand side of the 

GWIPS-viz homepage. Alternatively on the GWIPS-viz Genome Browser page, mouse-over the 

Tools tab in the topbar and click on Table Browser. 

 

This will bring you to a new page which consists of two parts. The top half of the page is the 

Table Browser itself and is made up of multiple inputs allowing you to customise the output 

to suit your needs (Fig. 5). The bottom half of the page provides explanations of each the 

Table Browser parameters. 

 

2. Select the clade, genome, and assembly. 

 

The Table Browser settings will be set to the same settings last used on the Gateway page. 

Use the clade, genome and assembly dropdown menus, if required, to select the organism 

of interest. 

 

3. Select the group, track, and table of interest using the dropdown menus. 

 

The group is the list of track groups as they appear on the main GWIPS-viz Genome 

Browser page. So, for example, if you wanted to access data for elongating ribosome 

profiles, you would set the group to Elongating ribosomes (A-site). The track is the name as 

it appears within the track group on the GWIPS-viz Genome Browser page. For the Ribo-

seq and mRNA-seq groups, the list of tracks will be the names of hosted studies. 

 

The table is the name of the table file you wish to download. If you had selected a study in 

track dropdown menu, then the table dropdown menu would be a list of individual tracks 

associated with that study, as well as an All table which is the aggregation of all Ribo-seq or 

mRNA-seq tracks (depending on which group is selected) for that study. 

 

4. Specify the query region by selecting the genome or position radio buttons. 

 

There are two radio buttons in this field, one labelled genome the other labelled position. If 

the genome radio button is selected any queries submitted will return data from all regions 

of the genome for the currently selected organism. Alternatively if set to position any 

submitted queries will only return data from the region specified in the text box adjacent to 

the position radio button. Positions should be entered in the form  

 

<chromosome name>:<start_position>-<end_position>  

 

for example:  
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chrX:151283001-151290000 

 

If the exact genomic co-ordinates are not known a gene name or a transcript ID can be 

entered in the position text box. Pressing the lookup button to the right of this box will 

display another page with a list of genomic co-ordinates. Clicking on one of these will go 

back to the Table Browser with the relevant co-ordinates automatically entered into the 

position text box. 

 

The define regions button allows the user to enter multiple regions (one per line, to a limit 

of 1000) either by using a text box or by uploading a text file. 

 

5. Choose an output format from the dropdown menu and enter a filename in the output file 

field. 

 

The output format field consists of a dropdown menu to specify the format that the output 

will take and two radio buttons to specify where to send the file if appropriate. The type of 

formats available in the dropdown menu will vary depending on the selected table. For 

example, if a Ribo-seq or mRNA-seq track is chosen, the type of output formats available 

will be data points, bed format or custom track. Bed format will output a tab separated file 

of chromosomal positions where reads are found while data points will output the same 

but with the number of reads at each position also included. The custom track option 

allows you to save the output as a custom track (See support protocol 1: Uploading a 

custom track). 

 

Choosing a table in the annotation group will give more options for the output format (e.g. 

FASTA format or GTF format). By choosing selected fields from primary and related tables 

the exact columns in the output file can be specified. The two radio buttons labelled Galaxy 

and Great allow you to send the output directly to a Galaxy instance that you are logged 

into e.g. RiboGalaxy (Michel et al., 2016) or to the Genomic Regions Enrichment of 

Annotations Tool (Great) web server (McLean et al., 2010) respectively for further 

processing. 

 

The filename of the output when downloaded will be named according to the text box in 

the output file field. This field can also be left blank, in which case the output will appear in 

the browser. In the file type returned field choose either plain text or gzip compressed to 

specify if the output file should be compressed or not. For large files it will be quicker to 

download the compressed version of the file and then decompress once downloaded.   

 

6. Hit the get output button. 

 

In some cases the file will start downloading (or displaying in the browser) once you press 

this button, however in certain cases you will be brought to another page. For example, 

selected fields from primary and related table will bring you to another page to select the 

desired fields, clicking the get output button on this page will then start the download.   

 

Optional steps: 

 

7. Press the Create button next to filter. 
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Like the region position filter in step 4, this can be used to restrict the information returned 

by a query. The type of filters available depends on the type of table selected, for example if 

downloading Ribo-seq data you can return only counts greater than 100, or if downloading 

annotation data only download genes with multiple exons. 

 

8. Press the Create button next to subtrack merge. 

 

The subtrack merge option allows the user to concatenate data from a number of different 

tables within a particular track. This is done by using the checkboxes to select all files 

needed and then choosing a merge operation which defines how the values will be 

combined. For instance, if the average operation is chosen the final output at each position 

will be an average of all selected tracks. The user can also apply a filter at this stage, for 

instance discarding any positions with scores less than a minimum threshold after the 

merge operation has been applied. 

 

9. Press the Create button next to intersection. 

 

The intersection option allows the user to specify conditions that multiple tracks must fulfil 

and then return only the positions that match both criteria (like a Venn diagram).  

 

10. Press the Create button next to correlation. 

 

The purpose of this step is to determine the correlation between two tracks. Once clicked 

you will be brought to another page where you will pick another table using the group, 

track and table dropdown menus. Then select how many data points to correlate using the 

dropdown menu after Limit total data points in result. The maximum possible value here is 

300,000,000 data points due to memory constraints. You can also set the window size (in 

bases) using the text box in Window data to: x bases. Where x is a user defined value of at 

least one and no upper limit, if set to a value of one the correlation will be based on data 

points from every base pair. If set to a value higher than 1 correlations will be based on 

average data points from every window of size x. 

 

Upon hitting submit a table will display where the rows are the chromosomes of the 

selected organism. The columns are various values related to the correlation between the 

two files in this chromosome, for example, r
2
, correlation coefficient, mean, variance. The 

final row in this table will be the overall values for all chromosomes. Four plots will also be 

produced beneath the table. The first is a scatter plot of the counts between the two files. 

The second is a plot of the residuals vs. fitted values. And the final two are histograms of 

both files showing the counts of each. 

 

 

Support Protocol 3: Using the Downloads page 

 

The GWIPS-viz Downloads page can be accessed at https://gwips.ucc.ie/downloads/index.html. 

 

The GWIPS-viz Downloads page is a graphical user interface which provides the ability to 

download the GWIPS-viz Ribo-seq and mRNA-seq alignment files in bigWig format.  
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Necessary Resources 

 

An Internet connected device such as a PC or laptop, capable of running an up-to-date Internet 

browser that supports JavaScript, such as Firefox, Chrome or Safari. 

 

 

1. Click on the Downloads link in the topbar or in the navigation bar on the left hand side of 

the GWIPS-viz homepage. 

 

This will bring you to the Download alignment files page (Fig. 6). This page contains 

multiple dropdown menus so that you can specify the alignment file(s) you want to 

download.  

 

2. Select the clade, genome, and assembly. 

 

Use the clade, genome and assembly dropdown menus to select the genome assembly of 

interest. 

 

3. Select the group for the type of Ribo-seq or mRNA-seq data that you wish to download. 

 

Depending on the genome selected, Ribo-seq and mRNA-seq alignment files will be 

available in one or more of the following track groups: 

 

Initiating Ribosomes (P-site) in which treatments are used to capture initiating ribosomes, 

with an expected peak enrichment at translation initiation codons. The P-site in the group 

name reflects that each read is given an offset that approximates the P-site of the ribosome 

at that position. 

Elongating Ribosomes (A-site) captures elongating ribosomes and an offset is applied to 

approximate the A-site locations. 

Elongating Ribosomes (Footprints) is also used for Ribo-seq data but with every position of 

the read represented. No offset is applied. 

mRNA-seq Reads contain the mRNA-seq data generated in parallel to the Ribo-seq data (if 

available). Every position in the read is represented. 

Small Ribosome Subunits (Footprints) contains data generated for scanning ribosomes. 

Every position in the read is represented. This track group is currently available for 

Saccharomyces cerevisiae only. 

 

4. Select the track for the study data that you wish to download.  

 

The track dropdown menu provides the names of the published studies from which the 

Ribo-seq/mRNA-seq data originated. For all genomes, the first author name and publication 

year are provided for each study. For human, mouse and rat, the cell line or tissue for which 

the Ribo-seq data were generated is also included in the track study label. 

 

5. Select the table that represents the alignment file you wish to download.  
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The table dropdown menu provides the names of the individual Ribo-seq/mRNA-seq tracks 

hosted on GWIPS-viz. Each table name corresponds to a single track and hence a single 

alignment file. 

 

An alignment file called All that contains the aggregation of all the individual track 

alignment files will also be available for each study. This is not to be confused with the All 

tables entry in the same dropdown menu which provides the option to download all the 

individual alignment files in a single click operation. 

 

In addition, the alignment files for presenting the Global aggregate tracks in the GWIPS-viz 

Genome Browser page are available for download. A Global aggregate track contains the 

All data tracks from the different studies aggregated into a single display track (see Basic 

Protocol Using the GWIPS-viz browser). 

 

6. Click on the Download button to start downloading the selected alignment file(s).  

 

The alignment files are in bigWig format. This is a compressed format that is useful for 

displaying dense, continuous data like Ribo-seq and mRNA-seq data in a web browser 

(https://gwips.ucc.ie/goldenPath/help/bigWig.html). A number of tools exist for 

downstream analysis of bigWig files including bwtool (Pohl & Beato, 2014) and deeptools2 

(Ramirez et al., 2016). 

 

 

GUIDELINES FOR UNDERSTANDING RESULTS 

 

In general if viewing an area of the genome with high Ribo-seq density, it is likely that this region is 

undergoing translation. However as with all high throughput sequencing data, ribosome profiling 

is susceptible to noise. We try to address this by aggregating the available Ribo-seq data into 

Global aggregate tracks. We recommend using the Global aggregate tracks as a first option to 

determine if translation occurs in the region of interest. Then you can turn on/off individual study 

Ribo-seq tracks to refine your exploration. 

 

To illustrate with an example, we provide the ribosome profile from GWIPS-viz of the human 

mitochondrial elongation factor 1 gene (MIEF1) (Fig. 7) which encodes the mitochondrial dynamics 

protein MID51. Panel A of Figure 7 shows the Ribo-seq profile (red) of the human MIEF1 gene 

taken from the Global aggregate track in the Elongating Ribosomes (A-site) track group and the 

mRNA-seq (green) taken from the Global Aggregate of the mRNA-seq Reads track group in the 

human hg38 assembly. Also shown are the phyloP track (blue for positive scores and brown for 

negative scores) and the RefSeq gene annotation track (blue), both in the Annotation Tracks and 

External Data track group. The direction of the arrows in the RefSeq annotated intronic regions for 

this locus shows the direction of transcription and also translation and so the 5’ end of the 

transcript is on the left-hand side and the 3’ end of the transcript is on the right-hand side in 

Figure 7. 

 

Exploring the Ribo-seq profile for the human MIEF1 gene in panel A shows a much higher Ribo-seq 

density in the annotated coding regions (thickest blue bars) compared to the 3' trailer of this gene. 

This correlates well with data from the phyloP track which also has positive conservation peaks 

which are relatively higher in the coding region than in the 3' trailer.  
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The 5' leader region of the MIEF1 gene, however, reveals that the Ribo-seq density is even more 

prominent than in the coding region, even though none of the RefSeq annotated transcript 

isoforms for the human MIEF1 gene show this as a coding region. Interestingly, the phyloP track 

also shows that this region is conserved, providing additional supporting evidence of translation in 

this region.  

 

Due to the introns within the 5' leader, interpretation of the Ribo-seq data in GWIPS-viz is 

somewhat difficult. To improve this the multi-region view can be used. As the MIEF1 locus has 

multiple isoform predictions, not all of the intronic regions can be collapsed with this functionality. 

Nevertheless, the interpretation can be made easier: Panel B of Figure 7 shows the human MIEF1 

gene but with the view specifically adapted for the exons of one of the MIEF1 transcript isoforms, 

i.e. the third isoform from the top (see Enter Custom regions as BED in the multi-region section of 

the Basic Protocol).  

 

Turning on the All tracks in the Global aggregate (Fig. 8) and setting the display mode to Pack, 

shows that the higher density of Ribo-seq in the 5’ leader region of MIEF1 is systematic across all 

of the studies included in the GWIPS-viz hg38 assembly. This shows how GWIPS-viz can be used to 

compare data across studies. GWIPS-viz can also be utilised for cross-species exploration. For 

example, the Mief1 gene in Mouse also clearly shows translation in the 5' leader (Fig. 9, Panel A) 

as does the Mief1 gene in rat (Fig. 9, Panel B). 

 

Exploring the human MIEF1 gene further, keeping the introns collapsed with the multi-region view 

and zooming in to the 5' leader of MIEF1 reveals the open reading frame architecture at the top of 

the window, where AUG start codons are coloured green and stop codons are coloured red (Fig 

10.). In this figure, the highlighting feature of GWIPS-viz has been utilised to colour in three 

distinct parts of the 5' leader which appear to be undergoing translation. The light blue highlight 

shows a relatively short upstream open reading frame (uORF), 19 codons in length. The phlyoP 

track for this particular region shows some, albeit not strong, conservation. 

 

The orange highlight shows a long translated uORF of length 70 codons; the phyloP scores show 

that this uORF is highly conserved. Phylogenetic analysis of this uORF suggested that it codes for a 

functional protein (Andreev, O'Connor, Fahey, et al., 2015). Indeed, the product of this uORF 

(LOR8F8) has been found to play a role in mitoribosome biogenesis (Brown et al., 2017). 

 

Finally the region in yellow also has a high Ribo-seq density but there is no AUG start codon at the 

5’ end of that region. There is a short AUG-initiated ORF downstream in this region, but this would 

not account for the high Ribo-seq density across the entire yellow region. The phyloP scores are 

lower here than for the preceding two uORFs. While it is difficult to elucidate the exact ORF origin 

of these footprints using GWIPS-viz, it may be that these footprints originate from a non-AUG 

initiated uORF.  

 

 

COMMENTARY 

 

Development of the GWIPS-viz Genome Browser 

 

GWIPS-viz was launched in September 2012 in response to the rapidly increasing interest in 

ribosome profiling. At the time there was no freely available resource for exploring Ribo-seq and 

corresponding mRNA-seq data. GWIPS-viz was developed to provide researchers with an easy and 
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quickly accessible way to explore this data. To this end, a customised version of the UCSC Genome 

Browser was developed as it provided the high performance necessary for rendering large 

alignment files, as well as being an already well-established resource which many researchers 

would be familiar with navigating. In addition the team behind the UCSC genome browser have a 

proven track record of updating and maintaining the resource as well as consistently responding 

to user enquires. All of these points made the UCSC genome browser an excellent starting point 

for GWIPS-viz development. Prior to GWIPS-viz, a researcher wishing to explore publicly available 

Ribo-seq data would have to download, process and align the data, then upload to the UCSC 

Genome Browser or use an alternative genome browser. This is a time consuming and 

computationally expensive process.  

 

The GWIPS-viz pipeline involves downloading publicly available Ribo-seq and mRNA-seq data 

(usually via NCBI’s sequence read archive (Leinonen, Sugawara, Shumway, & International 

Nucleotide Sequence Database, 2011)), removing any adapter sequence using the Cutadapt tool 

(Martin, 2011), removing rRNA contamination by aligning the reads to known rRNA sequences and 

finally using the short read alignment tool bowtie (Langmead, Trapnell, Pop, & Salzberg, 2009) to 

align unambiguous reads to a reference genome. 

 

To date there are 1885 tracks of both Ribo-seq and mRNA-seq data across 24 genomes (Michel, 

Kiniry, O’Connor, Mullan, & Baranov, 2017). One of the advantages of exploring these datasets in 

GWIPS-viz is that all datasets are processed in the same manner making it easier for both cross-

study comparisons as well as cross-species comparisons. According to Google Analytics, over 

15,000 unique IP addresses have been used to access GWIPS-viz across the globe (Fig. 11). 

 

More recently other online resources have become available for analysing and exploring Ribo-seq 

data. RPFdb (Xie et al., 2016) is a freely available database that provides mapping statistics for 

Ribo-seq datasets generated for 8 model organisms and also provides the functionality to explore 

Ribo-seq data for individual genes within a genome browser. TranslatomeDB is an online platform 

that provides the functionality to analyse published Ribo-seq and mRNA-seq data including 

differential gene expression analysis (Liu, Xiang, Zheng, Jin, & Zhang, 2017). Riboviz (Carja, Xing, 

Plotkin, & Shah, 2017) is another online visualization tool for Ribo-seq data which also provides 

analytical functionalities including metagenomic analysis and triplet periodicity analysis. sORFs.org 

is a repository of small ORFs identified by Ribo-seq (Olexiouk et al., 2016) while the uORFdb 

database provides information on upstream open reading frames that have been reported in the 

literature along with Ribo-seq support for the translation of the uORF if available (Wethmar, 

Barbosa-Silva, Andrade-Navarro, & Leutz, 2014). SmProt also uses ribosome profiling in 

conjunction with proteomics and literature mining to identify small open reading frames and 

provide a way to visualise their location in the form of a UCSC mirror (Hao et al., 2017). 

 

These online resources are similar to GWIPS-viz in that they host processed Ribo-seq data and 

related information which can save the researcher much time when searching for evidence of 

translation in different regions of genes. 

 

Of interest also are the tools that help the researcher to analyse their own Ribo-seq data. As 

mentioned, RiboGalaxy (http://ribogalaxy.ucc.ie/) is a Galaxy platform specifically tailored for 

Ribo-seq data analysis (Michel et al., 2016). Like GWIPS-viz, RiboGalaxy can also be used through 

most web browsers making it easy for the user as no software needs to be downloaded. 

RiboGalaxy hosts a number of tools so that the user can upload their raw Ribo-seq/mRNA-seq data 

in FASTQ format, remove adapter sequences, remove sequences that map to rRNA and map the 

Page 18 of 38

John Wiley & Sons

Current Protocols

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



remaining sequences to a reference genome/transcriptome. As well as the option to generate 

profiles that can be viewed directly in GWIPS-viz as custom tracks, the user can use the RiboPlot 

suite in RiboGalaxy to generate sub-codon profiles (Michel et al., 2012) in both graphical format 

and spreadsheet format with the individual counts for each sub-codon position. There are also a 

number of tool suites for analysing Ribo-seq data available on RiboGalaxy such as the RUST suite 

(O'Connor et al., 2016) mentioned in the basic protocol, along with RiboTools (Legendre, Baudin-

Baillieu, Hatin, & Namy, 2015) and the riboSeqR (Chung et al., 2015) tools suite which includes 

baySeq for differential expression analysis of Ribo-seq/mRNA-seq data. 

 

Other web-based tools include PausePred (http://pausepred.ucc.ie/) (Kumari, Michel, & Baranov, 

2017) for the detection of potential pause sites using Ribo-seq data and Rfeet 

(http://pausepred.ucc.ie/rfeet2.html) (Kumari et al., 2017) a web-based tool for plotting ribosome 

profiles. Command-line versions of both of these tools are also available for download. 

 

Indeed, quite a number of command-line based Ribo-seq analysis tools have become available 

over the last number of years. While these usually offer more flexibility than online tools, they do 

require the user to download and install the software along with its dependencies. The currently 

available software resources for exploring Ribo-seq data has been reviewed in detail in (Calviello & 

Ohler, 2017; Wang, Wang, & Xie, 2017). 

 

 

CRITICAL PARAMETERS AND TROUBLE SHOOTING 

 

As mentioned, caution should be exercised when interpreting the Ribo-seq data tracks in GWIPS-

viz as there may be cases where the occurrence of footprints does not represent genuine 

translation. There could be several sources of artefactual footprints. First is very low level noise 

that is present in almost all studies. This is readily apparent when viewing the Global aggregate on 

hg38 where it can be seen that almost all 5' leaders and 3' trailers have at least some Ribo-seq 

peaks associated with them. These peaks tend to be much lower and sparser than the peaks in 

annotated protein coding regions, likely representing random fragments of naked RNA. This type 

of noise can be mitigated by viewing the global aggregate where the signal from genuine 

translation is quite strong compared to the noise. 

 

The second case is due to non-ribosome protected fragments. There are other RNP complexes that 

could have a sedimentation density similar to that of ribosomes. Proteins as well as strong RNA 

secondary structures in them may protect fragments from their digestion. While such protected 

fragments have a different length distribution from that of genuine footprints (Ingolia et al., 2014), 

the information on read length distribution for a given transcript is not readily available in GWIPS-

viz, hence the presence of such peaks could mislead the user. 

 

The third case is due to misalignment, where footprints are aligned to a location different from its 

origin. While only uniquely mapped reads are displayed in GWIPS-viz, the transcriptome 

sequences of samples in which the ribosome profiling was carried out differs from the reference 

sequence of the human genome. Due to polymorphisms a footprint originated in a specific locus of 

the human genome may produce a better scoring alignment with a different location. The 

problem could be particularly acute due to structural polymorphisms and copy number variations 

which are particularly pertinent to cancer or immortalized cell lines that are often used for 

ribosome profiling experiments. 
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The opposite scenario can also take place, when a translated locus may have little or no footprints. 

The main source of this problem is ambiguous alignments. GWIPS-viz discards reads that could be 

aligned to multiple locations. This increases the mapping confidence of the relatively short 

ribosome protected fragment read sequence and decreases false positives. This approach, 

however, negatively affects the density profiles of genes whose sequences share regions of 

similarity with other genes or pseudogenes. For the same reason, this also affects highly repetitive 

regions of the genome. 

 

Another limitation is the reduction in read density across coding exon-exon boundaries. The short 

read alignment tool bowtie (Langmead et al., 2009) is used to map reads to the genome but it is 

not splice aware, although the mapping of short footprints of ~30 nucleotides across splice 

junctions is challenging even for splice aware alignment tools. This means that Ribo-seq or mRNA-

seq reads which span exon-exon junctions cannot be mapped back to the genome. This can be 

particularly apparent when using the multi-region mode. Distorted footprint densities are also 

inherited in the datasets themselves due to technical biases caused by drug effects (Gerashchenko 

& Gladyshev, 2014; Hussmann, Patchett, Johnson, Sawyer, & Press, 2015) and the substrate 

sequence specificities of the enzymes used in the protocol (Gerashchenko & Gladyshev, 2017). 

 

One other current limitation of GWIPS-viz is that a static offset is used to infer the ribosome 

decoding centers. Irrespective of the variation in read lengths across Ribo-seq datasets, 12 

nucleotides from the 5’ end of the reads are used to infer the P-site while 15 nucleotides are used 

to infer the A-site for Ribo-seq data generated in eukaryotes. In bacteria, interactions of the 

ribosome with Shine-Dalgarno result in a higher variability of the protected length 5’ of the 

decoding center (O'Connor, Li, Weissman, Atkins, & Baranov, 2013). Therefore, in bacteria an 

offset of 12 nucleotides from the 3’ end of the read is used to infer the A-site (Martens, Taylor, & 

Hilser, 2015; Woolstenhulme, Guydosh, Green, & Buskirk, 2015). A number of publicly available 

tools now exist for determining a refined offset for individual read lengths such as Plastid (Dunn & 

Weissman, 2016), RiboWaltz, (Lauria et al., 2017) RP-BP (Malone et al., 2017), and RiboProfiling 

(Popa et al., 2016) . We hope to soon incorporate a similar approach into the GWIPS-viz 

computational pipeline that assigns offset values for individual read lengths. 

 

If you encounter issues or have questions when using GWIPS-viz, the GWIPS-viz forum 

(https://gwips.ucc.ie/Forum/) is a useful tool to ask for help with queries related to GWIPS-viz (Fig. 

12). You can also browse questions and solutions posted by others, and not just for GWIPS-viz but 

related topics such as ribosome profiling in general. The GWIPS-viz forum can be accessed via the 

link in the topbar on all of the GWIPS-viz browser pages.   
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Figure legends 

 

Figure 1. The GWIPS-viz Gateway page set up to display the human AMD1 gene locus. The hg38 

human genome assembly was set by clicking on Human in the Represented Species list and 

selecting Dec. 2013 (GRCh38/hg38) in the assembly dropdown menu. The text box labelled 

Position/Search term determines which region of the genome will be seen upon hitting submit. A 

position, gene symbol (e.g. AMD1) or search term can be used. A genomic position can be entered 

in the form <chromosome>:<start_position>-<end_position>. For example, if you wish to view 

from position 110,874,784 to 110,895,712 on chromosome 6 then enter chr6:110874784-

110895712  in the text box. 

 

Figure 2. The GWIPS-viz Genome Browser page displaying the default data tracks for the human 

AMD1 gene locus on chromosome 6 (chr6:110,874,784-110,895,712) in the Dec 2013 assembly 

(GRCh38/hg38). The navigation and configuration buttons are visible above and below the main 

window image. The red rectangle in the ideogram directly above the main image indicates the 

location of the currently displayed region of the chromosome. The default tracks are shown in the 

main window: the Global Aggregate for Elongating Ribosomes (A-site) (red), the Global aggregate 

for mRNA-seq reads (green) and the RefSeq gene annotations (blue). The direction of the arrows 

in the intronic regions of the gene annotations for the AMD1 gene indicates the direction of 

transcription and translation. The recently discovered ribosome stalling site downstream of the 

AMD1 annotated stop codon (Yordanova et al. 2018) could easily be identified as a prominent 

peak of footprint density in the region annotated as the 3’ trailer (3’ UTR). 

 

Figure 3. A RUST metafootprint profile (O'Connor et al., 2016) taken from GWIPS-viz for the (Park, 

Yi, Kim, Chang, & Kim, 2016) study. The impact of mRNA codons on the relative read density in the 

region of the ribosome is shown in grey in the top panel. The Kullback-Leibler divergence (blue for 

a single codon, green for adjacent codons) indicates the influence of each mRNA location on the 

frequency of footprint occurrence in the library. This is an example of a typical dataset with likely 

sequencing biases at both the 5’ and 3’ end of the ribosome but where the A-site codon influence 

is the highest. The lower left panel shows the RUST estimates of relative codon dwell times for 
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each amino acid. The lower right panel shows the triplet periodicity signal for individual read 

lengths.  

 

Figure 4. The Custom Track page where users can upload their own Ribo-seq/mRNA-seq data 

tracks and explore them in the context of existing public tracks. An example is shown in the text 

box of a URL pointing to a bigWig file. When submitted, the bigWig file will be displayed as a 

separate track in the human hg38 GWIPS-viz Genome Browser page. This custom track, however, 

will only be visible to the user who uploaded it. 

 

Figure 5. The Table Browser page where the database tables underlying the GWIPS-viz tracks can 

be accessed. In this example, the Table Browser is set up to provide access to one of the 

Elongating Ribosome (A-site) tracks in the mouse mm10 assembly for the (Sendoel et al., 2017) 

study. The bed format has been selected as the output format and when submitted, the output 

will be displayed on screen for the genomic region specified in the position text box. 

 

Figure 6. The Downloads page where the alignment files for the GWIPS-viz Ribo-seq and mRNA-

seq tracks can be downloaded. In this example, when the Download button is clicked the 

alignment file (in bigWig format) of the Ribo-seq data generated under one of the conditions in 

the (Andreev, O'Connor, Zhdanov, et al., 2015) study and mapped to the rat rn6 genome assembly 

will be downloaded. 

 

Figure 7. The human MIEF1 gene locus in GWIPS-viz. Panel A shows the elongating ribosome 

profile (A-sites) (red) along with the mRNA-seq reads (green) for the human MIEF1 gene locus. The 

phyloP 100-way track provides conservation scores (blue for positive scores and brown for 

negative scores) for the alignment of 100 vertebrate genomic sequences (Pollard et al., 2010). The 

RefSeq gene annotations for this locus are in blue. Panel B shows the same tracks for the same 

gene locus but the intronic regions have been collapsed, where feasible, using the multi-region 

view functionality. 

 

Figure 8. Cross-study comparison using the All tracks for each study in the Global Aggregate 

Elongating Ribosomes (A-site) track for the human MIEF1 gene locus in GWIPS-viz. The 30 

individual study tracks currently composing the Global Aggregate track for the human hg38 

assembly show that the high Ribo-seq density in the 5’ leader region relative to the annotated 

protein coding region of the MIEF1 gene is consistent across the majority of studies.  

 

Figure 9. Cross-species comparison of Ribo-seq data using the mouse Mief1 gene and the rat 

Mief1 gene in GWIPS-viz. Both the elongating ribosome (A-site) Global Aggregate track for the 

Mief1 gene in mouse mm10 assembly (panel A) and the Mief1 gene in rat rn6 assembly (panel B) 

show the high Ribo-seq density in the 5’ leader region relative to the annotated protein coding 

region. The intronic regions in the RefSeq gene annotations have been collapsed using the multi-

region view functionality. 

 

Figure 10. A zoomed-in view of the open reading frame (ORF) organisation of the 5’ leader region 

of the human MIEF1 gene in GWIPS-viz. The upstream ORFs (uORFs) that are likely translated are 

highlighted light-blue for the first AUG- initiated uORF and orange for the second (longer) AUG-

initiated uORF. The third region highlighted in yellow shows ribosome footprints that span across a 

region than contains a short AUG-initiated uORF. The footprints just upstream of the third AUG-

initiated uORF may originate from a non-AUG initiated uORF in an alternative frame, but this 

cannot be directly determined using GWIPS-viz. These uORFs may play a functional role in stress 
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resistance (Andreev, O'Connor, Fahey, et al., 2015). The phyloP conservation scores are 

consistently high for the second uORF (orange) indicating that this uORF likely produces a 

functional peptide (Andreev, O'Connor, Fahey, et al., 2015) which has been recently characterised 

by (Brown et al., 2017) . 

 

Figure 11. The usage statistics of GWIPS-viz across the world. The map shows the user session 

statistics according to Google Analytics for the period January 1st, 2013 to December 31
st

, 2017.  

 

Figure 12. The GWIPS-viz forum. Queries about using GWIPS-viz can be posted to the GWIPS-viz 

forum (https://gwips.ucc.ie/Forum/). Other related topics of discussion include RiboGalaxy, 

ribosome profiling, translation/protein synthesis in general, sequencing and Bioinformatics.  
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