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[ABSTRACT] 40 

The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic 41 

methanotroph of the Verrucomicrobia phylum is presented. Annotation revealed pathways for 42 

one-carbon, nitrogen, and hydrogen catabolism and respiration together with central 43 

metabolic pathways. The genome encodes three orthologues of particulate methane 44 

monooxygenases and helps to understand methane cycling in volcanic environments. 45 

 46 

Isolation (14) and genome sequencing of strain SolV led to the proposal that 47 

Methylacidiphilum fumariolicum be one of three proposed species within the genus 48 

Methylacidiphilum (13), together with M. infernorum (strain V4)(4), and M. kamchatkensis 49 

(strain Kam1)(7). All three strains were isolated from acidic volcanic areas and are well 50 

adapted to the harsh volcanic environment (13, 14), being able to thrive at very low methane 51 

and oxygen concentrations and pH values as low as 1.  52 

The high-quality draft genome of M. fumariolicum SolV (109 contigs) was assembled 53 

from Illumina and Roche 454 reads using CLCbio (http://www.clcbio.com) and manual 54 

adjustments. The draft genome is 2.36 Mbp in size with a GC content of 40.9%. Auto-55 

annotation was performed based on comparison to public databases using the MicroScope 56 

platform (Genoscope, France) (17), which identified 2283 protein-encoding gene models. For 57 

623 of these, full-length homologs (>80% identity at the protein level) were present in the 58 

complete genome of M. infernorum V4 (6), with 619 of them organised in synteny in the two 59 

strains. Biosynthetic pathways and tRNA’s of all 20 amino acids were present together with a 60 

single rRNA operon. 61 

Key genes for the ribulose monophosphate pathway and the serine cycle were absent. 62 

However, genes encoding the Calvin-Benson-Bassham cycle enzymes were present, 63 

supporting physiological studies (9). The genome encodes all three central pathways: 64 

Embden-Meyerhof-Parnas glycolytic pathway, the pentose phosphate pathway and the 65 

tricarboxylic acid cycle. Genes encoding keto-deoxy-gluconate catabolism of the Entner-66 

Doudoroff pathway were absent. Three particulate methane monooxygenase operons 67 

(pmoCAB) were predicted, while genes encoding soluble methane monooxygenase were not 68 

found. The mxaFI genes encoding methanol dehydrogenase (2, 3) were absent, but a 69 

homologous xoxFJG gene cluster and a pqqABCDEF operon for the biosynthesis of the 70 

cofactor pyroloquinoline quinone were detected. H4MPT-linked C1-transfer genes are not 71 
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present. The H4Folate-linked pathway inventory includes metF, folD and ftfL genes. Neither 72 

mtdA, fch or purU were found. Genes encoding NAD-linked formate dehydrogenase 73 

(fdsABG) were identified (12). Should the identified genes encoding acetate kinase and acetyl-74 

coenzyme A synthase prove functional, strain SolV may be able to assimilate C2 compounds, 75 

and thus be a facultative methanotroph (15). The presence of a hydrogenase gene cluster 76 

points towards possible chemolithotrophic growth or the use of hydrogen to provide reducing 77 

equivalents for methane oxidation (5). A complex IV-type heme-copper oxidase gene cluster 78 

possibly encodes the terminal cytochrome c oxidase. 79 

 Strain SolV was able to grow with ammonium, nitrate or dinitrogen gas as nitrogen 80 

source (8, 14). Coincidentally, genes were predicted for direct ammonium uptake (amtB) and 81 

assimilation (e.g. glutamine synthase, glnA; glutamate synthase, gltB; alanine dehydrogenase, 82 

ald) as well as for urea metabolism. As in most other methanotrophs, however, the urea cycle 83 

is incomplete (1). A full complement of genes for dinitrogen fixation, nitrate/nitrite transport 84 

and assimilation was also found. In addition, genes for nitrite reduction (nirK) and nitric oxide 85 

reduction (norB, norC), were identified but the inventory to encode nitrous oxide reduction 86 

was missing. A haoAB gene cluster encoding hydroxylamine oxidase was identified, 87 

suggesting the capability of nitrification and nitrosative stress handling (10, 11, 16).  88 

Nucleotide sequence accession number. The nucleotide genome sequence of 89 

M. fumariolicum SolV has been deposited in the European Nucleotide Archive (ENA) under 90 

accession numbers CAHT01000001 to CAHT01000109.  91 
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