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1.1. The global epidemiology and burden of malaria 

Malaria remains the most important parasitic disease affecting humans, with 

approximately one fourth of the world population at risk of infection. Plasmodium 

falciparum, P. vivax, P. ovale and P. malariae are the four species causing disease in humans. 

P. knowlesi, which naturally infects macaques, is also transmissible to humans in whom it 

may cause disease1-5. P. falciparum is the most pathogenic species. In 2008, an estimated 

243 million clinical malaria cases occurred worldwide, with 863,000  deaths6, the great 

majority (89%) falling on poor rural communities of sub-Saharan Africa6-8. In the same area, 

in addition to the human cost, malaria causes every year an average loss of 1.3% of 

economic growth 9, and represents a major obstacle to the development of disease-

endemic countries10.   

 

1.2. Malaria in Burkina Faso 

Burkina Faso is a landlocked Sahel country in West Africa lying between the Sahara 

Desert and the Gulf of Guinea (Figure 1). Its vegetation ranges from forest in the south to 

semi-desert, Sahel, in the north. The central part has the ecological characteristics of Sudan 

savannah. Annual rainfall varies from about 1,000 mm in the south to less than 250 mm in 

the extreme north11. The country has two distinct seasons, dry from November to May and 

wet from June to October.  

Malaria represents a leading public health problem in Burkina Faso12,13. P. falciparum is the 

predominant plasmodial species and accounts for 90% of the infections; the remainder is 

attributed to either P. malariae (8%) or P. ovale (2%). The main malaria vectors are 

Anopheles gambiae s.l. and An. funestus14. Children and pregnant women are the most 

vulnerable groups at risk of malaria-related morbidity and mortality.  

Rural families, that account for 80% of the population, are the least likely to have access to 

malaria control measures, since they live far from the nearest health facility and less able to 

afford treatment 15.  

The climatic features during the wet season (high temperature and humidity) allow for 

excellent synchronization between the vector’s multiplication and long life-span 16-18 with 

the parasite’s replication in both vector and human hosts, together conferring a high 

http://en.wikipedia.org/wiki/Burkina_Faso
http://en.wikipedia.org/wiki/Sahel
http://en.wikipedia.org/wiki/Sahara
http://en.wikipedia.org/wiki/Gulf_of_Guinea
http://en.wikipedia.org/wiki/Rainfall
http://en.wikipedia.org/wiki/Season
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reproduction rate to P. falciparum 17 in the country. Malaria transmission differs, 

nevertheless, characterized as unstable in the extreme north but perennial in the south. In the 

central plateau, where it is holoendemic 19, transmission is stable and seasonal with an 

entomological inoculation rate (EIR) with peaks of 300-500 infective bites/person/year20 

during the wet season but effectively close to zero during the dry season. The prevalence of 

P. falciparum infection has been estimated to be approximately 90% in children below 5 

years of age in the year of 200421,22. 

 

 

Figure 1: Malaria transmission characteristics in Burkina Faso  

 

1.3. The biology of P. falciparum 

The asexual blood forms of P. falciparum  are responsible for malaria-related morbidity and 

mortality, whilst transmission of the parasite  depends on the presence of sexual forms 

(gametocytes) in human blood that can infect anopheline vectors. 
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The life cycle (Figure 2) of P. falciparum can be depicted as starting when an infected female 

Anopheles mosquito bites a human being, when sporozoites are inoculated and can enter 

the blood stream. 30% of the sporozoites leaving the skin bite area are estimated to invade 

the lymph nodes 23-25 whilst the remainder migrates to the liver. There, they invade and 

mature within hepatocytes, each sporozoite undergoing asexual reproduction to produce 

several thousand merozoites. The hepatocyte bursts and the merozoites thereby released 

invade red blood cells (erythrocytes) where they feed on haemoglobin and mature into 

trophozoites. Nuclear division ensues in an asexual reproductive cycle (erythrocytic 

schizogony) that leads to the formation of schizonts that comprise a collection of individual 

merozoites. After subsequent release and reinvasion of an erythrocyte, a fraction of these 

merozoites develop into individual male and female gametocyte sexual forms that are 

ingested by a female Anopheles mosquito taking a blood meal. In the mosquito midgut, the 

gametocytes mature into gametes that, after fertilization, form a motile zygote that matures 

into an ookinete and, ultimately, an oocyst on the mosquito midgut wall. Within each 

oocyst, hundreds of sporozoites develop, eventually rupturing the oocyst and migrating to 

the mosquito salivary glands from where they can be inoculated into the skin of the next 

human on whom the mosquito feeds.  

 

 
 
Figure 2: Life cycle of P. falciparum 
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1.4. Malaria control and elimination 
 

1.4.1. History of malaria control 

Early initiatives aimed at malaria control in the 1950s and 1960s, coordinated by the Global 

Malaria Eradication Campaign, recommended malaria case management and the use of 

dichlorodiphenyltrichloroethane (DDT) for indoor spraying of dwellings against the 

mosquito vector as major strategies to reduce the burden of malaria. The programme was 

successful in low and unstable transmission areas of North America and Europe26. Sub-

Saharan Africa, which needed a long-term integrated programme, was excluded from this 

campaign because of economic instability and various other issues. In some areas like Sri 

Lanka, India and Cambodia, attempts to eliminate malaria were followed by disastrous 

increases in transmission once enthusiasm was lost and interventions were abandoned27. 

After this period, efforts to control malaria have been purely initiated on a bilateral basis or 

through international organizations. In 1992, the Global Malaria Control Strategy was 

adopted in Amsterdam and focused on prompt diagnosis, treatment and preventive 

measures. This was followed in 1996 by establishment of the Multilateral Initiative on 

Malaria that aimed to link the global malaria research community and strengthen research 

capacity in malaria endemic countries. In 1997, the Organization for African Unity called 

upon international organizations to give malaria greater priority.  

 

1.4.2. Current malaria control strategies 

In 1998 the Roll Back Malaria (RBM) Partnership was initiated to coordinate efforts 

in malaria control. The main goal of the RBM was to ensure a reduction in the burden of 

malaria of at least 50% by 2010 and of 75% by 2015, moving towards elimination in some 

countries 28.  

The global strategy of the RBM Partnership is based on prevention and treatment through i) 

the use of long-lasting insecticide-treated nets (LLINs), ii) early diagnosis and timely seeking 

of appropriate treatment with artemisinin-based combination therapies (ACTs), iii) 

intermittent preventive treatment (IPT) during pregnancy and iv) indoor residual spraying 

(IRS) with insecticides to target indoor-resting mosquitoes.  
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1.4.3. Current effective tools for malaria prevention and treatment 

LLINs are currently one of the most important tools for vector control. With a 

lifespan exceeding 3 years6, they can not only reduce vector-human contact, but mosquitoes 

are also killed by the insecticide. LLINs have been shown to significantly reduce childhood 

malaria-related morbidity and mortality in malaria endemic areas29,30. Despite calls for a 

rapid scaling up of LLINs coverage by RBM in 2002, only an estimated 20% of children at risk 

in sub-Saharan Africa had received an LLIN by 200731.  

IRS consists of the application of insecticides to the inner surfaces of dwellings, where 

endophilic anopheline mosquitoes often rest after taking a blood meal. IRS can be effective 

in reducing malaria transmission by killing / repelling mosquitoes and, subsequently, 

reducing morbidity and mortality32. However, caution is needed as resistance to insecticides 

may develop, especially pyrethroids6. In 2008, nineteen countries in the African Region, 

reported implementing IRS6.  

Intermittent preventive treatment (IPT) is recommended for women during 

pregnancy to prevent malaria that can lead to maternal anemia and placental infection that 

itself is associated with low birth weight babies33-37. WHO currently recommends that at 

least 2 doses of SP be administered as a prophylaxis after the first trimester during 

antenatal care6.  

 

1.4.4. Malaria diagnosis  

Because preventive measures are not fully effective, early malaria diagnosis and effective 

treatment form important components of malaria control. 

Although clinical diagnosis of malaria is imprecise, it remains the basis of therapeutic 

care for the majority of febrile patients in malaria endemic areas, where laboratory facilities 

are often limited. To avoid over prescription of ACTs, the WHO has recommended the use of 

a parasitological test before treating38. Rational treatment of malaria is essential both to 

avoid non-target effects, to delay the advent of resistance, and to save cost on alternative 

drugs.  

For the diagnosis of clinical malaria attacks and quantification of clinically relevant 

parasite densities in the blood, microscopy is the most affordable and widely-used 

technique 39. Microscopy can be used to detect and quantify malaria parasites in a thick 

blood smear by examining multiple (commonly 100) high power fields. Most often, parasites 



 Chapter 1 

13 
 

are quantified by simultaneously enumerating the number of leukocytes per microscope 

field and then converting to parasite numbers per μl by assuming a standard 8000 

leukocytes/μl blood. Depending on the number of leucocytes counted the detection limit of 

microscopy ranges between 5-20 asexual stage parasites/ l of blood and 8-16 

gametocytes/ l of blood. Methodological studies of malaria microscopy have documented 

that the frequency of false-positive and false-negative results is remarkably high,  

increasesing markedly at lower parasite densities40,41, and estimates of parasite densities 

may differ between individual microscopists by as much as an order of magnitude42. 

Rapid Diagnostic Tests (RDTs) are immuno-chromatographic tests with plasmodial 

antigen specificity43-45. RDTs were introduced as an alternative to microscopy in health 

settings lacking laboratory facility. Although RDTs have an important impact on clinical 

decisions46, they have limitations including low sensitivity6,47, absence of quantification, lack 

of parasite stage specificity, as well as cost. 

 

1.4.5. Artemisinin-based combination therapies (ACTs) 

Chloroquine (CQ) and sulphadoxine-pyrimethamine (SP), long considered the most effective 

and useful anti-malarial drugs, have become largely  ineffective as monotherapy for the 

treatment of P. falciparum malaria in sub-Saharan Africa, with increases in malaria-related 

morbidity and mortality thought to be one of the primary consequences48. In recent years, 

following the RBM partnership recommendations, malaria treatment policies have thus 

shifted in most sub-Saharan countries to ACTs for the treatment of uncomplicated P. 

falciparum malaria38. 

Artemisinin-based combination therapy comprises the simultaneous use of an artemisinin 

component with one or more drugs that have independent modes of action and different 

biochemical targets in the parasite, thereby offering faster cure rates with the (theoretical) 

additional advantage of delaying the development of resistance to the partner drug for a 

much longer time period. Four combinations are currently recommended: artesunate-

amodiaquine, artemether-lumefantrine, artsunate-mefloquine, and artesunate-sulfadoxine-

pyrimethamine45.  

ACT acts as a double-sword by providing a complete cure of the infection, as well as 

reducing transmission49-52, thereby eliminating the sources of new malarial infections49,53 
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However, ACTs are much more expensive than previous regimens and coverage with ACTs in 

sub-Saharan Africa is still extremely low. Only 3% of children under 5 years of age received 

ACTs in 2006 and 200754. In Burkina Faso, ACTs were adopted as first-line treatment in 

200555, after childhood mortality was found to have increased due to CQ resistance56-62. 

ACTs became widely available in 2007 in Burkina Faso15 with artemether-lumefantrine (AL) 

and artesunate-amodiaquine (AS/AQ) available for treatment of uncomplicated malaria. 

Sulpfadoxine/pyrimethamine (SP) is used for intermittent preventive treatment during 

pregnancy.  

 

1.4.6. Vaccines as additional tools for controlling malaria 

History teaches us that malaria control interventions lead to often unmet 

expectations and that the real picture is one of increasingly more widespread drug-resistant 

parasites and insecticide-resistant vectors. In this context, and as part of the global efforts 

to control malaria, effective vaccines will be of great importance. The clinical protection 

provided by immunity acquired through natural repeated exposure63 or by immunization 

with either irradiated64 or viable sporozoites while under effective prophylaxis 65 suggest 

that a malaria vaccine is indeed feasible.  

Vaccines against pre-erythrocytic stages or asexual blood stages aim to prevent 

infection or prevent/reduce (severe) clinical disease. Although several vaccine candidates 

are in the pipeline of clinical trials, the most advanced is the so-called RTS,S vaccine, 

developed originally by GSK and the US Army, which has shown up to 65% efficacy against P. 

falciparum infection and is now in multi-centre Phase 3 trials  sub-Saharan across  Africa66-68.  

Malaria vaccines can also target a third life stage, the transmission stage. The so-

called transmission blocking vaccine is directed against the parasite’s mosquito stages 

through induction of human immune responses that interfere with sporogonic development 

in the mosquito midgut, thereby reducing or interrupting transmission69-76. A transmission 

blocking vaccine will reduce the number of infected mosquitoes and is thus predicted to 

subsequently reduce population-wide malaria infection rates and ultimately malaria-

associated morbidity/mortality. Its viability is supported by observations of naturally 

acquired transmission reducing immune responses in endemic situations. 
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1.4.7. Naturally-acquired and vaccine-induced transmission reducing activity 

(TRA) 

Transmission reducing immunity was first reported in the 1970s in immunized 

chickens77,78 and later using specific monoclonal antibodies 73,79-81 or naturally acquired 

antibodies72,73,75,82-86 against sporogonic stages. Transmission reducing activity (TRA) in the 

mosquito midgut mostly depends on human humoral (antibody-mediated) immunity rather 

than cellular components87,88. Transmission reducing antibodies may prevent fertilization by 

blocking the fertilization receptors on gametes, by a complement-mediated lysis of gametes 

and zygotes or by preventing ookinete invasion of the midgut epithelium89. Transmission 

reducing antibodies are ingested as part of the blood meal of the anopheline vector, 

inhibiting the development of sporogonic stages resulting in the prevention of malaria 

transmission to another human. In endemic areas, natural transmission reducing immunity 

develops after exposure to gametocytes that have a finite lifespan and die if not transmitted 

to a mosquito. Effective immunity of this type is generally induced in individuals with little 

or no history of malaria, either young African children or travellers from non-endemic 

areas69. It is thought to be short-lived90 in contrast to immune responses that protect 

against the pre-erythrocytic and/or asexual blood stages, immunity that is comparatively 

long-lived once acquired and that correlates positively with repeated exposure91,92.  

The most reliable methods to assess TRA are formed by experiments in which gametocytes 

are offered to mosquitoes. Different mosquito feeding assays can be used to measure 

transmission from man to mosquito: i) in the skin feeding assay93-95, mosquitoes directly 

feed on a human volunteer but the subject’s safety and outcomes of mosquito infection 

may be considered controversial if the mosquitoes used in the experiment are not reared 

under sterile conditions, raising ethical concerns; ii) in the direct membrane feeding 

assay96,97, mosquitoes feed on whole blood sample offered through an artificial membrane; 

iii) in the standard membrane feeding assay70,98,99, which is gold standard for transmission 

blocking activity measurement, gametocytes obtained from parasites cultured are mixed 

with test or control serum and offered to mosquitoes through an artificial membrane. By 

microscopic observation of the mosquito midgut 7 to 9 days later, the presence or absence 

of oocysts determines the human infectiousness.   

In addition to mosquito feeding assays, serological tests (ELISA) can be used to measure 

gamete surface antigen-specific antibodies in serum as a surrogate marker for TRA69,72-74,83. 
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The targets of transmission reducing immunity are the extracellular (surface membrane-

expressed) antigens of the sporogonic stages. These include, for example, Pfs48/45 , a pre-

fertilisation protein expressed on P. falciparum gametocytes and gamete surfaces that has a 

central role in male gamete fertility100. Recently, expression of a truncated form of Pfs48/45 

(Pfs48/45-10C) produced in E. coli was shown to be able to induce antibody-mediated 

transmission blocking immunity in mice. In a standardized laboratory assay, the antibodies 

reduced P. falciparum oocyst numbers by up to 100% in laboratory-bred female An. 

stephensi101.  

Pfs230 is another protein expressed on the surface of gametocytes that induces natural 

transmission blocking antibodies that act by lysing gametes in the presence of 

complement80,85,102.  

Pfs25 is a post-fertilization protein expressed on the surface of zygote/ookinete.  Antibodies 

against Pfs25 can also reduce transmission103,104 but are not naturally induced in humans.  

The protein is not expressed in gametocytes and therefore not encountered by the human 

immune system.  Pfs25 is one of the leading candidates for development of a transmission 

blocking vaccine. A Phase 1 human trial of a Pfs25-based vaccine showed that functional 

antibodies coud be elicited105 but the trial was interrupted due to adverse events induced by 

the vaccine adjuvant. 

Antibodies directed to Pfs48/45 detected in Cameroonian sera have been shown to be 

associated with TRA75,83 while TRA observed in sera from Papua New Guinea correlated with 

the amount of anti-Pfs230 antibodies. In general, many questions remain about the 

functionality of sexual stage immune responses and their acquisition in relation to exposure 

to (low density) infections.  

  

1.4.8. Microscopical and sub-microscopical parasite densities and malaria control 

and elimination 

At any given moment, only a small fraction of the asexual blood-stage parasites of P. 

falciparum will generate gametocytes106, and as a result only a fraction of infected 

individuals will carry gametocytes106,107 that are estimated to survive  from 1 week107-109 to 

several months108,110 in asymptomatic individuals. In areas where malaria is highly endemic, 

the prevalence of gametocytes circulating in peripheral blood is higher in children, the age-

group that also carries the highest densities of their precursors, the asexual blood-stage 
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parasites93,111,112. In areas of low endemicity, the distribution of gametocytes is evenly 

spread across age-groups107,113. In both cases, the patterns of gametocytes reflect those of 

asexual blood-stage parasites that are themselves a  reflection of transmission intensity and 

naturally-acquired immunity. The low occurrence of gametocytes in endemic areas is also 

partly a reflection of the low sensitivity of microscopy for their detection  especially since 

they often circulate at very low densities114-117. More recently, molecular detection methods 

have been developed to detect gametocyte densities below the microscopical threshold.  

Molecular techniques based on RNA quantification are more sensitive than microscopy. The 

reverse transcriptase polymerase chain reaction (RT-PCR) can detect different 

developmental stages of P. falciparum blood stage parasites based on stage-specific gene 

expression 118. The use of RT-PCR has proved that submicroscopic gametocytaemia is 

common in endemic areas119,120. Gametocyte prevalence determined by RT-PCR in a low 

transmission area of Sudan was found to be between 2.5 and 4.5 fold higher than estimates 

by microscopy121. However, a limitation of RT-PCR is that the presence of DNA in malaria 

blood samples may interfere with RNA, negatively affecting amplification accuracy. An 

alternative molecular technique is quantitative nucleic sequence-based amplification (QT-

NASBA). QT-NASBA122 is based on the activity of three enzymes (AMV-RT, Rnase H and T7 

RNA polymerase) and the use of two target-specific primers (one of which includes a T7 

polymerase/promotor) to amplify RNA molecules at a low temperature of 41°C, restricting 

annealing to single strand RNA alone and not to DNA. QT-NASBA has been adapted for 

simple use in the field and parasitic ribosomal and messenger RNA has been found to be 

stable for at least two months when bound to silica and stored dry at -20° C. The technique 

allows parasite quantification to be performed using small-volume (50- 100 µl) finger prick 

blood samples, and has a lower limit of 10 asexual parasites/mL and 20-100 

gametocytes/mL. Studies in malaria endemic areas of East and Central East Africa have 

shown that submicroscopic gametocyteamias quantified by QT-NASBA is common in 

asymptomatic children, but also at enrolment and after treatment of symptomatic 

children123-125. Sub-microscopic gametocyte carriers in both treated and asymptomatic 

groups were able to infect mosquitoes in membrane feeding experiments49,126, highlighting 

the importance for malaria control efforts of more sensitive molecular techniques as 

potentially valuable tools in determining the true reservoir of infection.  
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Effectively attacking malaria would indeed benefit from better knowledge of the 

human infectious reservoir since the more precise the estimates, as well as their relative 

contribution to transmission, the more efficient will be the interventions, leading to more 

effective control and, ultimately, faster elimination.  

 

2. Decline in the burden of malaria 

In recent years a substantial decline in the burden of malaria has been reported by 

several countries in sub-Saharan Africa127. Most of these countries showed an overall 50–

90% decline in the prevalence of malaria128-135. Although these findings have resulted in 

optimism about the possibilities to reduce the burden of malaria with currently available 

tools136, caution is needed when considering the challenges of controlling or eliminating 

malaria. No reduction or even increases in the burden of malaria has been  registered in 

countries such as Burkina Faso or Nigeria despite an increase in bed net coverage137,138 in 

countries with similar characteristics of malaria transmission like Nigeria. The observed 

decline in the burden of malaria in some of the countries is probably the result the WHO 

scaling up malaria control strategies. However, transmission reducing strategies would 

probably bring this much more down as new visions of eliminations highlight their 

importance.  

 

3. Outline of this thesis 

This thesis describes, in several steps, the prevalence of P. falciparum gametocytes and their 

infectiousness in an endemic area with seasonal malaria transmission: i) The within-host 

dynamics of P. falciparum gametocytes ii) The contribution of submicroscopic 

gametocytaemia to malaria transmission, iii) The relevance of sexual stage immunity to 

reducing malaria transmission.  

The dynamics of gametocytes in the human host was studied through a series of cross-

sectional surveys including individuals of all ages. Gametocytes were detected by standard 

microscopy on thick blood smears collected during distinct transmission seasons and the 

effect of age and season tested (Chapter 2). To get more insights in the effect of age on 

gametocytes, a more sensitive molecular technique for parasite quantification was further 

used (Chapter 3 & 4). As infectiousness of P. falciparum within the human host is a key 
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determinant for man-mosquito transmission, membrane feeding experiments were 

performed on malaria exposed individuals where whole blood samples were offered to 

locally reared An. gambiae mosquitoes to test the capacity of gametocyte-carrying humans 

to transmit malaria (Chapter 5). Specific immune responses against P. falciparum sexual 

stages are thought able to reduce man-mosquito transmission. In Chapter 6, the 

epidemiology of naturally acquired immune responses to sexual stages is studied. The 

implications of the overall results for malaria control and elimination are discussed.      
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Summary  

Gametocytes are the malaria parasite stages that secure the transmission from the 

human host to the mosquito. Identifying natural parameters that influence gametocyte 

carriage contribute to a better understanding of the dynamics of the sexual stage parasites 

for transmission reducing strategies. A total of 3400 blood slide readings were done during 4 

cross sectional surveys (2002-2003) including all age groups to determine the effect of 

season on Plasmodium falciparum gametocytes in a seasonal malaria transmission area of 

Burkina Faso. Entomological data were collected to determine the malaria transmission 

intensity in relation to seasons. Transmission intensity was estimated by monthly EIRs, 

averaging 28 and 32 infective bites/person/month in the wet seasons of 2002 and 2003 

respectively. The EIR in the dry seasons was below one infective bite/person/ month.   

The gametocyte prevalence was significantly higher at the start and peak of the wet season 

compared to the dry season when corrected for asexual parasite density and age. 

Gametocyte density significantly increased during the wet season after correction for 

asexual parasite density and age. In this study, season appears to be an independent 

parameter that determines gametocyte prevalence and density and should be considered to 

be included in epidemiological studies on malaria transmission.    
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Introduction  

Plasmodium falciparum is the most pathogenic specie of human malaria and an 

important cause of childhood morbidity and mortality in sub Saharan Africa. Gametocytes 

are the parasite stages that do not cause clinical disease, but are responsible for the 

transmission from the human host to the mosquito. In malaria transmission areas, the effect 

of climatic features on vectorial capacity may lead to a variation of transmission intensity 

and subsequently on the epidemiology of the malaria infections. In some areas, season-

related patterns were demonstrated in prevalence of asexual parasites1,2 and in 

gametocytes3-5. The general goal of these studies was to identify natural factors that are 

associated with changes in the malaria parasite prevalence as they serve as base-line data 

for possible interventions. The only and little detailed study conducted in Burkina Faso on 

transmission showed a slight variation in gametocyte prevalence between the wet and the 

dry season6 and concluded that this variation could not be used for transmission control. 

The objective of the present study was to determine P. falciparum gametocyte prevalence 

and density in Burkina Faso in relation to season. We have thus analyzed the relationship 

between entomological and parasitological parameters in two different seasons (wet and 

dry) in a rural area. 

 

Material and Methods  

Study area and population 

The study took place in 2002 and 2003 in two rural zones of Burkina Faso. Three villages 

were selected from each zone based on their proximities and a recent evidence of high 

malaria endemicity. The distance between zones is about 30 km. Both zones are located 30 

km north and northwest of Ouagadougou, the capital. The distance between villages inside 

each zone varies from 1 to 5 km. All together, these villages are situated in a Sudanese 

savannah area with a marked wet season from June to October. Malaria transmission in the 

area is stable and markedly seasonal. The average entomological inoculation rate (EIR) is 

estimated 300-500 infective bites/person/year7 peaking during the rainy season. P. 

falciparum is the predominant malaria species in the region, accounting for 90% of the 

infections; the remaining 8% and 2% are attributed to P. malariae and P. ovale, 

respectively8. 
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Populations belong to the Mossi tribe and are predominantly subsistence farming 

communities. We first performed a complete census, which showed that there were 2767 

residents in the six villages, each of comparable size and with similar age distributions. The 

census sizes were 348, 333, 494, 488, 680 and 424 in village 1 to 6, respectively. 

Participation of villagers to the Study followed an enrolment procedure at which the first 

subjects that came were enrolled in the study. We performed a sample sizes calculation 

using STATA 9.0 (Stata Corporation, Texas, USA) with pre-existing data on gametocyte 

prevalence in Burkina Faso6. A sample size of 76 subjects per age group (1-4, 5-9, 10-14, 15-

24 and 25+ years) would allow over 85% power to detect a decrease from 23% of 

gametocyte prevalence in children under 5 to 5% in adults above 25 years with a type 1 

error of 0.05. To correct for unexpected missing data, a minimum number of 120 individuals 

/ age group (pool of 20 individuals / age group / village) was thus included in the sample at 

each cross sectional survey to allow a statistically robust testing between age groups. 

Furthermore, we combined the five age groups into three age groups to increase the power 

of the study.  

The study was approved by the Ministry of Health of Burkina Faso. Villagers were informed 

about the purpose of the study and their consent was obtained. Benefits for the participants 

were free treatment for malaria and other common infections. In addition, protective 

means (insecticide treated bed nets) were given to volunteers that allowed the indoor 

mosquitoes collection from their houses. All participants with fever (axillary temperature 

37.5°C) were treated with chloroquine according to the current national policy during the 

study period (2002-2003). Participants diagnosed with severe infections other than malaria 

were treated with antibiotics or offered transport to a medical centre when needed. 

Entomologic data collection 

The main malaria vector in the study area is the complex Anopheles gambiae s.l., with An. 

funestus contributing less to transmission9. Two men per village were recruited and trained 

for assistance in mosquito collection. CDC light trap captures were carried out within the six 

villages to estimate the entomological inoculation rate (EIR) as described by Cuzin-Ouattara 

and collaborators7. This design of indoor mosquito collection covered all time points of the 

parasitological studies. One cross sectional survey was carried out in the dry season of 2002 
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from 19th to 30th March in 16 randomly selected houses of each village. Two longitudinal 

surveys were carried out from June to November 2002 and from April to September 2003. 

Each month, the mosquito collections were carried out in 16 randomly selected houses per 

village. These houses were each made of one room and inhabited by one person, a male 

adult or teenager, who slept under a non-impregnated bed net that we supplied. The CDC 

light trap was placed close to the bed. A monthly mosquito collection was completed per 

village within 4 weeks at the rate of 4 house captures per week. Field workers always 

returned to the same 16 houses, every month. Indoor mosquito capture was done on one 

day per house from 7:00 pm to 6:00 am. Mosquito species were identified morphologically, 

counted and stored in tubes with silica gel. The total density of An. gambiae was divided by 

the number of days of capture to define the daily biting rate per village assuming that each 

female captured by CDC light trap had a drive for biting. The monthly biting rate was 

estimated by multiplying the daily biting rate with the number of days in the month. A 

representative sample of An. gambiae mosquito thoraces and heads were examined for P. 

falciparum circumsporozoite protein (CSP) positivity index using CSP 2-site ELISA10. The 

monthly sporozoite rate was estimated, testing a maximum of randomly selected specimens 

of An. gambiae from each village. The monthly sporozoite rate for each year was obtained 

by dividing the monthly number of positive mosquitoes in ELISA on the number of 

mosquitoes tested. The monthly Entomological Inoculation Rate (number of infectious bites 

per person-time unit) was calculated as the product of the monthly biting rate and the 

monthly sporozoite rate. The uninfected biting rate was obtained by subtracting the number 

of infective bites per person-month from the monthly biting rate.  

Data on seasons and rainfall were obtained from the Direction de la Météorologie 

Nationale, Ministère des Transports, Burkina Faso. 

Parasitological data collection 

Cross sectional surveys were performed at 3 monthly intervals, at the start of the wet 

season (May 27th -June 05th 2002), the peak wet season (August 19-24th 2002), the end of 

the wet season (December 2 -13th 2002) and the dry season (April 14-19th 2003). At each 

cross sectional survey, all adults and children of both sexes initially recorded in the census 

file that arrived at our location (a usual gathering place, not a health centre) were 

systematically included in the study. Thick and thin blood films were both made on the same 
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slide from finger prick blood, and air-dried. Villagers with fever (axillary temperature 

37.5°C) were immediately treated with chloroquine according to the national policy. The 

four surveys conducted by our technical staff resulted in 3400 blood samples.  

At the CNRFP laboratory, the thick smear was stained with 5% Giemsa for 35 minutes. One 

hundred high power fields per thick smear were examined for malaria parasites. Two 

microscopists read each slide sample independently and the mean density was considered. 

A third reader was involved when the difference between the readers exceeded 30% and in 

such a case the median reading was used. Trophozoite and gametocyte densities were 

assessed by counting against 500 leukocytes of blood and converted to counts per µl by 

assuming a standard count of 8000 leukocytes/µl blood. A slide was considered negative if 

no parasite stages were found after examination of 100 fields. 

Data analysis 

Data were double entered by 2 independent data clerks and were compared for typing 

errors. The number of missing values was very low (< 0.5%). Analyses of data were 

performed using SPSS version 12.01 (SPSS Inc., Chicago, IL, USA). Parasite densities of 

positive individuals were analyzed after log-transformation. Geometric mean densities and 

medians were calculated. The distribution of positive densities of log-transformed densities 

of gametocyte- and asexual parasite was tested for normality using the Kolmogorov-

Smirnov test.  

Seasonal patterns were analyzed using the dry season survey as a reference category for the 

other three surveys. Unadjusted (crude) values of odds ratios and of the regression 

coefficient determine the effect of season on gametocytes dependent of age and asexual 

parasite density as selected potential confounding factors. Gender was left out as variable, 

because it did not influence the analysis outcome. Gametocyte prevalence and gametocyte 

density were used as dependent variables. Season, age and log asexual parasite density 

were used as independent variables. Adjusted values of odds ratios and regression 

coefficient (β) were calculated using a logistic and linear regression model to determine the 

specific effect of season on gametocyte prevalence and log density, independent of age and 

asexual parasite density.  In these models, the effect of age was assessed after 

categorization into groups 1-4 years, 5-14 years and 15 years. Odds ratios and regression 
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coefficients were calculated with 95% confidence intervals (95% CI). Comparison of parasite 

densities was performed using the Student’s t-test for normally distributed data and the 

Mann-Whitney U Test in case of data not conforming to a normal distribution.   

Contrarily to gametocyte prevalence and density and asexual parasite density measured at 3 

monthly intervals time points (cross sectional surveys) at an individual based level, 

entomological data were longitudinally collected from a representative set of houses to 

describe seasonality of malaria transmission in the area. Consequently, our data on 

entomology were not included in regression analyses for predicting gametocyte prevalence, 

but were used to support effects of seasons on gametocytes independently of individual 

based variables as age and asexual parasite density. 

Results 

Entomological and parasitological parameters 

The weather in our study area was characterized by a clear seasonality with peak rainfall 

between June and September (figure 1A). The biting rate, the sporozoite rate and EIR 

calculations were based on A. gambiae. Representative samples of 4,593 and 3,569 female 

An. gambiae (approximately half numbers of total mosquitoes collected) were tested to 

estimate transmission intensity in 2002 and 2003 respectively. All entomological parameters 

are shown in Figure 1B. Transmission intensity quantified by the number of infectious bites 

(EIR) peaked one month after the peak rainfall (Figure 1A, 1B).  
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Figure 1.  A: Mean monthly rain fall in 2002 and 2003. B: Mean number of bites 

/person/month (total bites), mean number of infective bites /person/month (EIR), mean 

number of uninfected bites /person/month (Uninf bites), monthly sporozoite rate (Spor 

rate) in 2002 and 2003. Arrows indicate cross-sectional surveys for parasitological data collection. 

A total of 10,262 mosquitoes were longitudinally captured from the start to the end of the wet 

season 2002 and showed 9,785 An. gambiae versus 477 An. funestus. From the dry season to the 

peak wet season 2003; 6,044 An. gambiae were captured versus 445 An. funestus.  

 

The entomological cross sectional survey carried out during the dry season in March 2002 

resulted in the capture of 8 An. gambiae mosquitoes. A total of 68 uninfected An. gambiae were 

captured in April in the dry period of 2003 and 0 in May 2003. Infectious mosquitoes were not 

collected in both dry seasons. While the exposure to infectious bites at the start of the wet 

season was low, exposure to uninfected mosquito bites was elevated to 32 and 200 

mosquito bites per person per month at the start of the wet season (June) in 2002 and 

2003, respectively  (Figure 1B).  

During the entire study period, P. falciparum asexual or sexual stages were microscopically 

detected in 61.8% (2,100 of 3,400 blood slides). Only asexual parasites were detected in 

43.4% (n = 1477); asexual parasites and gametocytes in 14.8% (n = 503) and only 
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gametocytes in 3.5% (n = 120). Of the children under 5 years of age 71.3% (452/634) and 

27.9% (177/634) carried asexual parasites and gametocytes, respectively. In subjects >30 

years only 23.5% (160/682) and 5.3% (36/682) carried asexual parasites and gametocytes, 

respectively. The negative association between age in years and parasite prevalence was 

statistically significant for both asexual parasites (OR = 0.94; 95% CI 0.94 – 0.95) and 

gametocytes (OR = 0.95; 95% CI 0.95 – 0.96).  

Season and asexual parasites 

Asexual parasite prevalence showed a marked seasonality (Figure 2A). Compared to the dry 

season, asexual parasite prevalence was significantly elevated at the peak (OR = 3.90, 95% 

CI 3.12-4.86; p<0.001) and end (OR = 2.31, 95% CI 1.84-2.91; p<0.001) of the wet season, 

after adjustment for age. The geometric mean of positive parasite densities was markedly 

different between the age groups at any period of the year (Figure 2B). The parasite density 

was highest at the peak of the wet season and decreased towards the end of the wet 

season. This lower asexual parasite density at the end compared to the peak of the wet 

season was significant for children aged 5-14 years (t = 3.889; df = 521; p<0.001) but not for 

adults of 15 years (t = 1.814, df= 219; p = 0.07) and children below five years of age 

(t=1.05; df= 228; p = 0.3). 
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Figure 2: Plasmodium falciparum asexual parasite prevalence (A), density (B) and 

gametocyte prevalence (C) and density (D) in relation to season in different age group, (x) 

= 1-4 years; ( ) = 5-14 years; (+) = 15+ years. The error bars show the ± limits of the 95% 

confidence intervals.  The number of blood samples collected at the start, peak and end of the wet 

season in 2002 was 968, 749 and 599, respectively. During the dry season 2003, 1084 samples were 

collected. Densities concern positive cases only.  

Season and gametocytes 

Gametocyte prevalence was positively associated with log-transformed asexual parasite 

density (OR 1.17; 95% CI 1.05 – 1.31) and was also elevated in the wet season (Figure 2C). 

Gametocyte prevalence was significantly higher at the beginning and the peak of the wet 

season, as compared to the dry season, after adjustment for age and asexual parasite 

density. In contrast, gametocyte prevalence appeared to be somewhat lower at the end of 

the wet season (Table 1).  

Densities of gametocytes were 1-2 logs lower than asexual parasites with no consistent 

difference between age groups (Figure 2D). The median of gametocyte density was 24 (IQR 
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16-40) gametocytes/µl at the start of the wet season, 32 (IQR 16-64)  at the peak of the wet 

season,  40 (IQR 36-56) at the end of the wet season and  24 (IQR 16-32) in the dry season.  

There was no difference in the gametocyte density between the start of the wet season and 

the dry season (p = 0.48, Mann-Whitney U Test). It was significantly higher at the peak and 

end of the wet season compared to the dry season (p<0.001 and p<0.001 respectively, 

Mann-Whitney U Test).  

 After adjustment for age and asexual parasite density, gametocyte density was significantly 

higher at the peak and end but not at the beginning of the wet season, when compared to 

the dry season (Table1). Despite these seasonal differences in low gametocyte densities, the 

prevalences are more robust, particularly at the start of the transmission season. 

Table1: Crude (unadjusted) and adjusted effect of season on gametocyte prevalence and 
density 
 

 
Gametocyte     
prevalence                    n/N                Crude OR (95% CI)         P-value       Adjusted OR (95% CI)

a          
P-value 

 
Start wet season       201/968        1.62 (1.28 – 2.04)        <0.001       1.81(1.36-2.42)                <0.001 

 
Peak wet season       188/749        2.07 (1.63 – 2.62)        <0.001       1.75 (1.30-2.35)               <0.001 

 
End wet season         83/599          0.99 (0.75 – 1.33)          0.97          0.68 (0.48-0.96)                 0.03 

 
Dry season                 151/1084      1.0b                                                                                 1.0b 

 
Gametocyte   

density                           Mean
c 
(n)        Crude  (95% CI) 

                   
P-value       Adjusted  (95% CI)

a                 
P-value 

 
Start wet season      28.3 (201)      0.04 (-0.027 – 0.107)   0.24          0.014 (-0.064 – 0.092)      0.73 

 
Peak wet season      37.6 (188)      0.164 (0.10 – 0.23)     <0.001       0.109 (0.028 – 0.189)       0.008 

 
End wet season        45.1 (83)        0.243 (0.16 – 0.33)     <0.001       0.152 (0.053 – 0.251)       0.003 

 
Dry season                25.8 (151)       0.0b                                                    0.0b 

 
OR =  Odds ratio;  = regression coefficient; CI = confidence interval; n=number of positive 
slides; N=total number of slides read 
aValues are adjusted for age and log transformed individual asexual parasite density  
bReference group   
cGeometric mean of positive samples 
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Discussion 

This study shows the parasitological characteristics in a rural area in Burkina Faso during 

distinct seasons. An important finding is that season appears to be a factor independent of 

age and asexual parasite density that drives gametocyte prevalence and density. The 

prevalence and density of asexual parasites and gametocytes increase during the wet 

season. Malaria transmission varies between villages but is intense in the entire study area. 

Estimated sporozoite rates are in line with results from previous studies performed in the 

same area7 as such studies described higher prevalences of infected mosquitoes reaching 20 

% during peak transmission period.  

Seasonal patterns of P. falciparum gametocyte prevalence have been described 

before4,5,11-13. Gametocyte prevalence at the start and peak of the wet season is higher than 

in the dry season. In addition, gametocyte density is also elevated in the wet season, 

although only at the peak and end of the wet season. The elevated gametocyte prevalence 

and density in the wet season generally coincides with an increased asexual parasite 

density.  

Gametocytes are derived from asexual parasites and asexual parasite density is strongly 

associated with gametocyte prevalence and density14-16. It is therefore not surprising that a 

strong correlation is found between asexual parasite density and gametocyte prevalence. 

The same argumentation may explain the negative association between gametocyte 

prevalence and age5,14,15. In addition, increased gametocyte density may be the result of a 

partial loss of immunity against gametocytes during the long dry season6, although evidence 

for the existence of specific gametocyte immunity remains inconclusive17.  

 Though gametocyte prevalence is found higher in younger children, the contribution of 

older children and adults to the infectious reservoir should be taken into consideration as 

they represent a big part of the whole population and contribute considerably to malaria 

transmission18-21. 

Our findings suggest that gametocyte prevalence and density may have an independent 

relationship with season. This follows from our finding that the effect of season on 

gametocyte prevalence and -to a lesser extent- density remains apparent after adjustment 

for age and asexual parasite density at the individual level. The development of 
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gametocytes from asexual parasites takes 8-11 days22, and variation in asexual parasite 

carriage in the weeks prior to the start of the wet season may (partly) explain the observed 

effect on gametocyte prevalence.  

Secondly, the elevated gametocyte prevalence that precedes the rise in sporozoite exposure 

and asexual parasite density may due to a sudden increase in uninfected mosquito bites in 

this period, as suggested by Paul and collaborators23. Parasites would indeed have a 

substantial fitness advantage if gametocytogenesis would be upregulated by uninfected 

mosquito bites. Our study design did not allow us to directly determine the relation 

between uninfected mosquito bites and gametocytogenesis since mosquito catches were 

not conducted throughout the dry season. The hypothesis, which gives equivocal results in 

rodent malaria studies24,25 require  future field studies with a longitudinal design26 in 

combination with more sensitive molecular detection  of gametocytes16,27.  

Studies using highly sensitive molecular methods have recently revealed that the vast 

majority of gametocytes remain undetected by microscopy16,27. Therefore our microscopical 

data only reflect the patterns of the relatively higher gametocyte densities, starting to 

increase at the beginning of the transmission season and continuing during the remainder of 

the wet season. The increased infection rate during the wet season may be the result of a 

higher complexity of infections, which may lead to an increased gametocyte production 

because of interclonal competition28. Extended duration of illness29 and/or the use of anti-

malarial drugs30 may further stimulate gametocyte carriage during the wet season. Finally, 

more efficient asexual parasite immunity halfway acquired through the wet season because 

of accumulated recent parasite exposure may also drive parasites towards sexual stage 

development6,11.  

In conclusion, linked parasitological and entomological data from an area of highly seasonal 

transmission in Burkina Faso, shows that microscopic gametocyte prevalence and density is 

independently determined by age, asexual parasite density and season. The mechanisms 

behind the seasonal component remain elusive and will be subject to further studies.  
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Summary 

Sexual stages of Plasmodium falciparum play a key role in the transmission of 

malaria. Studies on gametocytes are generally based on microscopical detection but more 

sensitive detection methods for P. falciparum gametocytes frequently detect sub-patent 

gametocytes. We have used Pfs25 mRNA QT-NASBA to quantify gametocytes in 412 samples 

from a cross-sectional study in Burkina Faso, covering all age groups, to determine age-

related patterns in gametocyte carriage and gametocyte density. The more sensitive QT-

NASBA technique gave estimates of gametocyte prevalence 3.3 fold higher than microscopy 

(70.1% versus 21.4% respectively). Prevalence of gametocytes significantly decreased with 

age. Our data suggest that asexual parasite densities are primarily responsible for the age-

related decrease of gametocyte prevalence, possibly due to developing asexual stage 

immunity. Gametocyte densities decrease also with age, primarily due to decreasing asexual 

parasite densities; only a small but significant age effect on gametocyte density may be due 

to developing sexual stage-specific immunity.  
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Introduction 

 Malaria is caused by protozoan parasites of the genus Plasmodium. The life cycle of 

these parasites consists of both asexual and sexual phases occurring in two hosts. Sexual 

reproduction occurs in the invertebrate vector, Anopheles mosquitoes for human malaria, 

while reproduction in the vertebrate host is solely asexual. However, sexual stage 

development starts in the vertebrate host where a proportion of the asexual parasites 

transform into sexual stages, called gametocytes. The gametocytes can infect mosquitoes, 

reproduce sexually and are responsible for ongoing transmission of malaria to the next host. 

Despite the importance of gametocytes for the spread of malaria, relatively little is known 

about sexual stage development in comparison to the asexual stages that cause disease 

symptoms. Until recently, studies on gametocytes were based on microscopy, which is 

rather insensitive and inaccurate in quantification of gametocytes in blood samples 

(Ouédraogo AL and others, unpublished data). Individuals without microscopically 

detectable gametocytes can infect mosquitoes1 and higher gametocyte prevalences are 

found when larger volumes of blood are used for analysis.2--4 More sensitive detection 

methods for Plasmodium falciparum gametocytes such as the Pfs25 or Pfg377 reverse 

transcriptase polymerase chain reaction5,6,7 are able to detect sub-patent gametocytes,8,9 

which can be quantified by Pfs25 mRNA QT-NASBA.10,11 The Pfs25 QT-NASBA has a detection 

limit of 20-100 gametocytes per ml of blood and the high throughput format allows its use 

in large epidemiological studies. A previous study with Pfs25 QT-NASBA showed very high 

prevalence of gametocytes in symptomatic children in Kenya.11  

 The objective of this study is to determine submicroscopic levels of gametocytes in a 

different epidemiological setting. We have used Pfs25 QT-NASBA to quantify gametocytes in 

412 samples from a cross-sectional study in Burkina Faso, covering all age groups and 

determined age-related patterns in gametocyte carriage and density.  
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Materials and Methods 

 Field study. The study took place in 6 small rural villages 30 kilometers north of 

Ouagadougou, Burkina Faso. These villages are situated in a Sudanese savannah area with a 

marked wet season from June to October. The distance between villages varies from 1 to 5 

km. Malaria transmission is highest in the wet season and peaks around September.  

P. falciparum is responsible for 90% of malaria infections with Anopheles gambiae and A. 

funestus as major vectors.12 Health care facilities are equally distributed in the six villages 

and residents live by subsistence farming.  

A cross-sectional survey was carried out at the end of the transmission season (December 

2003) at which time 412 villagers of all ages were enrolled. Adults and children of both sexes 

and exclusively of the Mossi ethnic were randomly included in the study by order of arrival 

until a minimum number of 10 individuals per age group with informed consent were 

included. A finger prick blood sample was taken from all participants. Thick and thin blood 

films were made, air-dried and stained with 5% Giemsa. For collection of nucleic acids, 100 

l of blood was mixed with 900 l of L6 lysis buffer and stored for RNA extraction. Most 

participants were asymptomatic, only 7% had a body temperature of over 37.5 °C and were 

treated with chloroquine according to the national policy after blood samples for the study 

had been obtained. The study received ethical approval of the Ministry of Health of Burkina 

Faso. 

 Microscopic detection of P. falciparum parasites. Samples were considered negative 

if no parasites were detected in 100 fields (10x100 magnification). Both asexual stage and 

gametocyte densities were simultaneously assessed by counting against 500 leucocytes in 

the thick smear. The lower limit of microscopy for gametocyte quantification was therefore 

evaluated to 16 gametocytes/ l of blood. Parasite counts were converted to numbers of 

parasites per µl by assuming a standard count of 8000 leucocytes/µl of blood. Each sample 

was read independently by two microscopists. A third reader was involved when the 

difference between the readers exceeded 30% and in such a case the median reading was 

used (CNRFP Ouagadougou).  

 Real-time Pfs25 QT-NASBA and nucleic acid extraction. Nucleic acids were extracted 

from blood samples using the Guanidiumisothiocyanate (GuSCN)/silica procedure13 and 18S 

rRNA real-time QT-NASBA14 and Pfs25 real time mRNA QT-NASBA11 were performed as 

described elsewhere. Briefly, real-time QT-NASBA for Pfs25 mRNA (Genbank accession 
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number AF193769.1) was performed on a Nuclisens EasyQ analyser (bioMérieux) using the 

Nuclisens BasicKit for amplification according to manufacturer’s instructions at a KCl 

concentration of 80mM. Reactions were performed in a total reaction volume of 10 l per 

reaction. Forward primer: 5’-gactgtaaataaaccatgtggaga-3’; reverse primer: 5’-

aattctaatacgactcactatagggagaaggcatttaccgttaccacaagtta-3’; Pfs25 molecular beacon: 5’-

TexasRed-cgatcgcccgtttcatacgcttgtaacgatcg-DABSYL-3’. For quantification, time to positivity 

is calculated, i.e. the time point during amplification at which the fluorescence detecting 

target amplicons becomes higher than the mean fluorescence of three negative controls + 

20 standard deviations (SD). The use of a standard gametocytes stage V dilution series 

allows exact calculation of the number of gametocytes present in unknown samples.10,11 

  

Data analysis. Statistical analyses were performed in SPSS 12.0.1. Because parasitological 

parameters, including total parasite and gametocyte densities, were not different between 

the 6 villages (data not shown), samples were pooled for analyses. Spearman correlation 

was used to determine correlation between results of microscopy and QT-NASBA. A 

10Log(x+1) transformation was applied to both asexual parasite and gametocyte counts to 

allow negative samples in the analysis. Geometric mean of gametocyte density was 

calculated for gametocyte positive samples and for all samples, including the negatives. To 

determine the relation to age group and asexual parasite density, logistic regression was 

used for gametocyte prevalence and linear regression for gametocyte density. The age 

range was very large and therefore we have analyzed age group as a categorical variable in 

comparison to the oldest age group of 25+ years (adults). With such analyses, a decrease of 

the correlation coefficient with increasing age group indicates a negative relation between 

age group and the parameter under investigation. 
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Results 

 Comparison QT-NASBA and microscopy for gametocyte detection. Blood samples for 

QT-NASBA analysis were collected randomly from 412 individuals with mean age of 17.5 yrs 

(range 2--83 years) after informed consent. All participants were assigned to age groups <5 

years (n = 79), 5--9 years (n = 97), 10--14 years (n = 78), 15--24 years (n = 71) and ≥ 25 years 

(n = 87). 

 Pfs25 mRNA QT-NASBA confirmed 92% (81/88) of samples gametocyte positive by 

microscopy with a geometric mean QT-NASBA gametocyte density of 3.90*103 per ml blood 

(IQR 5.11*102--2.72*104). In general, gametocyte densities detected by microscopy were 

close to the microscopical detection limit with 1 gametocyte /500 leucocytes counted in 

51.1% of these samples. The more sensitive QT-NASBA detected gametocytes in an 

additional 208 samples with a geometric mean density below the detection limit of 

microscopy (1.98*103 per ml blood; IQR 3.95*102--9.60*103).  

 Parasite prevalence. Detection of gametocytes by Pfs25 real-time QT-NASBA 

considerably increased gametocyte prevalence from 21.4% (microscopy) to 70.1%. Total 

parasite and gametocyte prevalence as detected by the two methods are shown for all age 

groups in figure 1. The detection of total parasite prevalence and gametocyte prevalence 

were higher by QT-NASBA compared to standard microscopy. A decrease of P. falciparum 

prevalence with age was found by microscopy but not by QT-NASBA, indicating that parasite 

densities in adults were merely reduced to submicroscopic levels. Gametocyte prevalence 

was negatively associated with age and 3.2--3.8 fold higher in the 3 youngest age groups (0--

15 years) compared to that in adults (25+ years) by QT-NASBA analyses (table 1A). For 

microscopy this was 1.7--1.9 fold higher (data not shown). 

 Asexual parasite densities detected by microscopy decrease significantly with age 

(Ouédraogo and others, unpublished data). Because gametocytes are derived from their 

asexual progenitors, it is important to separately detect the effects of age on asexual 

parasites and on gametocytes. Therefore, the asexual parasite density was included as an 

explanatory variable in the analyses of age-related decrease of gametocyte prevalence. 

After adjustment for asexual parasite density, no significant decrease of gametocyte 

prevalence, detected by either QT-NASBA (table1A) or microscopy (data not shown) was 

found with increasing age.  
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A 

 

B 

 

Figure 1: Parasite prevalence for the different age groups, calculated by QT-NASBA (A) and 

microscopy (B). Solid bars represent total parasite prevalence, including asexual parasites and 

gametocytes. Open bars represent gametocyte prevalence.  

 

 A significant positive association was shown between asexual parasite density and 

gametocyte prevalence (OR = 1.27; 95% CI = 1.16--1.38; p<0.001 for QT-NASBA (table 1A); 

OR = 1.12; 95% CI = 1.01--1.25; p = 0.040 for microscopy). These data suggest that the age-
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related decrease of gametocyte prevalence is probably the result of decreasing asexual 

parasite densities. 

 Parasite density. Figure 2 shows that gametocyte densities as well as the asexual 

parasite densities decrease with age. Linear regression analyses showed a significant 

negative effect of age on gametocyte density detected by both QT-NASBA (Table1B) and 

microscopy (data not shown). Individuals over 15 years of age carried lower gametocyte 

densities than children aged 0--15 years.  
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Figure 2: Mean parasite densities for different age groups, calculated for all samples. Solid 

bars represent asexual parasite density measured by microscopy. Striped bars represent 

gametocyte density measured by QT-NASBA. Numbers of individuals per group are presented on top 

of bars. Error bars indicate standard deviations. 

When asexual parasite density was included as a covariate, a significant positive relation 

was found with gametocyte density by both QT-NASBA (  = 0.18; se ( ) = 0.033; p<0.001 

(table 1B) and microscopy (  = 0.076; se ( ) = 0.036; p = 0.036).  
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Table1: Effect of asexual parasite density on age distribution of gametocyte carriage and 

gametocyte density measured by QT-NASBA  

A. Gametocyte prevalence  

Age group  N OR a (95% CI)  P-value  OR b (95% CI)  P-value 

 <5 79 3.16 (1.61-6.20)  0.001  1.53 (0.73-3.24)  0.262 

 5-9 97 3.83 (2.00-7.37)  0.000  1.86 (0.90-3.83)  0.094 

              10-14     78          3.35 (1.69-6.63)               0.001                  1.85 (0.89-3.88)                0.101 

 15-24 71 1.52 (0.80-2.88)                0.197  1.05 (0.53-2.08)  0.884 

 25 87 1.0c     1.0 c  

B. Gametocyte density d  

Age group  N β a (se (β))  P-value  β b (se(β))  P-value 

 <5 79 1.11 (0.26)  0.000  0.50 (0.28)  0.071 

 5-9 97 1.19 (0.25)  0.000  0.59 (0.27)  0.027 

 10-14 78 1.02 (0.27)  0.000  0.53 (0.27)  0.053 

 15-24 71 0.45 (0.27)  0.098  0.16 (0.27)  0.556 

 25 87 0.0 c     0.0 c 

C. Gametocyte density e, f 

Age group  N β a (se (β))  P-value   

 <5 61 0.406 (0.19)  0.037  

 5-9 78 0.369 (0.19)  0.046 

 10-14 61 0.248 (0.19)  0.201 

 15-24 44 0.213 (0.21)  0.309 

 25 45 0.0 c 

a Crude values of odds ratio (OR) and β; b OR and β adjusted for 10Log asexual parasite density. 

Asexual density OR = 1.27 (CI = 1.16--1.38, p<0.001) for gametocyte prevalence and β = 0.18 (se(β) = 

0.03; p<0.001) for gametocyte density; CI confidence interval; se standard error; c age group 25 

years was used as reference group; d All samples; e Samples from Pfs25 QT-NASBA positive 

gametocyte carriers; f Adjustment for asexual density was not significant with β = 0.023, se (β) = 

0.026 and p = 0.378. 

 

After this adjustment for asexual parasite density, the age-related difference in gametocyte 

density has mostly disappeared although a trend remained. These results suggest that age-
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related decrease of gametocyte densities mainly depend on asexual density as shown for 

gametocyte prevalence.  

Calculations of mean gametocyte densities are influenced by gametocyte prevalence 

if gametocyte-negative samples are included. Therefore, any factor that influences 

gametocyte prevalence may have been included in the analysis, without necessarily having a 

direct relation to gametocyte density. To avoid the risk of incorporating such indirect 

effects, the analyses were repeated in only QT-NASBA gametocyte-positive samples. Asexual 

density still tended to decrease with age, although the relation was not significant (p = 

0.378). However, QT-NASBA gametocyte densities still decreased slightly with age. Table 1C 

shows that the 2 youngest age groups (<10 years) carry significantly higher gametocyte 

densities compared to adults. This effect of age is independent of asexual density. Such an 

age effect was not significant for microscopy, with or without asexual parasite density as a 

covariate.  
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Discussion 

 Pfs25 real-time QT-NASBA showed an overall gametocyte prevalence of 70.1% 

during a cross-sectional study at the end of the rainy season in Burkina Faso, which is higher 

than in studies based on microscopy15,16. Although the additionally detected gametocyte 

carriers in general have very low gametocyte densities, the potential contribution of this 

group to the infectious reservoir should not be ignored (Schneider and Bousema and others, 

unpublished data).11 Therefore, transmission studies based on mosquito feeds with random 

population samples16--18 will give a more adequate estimation of population-wide 

transmission potential than studies based on microscopy.15,19--21 

Age-related decreases in both asexual parasites and gametocytes have been shown 

before.15,16,18,22--24 Such relations may be the result of developing immunity to asexual and 

sexual stages of Plasmodium falciparum over time. In this study, the age-dependent 

decrease of asexual parasites suggests the development of asexual stage immunity. 

Gametocyte prevalence and densities also decreased with age. As these stages are formed 

from their asexual progenitors, this may be the result of a lower availability of asexual 

progenitors (asexual stage immunity), of cross-stage immunity25 or of sexual stage-specific 

immunity. Our results show that the relation between age and both gametocyte prevalence 

and density depends primarily on asexual parasite density, suggesting that asexual or cross-

stage immunity may be an important determinant. This effect may obscure direct influences 

of age, i.e. anti-gametocyte immunity. We have adjusted for this effect in two different 

ways. 1) By adjusting for asexual parasite density. Although a trend was seen, age-related 

decreases in gametocyte density were non-significant after this adjustment. However, as a 

result of adjustment with highly variable asexual parasite densities, larger samples sizes may 

be required to obtain significant relationships. 2) By selecting only Pfs25 QT-NASBA positive 

samples. The influence of asexual parasite density was reduced to insignificant levels in this 

selection, while an age-related decrease in gametocyte density was still seen. This decrease 

of gametocyte densities with age, unaffected by asexual parasite densities, may be the 

result of anti-gametocyte immunity. However, the age-related, decrease of gametocytes is 

likely determined by immunity that results in primarily a decreased asexual parasite density 

rather than direct effect on gametocytes. 

The influence of asexual parasite density on gametocytes, described above, was 

based on analyses including microscopically counted asexual parasites. Although 
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microscopical detection of asexual parasites is more robust than that of gametocytes, more 

sensitive methods like QT-NASBA may also detect sub-patent asexual parasites. Ideally we 

would have included asexual parasite density determined by QT-NASBA as a covariate. QT-

NASBA is currently available for quantification of the total parasite load14 or for gametocytes 

only, but not yet for specific quantification of asexual parasites as is the case for other 

molecular biology methods such as PCR7,14.  

 Our results were obtained with samples collected at the end of the wet season. With 

a marked seasonal transmission in Burkina Faso, we cannot generalize these results to all 

seasons. It is possible that gametocyte prevalence and mean gametocyte densities as well as 

the relations with age vary over time. However, in a preceding study over various seasons, 

of which the present samples are a small part, we came to similar conclusions with 

microscopical parasite detection (Ouédraogo and others, unpublished data). QT-NASBA 

analysis of samples of cross-sectional surveys in other seasons will be performed. 
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Summary  

Malaria transmission depends on the presence of gametocytes in the peripheral 

blood. In this study, the age-dependency of gametocytaemia was examined by microscopy 

and molecular tools.  

A total of 5,383 blood samples from individuals of all ages were collected over six cross 

sectional surveys in Burkina Faso. One cross-sectional study used quantitative nucleic acid 

sequence based amplification (QT-NASBA) for parasite quantification (n=412). The 

proportion of infections with concurrent gametocytaemia and median proportion of 

gametocytes among all parasites were calculated. 

Asexual parasite prevalence and gametocyte prevalence decreased with age. Gametocytes 

made up 1.8% of the total parasite population detected by microscopy in the youngest age 

group. This proportion gradually increased to 18.2% in adults (p<0.001). Similarly, 

gametocytes made up 0.2% of the total parasite population detected by QT-NASBA in the 

youngest age group, increasing to 5.7% in adults (p<0.001). This age pattern in 

gametocytaemia was also evident in the proportion of gametocyte positive slides without 

concomitant asexual parasites which increased from 13.4% (17/127) in children to 45.6% 

(52/114) in adults (OR 1.55, 95% CI 1.38-1.74, p<0.001).  

The findings of this study suggest that although gametocytes are most commonly detected 

in children, the proportion of asexual parasites that is committed to develop into 

gametocytes may increase with age. These findings underscore the importance of adults for 

the human infectious reservoir for malaria. 
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Introduction 

The malaria parasite’s life- cycle is composed of several developmental stages, one of which 

is the transmissible sexual stage comprising male and female gametocytes. Mature 

gametocytes are apparently benign, causing no overt disease symptoms. They appear to be 

developmentally arrested at the G0 phase of the cell cycle and circulate within erythrocytes 

in the peripheral blood of the human host until they are taken up by a feeding female 

mosquito. In the mosquito midgut, gametocyte activation and fertilization take place. The 

subsequent formation of sporogonic stages results in the development of thousands of 

sporozoites that migrate to and invade the salivary glands, rendering the mosquito 

infectious to humans.  

 

During the course of an infection with Plasmodium falciparum, gametocytes are generated 

from asexual stage parasites. Only a small fraction of the asexual parasites of P. falciparum 

commit to form gametocytes 1 and as a result only a fraction of infected individuals also 

harbour gametocytes 1,2. It is now understood that this apparently low occurrence of 

gametocytes is partly a reflection of the low sensitivity of microscopy for the detection of 

gametocytes 2,3. However, the fact remains that asexual parasitaemia is not always 

accompanied by gametocyte carriage 1-3, and that the relationship between asexual parasite 

density and gametocyte prevalence or density is not straightforward. Some studies report a 

positive association between asexual parasite densities and gametocyte prevalence 4-6 and 

density 4 while others observe inverse associations 7,8 or report that the association may be 

modified by age 2.  

 

Factors that trigger and regulate the commitment of asexual stage parasites to gametocytes 

are largely unknown but are thought to include intrinsic parasite factors 9, anti-malarial 

treatment 4,6,10  and treatment outcome 4-6,11 , fever 7,8, haematological disruptions 6,12,13 and 

the presence of competing parasite strains 14,15 or species 6,16. In general the mechanism of 

sexual commitment appears to be highly plastic and environment sensitive 17,18. The flexible 

gametocyte production can be interpreted as a response mechanism of the parasite to 

stressful situations: if the survival of the asexual stage parasite is challenged, the investment 

in transmission stages increases.  
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Here, we explore age-dependent variation in gametocytaemia in a series of cross-sectional 

surveys in an area of seasonal malaria transmission in Burkina Faso, using both microscopy 

and quantitative nucleic acid sequence based amplification (QT-NASBA).  

 

Methods 

Study site and population 

The study was carried out in the vicinity of Ouagadougou, the capital of Burkina Faso. The 

area has the ecological characteristics of Sudan savannah. Participating populations from six 

villages (longitude: 1° 46’- 1°79’; latitude: 12°52’-12°61’) were of the same ethnic group 

(Mossi) and had similar age distributions. Transmission intensity is intense and seasonal in 

this region. Study subjects were given detailed explanations of the procedures, risk and 

benefits involved in the study and their consent was obtained.  The study protocol was 

viewed and approved by the Ministry of Health of Burkina Faso (Research's Authorization 

number 2000/3174/MS/SG/DEP). 

 

Blood sample collection 

Cross-sectional surveys were performed in January, May, August and December 2002 and in 

April and December 2003. Participants were randomly selected from previously determined 

age groups (0.5–4, 5–9, 10–14, 15–24 and 25+ years) based on census lists and computer 

generated randomization tables. Thick and thin blood smears were made from finger-prick 

blood. The body temperature was measured and febrile individuals who were parasitaemic 

were treated with chloroquine according to the national policy in 2002. In the cross-

sectional survey of December 2003, a single finger prick sample was used for blood smears 

and the collection of nucleic acids for quantitative-nucleic acid sequence based 

amplification (QT-NASBA); 100µL blood samples were collected from 412 volunteers of all 

ages from the six villages. The first part of the RNA extraction was done in the field following 

the original guanidinium isothiocyanate (GuSCN) RNA extraction method 19 until the nucleic 

acids were bound to silica dioxide particles. At this point, samples were stored at -20°C and 

transferred to the laboratory for completion of the extraction and QT-NASBA analysis.  
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Microscopical detection of P. falciparum parasites  

Samples were considered negative if no parasites were detected in 100 high-power fields of 

Giemsa-stained thick blood smears. Both asexual stage and gametocyte densities were 

assessed in the thick smear by counting against 500 and 1,000 leucocytes, respectively. 

Based on this approach, the lower limit of microscopy for gametocyte quantification was 

estimated at 8 gametocytes/ l of blood. Parasite counts were converted to numbers of 

parasites per µl by assuming a standard count of 8,000 leucocytes/µl of blood. Each sample 

was read independently by two microscopists and the mean density was used. A third 

reader was involved when the first two readers disagreed about the prevalence of 

gametocytes or their estimated densities differed ≥30%. In these cases the mean density of 

the two closest readings was used.  

 

Real-time Pfs25 QT-NASBA and nucleic acid extraction 

18S rRNA real-time QT-NASBA and Pfs25 real time mRNA QT-NASBA were performed as 

described elsewhere 20. Briefly, real-time QT-NASBA for Pfs25 mRNA (Genbank accession 

number AF193769.1) was performed on a Nuclisens EasyQ analyser (bioMérieux) using the 

Nuclisens Basic Kit for amplification according to manufacturer’s instructions at a KCl 

concentration of 80mM. Reactions were performed in a total reaction volume of 10 l per 

reaction. For quantification, time to positivity is calculated, i.e. the time point during 

amplification at which the fluorescence detecting target amplicons becomes higher than the 

mean fluorescence of three negative controls + 20 standard deviations (SD). The use of a 

standard gametocyte stage V dilution series allows exact calculation of the number of 

gametocytes present in unknown samples 20. The sensitivity of this method is 20-100 

gametocytes/mL.  

 

Statistical analysis  

The age-dependency of gametocytaemia by microscopy was determined by categorizing the 

population into 0.5-2, 3-4, 5-9, 10-14, 15-19 and ≥20 year-old individuals 2. For QT-NASBA 

data, numbers were smaller and age groups were combined to form 0.5-4, 5-9, 10-19 and 

≥20 year-old individuals. The proportion of asexual stage parasite carriers that also 

harboured gametocytes was calculated. Similarly, the individual proportion of gametocytes 

among total parasites was calculated by dividing the individual gametocyte density by the 
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total parasite density (asexual parasite density plus gametocyte density). An identical 

approach was used for QT-NASBA where the Pfs25 QT-NASBA gametocyte prevalence or 

density was divided by the 18S QT-NASBA total parasite prevalence or density. Age-

dependent trends in parasite carriage were determined by linear (density after log 

transformation) or logistic (prevalence) regression models and regression coefficients or 

odds ratios are presented, respectively. Estimates were adjusted for seasonality (dry, start 

wet, peak wet and end wet) where appropriate. The majority of individuals were only 

included in one of the surveys. Several individuals were included in more than one cross-

sectional survey with a time-gap between repeated measures of two months (n=484) or ≥4 

months (n=781). Adjusting for the correlation between observations from the same 

individual by generalized estimating equations (GEE) did not indicate a significant impact of 

autocorrelation (i.e. estimates and confidence intervals remained unaltered) and, therefore, 

conventional regression models were used. Trends in other variables were determined by 

χ2-test for trend or non-parametric trend tests for continuous variables. All statistical 

analyses were performed using STATA 11 [Statacorp, Texas US].  

 

Results 

Overall, the six cross-sectional studies yielded a total of 5,383 observations: 1,216 

observations from January 2002, 968 from June, 749 from August, 599 from December, 

1,084 from April 2003 and 767 from December 2003. 58.1% of the participants were of the 

female gender (3,127/5,383). Details on the seasonality of parasite carriage were presented 

previously 21. These findings were derived from 3154 individuals, 59.9% (1889/3154) of 

whom were seen once, 21.7% (685/3154) twice, 10.1% (320/3154) three times, 5.1% 

(161/3154) four times, 2.4% (75/3154) five times and 0.8% (24/3154) six times. The vast 

majority of individuals who donated a blood sample were afebrile: Only 5.1% of children 

below 15 years of age had a temperature ≥37.5°C (165/3,250) and 1.0% of older individuals 

(21/2,105).   
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Figure 1. Parasite carriage in different age groups by microscopy. Asex = asexual parasite; 

gcyt = gametocyte. The number of asexual parasite carriers (with gametocytes) for the 

different age groups was 0.5-2y: 297 (127); 3-4y: 468 (171); 5-9y: 1053(326); 10-14y: 

690(174); 15-19y: 254(72); 20+y: 285(114).  

 

Figure 2. The prevalence and density of gametocytes relative to total parasite carriage by 

microscopy. The number of asexual parasite carriers (with gametocytes) for the different 

age groups was 0.5-2y: 297 (127); 3-4y: 468 (171); 5-9y: 1053(326); 10-14y: 690(174); 15-

19y: 254(72); 20+y: 285(114). Note: data for those carrying gametocytes in the absence of 

asexual parasitaemia were excluded (see Figure 3). 
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The prevalence of asexual parasites (OR 0.59; 95% CI 0.57-0.62, p<0.001) and gametocytes 

(OR 0.70; 95% CI 0.67-0.74, p<0.001) decreased with age (Figure 1).  In parasite positive 

individuals, the log-transformed density of asexual parasites also decreased over age 

categories ( =-0.23; 95% CI -0.24 – -0.21, p<0.001). The gametocyte density in gametocyte 

carriers also decreased significantly but to a lesser extent ( =-0.041; 95% CI -0.055 – -0.028, 

p<0.001). The proportion of infections with concomitant gametocytaemia decreased with 

age (Figure 2). Whilst 37.0% (110/297) of 0.5-2 year-old carriers of asexual stage parasites 

concurrently had gametocytes, this was only true for 12.8% (62/485) of the parasite carriers 

who were 20 years old and above (OR=0.76;95% CI 0.72-0.81, p<0.001). In contrast with this 

trend, the median proportion of gametocytes among all parasites increased with increasing 

age (Figure 2). Thus, whilst gametocytes only represented 1.8% of the density of  the total 

parasite population in the youngest age group, this proportion gradually increased to a peak 

of 18.2% in adults (β=0.42; 95% CI 0.33-0.51, p<0.001). Although the majority of gametocyte 

carriers also harboured asexual parasites, microscopical evidence of concurrent asexual 

parasitaemia was lacking in 17.8% (175/984) of all gametocyte carriers. The proportion of 

gametocyte carriers without concurrent asexual parasites detected by microscopy was 

13.4% (17/127) in children below two years of age and increased with age to 45.6% (52/114) 

in the oldest age group (Figure 3; trend for age in categories OR 1.55, 95% CI 1.38-1.74, 

p<0.001).  

 

Patterns of gametocyte carriage and asexual parasite carriage were unaffected by the 

presence of fever and did not change when molecular methods were used for parasite 

detection instead of microscopy. For the limited number of samples (n=412) for which both 

18S QT-NASBA (total parasite) and Pfs25 QT-NASBA (gametocyte) prevalence and density 

data were available, total parasite prevalence (OR =0.85; 95% CI 0.63-1.15, p=0.29) and 

gametocyte prevalence (OR=0.73; 95% CI 0.63-0.85, p<0.001) both decreased with 

increasing age (Figure 4). Log-transformed total parasite density showed a decrease with 

age ( =-0.36; 95% CI -0.44 – -0.28, p<0.001) that was more pronounced than that of 

gametocyte density ( =-0.096; 95% CI -0.17 – -0.017, p=0.02). Densities of gametocytes 

detected by Pfs25 QT-NASBA in gametocyte carriers were low with a median gametocyte 
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density of 2.3 gametocytes/ L (IQR 0.4-10). Similar to observations by microscopy, the 

proportion of parasite carriers with concurrent gametocytes decreased with age. While 

81.1% (60/74) of parasite carriers in the youngest age group harboured gametocytes, this 

proportion gradually decreased to 62.0% (67/108) in the oldest age group (OR=0.75;95% CI 

0.64-0.87, p<0.001). On the other hand, and again consistent with the pattern revealed by 

microscopy, the median proportion of gametocytes among total parasites increased from 

0.2% in the youngest to 5.7% in the oldest age group (β=0.61; 95% CI 0.35-0.86, p<0.001, 

Figure 5).  

  

Figure 3. Gametocyte carriage in the absence of microscopically detectable asexual 

parasites. Bars indicate the proportion of microscopically detected gametocyte carriers in 

each age category without microscopically confirmed asexual parasites. Error bars indicate 

the upper and lower limit of the 95% confidence interval around the proportion. The 

number of gametocyte carriers (without concurrent asexual parasitaemia) for the different 

age groups was 0.5-2y: 127(17); 2-3y: 171(17); 5-9y: 326(40); 10-15y 174(25); 15-20y: 

72(24); 20+y: 114(52).  
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Figure 4. Parasite carriage by quantitative nucleic acid based amplification (QT-NASBA) in 

different age groups. Total parasite prevalence and density were determined by 18S QT-

NASBA; gametocyte prevalence and density by Pfs25 QT-NASBA. The number of parasite 

carriers (with concurrent gametocytaemia) for the different age groups was 0.5-4y: 74(60); 

5-9y: 93(79); 10-19y: 117(83); 20+y 108(67).  

 

 

 Figure 5. The age-dependent prevalence and density of gametocytes relative to total 

parasite carriage by QT-NASBA. The number of parasite carriers (with concurrent 

gametocytaemia) for the different age groups was 0.5-4y: 74(60); 5-9y: 93(79); 10-19y: 

117(83); 20+y 108(67).  
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Discussion 

This study indicates that while the global prevalence of asexual parasites and 

gametocytes is highest in children, the density of gametocytes relative to the total parasite 

concentration increases with age. This age-dependent increase is apparent by microscopy 

and by a more sensitive molecular gametocyte detection technique. These findings suggest 

that the commitment of asexual malaria parasites to the sexual pathway may increase with 

age.  

P. falciparum sexual stage commitment is crucial for the transmission of parasites from man 

to mosquito and the subsequent spread of malaria in the human population. A better 

understanding of the factors that influence the switch from asexual to sexual stage 

development in the human host would therefore provide new opportunities for malaria 

control. In the study presented here, a large data set collected during cross sectional surveys 

in two consecutive years was analyzed to explore factors associated with gametocyte 

production. Numerous studies have shown that the prevalence of gametocytes decreases 

with age 4,5,22-28. The present study attempted to determine whether this is the simple 

consequence of an age-dependent decline in the prevalence and density of asexual 

parasites 4-6 or if there may be an age-dependent production of gametocytes. The 

proportion of gametocytes relative to total parasite density increased with age in the 

current study 2. Whilst gametocytes only comprised 1.8% of the total parasite population in 

the youngest children, they comprised 18.2% of the total parasite population in the oldest 

age-group. These calculations may have been affected by the limited sensitivity of 

microscopy for detecting low gametocyte densities 29 but the association between age and 

gametocyte production was supported by two additional lines of evidence. 

 In the analyses on the proportion of asexual parasite carriers with concurrent 

gametocytaemia and the proportion of gametocytes among the total parasite population, 

the group of individuals with microscopically detectable gametocytes but no asexual 

parasites was excluded. This group was expected to form a relatively small subset of 

individuals whose asexual parasites were recently cleared by immune responses or 

antimalarial drugs. Contrary to this expectation, the presence of gametocytes in the absence 

of asexual parasites detectable by microscopy was not rare: one in six gametocyte carriers 

had no microscopical evidence of asexual parasitaemia and this proportion increased with 

age. One theoretical explanation for this observation could be that a higher proportion of 
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infections were recently cleared by anti-malarial drugs in adults. After the clearance of 

asexual parasites by chloroquine, the most commonly used antimalarial drug in the study 

area, gametocytes may have persisted since these are largely unaffected by this drug 30.  No 

information on recent drug use was recorded in this study but it is unlikely that a difference 

in drug use between children and adults would explain the observations. Disease symptoms 

and anti-malarial drug use are more common in children, not in adults 31. A more likely 

explanation is that that low density (i.e. microscopically undetectable) malaria infections 

were more frequently accompanied by microscopically detectable gametocyte densities in 

older age-groups. This would support an age-dependent increase in commitment to 

gametocyte production. 

 

A last line of evidence comes from the molecular gametocyte detection tool that is at least 

100-fold more sensitive for detection of gametocytes 32. QT-NASBA detects gametocytes at 

densities as low as 0.02 gametocytes/µL 2,20. Similar to microscopical findings, the 

proportion of gametocytes relative to total parasite density detectable by QT-NASBA 

increased with age: from 0.2% in the youngest age group to 5.7% in the oldest individuals. 

These three lines of evidence suggest that the relative density of gametocytes increases 

with age in an area where transmission is intense and adults have developed an efficient 

anti-disease and anti-parasite immune response 33,34.  

The biological mechanism behind an age-dependent increase in sexual stage commitment is 

impossible to deduce from epidemiological data. It could plausibly result from 

epidemiological differences in infections between age-groups or from a response of the 

parasite to age-acquired immune responses and the resulting lower density of asexual 

parasites. The latter would suggest a strategic advantage for parasites that may increase 

gametocytaemia in response to conditions that negatively affect asexual stage parasite 

multiplication 35. The developmental decision to enter gametocytogenesis for P. falciparum 

occurs during the formation of the asexual schizont, which can commit its entire progeny of 

merozoites either to develop once more asexually, or to enter sexual differentiation 36. This 

decision may depend on the immune stress experienced by the parasites. 

Gametocytogenesis in Plasmodium chabaudi is increased in immunized compared to naïve 

mice 37. Similar findings for P. falciparum have been reported when parasites were exposed 

to immune stimuli in vitro 38. The findings from the current study suggest a similar 
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mechanism in natural infections where gametocytaemia increases in response to age-

acquired immune responses, decreasing asexual parasite densities or other age-dependent 

factors. Anaemia and drug treatment, likely triggers of gametocyte production 6,12,13 were 

not directly measured but are likely to be more common in children than adults and can 

therefore not explain the findings of a higher relative gametocyte density in adults. It is also 

possible that the association is explained by a longer duration of malaria infections in adults. 

Children are more likely to develop symptoms and seek treatment or benefit from a 

prophylactic effect of presumptive treatment 39. Infections may have a longer average 

duration in immune adults, giving parasites more time to develop gametocytes. The half-life 

of gametocytes is 3-6 days 40,41 and the density of gametocytes could therefore increase 

cumulatively when gametocytes have been produced for a longer period of time while 

asexual parasite densities are decreasing prior to sampling. Such an effect cannot be ruled 

out in this study although the asymptomatic nature of the vast majority of infections makes 

it plausible that most individuals harboured parasites for a sufficiently long time to develop 

gametocytes 41. It is also possible that gametocyte mortality is increased in children due to 

the high asexual parasite density-mediated release of cytokines 42,43, resulting in a lower 

relative gametocyte density. Gametocyte-clearing immune responses 44 may also have 

contributed to these observations but there is currently insufficient evidence for the 

functional relevance of such responses in malaria endemic countries or its age-dependency.  

 

In conclusion, the findings reported in this study suggest that once asexual population 

growth has been controlled by the host, the transmission benefits of increased gametocyte 

densities become apparent. These findings require confirmation in longitudinal studies that 

should ideally use molecular parasite detection tools. Although the patterns observed by 

QT-NASBA were similar to those by microscopy, the former is preferable since it detects 

gametocytes over a much wider range of densities 20. An additional advantage of molecular 

detection tools is that they would also allow the detection of sexual stage committed 

asexual parasites 45, which could provide an additional level of detail in studying the 

dynamics of gametocyte production. These findings have an important implication for 

malaria control: although the prevalence of asexual parasite and gametocyte carriage 

decreases with increasing age, adults can be important contributors to the human infectious 

reservoir. Adults constitute the majority of populations in malaria endemic areas and many 
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adults harbour (low densities of gametocytes. The current study suggests that the 

commitment to gametocytaemia may increase in adults, increasing their relative 

importance for the human infectious reservoir. Adults should therefore be taken into 

consideration when implementing interventions that aim at reducing malaria transmission. 
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Summary 

Man to mosquito transmission of malaria depends on the presence of the sexual 

stage parasites, gametocytes, that often circulate at low densities. Gametocyte densities 

below the microscopical threshold of detection may be sufficient to infect mosquitoes but 

the importance of submicroscopical gametocyte carriage in different transmission settings is 

unknown. 

Membrane feeding experiments were carried out on 80 children below 14 years of age at 

the end of the wet season in an area of seasonal malaria transmission in Burkina Faso. 

Gametocytes were quantified by microscopy and by Pfs25-based quantitative nucleic acid 

sequence-based amplification assay (QT-NASBA). The childrens’ infectiousness was 

determined by membrane feeding experiments in which a venous blood sample was offered 

to locally reared Anopheles mosquitoes. Gametocytes were detected in 30.0% (24/80) of the 

children by microscopy compared to 91.6% (65/71) by QT-NASBA (p<0.001). We observed a 

strong association between QT-NASBA gametocyte density and infection rates (p=0.007). 

Children with microscopically detectable gametocytes were more likely to be infectious 

(68.2% compared to 31.7% of carriers of submicroscopical gametocytes, p=0.001), and on 

average infected more mosquitoes (13.2% compared to 2.3%, p<0.001). However, because 

of the high prevalence of submicroscopical gametocyte carriage in the study population, 

carriers of sub-microscopical gametocytes were responsible for 24.2% of the malaria 

transmission in this population. Submicroscopical gametocyte carriage is common in an area 

of seasonal transmission in Burkina Faso and contributes substantially to the human 

infectious reservoir. Submicroscopical gametocyte carriage should therefore be considered 

when implementing interventions that aim to reduce malaria transmission.   
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Introduction 

The transmission of malaria depends on the presence of mature sexual stage 

parasites, gametocytes, in the human peripheral blood. Once ingested by a mosquito taking 

a blood meal, gametocytes develop through different mosquito-specific stages and 

ultimately result in infection of the mosquito salivary glands with sporozoites. This renders 

the mosquito infectious to humans. There is growing awareness that targeting gametocytes, 

either alone or as part of integrated control programmes, is essential for malaria control and 

elimination efforts 1-4. The identification of the human infectious reservoir is therefore 

important for successful malaria control. Gametocytes frequently occur at low densities, 

making microscopical detection complicated5. In the last decade, molecular tools have 

become available to detect and quantify gametocytes at densities well below the 

microscopical threshold, in the order of 0.02-10 gametocytes/µL of blood4. Using these 

techniques, it has become evident that the proportion of gametocyte carriers in the 

population has been grossly underestimated and that the gametocyte reservoir may be 2-5 

fold larger than assumed based on microscopy 6,7. Carriers of gametocytes at 

submicroscopical levels are capable of infecting mosquitoes 7-19 although at a lower degree 

than those with gametocytes detectable microscopically in whom gametocytes are present 

at higher densities 12,18. 

The importance of submicroscopical gametocyte carriage for malaria epidemiology and 

malaria control is the subject of some debate. While carriers of gametocytes at 

submicroscopical densities were concluded to be as important for the human infectious 

reservoir as carriers of microscopically-detectable gametocytes in areas of perennial 

transmission in Kenya 18 and Thailand16, data from the Gambia suggest that 

submicroscopical gametocyte carriers only form a very small fraction of the infectious 

reservoir in this area of seasonal transmission 20. This suggests that the relevance of 

submicroscopical gametocyte carriage may depend on transmission settings. 

 

Here, we determine the contribution of submicroscopical densities of gametocytes to the 

human infectious reservoir in an area of seasonal malaria transmission in Burkina Faso.  
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Methods 

This study was conducted in September-November 2005 in the village of Laye, 30km 

northwest of Ouagadougou, Burkina Faso. The area is characterised by Sudanese savannah 

with a marked wet season from June to October and an estimated entomological 

inoculation rate of 300-500 infective bites per person per year21. Asexual parasite carriage in 

the population shows seasonal fluctuations and was recently estimated at 60-90% in 

children below 15 years of age and 20-50% in adults22. Clearance was received by the 

Ministry of Health of Burkina Faso. Children below 14 years of age were randomly selected 

from village census lists and written informed consent was obtained from parents/guardians 

after the purpose of the study was explained.  Children were accompanied to the Centre 

National de Recherche et de Formation sur le Paludisme (CNRFP) 1 to 2 days after the 

consenting procedure. At CNRFP, children underwent a clinical examination and their 

axillary temperature was measured. Children were enrolled in membrane feeding 

experiments regardless of symptoms or the presence of asexual malaria parasites or 

gametocytes. Venous blood samples (3mL) were drawn into heparin-containing tubes for 

membrane feeding and for gametocyte detection both by microscopy and by real-time 

Pfs25 quantitative nucleic acid sequence based amplification (QT-NASBA). For all 

membrane-feeding assays, 3mL venous blood samples were obtained and fed to ∼50 locally 

colony-reared 4-5-day-old female A. gambiae sensu stricto mosquitoes. The mosquito 

colony was established three years prior to the current experiments. Blood was offered via 

an artificial membrane attached to a water-jacketed glass feeder maintained at 37°C. After 

10–15 min, fully fed mosquitoes were selected and kept on glucose at 29°C7. Unfed and 

partially fed mosquitoes were removed by aspiration and discarded. Mosquito midguts were 

examined after 7 days for the presence of oocysts following dissection in 2% 

mercurochrome. A second microscopist confirmed the presence of oocysts in midguts that 

were scored positive. 

Only the total number of oocysts per batch of fed mosquitoes was recorded; not the 

number of oocysts per individual mosquito.Experiments in which a minimum of 10 

mosquitoes were examined on day 7 after feeding were included in the analyses. After 

membrane feedings, children with fever (axillary temperature ≥ 37.5°C) and malaria 

parasites were treated with artemisinin-based combination therapy according to the 

national guidelines. Individuals for whom infections other than malaria were suspected 
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were accompanied to the nearest health facility for appropriate clinical care. The study 

protocol was viewed and approved by the Ministry of Health of Burkina Faso on August 8th 

2000(Research's Authorization number 2000/3174/MS/SG/DEP). 

 

Microscopical detection of P. falciparum parasites.  

Samples were considered negative if no parasites were detected in 100 fields. Both asexual 

stage and gametocyte densities were simultaneously assessed by counting against 1000 

leucocytes in the thick smear. The lower limit of microscopy for gametocyte quantification 

was therefore estimated at 8 gametocytes/ l of blood. Parasite counts were converted to 

numbers of parasites per µl by assuming a standard count of 8000 leucocytes/µl of blood. 

Each sample was read independently by two microscopists and the mean density was used. 

A third reader was involved when the first two readers disagreed about the prevalence of 

gametocytes or their estimated densities differed ≥30%. In these cases the mean density of 

the two closest readings was used.  

 

Gametocyte detection by real time Pfs25 QT-NASBA 

Gametocyte  detection by Pfs25 QT-NASBA was performed as described elsewhere using a 

NucliSens EasyQ analyser (Bio-Mérieux) [23,24]. Nucleic acid was extracted from 50-µL 

blood samples as described by Boom et al.25. The first part of the RNA extraction was done 

in the field following the original guanidinium isothiocyanate (GuSCN) RNA extraction 

method25 until the nucleic acids were bound to silica dioxide particles. At this point, samples 

were stored at -20°C and transferred to the laboratory for completion of the extraction and 

QT-NASBA analysis. The number of gametocytes was calculated in relation to a standard 

gametocyte stage V dilution series [26], using the time point of amplification at which the 

fluorescence detecting target amplicons exceeded the mean fluorescence of three negative 

controls + 20 standard deviations. The Pfs25 QT-NASBA technique is gametocyte specific 

and has a detection limit of 20–100 gametocytes/mL24. Samples with Pfs25 QT-NASBA 

gametocyte concentrations <20 gametocytes/mL were considered gametocyte negative.  

 

Sample size considerations 

Based on a previous study in the area, we expected a gametocyte prevalence of 10-20% by 

microscopy and 70-80% by Pfs25 QT-NASBA [23]. Including 80 individuals in the membrane 
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feed experiments would allow us to detect a threefold lower infectiousness of 

submicroscopical carriers compared to microscopical gametocyte carriers12,20 when we 

assumed that 60% of the microscopical gametocyte carriers infected at least one mosquito18 

(Z =1.645; Z =0.84).  

 

Data analysis 

Data analyses were performed using SPSS version 16.0 (SPSS Inc., Chicago, IL, USA) and Stata 

10 (Statacorp, Texas US). Densities of gametocytes were analysed on a log10-scale. The 

prevalence of mosquito infection (i.e. whether an individual infected at least one mosquito) 

and the proportion of infected mosquitoes were used as outcomes of the membrane 

feeding experiments and were related to Pfs25 QT-NASBA gametocyte density, age and 

fever in logistic and linear regression models. Individual oocyst densities in mosquitoes were 

not recorded.  
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Results 

We enrolled 80 children in our study who were aged 2.9 – 13.6 years. In line with previous 

studies from the study area, microscopy indicated an asexual parasite prevalence of 82.5% 

(66/80) and a gametocyte prevalence of 30.0% (24/80; Table 1)22,23.  

 
Table 1. Baseline characteristics  

 

Age, median (IQR) 6.2 (4.8 – 9.5) 

Sex, % male (n/N) 55.0 (44/80) 

Fever, %  (n/N)* 22.5 (18/80) 

Asexual parasite prevalence, % (n/N) 82.5 (66/80) 

Asexual parasite density/µL, median (IQR)¥ 1028.5  (585 – 
3662) 

Symptomatic malaria¶ 15.0 (12/80) 

Microscopic gametocyte prevalence, % (n/N) 30.0 (24/80) 

Microscopic gametocyte density/µL, median 
(IQR)¥ 

40.0 (16 – 45) 

QT-NASBA gametocyte prevalence, % (n/N)† 91.6 (65/71) 

QT-NASBA gametocyte density/µL, median 
(IQR) 

7.9 (1.4 – 48.9) 

*Fever=temperature ≥37.5°C; ¥for carriers only; ¶defined as fever with a parasite density ≥500 
parasites/µL; †only gametocyte densities ≥20 gametocytes/mL were considered Pfs25 QT-NASBA 
positive 
 

 
When the Pfs25 QT-NASBA was used for gametocyte detection, 91.6% (65/71) individuals 

were shown to be carrying gametocytes. There was a strong correlation between 

gametocyte densities detected by QT-NASBA and microscopy for microscopically 

gametocyte positive samples (Spearman correlation coefficient = 0.60; p=0.004). For nine 

individuals RNA collection failed, i.e. no sample was collected, and therefore no QT-NASBA 

data were available.  Membrane feeds were successful for all 80 individuals but, due to 

mosquito mortality between the day of feeding and the day of dissection, only a total of 74 

membrane feeds had at least 10 mosquitoes dissected and were therefore included in the 

analyses. The proportion of infected mosquitoes was positively associated with Pfs25 QT-

NASBA gametocyte density (Spearman correlation coefficient=0.34, p=0.007; Figure 1) and 

was not influenced by a clinical malaria episode (i.e. fever with a parasite density ≥500 

parasites/µL) (p=0.18) or the presence of fever (p=0.63).The relation between the 

proportion of infected mosquitoes and Pfs25 QT-NASBA gametocyte density was best 

described by the equation Y = 0.0176Ln(X) + 0.0187 (R2 = 0.153). 
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Figure 1. The relationship between Pfs25 QT-NASBA gametocyte density and the 

proportion of infected mosquitoes in membrane feeding experiments.  

The solid line indicates the best fitted line (Y = 0.0176Ln(X) + 0.0187; R2 = 0.153). The dashed 

line indicates the estimated microscopic threshold for gametocyte detection, 8 

gametocytes/µL, when screening 100 high power fields (i.e. ~1000 white blood cells). 

 
Of those children with microscopically detectable gametocytes, 68.2% (15/22) infected at 
least one mosquito compared to 31.7% (13/41) of children with submicroscopical 
gametocyte densities (p=0.001; Table 2).  
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Table 2. Membrane feeding results  
 

 Gametocyte 
carriage 

    

 Microscopy –   Microscopy –   Microscopy +   Total p-value 

 QT-NASBA – QT-NASBA + QT-NASBA +   

Prevalence in the 
population, % (n) 

6.9 (5) 60.3 (44) 32.9 (24) 100 (73)  

Density at 
feeding, median 
(IQR)* 

N.D. 7.5 (1.5 – 27.9) 33.8 (2.9 – 120.2) 8.2 (1.6 – 
49.7) 

0.13 

Proportion of 
infectious 
individuals, % 
(n/N) 

0.0 (0/5) 31.7 (13/41) 68.2 (15/22) 41.1 
(28/68) 

0.001¶ 

Proportion of 
infected 
mosquitoes, % 
(n/N) 

0.0 (0/151) 2.3 (28/1202) 13.2 (90/683) 5.8 
(118/2036) 

<0.001¶ 

Total number of 
oocysts/infected 
mosquitoes¥ 

0/0 36/28 250/90 286/118  

Relative 
contribution to 
transmission 

0% 24.2% 75.8% 100.0%  

* by Pfs25 QT-NASBA; ¶p-value for a test for trend; ¥only the total number of oocysts per batch of fed 

mosquitoes was recorded, not the number of oocysts of individual mosquitoes. Therefore only a 

summary measure can be presented and no analyses could be done on individual oocyst densities. 

The total number of samples is lower than 80 because QT-NASBA results were not available for 9 

individuals. Two individuals without QT-NASBA results that were gametocyte positive by microscopy 

were included.  The relative contribution to transmission was based on the product of the proportion 

of infected mosquitoes (4th row) and the prevalence of this subgroup in the population (1st row).  

 
The proportion of infected mosquitoes was also higher in carriers of microscopically- 

compared to submicroscopically-detectable gametocytes (p<0.001). Oocyst densities of 

individual mosquitoes were not recorded, only the total number of oocysts observed in each 

experiment. Formal statistical testing on oocyst burden could therefore not be done 

although the total number of oocysts relative to the number of infected mosquitoes was 

higher for individuals with microscopically-detectable densities of gametocytes. The relative 

contribution to transmission of microscopical and submicroscopical gametocyte carriage 

was determined based on their prevalence in the studied population and the proportion of 

mosquitoes infected by each group. This resulted in a relative contribution to malaria 
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transmission of 24.2% for submicroscopical gametocyte carriage, compared to 75.8% for 

microscopical gametocyte carriage. 

 

Discussion 

In this study, we observed that submicroscopical gametocyte carriage is common in 

children in an area of seasonal malaria in Burkina Faso. Although, on average, carriers of 

gametocytes at submicroscopical densities infected significantly fewer mosquitoes that 

themselves developed lower oocyst burdens, the contribution to the infectious reservoir of 

this age group was considerable and estimated at 24%. 

 

There are numerous reports that suggest that some individuals can infect mosquitoes 

despite the absence of microscopically detectable gametocytes7,8,10,12,16,18,19. However, it is 

unclear (i) how important this phenomenon is in areas of seasonal malaria20 and (ii) how 

important submicroscopical gametocyte densities are for malaria transmission in the 

general, typically asymptomatic, population. Several detailed studies on the infectiousness 

of carriers of submicroscopical gametocytes have been carried out, but only after 

chemotherapeutic treatment of symptomatic malaria cases7,18,20. Because children in those 

studies all had high densities of asexual parasites in the weeks prior to the mosquito feeding 

experiments, they were more likely to have gametocytes at the time of the membrane 

feedings5. Although it was previously shown that gametocyte carriage may be common in 

asymptomatic individuals as well27, findings from clinical trials cannot be extrapolated to the 

general population. To the best of our knowledge, the infectious reservoir has never been 

determined in the general population by means of the combination of molecular 

gametocyte detection tools with membrane feeding experiments used in the study 

described here. Although our experiments were restricted to children, our findings provide 

valuable information about the infectiousness of a cross-section of the population living in 

an area of seasonal malaria transmission. At the end of the wet season, 90% of the children 

in our study area carried gametocytes23, two-thirds of them at densities below the 

microscopical threshold of detection. The infectiousness of individuals with 

submicroscopical gametocyte densities was lower than that of children with microscopical 

gametocyte densities in terms of (i) prevalence of infection, (ii) proportion of infected 

mosquitoes and (iii) oocyst burden in mosquitoes. These observations are largely in 
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agreement with previous studies12,18 although a study in symptomatic children in Kenya 

reported that submicroscopical gametocyte carriers were as likely as microscopical 

gametocyte carriers to be infectious and only the average number of infected mosquitoes 

and the oocyst burden were lower for submicroscopical gametocyte carriers18. This 

difference may be due to the different populations: we enrolled asymptomatic children 

compared to the Kenyan study where children were sampled 14 days after a clinical malaria 

episode18. We nevertheless consider the current findings biologically more plausible since 

the chance of a submicroscopical gametocyte carrier being classified as ‘infectious’ (i.e. 

infecting at least one mosquito) is likely to be lower if submicroscopical gametocyte carriers 

on average infect a lower proportion of mosquitoes12,18. Contrary to a recently published 

hypothesis that infection of mosquitoes by submicroscopical gametocytaemia may be rare 

in areas of seasonal malaria transmission20, our findings suggest that carriers of 

submicroscopical gametocyte densities may be common in these circumstances. The 

relative contribution to transmission per gametocyte carrier may be lower for 

submicroscopical gametocyte carriers but their relative abundance in a population appears 

to counterbalance this and makes them important contributors to malaria transmission. To 

reliably determine the influence of transmission intensity and seasonality on the occurrence 

and infectiousness of submicroscopical gametocyte densities, a direct comparison is needed 

where the infectiousness of different populations is assessed at several time-points during 

the season.  

 

Our study has two limitations: we determined the infectious reservoir at the end of the wet 

season only and restricted our experiments to children. Seasonal patterns in gametocyte 

carriage22 make it impossible to draw conclusions about the importance of submicroscopical 

gametocyte carriage for malaria transmission at other time-points in the season. For this, a 

series of membrane feeding experiments are needed throughout the year. We have 

previously reported that submicroscopical gametocyte carriage is less prevalent in adults in 

our study area23. Our data can therefore not be extrapolated to the whole population. 

Although we observed a significant correlation between Pfs25 QT-NASBA gametocyte 

density and mosquito infection rates, it is not possible to reliably estimate the 

infectiousness of individuals based on gametocyte density data only. Some children with a 

gametocyte density below 1 gametocyte/µL were able to infect mosquitoes in our study. 
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This is surprising since a blood meal, that is on average 2-3µL, should contain at least one 

male and one female gametocyte to result in infection. However, the phenomenon has 

been observed before [18] and may be influenced by the aggregation of gametocytes that 

favours the encounter of males and females [28]. Alternatively, we cannot rule out that 

artefacts resulting from RNA degradation have resulted in unrealistically low estimates of 

gametocyte densities in occasional samples. We also observed that some carriers of 

gametocytes at high density were unable to infect mosquitoes8,12,18. This could be partly due 

to transmission reducing immune responses8,29. These immune responses may be inversely 

related to age18,29. Further studies should therefore be conducted at different time-points, 

include all age groups and preferably incorporate transmission reducing immune responses 

and sexing of gametocytes to further elucidate the detailed processes that determine the 

composition of the human infectious reservoir of malaria in a given transmission setting. 
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Summary 

Acquisition of immunity to P. falciparum sexual stages is a key determinant for reducing 

man-mosquito transmission by preventing the fertilisation and the development of the 

parasite in the mosquito midgut.  Naturally acquired immunity against sexual stages may 

therefore form the basis for the development of transmission blocking vaccines, but studies 

conducted to date offer little in the way of consistent findings. Here, we describe the 

acquisition of anti-gametocyte immune responses in malaria exposed individuals in Burkina 

Faso. A total of 719 blood samples were collected in a series of three cross-sectional surveys 

at the start, peak and the end of the wet season. The seroprevalence of antibodies with 

specificity for the sexual stage antigens Pfs48/45 and Pfs230 was twofold lower (22-28%) 

than that for an asexual blood stage antigen GLURP (65%) or for the pre-erythrocytic stage 

antigen CSP (54%). The youngest children responded at similar frequencies to all four 

antigens but, in contrast with the immune responses to GLURP and CSP that increased with 

age independently of season and area of residence, there was no evidence for a clear age-

dependence of responses to Pfs48/45 and Pfs230. Anti-Pfs230 antibodies were most 

prevalent at the peak of the wet season (p<0.001). Our findings suggest that naturally 

acquired immunity against Pfs48/45 and Pfs230 is a function of recent rather than 

cumulative exposure to gametocytes. 
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Introduction 

Malaria transmission depends on the presence of infectious sexual stage parasites in 

human peripheral blood, and naturally acquired immune responses to these or other stages 

can affect malaria transmission in several ways. An important indirect manner in which they 

influence malaria transmission is by reducing the number of asexual parasites that are the 

source of gametocytes. Immune responses can also influence malaria transmission more 

directly. Antibodies with specificity for sexual stages have been associated with a reduction 

of P. falciparum gametocyte prevalence in semi-immune individuals living in a hyper-

endemic area of Irian Jaya, Indonesia1. Early stage (stage I and IIa) gametocytes express the 

parasite protein PfEMP1 on the erythrocyte surface38 while recently identified proteins may 

be expressed in later developmental stages38,46. Immune responses against these 

gametocyte-derived surface antigens may be related to direct clearance of gametocytes47, 

and may explain why the duration of gametocyte carriage appears to decrease with age8. A 

third way in which antibody responses can affect transmission is by reducing the 

infectiousness of gametocytes once ingested by mosquitoes.  

 

Gametocytes in infected erythrocytes and gametes that emerge from erythrocytes inside 

the mosquito midgut express stage-specific antigens on their surfaces27,50. These antigens 

have a role in the fertilization or sporogonic development of malaria parasites in 

mosquitoes43,44. A proportion of gametocytes die in the human host without being passed 

on to a mosquito, thereby exposing sexual stage antigens to the human immune system.  

Sexual stage-specific antibodies may be elicited against these antigens31 and may play a role 

in transmission-blocking immunity by preventing fertilization or the development of 

sporogonic stage parasites in the mosquito4,7,18,20,21,42,44,49. These antibody responses may 

reduce the spread of malaria in human populations. A better understanding of naturally 

acquired sexual stage immunity is thus relevant to malaria control as it may form the basis 

for the development of malaria transmission blocking vaccines.  

Pfs230 and Pfs48/45 are major gametocyte and gamete surface antigens that induce 

antibody responses in naturally exposed individuals7,18,21,42,44 that are associated with 

functional transmission reducing immunity21,25,42,44.  
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Here, we describe the profiles of naturally acquired sexual stage immune responses to 

Pfs230 and Pfs48/45 in individuals from an area of intense seasonal malaria transmission in 

Burkina Faso. 

Methods  

Study site and population 

The study was conducted in a region close to Ouagadougou, the capital of Burkina Faso 

(West Africa), where malaria is endemic. Two areas of different endemicity16 were included 

in the study to test the effect of transmission intensity on sexual stage immunity. 

Plasmodium falciparum is the predominant malaria species in the region, accounting for 

90% of the infections; the remaining 10% being attributed to P. malariae and P. ovale24. 

The study’s participants are members of subsistence farming communities and all are 

permanent residents in the area. Participants were explained the procedures, risks and 

benefits involved in the study and their consent was obtained. The study protocol was 

viewed and received a written approval of the ministry of health of Burkina Faso (Research 

authorization number 2000/3174/MS/SG/DEP).  

 

Measurement of transmission intensity 

Repeated CDC light trap captures were carried out in both areas to estimate transmission 

intensity according to both area and season. Each area consisted of 3 grouped villages. 

Indoor mosquito captures extended from June to November 2002. The CDC light trap was 

placed close to the bed of the sleeper in randomly selected houses and mosquito capture 

was done from 7:00 pm to 6:00 am. Mosquito species were identified morphologically, 

counted and stored in tubes with silica gel. A representative sample of Anopheles gambiae 

mosquito thoraces and heads were examined for P. falciparum circumsporozoite protein 

(CSP) positivity index using routine CSP ELISA2. The monthly sporozoite rate was estimated, 

testing representative samples (approximately 50% of all caught mosquitoes from each trap) 

of randomly selected specimens of mosquitoes from each village. The entomological 

inoculation rate (EIR) was calculated as the product of the sporozoite rate by the biting rate.  
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Blood sample collection 

The seasonally-spaced cross-sectional surveys for parasitological and serological data 

collection  coincided with entomological data collection in 2002. At each survey, 

approximately 300 individuals (~150 from each area of residence) were randomly selected 

from village census lists aiming to include 60 individuals (10 per village) from each of five 

pre-defined age-groups: 1-4, 5-9, 10-14, 15-29 and 

individuals were invited to a sampling point and were systematically included until the 

required sample sizes were reached.  

For parasites counts, a blood slide film was made from finger prick blood of each individual. 

For specific anti-plasmodial antibody measurements, 500 µL finger prick blood samples 

were drawn. Plasma was separated by centrifugation and stored at –20°C before use. 

Subjects with fever (body temperature ≥37.5°C) were treated with an anti-malarial drug 

(CQ) following the national policy for malaria treatment in the year of 2002. 

 

Microscopical detection of P. falciparum parasites.  

Slides were read independently by two microscopists, each examining 100 microscopic 

fields, and the mean density was used. A third reader was involved when the first two 

readers disagreed about the prevalence or estimated densities differed ≥30%. In these cases 

the mean density of the two closest readings was used. Asexual stage and gametocyte 

densities were simultaneously assessed by counting against 1000 leucocytes in the thick 

smear. The lower limit of microscopy for gametocyte quantification was estimated at 5 

parasites/ converted to numbers of parasites per µL by 

assuming a standard count of 8000 leucocytes/µl of blood.  

 

Antigens  

Plasma IgG with specificity for Pfs48/45 and Pfs230 antigens derived from an extract of 

mature P. falciparum NF54 strain gametocytes were measured by ELISA (see below). For this 

purpose, mature gametocytes were produced in an automated static culture system in red 

blood cells of blood group O+ and non immune AB serum39 and harvested after 13-14 days. 

Gametocyte purification was previously described50. Briefly, mature gametocytes were 

isolated at 37°C to prevent their activation. Parasite culture was loaded on a cushion of 63% 

Percoll (GE-Healthcare:17-0891-01) and centrifuged for 30 min at 1,500g. The purified 
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gametocytes were then aliquoted and stored at –70°C before use.  For extraction of 

Pfs48/45 and Pfs230 enriched proteins, gametocytes were re-suspended in 1% sodium 

desoxycholate / TrisNaCl and 1mM phenylmethylsulfonyl fluoride (PMSF), incubated for 10 

min at room temperature and spin 13,000 rpm for 10 min. The supernatant was collected as 

Pfs48/45 and Pfs230-enriched antigens extract and diluted in 0.25% PBSTM (2.5% milk and 

0.05% tween20 in PBS) for use. The synthetic peptide NANP6 corresponding to the repeat 

region of the circumsporozoïte protein and the synthetic peptide GLURP GMP85-213 LR6748 

were used in standardized ELISA for sporozoite- and asexual blood stage-specific antibody 

detection respectively (see below).  

 

Pfs48/45 and Pfs230 IgG Enzyme Linked Immunosorbent Assays (ELISA) 

Samples selection 

Although samples for serology were available from almost all participants, it was not 

possible to screen all samples for the presence of sexual stage antibodies due to the labour 

intensiveness and costs involved in the necessary antigen preparation. ELISA was therefore 

performed on a representative sub-sample of randomly selected samples. For this purpose, 

samples were randomly selected from the list of available samples for each age-group and 

season separately. Initially, a number of 150 samples per season i.e. 25 in age groups 1-4 

and 5-9; 50 samples in age groups 10-19 and 

testing both Pfs48/45 and Pfs230 antigens. Samples sizes were approximately similar for 

both antigens tests at the start of the wet season (137 for Pfs48/45 and 136 for Pfs230), 

peak of the wet season (149 and 148 respectively) and end of the wet season (125 and 129 

respectively). To exclude possible variation in gametocyte antigen preparations, only 

samples that were concurrently tested for both Pfs48/45 and Pfs230 antigens extracted 

from the same batch of gametocytes were used for data analysis. This resulted in an overall 

130 samples at the start and end of the wet season and 150 at the peak of the wet season 

explaining the slight inconsistencies in the sample sizes between groups of seasons, age 

groups and areas of different endemicity. 

 

ELISA experiment 

The presence of anti-Pfs48/45 and anti-Pfs230 IgG antibodies in plasma samples was 

determined by coating 10µg/mL of anti-Pfs48/45 rat monoclonal antibody (mAb) 85RF45.345 
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or anti-Pfs230 rat mAb 63F6D7-F(ab)241, diluted in PBS, in the wells of 96-well polystyrene 

U-bottom ELISA-hard plates (Sterilin®, International Medical Products B.V., Zutphen, the 

Netherlands). Free sites were blocked with 5% milk (Marvel, Premier International Foods 

Ltd, Spalding, Lincs, United Kingdom) in PBS and Pfs48/45 and Pfs230 antigens contained in 

50 µL gametocyte extract (250,000 gametocytes equivalents/well) were captured by 

overnight incubation at 4°C. The buffer (0.25% PBSTM) used for dilution of gametocyte 

extract was added to control wells (i.e. no extract added) for background measurement. A 

dilution (1:100) in 0.25% PBS/TweenMilk of the test plasma was added to the wells 

prepared with and without antigen (control wells); and incubated for 2 hours at room 

temperature. The plate was washed and bound IgG antibodies were detected by addition of 

100µL of 1:30,000 diluted Goat-anti Human IgG-PO (H+L; Pierce) for 1h 30 min at room 

temperature. Wells were washed with PBS and subsequently incubated with tetramethyl 

benzidine (TMB) substrate solution for 20 min. The colour reaction was stopped with 4N 

H2SO4, and the optical density (OD) was read at 450 nm in an Anthos 2001 Microplate 

Reader (Labtec BV). All plasma samples were tested in duplicate. Three non-immune 

plasmas from Dutch blood bank donors as negative controls and one positive control plasma 

of a Dutch man that have been exposed to malaria for almost 30 years in sub-Saharan Africa  

were included per plate. The value for IgG titer (OD) of a sample was expressed as the 

difference in OD between the antigen and control wells. The cutoff was calculated as the 

mean OD of negative controls plus two standard deviations.  A sample was considered 

positive if its background-adjusted OD was above the cutoff.  

 

GLURP and NANP6 IgG ELISA   

To evaluate anti-asexual blood stage or anti-sporozoite antibody responses, 0.2µg/mL of 

GLURP85-213 in 0.05M carbonate buffer (50µL/well) or 1µg/mL of NANP6 in PBS (50 

µL/well) were coated in flat bottom high binding microtiter 96 well plates (NUNCTM 

Maxisorp, Nalge Nunc International Corp, Life Techn, The Netherlands) at 4°C. Coated plates 

were incubated overnight at 4°C and washed with PBST. Free sites were blocked with 150 

µl/well of 2.5% milk/PBS (Marvel). Subsequently, the blocker was washed off and plates 

incubated 1h at room temperature with 50 µl of 1:200 plasma diluted in PBSTM for GLURP 

ELISA or with 50 µl of 1:100 diluted plasma for anti-sprorozoitic ELISA. Plates  were washed 

and incubated for 1 hour with rabbit anti-human IgG-Peroxidase (Dako, P-214) diluted 
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1:10,000 in PMSTM before reaction with the substrate (TMB). The staining was stopped 

after 15 min of reaction by 4N H2SO4 and the plate was read as described in Pfs48/45-

Pfs230 ELISA. Plasma was considered positive if the OD value was greater than two standard 

deviations above the mean of the negative control plasmas from Dutch blood bank donors.  

 

Statistical analysis 

Study participants were categorized into groups by age (1-4 years, 5-9 years, 10-19 years 

and tical analysis was performed using SPSS version 14.0 (SPSS Inc., 

Chicago, IL, USA). The influence of age on antibody prevalence was tested using logistic 

regression analyses using age in categories. Multivariate regression models allowed for 

confounding effects of age, season and area of residence. The Pearson 

comparing proportions and trends in dichotomous variables. Spearman’s rank correlation 

test was used to assess association between antibody levels of tested antigens. The level of 

significance was set at a two-tailed P < 0.05. 

The association between Pfs230 and Pfs48/45 antibody responses and functional 

transmission reducing activity (TRA) in the Standard Membrane Feeding Assay in previous 

studies (9, 11, 18) was presented after categorization of TRA as >50% and >90% reduction 

(9, 11, 18) and calculating odds ratios (OR) with 95% confidence intervals (95% CI). 

 

Results 

Entomology  

A representative sample of  4525 mosquitoes was tested for transmission intensity 

estimates. EIR details per season and area of residence are summarized in Table 1. Overall, 

the mean EIR was estimated to be 28.5 infective bites/person/month (ib/p/m) in the whole 

study area and this varied by season (1.47; 69.57; and 14.67 ib/p/m at start, peak and end-

wet season, respectively) and area of residence (52.4 ib/p/m versus 3.05 ib/p/m).   

Parasitology 

A total of 719 blood slide samples were collected over the three cross-sectional 

surveys. At the site with the highest endemicity, 147, 101 and 130 samples were collected at 

the start, peak and end of the wet season, respectively. At the site of lower endemicity, 

these figures were 149, 50 and 142, respectively. The overall proportion of individuals 
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harbouring asexual parasites was 63.4% (456/709); while 18.9% (136/709) carried 

gametocytes. There was a significant age-dependent decrease in both prevalence of asexual 

parasites (OR = 0.54, p < 0.001, 95% CI 0.46-0.63) and gametocytes (OR = 0.61, p < 0.001, 

95% CI 0.51-0.74) and in the density of asexual parasites (β = -0.027, se(β) = 0.003, p < 

0.001) and gametocytes (β = -0.009, se(β) = 0.022, p = 0.004) after adjustment for season 

and area of residence.   

Parasite prevalence and density showed seasonal fluctuations. The prevalence of 

asexual parasites was significantly higher at the peak compared to the start (p < 0.001) and 

the end of the wet season (p = 0.004). Similarly we observed a higher asexual parasite 

density at the peak compared to the start (p < 0.001) and the end of the wet season (p = 

0.01). Details on gametocyte prevalence are presented in Table 1. Similar to asexual 

parasites, gametocytes were more prevalent at the peak (28.5%, 43/151) compared to the 

start of the wet season (22%, 65/296) (p = 0.1) and were least prevalent at the end of the 

wet season (10.3%, 28/272) (p < 0.001). The median density of gametocytes/

higher at the peak (24, IQR 24-72) compared to the start (24, IQR 16-40) (p=0.03) and, at a 

borderline level of significance, lower compared to the end of the wet season (40, IQR 40-

57) (p = 0.09). Despite a substantial difference in EIR between them, there was no significant 

variation in asexual parasite and gametocyte prevalence between the study areas. The 

prevalence of asexual parasites was 61% (208/341) in the low transmission area and 65.6% 

(248/378) in the high transmission area (p = 0.2). The distribution of gametocytes in both 

areas is shown in Table 1. The proportion of gametocytes carriers was 17% (60/341) in the 

low transmission area and 20.1% (76/378) in the high transmission area (p = 0.4). This 

equality in parasite prevalence could reflect the high endemicity of malaria across the entire 

area (16). 
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Table 1. Entomological inoculation rates and gametocyte indices in the study population.  

 

Season  Start wet Peak wet End wet 

Number of traps Low endemic 36 
 

51 54 

 High endemic 36 
 

50 53 

EIR, (95% CI) Low endemic 0.0 
 

9.16 0.0 

 High endemic 2.9  
 

129.9 29.3  

Gametocyte prevalence   1-4  years, % (n/N) Low endemic 20.0 (6/30) 
 

40.0 (4/10) 24.0 (6/25) 

 High endemic 43.3 (13/30) 
 

42.9 (9/21) 14.8 (4/27) 

                                               5-9 years, % (n/N) Low endemic 30.0 (9/30) 
 

40.0 (4/10) 9.7 (3/31) 

 High endemic 34.5 (10/29) 
 

36.8 (7/19) 6.9 (2/29) 

                                           10-19 years, % (n/N) Low endemic 17.3 (9/52) 
 

42.1 (8/19) 13.7 (7/51) 

 High endemic 26.5 (13/49) 
 

22.9 (8/35) 5.9 (2/34) 

                                              20+ years, % (n/N) Low endemic 2.7 (1/37) 
 

9.1 (1/11) 5.7 (2/35) 

 High endemic 10.3 (4/39) 
 

7.7 (2/26) 5.0 (2/40) 

Total  22.0 (65/296) 28.5 (43/151) 10.3 (28/272) 

Low endemic = area with lower endemicity; high endemic = area with higher endemicity 
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Table 2. Factors associated with antibody prevalence to P. falciparum pre-erythrocytic and 

asexual blood stage antigens (2A) and sexual stage antigens (2B). 

2A 

   NANP-6  GLURP  

  Univariate 
Odd ratio  
(95% CI) 

Multivariate 
Odd ratio  
(95% CI) 

Univariate 
Odd ratio 
(95% CI) 

Multivariate 
Odd ratio  
(95% CI) 

Age 
 

1-4 yr 
N 

1 (ref) 
127 

1 (ref) 1 (ref) 
142 

1 (ref) 

 5-9 yr 
 
N 

2.51  
(1.48-4.25) 
144 

2.57 
(1.51-34.38) 

4.88 
(2.96-8.04) 
147 

4.88 
(2.96-8.04) 

 10-19 yr  
 
N 

4.05  
(2.49-6.59) 
230 

4.29 
(2.62-7.03) 

5.60 
(3.56-8.82) 
236 

5.59 
(3.55-8.80) 

 20+ yr  
 
N 

16.27  
(9.19-28.82) 
175 

17.16 
(9.61-30.62) 

6.44 
(3.96-10.48) 
184 

6.46 
(3.97-10.51) 

Season Start wet 
N 

1 (ref) 
269 

1 (ref) 1 (ref) 
293 

 

 Peak wet 
 
N 

6.57 
(3.96-10.91) 
143 

10.59 
(5.91-18.98) 
 

0.75 
(0.50-1.14) 
148 

 

 End wet 
 
N 

1.18 
(0.84-1.66) 
264 

1.33 
(0.90-1.96) 

0.96 
(0.67-1.36) 
268 

 

Area Low tran. 
N 

1 (ref) 
326 

1 (ref) 
 

1 (ref) 
337 

 
 

 High tran. 
 
N 

1.73 
(1.27-2.35) 
350 

1.93 
(1.38-2.71) 

0.92 
(0.67-1.25) 
372 

 

Asexual Absent 
N 

1 (ref) 
244 

 1 (ref) 
259 

 

 Present 
 
N 

0.72  
(0.53-0.99)  
432 

 1.08  
(0.79-1.49) 
450 

 

Gametocyte Absent 
N 

1 (ref) 
544 

1 (ref) 1 (ref) 
575 

1 (ref) 

 Present 
 
N 

0.57  
(0.39-0.84) 
132 

0.62  
(0.38-1.00) 

0.52 
(0.35-0.76) 
134 

0.58  
(0.38-0.90) 

ref=reference; tran.=transmission intensity; sero-reactivity related to a given variable was 
adjusted for all others variables that primarily play a significant role in the univariate model 
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2B  
 

   Pfs48/45  
 

 Pfs230  

  Univariate 
Odd ratio  
(95% CI) 

Multivariate 
Odd ratio  
(95% CI) 

Univariate 
Odd ratio  
(95% CI) 

Multivariate 
Odd ratio  
(95% CI) 

Age 1-4 yr 
N 

1 (ref) 
85 

1 (ref) 1 (ref) 
84 

1 (ref) 

 5-9 yr 
 
N 

0.17 
(006-0.47) 
84 

0.16 
(0.06-0.47) 

0.27 
(0.12-0.58) 
83 

0.27 
(0.12-0.58) 

 10-19 yr 
  
N 

0.53 
(0.28-1.03) 
138 

0.52 
(0.26-1.00) 
 

0.74 
(0.42-1.31)  
137 

0.74 
(0.41-1.31) 

 20+ yr 
 
N  

1.65 
(0.89-3.05) 
108 

1.67 
(0.89-3.11) 

0.65 
(0.35-1.19) 
105 

0.64 
(034-1.18) 

Season Start wet 
N 

1 (ref) 
137 

 1 (ref) 
136 

1 (ref) 

 Peak wet 
 
N 

1.35 
(0.78-2.32) 
149 

 4.92 
(2.85-8.50) 
148 

4.93 
(2.85-8.52) 

 End wet 
 
N 

0.69 
(0.37-1.28) 
129 

 0.73 
(0.37-1.44) 
125 

0.73 
(0.37-1.45) 

Area Low tran. 
N 

1 (ref)140  1 (ref) 
138 

 

 High tran. 
 
N 

0.69 
(0.43-1.12) 
275 

 1.20  
(0.76-1.91) 
271 

 

Asexual Absent 
N 

1 (ref) 
131 

 1 (ref) 
128 

 

 Present 
 
N 

0.65  
(0.40-1.05) 
284 

 0.98  
(0.62-1.55) 
281 

 

Gametocyt
e 

Absent 
N 

1 (ref) 
326 

 1 (ref) 
321 

 

 Present 
 
N 

0.72  
(0.40-1.31) 
89 

 1.06  
(0.63-1.78) 
88 

 

ref=reference; tran.=transmission intensity; sero-reactivity related to a given variable was 
adjusted for all others variables that primarily play a significant role in the univariate model 

 

Serology  

Plasma samples were screened for antibody response profiles in the population and 

related to age (Figure 1), season (Figure 2) and area of residence (Figure 3). The average 
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prevalence of IgG antibodies was 54.3% (367/676) for the sporozoite antigen NANP6 and 

64.9% (460/709) for the asexual blood stage antigen GLURP. In contrast to sporozoite and 

asexual blood stage antigens, sexual stage-specific antibody responses were only detected 

in a minority of the samples: 22.2% (92/415) contained anti-Pfs48/45 IgG and 28.6% 

(117/409) anti-Pfs230 IgG. 

Effect of age on antibody responses  

Among children below 5 years, the prevalence of antibodies with specificity for NANP6 

(23.6%) and GLURP (32.4%) was broadly similar to those for Pfs48/45 (27.1%) and Pfs230 

(38.1%). As expected, the prevalence of asexual stage antibodies to NANP6 and GLURP 

increased significantly with age (Adjusted OR = 2.35, p < 0.001, 95% CI 1.98-2.78; Adjusted 

OR = 1.79, p < 0.001, 95% CI 1.53-2.08 respectively) reflecting cumulative exposure to 

infection, while no evidence of an age-dependent increase in sexual stage-specific antibody 

responses was observed (Table 2). 

 

Figure 1. Prevalence of antibodies against pre-erythrocytic stage (NANP6), asexual blood 

stage (GLURP) and sexual stage (Pfs48/45 and Pfs230) in relation to age.  

The error bars show the ± limits of the 95% confidence intervals.  The number of plasma samples 

tested per age group (1-4, 5-9, 10-19 and  20 years of age) are  127, 144, 230 and 175 for NANP6; 

142, 147, 236, 184 and 184 for GLURP; 85, 84, 138 and 108 for Pfs48/45 and 84, 83, 137 and 105 for 

Pfs230 respectively. 
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 The seroprevalences for Pfs48/45 and Pfs230 in the youngest children (27.1% and 38.1% 

respectively) were comparable to those in adult (38% and 28.6% respectively). However, 

there was a significant decline of Pfsf48/45- and Pfs230-specific antibody prevalence from 1-

4 year-olds to  5-9 year-olds ( 2 = 13.61, p = 0.001 and 2 = 12.02, p < 0.001 respectively) 

followed subsequently by a significant increase with increasing age (OR = 3.09, p < 0.001, 

95% CI 2.02-4.71 and OR = 1.41, p = 04, 95% CI 1.01-1.97 respectively) (Figure 1). 

 

Differences between seasons and areas  

GLURP antibody responses showed no variation according to season or area whilst, 

conversely, the prevalence of NANP6 antibodies differed by both season (Figure 2) and area 

of residence (Figure 3). Antibodies with specificity for NANP6 were detected in 83.9% of 

individuals at the peak wet season while this proportion was significantly lower at the start 

(44.2%) and at the end (48.5%) of the wet season. Thus the prevalence of NANP6 antibodies 

at the peak wet season was significantly higher than either at the start ( 2= 60.34, p < 0.001) 

or the end of the wet season ( 2 = 48.91, p < 0.001). There was also a difference in NANP6 

antibody prevalence between the area of high transmission (60.9%) and the area of lower 

transmission (47.2%; 2 = 12.61, p < 0.001).  

The prevalence of sexual stage-specific antibodies in relation to season is presented in 

Figure 2. 

Pfs48/45 antibody prevalence increased at the peak of the wet season (27.5%) but did not 

significantly differ from the prevalence at either the start (21.9%) or the end of the wet 

season (16.3%). The variation in Pfs230-specific antibody prevalence was significant, 

reaching 51.4% at the peak compared to 17.6% at the start ( 2 = 35.29, p < 0.001) and 13.6% 

at the end of the wet season ( 2= 42.99, p < 0.001). This increased Pfs230 antibody 

prevalence at the peak of the wet season remained significant after adjustment for age 

(Adjusted OR = 4.93, p < 0.001, 95% CI 2.85-8.52, Table 2). Both antigens are on the surface 

of the gametocyte and were expected to have shown similar patterns of immune response. 

The difference observed in their immune responses may be dependent on the difference in 

their immunogenicity, Pfs230 being more immunogenic than Pfs48/45 (22). 
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Figure 2. Prevalence of antibodies against NANP6, GLURP, Pfs48/45 and Pfs230 in relation 

to season. Bars indicate the proportion of positive individuals in each area of residence. Error bars 

indicate the upper limit of the 95% confidence interval around the proportion. The number of 

individuals (with antibodies) during the different seasons was: start-wet season: 119 (269) for 

NANP6, 195 (293) for GLURP, 30 (137) for Pfs48/45, 24 (136) for Pfs230; peak-wet season: 120 (143) 

for NANP6, 89 (148) for GLURP, 41 (149) for Pfs48/45 and 76 (148) for Pfs230; end-wet season: 128 

(264) for NANP6, 92 (176) for GLURP, 17 (125) for Pfs48/45 and 21 (129) for Pfs230. 

 

In terms of area of residence, there was no difference in the prevalence of antibodies with 

specificity for either Pfs48/45 or Pfs230 (Table 2). 

  

Figure 3. Prevalence of antibodies against NANP6, GLURP, Pfs48/45 and Pfs230 in relation 

to the area of residence. Bars indicate the proportion of positive individuals in each area of 
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residence. Error bars indicate the upper limit of the 95% confidence interval around the proportion. 

The number of positive individuals in both area of residences was: high transmission area: 213 (350) 

for NANP6, 238 (372) for GLURP, 55 (275) for Pfs48/45 and 81 (271) for Pfs230; low transmission 

area: 154 (326) for NANP6, 222 (337) for GLURP, 37 (140) for Pfs48/45 and 36 (138) for Pfs230.  

 

The relationship between antibody responses and parasite carriage is shown in Table 2. 

Both anti-NANP6 and anti-GLURP immune responses were significantly higher in individuals 

negative to gametocytes (Adjusted OR = 0.62, 95% CI 0.38-1.00, p = 0.04 for NANP6 and 

Adjusted OR = 0.58, p = 0.01, 95% CI 0.38-0.90 for GLURP).The seroprevalences for Pfs48/45 

and Pfs230 antibodies were not influenced by the concurrent presence of asexual parasites 

or gametocytes. 

 

Correlation of antibody responses between the different antigens  

We also examined the correlation between antibody responses at the individual level. As 

presented in Table 3, the levels of antibody directed to NANP6 and Pfs230 and those to 

Pfs230 and Pfs48/45 were strongly correlated (p ≤ 0.001.) Antibody levels to GLURP were 

associated with those to NANP6. 
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Table 3. Spearman rank correlation of level of anti-sporozoite and anti-asexual blood 

stage antibody with level of anti-sexual stage antibody. 

 

r = spearman correlation coefficient; N = number of individuals. Paired NANP6-GLURP, NANP6-Pfs230 and 

Pfs48/45-Pfs230 data showed strong correlations (p ≤ 0.001). 

 

Table 4. The association between sexual stage antibody prevalence and functional 

transmission reducing activity in three studies using the same ELISA methodology. 

 

  Sexual stage antibody responses 

 Pfs48/45 antibody 
prevalence (n=350) 

Pfs230 antibody prevalence 
(n=344) 

Functional transmission 
reducing activity 

OR (95% CI) p-value OR (95% CI) p-value 

 >50% reduction 3.76 (2.27-
6.23) 

<0.001 1.87 (1.18-
2.96) 

0.007 

 >90% reduction 6.08 (3.21-
11.49) 

<0.001 2.84 (1.47-
5.50) 

0.002 

This summary table combines data from Tanzania and Indonesia (9, 11, 18) that used identical ELISA protocols 

and related antibody prevalence to functional transmission reducing activity (i.e. the percentage reduction in 

mosquito oocyst numbers in test samples compared with controls) in standard membrane feeding assays. 

OR=odds ratio; 95% CI=95% confidence interval 

 

 

 

 NANP6 r (P-value)  

N 

GLURP r (P-value)  

N 

Pfs48/45 r (P-value)  

N 

Pfs230 r (P-value)  

N 

NANP6   0.209 (<0.001)  

671 

0.53 (0.29) 

390 

0.170 (0.001) 

384 

GLURP    -0.067 (0.17) 
  
413 

-0.039 (0.43) 

407 

Pfs48/45    0.414 (<0.001) 

409 

Pfs230     
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Discussion 

As in previous studies6,9,18,23,26,43,44, we found evidence for naturally acquired immunity 

against P. falciparum sexual stages. Overall, 22 to 28% of our samples were positive for 

sexual stage-specific antibodies while 54 to 65% were positive for pre-erythrocytic- and 

asexual blood stage-specific antibodies. Unlike immune responses to NANP6 and GLURP, we 

found no evidence for age as a predictor for anti-Pfs48/45 and anti-Pfs230 antibody 

responses. Our data do reveal that sexual stage-specific antibody responses increase 

markedly during the transmission season. This would indicate a role for recent exposure to 

parasite antigens in the short-term boosting of sexual stage-specific immunity, although this 

requires confirmation in longitudinal studies.  

 

The lower prevalence of sexual stage-specific antibodies compared with either pre-

erythrocytic- or asexual stage-specific antibodies in the same study population confirms 

previous findings6,13,18. In contrast to antibodies directed to sexual stage antigens, those 

directed to an asexual blood stage antigen (GLURP) increased with age, as described 

before14,15,17,19,32, with no apparent season-dependent changes17,19. This would suggest that 

anti-GLURP antibody responses are both long-lived and stable even when antigen exposure 

decreases in the low transmission season and/or with increasing age. If sexual stage-specific 

antibody responses persisted in the absence of boosting, we would expect to see a similar 

pattern of increasing antibody prevalence with increasing age, but, despite a significant 

increase in the prevalence of sexual stage-specific antibodies from 5-9 years of age onward 

in our population, the close similarity of the prevalences in the youngest children and in 

adults above 20 years old of age effectively obscured any such association.  

A single recent study reported an age-dependent increase of sexual stage-specific antibody 

responses, although it should be noted that that study concerned pre- and post-treatment 

determinations in residents of an area with a very low rate of transmission and is therefore 

not directly comparable with the study we report here11. The results of other studies of the 

age-dependence of such responses are inconsistent6,18,30. In Cameroon, the level of 

transmission blocking immunity, as measured in membrane feeding experiments, was not 

related to age3,5. The lack of age-dependence of sexual stage-specific antibody responses 

has often been attributed to their short-lived nature and hence a requirement for frequent 

boosting30,40. Cumulative immune memory, likely the result of repeated exposure to 
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infections, is thought to form the basis of the age-dependent increase of asexual blood 

stage-specific immune responses51. Immature and/or short-term memory for responses 

directed to sexual stage antigens is plausible30 and possibly explained by a predominantly T-

cell independent induction of the immune response29.  

Interestingly, the prevalence of sexual stage-specific IgG responses in the youngest children 

in our study group was similar to that for the asexual (GLURP) and pre-erythrocytic (NANP6) 

antigens, suggesting that sexual stage-specific immune responses may readily develop in 

response to antigen exposure early in life. Since age-related cumulative exposure seems to 

have little effect on sexual stage immune responses, we speculate that the greater 

prevalence in young children may reflect the initial immune response to gametocytes as 

observed in individuals after a single or limited number of exposures to infection with either 

P. falciparum6,22,33 or P. vivax31. The remarkable nadir in both Pfs48/45 and Pfs230 

seroprevalences in children aged 5-9 years old was previously observed in populations 

exposed to endemic malaria. The studies found that sexual stage immune responses 

decreased with age in the younger age groups but there was no further decline in older age 

groups6,18. Sexual stage antibody responses in young children are likely to be the result of 

high gametocyte exposure in this age group. In older children, gametocyte exposure 

decreases, possibly explaining the reduction in antibody prevalence. In adults gametocyte 

exposure may be lowest but sexual stage commitment during infections may be relatively 

increased34 and antibody responses to sexual stage antigens may become more long-lived, 

reflecting a maturation of the immune response.  

 

An important finding from the study reported here is that sexual stage-specific antibody 

responses may vary with season. Pfs230-specific antibody prevalence, in particular, 

increased during the peak of the transmission season, suggesting that the level of sexual 

stage-specific antibodies may reflect recent exposure. A possible association between sexual 

stage immunity and recent antigen exposure is also suggested by the correlation between 

NANP6 and anti-sexual stage antibodies. In contrast to those directed to GLURP, NANP6-

specific antibody responses seemed to be short-lived. Thus the pattern of variation in 

NANP6 antibody responses closely reflected the seasonality of transmission in our study, 

indicating that seroreactivity to NANP6 is dependent on recent exposure and therefore 

highly susceptible to changes in sporozoite exposure. The close association we observed 
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between NANP6-and Pfs230-specific antibodies may be an indication that the immune 

responses to sexual stage antigens are therefore also related to recent exposure to 

infection, explaining the seasonality of the anti-Pfs230 antibody response. Our results 

showed that many infections with asexual parasites are accompanied by gametocytes35,37 

and this proportion will be further increased if sub-microscopic gametocyte densities are 

considered10. Since asexual parasite carriage increases during the transmission season36, 

exposure to gametocytes increases in parallel, possibly explaining the seasonality of anti-

sexual stage IgG responses. However, the seasonality of sexual stage-specific immune 

responses28 has been rarely studied, making any comparison difficult. The importance of 

recent exposure to infection for the acquisition of sexual stage-specific immunity has been 

reported from previous studies in which the prevalence of anti-Pfs48/45 and anti-Pfs230 

antibodies increased in migrants from a non-endemic to an endemic area9 and where 

functional transmission reducing immunity was shown to increase during the transmission 

season12. We did not determine functional transmission reducing immune responses in the 

current dataset. Three studies that used the same methodology for determining total IgG 

antibody responses to Pfs48/45 and Pfs230 did relate these responses to functional 

transmission reducing activity (TRA) in the standard membrane feeding assay9,11,18. When 

combined, these data show a strong association between Pfs48/45 and Pfs230 antibody 

prevalence and different levels of TRA (Table 4). These data support the current findings on 

sexual stage antibody responses that plausibly reflect associations between functional TRA 

and age, season and recent exposure to malaria antigens. 

 

We further tried to explore the relevance of recent exposure for the acquisition of parasite 

stage-specific immunity by relating antibody responses to concurrent asexual parasite and 

gametocyte carriage. Our results showed that NANP6 and GLURP –specific antibodies appear 

to negatively associate with gametocytes suggesting that immune responders to these two 

antigens are more likely to have a shorter period of asexual parasite carriage that will 

translate in a lower likelihood of gametocyte carriage. However, we found no effect of anti-

Pfs48/45 or anti-Pfs230 antibodies on gametocyte carriage. Concurrent gametocytes may be 

positively related to development of sexual stage-specific immune responses11 although a 

straightforward relationship is not always evident6,18. Immune responses to gametocyte 

antigens induced prior to sampling may persist for several weeks after gametocyte 
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clearance11 or following reduction of gametocytaemia to sub-microscopic levels, whilst 

acquisition/boosting of responses to gametocytes circulating at the time of sampling may 

take longer e.g. after their death/destruction and subsequent clearance. Intuitively, then, an 

antibody response that is boosted by recent gametocyte antigen exposure can better be 

determined in studies that determine gametocyte carriage at both microscopic and 

submicroscopic level repeatedly and relate sexual stage-specific antibody responses to 

previous as well as current gametocyte exposure. 

 

In summary, plasma samples from malaria exposed individuals were analyzed to provide 

indications of the development of naturally-acquired immunity to P. falciparum sexual 

stages. Our findings indicate that sexual stage-specific immune responses are naturally 

acquired in the study population and that they are a function of recent rather than 

cumulative exposure to gametocytes. This occurs after limited exposures to gametocytes in 

the youngest age-groups, but boosting is also evident during the peak of the transmission 

season. A next step would be to determine the functional importance of sexual stage-

specific antibody responses in this population that, despite developing both asexual and 

sexual stage-specific antibody responses, is repeatedly exposed to intense transmission35,36. 
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The work reported in this thesis describes the prevalence of gametocytes in human 

populations in Burkina Faso and factors related to their transmission from man to mosquito. 

Gametocyte detection in human blood samples is primarily based on microscopy and has 

included the more sensitive molecular technique Pfs25 QT-NASBA to quantify sub-

microscopical gametocytaemia. The infectiousness of gametocytes in the field is determined 

by direct membrane feeding assays and the contribution of both microscopical and sub-

microscopical gametocytaemia to malaria transmission. Antibody responses against 

transmission blocking vaccine candidate antigens Pfs48/45 and Pfs230, important 

modulators of gametocyte infectivity, are detected in field sera and their implication in 

transmission reducing activity (TRA) discussed. The overall results are integrated in a final 

discussion on their relevance for malaria transmission reducing interventions, malaria 

control and elimination strategies.     

 

7.1. The epidemiology of Plasmodium falciparum gametocytes 

Gametocytes and Anopheles mosquito vectors are the two components necessary for 

malaria transmission in humans. Successful malaria transmission from man to mosquito 

depends on the presence of infectious gametocytes in the peripheral blood of the human 

host. It is well acknowledged that targeting gametocytes either alone or following the 

introduction of control interventions will contribute to reducing malaria transmission and 

thereby assist in lessening malaria associated morbidity and mortality1-3.    

In Chapter 2 of this thesis, we determined whether season plays a role in the prevalence of 

gametocytes in an area of high malaria endemicity in Burkina Faso. Knowledge of seasonal 

gametocyte distribution can contribute to the appropriate design of interventions; correctly 

timed transmission reducing interventions may allow a more efficient reduction of malaria 

transmission. In our study, approximately one fifth of the study population harbored 

gametocytes as detected by microscopy. There was a clear increase in the prevalence and 

density of gametocytes during the peak transmission season (peak of the rainy season) 

compared to the period when transmission was practically absent (dry season). At the peak 

transmission season, we observed a positive association between gametocyte prevalence 

and density with asexual parasite density. This positive association between gametocytes 
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and high densities of asexual parasites is not novel4-7. In a low endemic area of Sudan, a 4-

fold increase from the dry season to the wet season has been observed in the prevalence of 

gametocytes10. In areas with different malaria endemicity in Tanzania, the proportion of 

gametocyte carriers increased significantly from the dry to the wet season with a difference 

of 4 to 21%11,12. In Cameroon, similar seasonal trends in gametocyte prevalence have also 

been observed10,13,14.  Most adults carrying gametocytes concurrently carried low densities 

of asexual parasites8,9 suggesting that gametocyte carriage is not always associated on high 

asexual parasite densities2. Asexual parasite density is possibly not the only signal that 

drives gametocyte prevalence at the peak transmission season, since human immune 

responses that target asexual blood stage replication, induced by super-infections (a new 

infection establishing in parallel with an existing one) during the wet season10,15 may also 

increase gametocyte production. Although not monitored during our study, it is also 

possible that hematological disruptions like anemia, commonly observed in children 

exposed to intense transmission, associate with high gametocyte prevalence7,16,17 during the 

wet transmission season. 

The two-fold increased gametocyte prevalence at the start of the wet season compared to 

that during the dry season is intriguing. This rise appeared to be independent of an 

increased exposure to sporozoites (which occurred after the start of the transmission 

season), age or asexual parasite density. We hypothesized that uninfected mosquitoes bites, 

particularly more common during this period of the year, may induce gametocyte 

production. This association was previously  suggested18 and would indicate an adaptation 

of parasites to ensure that an up-regulation of gametocytogenesis strategically coincides 

with an increase in the presence of mosquitoe bites to maximize transmission efficiency. 

However, recent studies by Billingsley and colleagues19 and Shutler and colleagues20 

reported equivocal results on gametocyte production rates after mosquito probing 

indicating that the association between sexual stage commitment and mosquito bites needs 

confirmation in future studies, as well as the elucidation of the possible stimulus for 

gametocytogenesis. 

Our findings also reveal that age drives gametocyte distribution. We further looked 

at this age effect in Chapter 3 and 4 using the molecular QT-NASBA technique for 

gametocyte detection. In Chapter 3, gametocyte prevalence and density were found to vary 

with age both by microscopy and QT-NASBA9,21. Our finding that gametocyte carriage is 
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negatively related to age, being more common in younger individuals, is supported by 

several studies4,5,11,13-15,22,23. Our data suggest that asexual parasite densities may primarily 

be responsible for the age-related decrease of gametocyte prevalence being an indirect 

consequence of the age related-decrease of asexual parasite densities9. We hypothesize 

that asexual stage immunity that gradually increases with age is accompanied by asexual 

parasite clearance that ultimately result in a lower prevalence of gametocytes in adults. 

However this seems somehow to be compensated by an increase gametocyte production 

with age as observed in Chapter 4. 

In Chapter 4, we try to verify the above mentioned hypothesis by determining whether the 

age-related decrease of gametocyte carriage is a consequence of an age-dependent 

clearance of asexual parasites2 or if there may be an age-dependent production of 

gametocytes. We observed that the proportion of gametocyte carriers relative to the total 

parasite population in increased in adults compared with the youngest children both by 

microscopy (from 1.8% to 18.2%) and by QT-NASBA (0.5% to 5.7%). Individuals that carry 

only gametocytes also increased in proportion from children (13.4%) to adults (45.6%). In 

subjects carrying only gametocytes, all asexual parasites may have converted to 

gametocytes or may have been cleared either by treatment or by partial immunity. Because 

antimalarial treatment is a rare event in adults and naturally acquired immunity is not 

sterilizing, this may suggest that asexual parasites declined to submicroscopical level while 

induced gametocytaemia persisted for several months24-26. This actually demonstrates that 

gametocyte production increases with increasing age independent of asexual parasite 

carriage that itself decreases with increasing age. From our epidemiological study, it is 

difficult to directly identify the cause for this increase in gametocyte production with age. 

Although we overall observed an age-related increase of gametocyte production, it is clear 

that gametocyte carriage stabilizes at a lower level in adults compared to children likely 

because of the lower carriage of their generators, i.e. the asexual parasites. A plausible 

explanation for this increase in gametocyte production in adults would be that fitness 

advantages for the parasite may increase the shift from asexual parasite to gametocyte in 

response to stressful conditions commonly observed in adults and possibly related to age-

acquired immunitythat negatively affect asexual stage parasite multiplication. Together with 

findings from chapter 3, this indicates that asexual parasites may be the main drivers of 

gametocyte carriage but an age-dependent increase in gametocytogenesis could be an 
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(incomplete) compensatory mechanism for the lower asexual parasite densities in older 

individuals.  

Due to their overall higher representation in the total population, our findings suggest that 

the contribution of adults to the human infectious reservoir is probably substantially greater 

than appreciated to date under the assumption that these low gametocytaemias remain 

infectious.  

 

7.2. The contribution of submicroscopic gametocyte carriage to malaria 

transmission 

When gametocyte carriers are identified in field studies, gametocyte densities in the 

peripheral blood are at least an order of magnitude lower than those of asexual 

parasites4,5,9,14,17,21,27,28. Little is known about the reasons for this paucity of gametocytes as 

compared to asexual parasites in endemic areas29. There is some evidence that gametocyte-

specific immune responses can down-regulate gametocytaemia independent of asexual 

stage-specific30 immunity but the nature and targets of such functional immunity have not 

been identified. At least part of the low gametocyte prevalence can be explained by the 

relative insensitivity of microscopy for detecting gametocytes. In our study, thick smears 

were read by two independent microscopists and gametocytes counted against 500 

leucocytes in 100 microscopic fields with a limit of detection of 16 gametocytes/ L. 

Consequently, individuals with less than 16 gametocytes/ L were unlikely to be detected by 

microscopy. In this context, false negative gametocytaemia is not a rare event26. We 

determined the relevance of this phenomenon by asking several readers to read the same 

slide for gametocytes (figure 1).  

The likelihood of gametocyte detection increased substantially with increasing the number 

of observers. Our results demonstrate our routine standard protocol (2 miscroscopists once 

read the same slide) detected gametocytes in 18% of the slides while this increased to 33% 

when 5 microscopists read the same slide twice.  Although this finding indicates that 

gametocyte detection by microscopy can be improved, this will substantially increase the 

workload for an already laborious technique and the reliability of the final result is still 

dependent on the experience of the slide readers.   
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Figure 1: The rate of gametocyte positivity as determined by microscopy increases with 

increasing the number of slide readers. Each slide has been read twice by all the 5 readers 

(i.e. the maximum number of times a slide was read was 10 times); there was variation in 

the microscopic fields that were examined. 

 

These limitations demonstrate the low sensitivity of microscopy and its inaccuracy in 

gametocyte quantification at very low concentrations. The prevalence of gametocytes in 

malaria endemic areas is grossly underestimated when using standard microscopy.  

In Chapter 3, Pfs25 Real-Time QT-NASBA, which has a lower detection limit of 20-100 

gametocytes/mL31 and 10 asexual parasites/mL32, is used to detect and quantify gametocyte 

density. Pfs25 QT-NASBA in our study confirmed the age-related pattern in the prevalence 

of gametocytes that was previously reported by microscopy4,5,14,15,22. The overall prevalence 

of gametocytes as detected by microscopy (~20%) increased 3.3 fold by QT-NASBA to 70%, 

indicating that a considerable proportion of gametocyte carriers is missed by microscopy 

(Chapter 3)9. In a highly endemic area in Kenya, gametocyte prevalence in clinical malaria 

cases was reported to be 86% by QT-NASBA compared to 22% by microscopy. In a low 

transmission setting of Tanzania, the prevalence of sub-microscopical gametocytaemia 

reached 15% in the general population while an estimate by microscopy indicated only ~1% 

gametocyte carriers33. These findings provide evidence that sub-microscopical gametocyte 

carriers are common in endemic areas and may be relevant for malaria transmission. We 

next investigated this issue by directly determining the infectivity of microscopic and 

submicroscopic gametocyte carriers by membrane feeding assays. This was the first study to 

use molecular gametocyte detection tools in combination with direct assessment of 

gametocyte infectivity in a general population.  
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In Chapter 5, we used direct membrane feeding experiments to determine the 

infectiousness of malaria exposed children and subsequently the contribution of 

microscopical and sub-microscopical gametocytaemia to transmission. Blood was offered to 

mosquitoes via a thin stretched artificial membrane attached to a water-jacketed glass 

feeder maintained at 37°C. During the entire process, mosquitoes were handled gently to 

reduce stress which may increase mosquitoes’ mortality and affect the final results. 

Mosquitoes were allowed to feed during 10-15 min and dissected 7-8 days later for oocyst 

detection. The findings from our asymptomatic population of children in the absence of 

anti-malarial treatment are clear. The proportion of carriers of sub-microscopical 

gametocytes was approximately 60% contributing around 25% to the overall malaria 

transmission while carriers of gametocytes detectable by microscopy representing 33% and 

contributed 75% to overall transmission. In Kenya, children with sub-microscopical densities 

of gametocytes equally contributed to transmission compared to those with microscopically 

detectable gametocytes34. In our recent study including individuals of all ages (Ouedraogo 

and others, unpublished data) the proportion of carriers of submicroscopical and 

microscopical gametocytes were 49% and 16% respectively and contributed 51% and 47% to 

malaria transmission, respectively. In the study described in this thesis, the infectiousness of 

very low densities of gametocytes was evident although the proportion of infected 

mosquitoes was lower compared to higher gametocyte densities. Assuming that in a 

membrane feeding experiment with gametocyte carriers, fully fed mosquitoes engorged up 

to 2 L of blood (and all partially fed mosquitoes are discarded), the theoretic minimum 

density would be 1 gametocyte/ L: one male and one female gametocyte. In our 

experiments, mosquito infection occurred at densities estimated below 1 gametocyte/μL. 

Under laboratory conditions, the lowest gametocyte density from culture resulting in 

mosquito infections was in the range 250-300 gametocytes/mL34. In contrast, results from 

the field show infectious gametocyte densities below 100 gametocytes/mL34 and a few 

samples considered to be gametocyte negative by both microscopy and QT-NASBA (Chapter 

4) were even found to be infectious in Burkina Faso25 and Kenya34,35. In these cases, RNA 

degradation during sample collection or processing may explain why in mosquito infections 

from apparently gametocyte negative samples36 may still infect mosquitoes. From these 

combined data, it is evident that mosquito infections can occur at extremely low 

gametocyte densities. This phenomenon is very important, possibly explained by the 
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clustering of gametocytes in blood meal37 that may be influenced by adhesive ‘nanotubes38, 

thus requires further study in field and laboratory settings. RNA extraction controls show 

the potential disturbing influence of RNA degradation/failure to extract RNA.  

Importantly, we also observed that high gametocyte densities fail to infect mosquito. 

Although higher gametocyte densities favor mosquito infection28,34, a positive association 

with infectiousness is generally found to be weak22,39-42. There may be several explanations. 

Theoretically, only two gametocytes (male and female) in 2 L of blood meal are sufficiently  

to infect a single mosquito but the reality might be different under natural conditions. In 

individuals living in malaria endemic areas, the gametocyte sex ratio is female biased43-47 

with one male gametocyte for 3 to 4 female gametocytes26,48 but this ratio can vary 

significantly during the course of individual infections and may affect intra-individual 

transmission dynamics48,49. The non-infectiousness of high gametocyte densities may be 

related to this and/or reflect the presence of transmission reducing immunity that affects 

the success of transmission from man to mosquito50-56.   

 

7.3. The relevance of sexual stage immunity for the reduction of malaria 

transmission  

Immunity may act against gametocyte-derived antigens in the human circulation by 

reducing their density and / or infectiousness. In semi-immune individuals, a 3-fold 

reduction of P. falciparum gametocyte prevalence has been associated with non-specific 

anti-gametocyte antibodies30. Other studies further showed that naturally induced 

antibodies were capable of targeting younger stage I and IIa gametocytes against PfEMP1 

expressed on asexual and infected red blood cells57,58 but the functional relevance of this 

response in the field30 and in the lab remains elusive. Antibodies against gametocyte and 

gamete surface antigens59-61 can arrest the development of the sporogonic stage 

development in the mosquito midgut51,54-56,62,63, thereby reducing transmission from man to 

mosquito. This type of immunity may serve as a model for the development of transmission 

blocking vaccines and possibly could have an impact on malaria control efforts if it can be 

understood well. However, it is not sufficiently clear to which extent sexual stage immunity 

is present in individuals living in malaria endemic areas and affecting malaria transmission.  
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We studied the acquisition of sexual stage immune responses in humans exposed to 

seasonal malaria transmission (Chapter 6). In a series of cross sectional surveys conducted 

at 3 month intervals at different points of the transmission season (start, peak and end). A 

lower proportion of sera showed detectable sexual stage serum antibodies (~28%) 

compared to asexual stage antibodies (54-65%) likely as a result of the lower prevalence of 

gametocyte carriers in the area (i.e. a relative lower exposure to gametocyte antigens 

compared to asexual parasite antigens). The development of immune responses against 

sexual stage antigens has previously been shown in longitudinal studies to be a function of 

recent rather than cumulative exposure to gametocytes64-66 suggesting that this type of 

immunity is possibly short lived requiring frequent boosting65-67 for sustained responses 

over a long period of time. Our study was not designed to monitor gametocyte exposure 

prior to blood sampling points, making it difficult to study the dynamics of sexual stage 

immune responses. In our cross-sectional surveys, we used two approaches to investigate 

the nature of sexual stage immune responses by: i) studying the age and season 

dependency, ii) comparing asexual and pre-erythrocytic immune responses to those against 

sexual stage antigens and iii) studying the relationship between concurrent gametocyte 

carriage and circulating sexual stage antibodies.   

Our data show that contrary to the age-related pattern of asexual and pre-erythrocytic 

antibody responses, an age-dependence in the development of sexual stage immune 

responses is not apparent. Despite the age-related increase of the seroprevalence for sexual 

stage antigens from children above 5 years, we found similar prevalences of sexual stage 

specific immune responses in youngest children and adults. This lack of age effect on sexual 

stage immune responses is not novel and has been attributed to their possible short 

immune memory. Similar to anti- GLURP antibodies generally found age51,68-72 but not 

season70,71related, sexual stage antibody responses could have increased with increasing 

age without considerable seasonal fluctuations if their immune memory was long-lived. In 

long-lived immune responses, antibody responses may reach a steady state after repeated 

exposure with long-lived plasma cells generating persisting antibody production. We do not 

observe any evidence for a consistent antibody production in older individuals. Instead, 

sexual stage immune responses show a seasonal response pattern that resembles that of 

short-lived pre-erythrocytic antibody responses.  
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NANP6 and Pfs230 immune responses are correlated in our analyses, possibly because both 

may depend on recent exposure to malaria antigen. It is also possible that the same 

individuals recently exposed to gametocytes were also recently exposed to sporozoite 

antigens (earlier in their recent infection). Recent exposure to gametocytes during the 

transmission season seems to occur in our study area where asexual parasite carriage is 

generally elevated at that time point21, and being associated with gametocytes9,35.  

Our data did not show an apparent relationship between the presence of sexual stage 

antibodies and concurrent gametocytaemias, in line with some51,73 but not all studies65. This 

lack of an association may be explained by the timing of sampling. Sexual stage antibodies 

induced before sampling may persist for several weeks after gametocyte clearance65 but 

may also be low when gametocytaemia is reduced to sub-microscopic levels, whilst its 

acquisition in the presence of gametocytes may take longer. This would indicate that the 

acquisition of sexual stage immune responses may be susceptible to recent50,64 rather than 

concurrent exposure to gametocytes. This is a limitation of the study design. Longitudinal 

studies will be required to plausibly address the issue of the induction of sexual stage 

immune responses in relation to antigen exposure. Our findings only provide indirect 

evidence for a short-lived nature of sexual stage immune responses. 

Although transmission reducing activity (TRA) was not measured in the same study, both 

Pfs230 and Pfs48/45 antigens have been acknowledged as targets of natural antibody 

responses51,53 that correlate with functional TRA49, 51,53,55,56. These natural antibodies 

mediating TRA have been found in gametocyte carriers in endemic areas34,52,54 and in 

individuals shortly after their first exposure to gametocytes, such as travelers or migrants 

from non endemic to endemic areas or children experiencing their first malaria infections 

55,56. In a recent study (Ouedraogo and others, unpublished data) conducted in the same 

area as the present study, 15% of sera were able to block/reduce malaria transmission from 

man to mosquito by 30-97% as measured in the standard membrane feeding assay.  

A positive and significant correlation is found between TRA and specific anti-Pfs48/45 

antibodies (Figure 2). In some cases, high antibody titers were not associated with blocking 

of transmission. A next step would be to determine the longevity of TRA in the area and to 

which extent transmission reducing immunity can be enhanced by transmission blocking 

vaccines. 
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Figure 2: Purified antibodies reduce man-mosquito transmission by 30-97% while TRA 

correlates (Spearman correlation = 024, p = 0.03) with Pfs48/45 antibody levels 

The dashed line represents the best fit for the association between Pfs48/45 antibody 

concentration and % oocyst reduction; % oocyst reduction = 100/1+10((3.673 - Pfs48/45 AU)*0.2517) 

 

7.4. Malaria control and future directions 

There is renewed interest in local malaria elimination leading toward more widespread 

eradication. This interest is encouraged by the recent declines observed in the incidence of 

clinical cases and deaths in some of sub-Saharan endemic countries74-78. Vector control tools 

such as LLINs and IRS can reduce transmission72,79 and the burden of  malaria80,81 and the 

WHO has justifiably called to scale up the use of these measures. However, neither vector 

control nor standard approaches to provide efficacious antimalarial drugs to symptomatic 

malaria cases have resulted in malaria elimination in any of the areas where they were 

employed, either alone or in combination. Additional tools that target the human side of 

malaria transmission are likely to be needed to interrupt the transmission cycle.  The great 

challenge is to clear the malaria parasites from populations or to reduce the transmission of 
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gametocytes from man to mosquito. Interventions that aim to prevent transmission require 

a thorough understanding of the human infectious reservoir. Most of the studies presented 

in this thesis can be seen in this light: increasing our understanding of the human infectious 

reservoir, its dynamics and factors influencing the association between asexual parasites, 

gametocytes, immune responses and malaria transmission to mosquitoes. Our findings 

indicate that the infectious reservoir comprises all age groups, symptomatic and 

asymptomatic parasite carriers harboring microscopic or submicroscopic gametocyte 

densities. This implies that transmission reducing interventions should target the whole 

population. The necessity for a high coverage is underlined by the basic reproduction 

number of malaria, which may be >100 in populations where malaria vectors are present 82. 

In other words, a single infectious individuals can cause dozens up to >100 secondary cases 

in a malaria-naïve population, for instance a population several years after successful 

malaria elimination82. Several interventions are available or will become available for 

malaria transmission control.  

 

Reducing the human gametocytaemic population  

Asymptomatic carriers of the parasite are important contributors to continuous malaria 

transmission and remain unaffected by conventional treatment approaches where drug 

administration is restricted to those with symptomatic malaria83. The efficacy of drug 

interventions will therefore depend on the proportion of parasite carriers that seek 

treatment. In situations where parasites are commonly carried asymptomatically, as was the 

case in all studies in this thesis, an alternative strategy is needed to include all parasite 

carriers. This strategy may comprise mass drug administration (MDA) where individuals 

receive a curative dose of antimalarials regardless of symptoms for parasite clearance3,84. 

Treatment of individuals with artemisinin derivatives should be recommended for this 

purpose because they effectively reduceor prevent young gametocyte stages, rapidly clear 

the asexual parasites from which gametocytes are derived and considerably reduce 

infectiousness after treatment compared to non-ACT treatment85,86. These interventions 

should be implemented at selected optimal periods. In seasonal malaria transmission 

settings, e.g. Burkina Faso, the optimal time of year for mass therapy to reduce the overall 

prevalence of asexual parasitaemia as an endpoint should be during the dry season87. 

Community interventions to target asymptomatic carriers can reduce the parasite 
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prevalence up to 75%  as reported recently 88-90. The predicted efficacy, optimal delivery 

strategy and drug of choice will depend on the transmission context. There is currently too 

little experience with MDA, especially in African settings, to judge the potential of this public 

health tool.  

 

Reducing the infectiousness of the malaria parasite 

A reduction in malaria transmission can also be achieved through the reduction of the 

parasite infectiousness. A malaria transmission blocking vaccine (MTBV) reduces the 

number of mosquitoes that are infected by a gametocytaemic vaccinated individual. As a 

consequence, an MTBV reduces the proportion of infected mosquitoes in a population and 

thereby the chance for individuals to become infected and the burden of disease91. 

Considerable progress has been made in the development of MTBV and several candidates 

are currently in the pipeline for clinical trials. Because MTBV targets are transmission stages 

that cause no clinical symptoms, they are generally considered altruistic with no personal 

benefit as they do not result in clinical protection for the vaccinee. At the public health level, 

a MTBV may be seen as advantageous since vaccinated individuals would lead to reductions 

in the reproduction rate of the parasite and in certain circumstances the spread of drug 

resistant parasite strains.  

The wide-spread nature of Plasmodium falciparum gametocytes described in this thesis and 

the contribution of very low gametocyte densities to transmission illustrate the importance 

of MTBV while the rapid induction of natural TRA in association with naturally acquired 

immune responses to sexual stage antigens illustrates its relevance to controlling malaria 

transmission in natural settings. Clearly, the benefits of such a vaccine would be enhanced 

when implemented in an integrated control strategy, although, as with any vaccine, issues 

such as the longevity of any immunity induced and the capacity for boosting of that 

immunity by naturally-acquired infection will affect its longer-term impact.  
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Summary 
 

Malaria is the most frequent parasitic disease affecting humans around the globe. 

Amongst the five species of Plasmodium responsible for human malaria, Plasmodium 

falciparum is the most pathogenic, causing up to 800,000 deaths per year. The parasite life 

cycle comprises several developmental stages. Asexual blood stage parasites multiply in red 

blood cells, causing clinical disease. Sexual stage parasites, called gametocytes, develop 

within red blood cells from a small proportion of asexual blood stage parasites but they do 

not cause symptoms and are exclusively responsible for transmitting the infection to female 

anopheline mosquitoes during blood feeding. Infected mosquitoes can in turn infect other 

humans during subsequent feeds. Although efforts are being made to target sexual stages 

as part of an integrated malaria control strategy, the extent of the human reservoir of 

gametocytes is poorly defined, representing a major obstacle to the future success of such 

efforts.   

This thesis aimed to accurately quantify gametocytes in humans and to investigate 

their infectiousness under natural conditions, in order to contribute to our understanding of 

the biology of malaria transmission, as well as to inform control strategists about the best 

way to target gametocytes in the context of malaria control. For this purpose, we designed 

our studies to determine: i) age-specific and temporal changes in gametocyte prevalence 

(Chapter 2, 3&4); ii) the contribution of sub-microscopic gametocyte densities to the human 

infectious reservoir (Chapter 5) and iii) the dynamics of naturally acquired transmission-

reducing immunity (Chapter 6).  

Our findings show that microscopically detectable gametocyte concentrations are most 

prevalent in children and during the wet season. This is primarily due to the higher asexual 

parasite densities found both in children and in the wet season, although we found 

indications that human and mosquito immune factors may also play a role (Chapter 2). The 

use of the molecular QT-NASBA technique, a much more sensitive method than microscopy 

for detecting low gametocyte concentrations, indicates that gametocyte prevalence is 3.3 

fold higher (70%) than estimated based on microscopy (17%), revealing the widespread 

occurrence of sub-microscopic gametocyte densities not only in children but also in 

asymptomatic adults (Chapter 3). Since gametocyte occurrence seems to be positively 

related to high densities of asexual parasites, it is surprising that sub-microscopic 
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gametocytes are highly prevalent in adults, who commonly harbour low asexual parasite 

densities. This paradox is explored in more detail in Chapter 4 of this thesis where we 

describe increased gametocyte production rates in adults. The proportion of gametocytes 

relative to the total parasite population increases with age, suggesting that gametocyte 

commitment may be higher in adults. From an evolutionary point of view, this would be an 

advantageous strategy for parasites: if acquired human immunity reduces asexual parasite 

growth rates, parasites increase their investment in gametocytes to maximize the chance of 

transmission to mosquitoes.  Although transmission success is positively associated with 

gametocyte density, we showed that low gametocyte densities are nevertheless highly 

efficient in transmitting the infection. The contribution of sub-microscopic gametocytes to 

the infectious reservoir is found to be substantial (Chapter 5). Although low density 

gametocytaemias result in a lower proportion of infected mosquitoes, their relevance for 

malaria transmission is compensated for by their high frequency in the whole population. As 

a consequence, the overall contribution of sub-microscopic gametocyte densities to malaria 

transmission is approximately 25%. These findings on gametocyte infectiousness are derived 

from children and cannot therefore be extrapolated to the whole population. However, 

older age-groups should not be seen as having negligible responsibility for malaria 

transmission as they represent a substantial proportion of the general population and they 

harbour a remarkably high prevalence of (low density) gametocytes.  

Despite efficient malaria transmission in our study area, gametocytes from our volunteers’ 

blood samples were not always infectious to mosquitoes in experimental feeding assays. 

Their infectiousness may be affected by factors including naturally acquired transmission-

reducing immunity. In Chapter 6, we show that antibody responses against transmission 

blocking vaccine candidate antigens are naturally acquired in our study population and that 

their induction is a function of recent rather than cumulative exposure to malaria. These 

immune responses are not necessarily highest in adults and may reduce man-to-mosquito 

transmission by preventing the fertilization and development of the parasite in the 

mosquito midgut.  

In conclusion, the work from this thesis reveals an age- and season-structured 

allocation of gametocytes with a high prevalence and relevance of sub-microscopic 

gametocyte densities. Whilst immune responses to sexual stage antigens are naturally 
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acquired in the study populations, transmission is efficiently maintained. This emphasizes 

the need for malaria transmission control strategies to reduce malaria transmission and 

ultimately the burden of malaria disease.  
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Résumé 
 

Le paludisme demeure la parasitose la plus fréquente affectant l’homme. Des cinq 

espèces responsable du paludisme humain, Plasmodium falciparum est la plus 

pathogénique responsable d’au moins 800 000 décès par an. Le cycle du parasite comprend 

plusieurs formes parasitaires parmi lesquelles la forme asexuée dont la multiplication au 

sein des globules rouges provoque les manifestations cliniques de la maladie. Les formes 

sexuées, encore appelés gamétocytes sont produites chez l’hôte humain à partir d’une 

petite proportion de formes asexuées. Contrairement aux formes asexuées, les gamétocytes 

ne causent pas de symptômes et sont exclusivement responsables de la transmission de 

l’infection à Anophèles femelle lors de la prise de son repas sanguin. Le moustique infecté 

peut ainsi en retour infecter d’autres êtres humains lors de ses prochains repas sanguin. 

Quoique à travers de nombreux programmes intégrés de control du paludisme, des efforts 

sont entrepris pour éliminer les gamétocytes, le manque de clarté sur l’étendu du réservoir 

humain de gamétocytes constitue un obstacle majeur quand à l’efficacité de tels efforts. 

La présente thèse avait pour but de déterminer l’étendu du réservoir de 

gamétocytes chez l’homme et d’évaluer leur infectivité dans des conditions naturelles afin 

de collecter et rendre disponible des informations utiles aux stratégies de control du 

paludisme et éventuellement à son élimination. Pour cela, nous avons planifier nos activités 

de recherche comme suit afin de : i) déterminer les variations des taux de portage 

gamétocytaire sous l’effet de l’âge et de la saison (Chapitre 2, 3&4); ii) déterminer la 

contribution des faibles densités de gamétocytes au réservoir infectieux (Chapitre 5) et enfin 

iii) étudier la dynamique de l’immunité naturelle acquise réduisant la transmission du 

paludisme (Chapitre 6).  

Nos résultats montrent que les gamétocytes quantifiés par la microscopie sont assez 

prévalentes chez l’enfant mais aussi pendant la saison de pluie. Cette observation 

s'expliquerait par la presence de fortes densités de parasites asexués chez l’enfant et 

pendant la saison de pluie quoique nos résultats laissent croire que des facteurs 

immunitaires chez l’homme et le vecteur puissent jouer un rôle (Chapitre 2). L’utilisation de 

la technique QT-NASBA, une technique moléculaire plus sensible que la microscopie, 

montre que la prévalence des gamétocytes était 3,3 fois plus élevée (70%) que celle basée 

sur la microscopie (17%) révélant ainsi une forte fréquence de faibles densités 
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gamétocytaires chez l’enfant mais aussi chez l’adulte (Chapitre 3). Cette observation nous 

est plutôt apparue surprenant vue que les fortes densités de parasites asexués, favorables à 

la production de gamétocytes, sont moins fréquentes chez l’adulte. En étudiant le 

phénomène de plus près dans le Chapitre 4, nous avons observé une augmentation de la 

production gamétocytaire chez l’adulte à partir de faibles densités de parasites asexués. 

Effectivement, dans ce Chapitre 4, nous montrons que la proportion de gamétocytes 

relative à la population totale de parasites augmentait avec l’âge, ce qui suggère que la 

faculté du parasite asexué à se transformer en parasite sexué augmente avec l’âge de 

l’individu. D’un point de vu évolutif, il pourrait s’agir d’une stratégie de survie pour le 

parasite. En effet, le parasite asexué gagnerait pour sa survie en se transformant en parasite 

sexuée pour être transferré chez le moustique plutôt que de subir une réduction de son 

taux de multiplication sous une pression stressante chez l’adulte.  

Alors qu’une forte densité gamétocytaire apparait être un facteur clé pour la transmission  

home-moustique, nous montré au Chapitre 5 que les faibles densités de gamétocytes 

pouvaient aussi être efficaces pour transmettre l’infection au moustique.  Même si les 

individus porteurs de faibles gametocytémies infectent moins de moustiques, ils restent 

importants pour la transmission du paludisme car leur proportion dans la population 

générale est assez importante à tel point que leur part de contribution au réservoir 

infectieux avoisinerait les 25%. Ces résultats ne peuvent être extrapolés à toute la 

population car provenant de données receuillies seulement au sein d’une population 

d’enfants. Cependant il est prudent de souligner que les individus plus âgés ne sont pas à 

négliger en matière de transmission du paludisme vue leur représentativité dans la 

population et leur forte susceptibilité à porter des gamétocytes quoique de faible densité.  

 

Malgré une transmission intense observée dans notre zone d’étude, nous montrons 

que des échantillons de sang infectés de gamétocytes n’étaient pas toujours infectieux lors 

de nos séances d’infection expérimentales de moustiques. En effet, l’infectivité du 

gamétocyte est sujet à des facteurs dont l’immunité naturelle réduisant la transmission. Au 

Chapitre 6, nous montrons que des anticorps dirigées contre des antigènes candidats au 

vaccin bloquant la transmission du paludisme étaient naturellement acquises dans notre 

population d’étude. Nous montrons que ce type d’immunité se développe à la suite d’une 

exposition récente aux gamétocytes plutôt qu’à une exposition répétée et prolongée. Cette 
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réponse immunitaire est plutôt similaire à  celle observée chez les individus plus âgés et est 

susceptible de réduire la transmission homme-moustique en prévenant la fécondation et le 

développement des formes sexuées du parasite chez le moustique.    

 

Pour conclure, le travail décrit dans cette thèse met en exergue l’existence d’une 

allocation structurée des gamétocytes en fonction de l’âge et de la saison ainsi qu’une 

fréquence importante des gamnetocytémies non détectables par la microscopie. Malgré 

qu’une immunité anti-gamétocytes soit naturellement acquise dans les populations, nous 

constatons que la transmission du paludisme est remarquablement efficace et continue. 

Cela démontre quel à point il y a un besoin urgent de stratégies visant à réduire la 

transmission et conséquemment le fardeau de la maladie.  
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Samenvatting 
 

Malaria is wereldwijd één van de meest voorkomende parasitaire ziekten bij de 

mens. Van de vijf Plasmodium species die verantwoordelijk zijn voor malaria in de mens, is 

Plasmodium falciparum de meest gevaarlijke, met 800.000 doden per jaar. De levenscyclus 

van de parasiet bestaat uit verschillende ontwikkelingsstadia. Aseksuele bloedstadium 

parasieten vermenigvuldigen zich in rode bloedcellen en veroorzaken de symptomen die 

leiden tot klinische ziekte. Seksueel stadium parasieten, ook wel gametocyten genoemd, 

ontwikkelen zich in de rode bloedcel uit een klein deel van de aseksuele bloedstadia. Deze 

gametocyten veroorzaken geen symptomen maar zijn verantwoordelijk voor de transmissie 

van de parasiet van mens naar de vrouwelijke anopheles mug. Met een nieuw bloedmaal 

brengen deze geïnfecteerde muggen de parasiet weer over op de mens. Slechts weinig is 

bekend over het humane reservoir van gametocyten, ondanks vele inspanningen om het 

seksuele stadium gericht te bestrijden als onderdeel van een geïntegreerde malaria controle 

strategie. Het gebrek aan kennis beperkt het toekomstig succes van deze dergelijke 

strategieën. 

 

Het doel van dit proefschrift is het kwantificeren van de gametocyten in de mens en 

te onderzoeken hoe infectieus deze zijn in natuurlijke omstandigheden. Onze bevindingen 

dragen bij aan een beter inzicht in de biologie van malaria transmissie en aan betere 

controle strategieën voor de aanpak van gametocyten in the context van malaria controle of 

eliminatie. Wij hebben in onze studies daarom het volgende onderzocht: i) 

leeftijdsspecifieke en tijdelijke veranderingen in gametocyt prevalentie (hoofdstuk 2,3,4); ii) 

de bijdrage van submicroscopische gametocytemie aan het totale humane infectieuze 

reservoir (hoofdstuk 5) en iii) de dynamiek van natuurlijk verkregen transmissie 

reducerende immuniteit (hoofdstuk 6). 

 

Uit onze resultaten blijkt dat het dragen van microscopisch detecteerbare 

gametocyten vooral voorkomt bij kinderen en tijdens het regenseizoen. Dit is voornamelijk 

het gevolg van hogere concentraties aseksuele parasieten. Wij vonden echter ook 

aanwijzingen dat immuun factoren van mens en mug hierin een rol spelen (hoofdstuk 2). 

Voor onze onderzoeken maakten wij gebruik van de moleculaire QT-NASBA techniek, een 
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methode die veel sensitiever gametocyten detecteert dan microscopie. Hiermee laten wij 

zien dat de gametocyt prevalentie 3.3 maal zo hoog is als schattingen gebaseerd op 

microscopie (70% versus 17%). Dit toont het wijdverspreide voorkomen van 

submicroscopische gametocyten aan, niet alleen in kinderen maar ook in asymptomatische 

volwassenen (hoofdstuk 3). Ondanks de positieve relatie tussen aseksuele parasitemie en 

gametocyten dichtheid, hebben volwassenen, met gewoonlijk lage aantallen aseksuele 

parasieten, vaak submicroscopische gametocyten. Deze paradox wordt in hoofdstuk 4 in dit 

proefschrift meer uitgewerkt waarin wij een verhoogde gametocyt productie in 

volwassenen beschrijven. De verhouding tussen gametocyten en de totale hoeveelheid 

parasieten verhoogt met oudere leeftijd, wat suggereert dat sexuele differentiatiedruk 

sterker is in volwassenen. Evolutionair gezien zou dit een overlevingsstrategie van de 

parasiet zijn: als door verworven immuniteit het aantal aseksuele parasieten in volwassenen 

verlaagt, verhoogt de parasiet zijn investering in gametocyten, om zijn transmissiekansen te 

verhogen. Hoewel transmissiesucces positief geassocieerd is met gametocyt concentratie, 

hebben wij aangetoond dat lage gametocyt concentraties bijzonder infectieus zijn. Hoewel 

een lage gametocytemie zorgt voor relatief weinig geïnfecteerde muggen, is het voorkomen 

hiervan relevant voor malaria transmissie vanwege de grote aantallen gametocytendragers. 

De bijdrage van submicroscopische gametocyten aan het totaal infectieuze reservoir is dus 

substantieel (hoofdstuk 5) met een totale bijdrage aan malaria transmissie van ongeveer 

25%. Bovenstaand onderzoek is enkel verricht in kinderen waardoor de resultaten niet 

direct geëxtrapoleerd kunnen worden naar de gehele populatie. Echter, oudere 

leeftijdsgroepen zijn een niet te verwaarlozen factor in malaria transmissie omdat deze een 

groot deel van de gehele populatie uitmaken en een opvallend vaak submicroscopische 

gametocytemie hebben. 

 

De gametocyten afkomstig uit bloedmonsters van onze vrijwilligers waren niet altijd 

infectieus voor muggen in experimentele voedingsassays, ondanks een efficiënte malaria 

transmissie in ons studiegebied. De besmettelijkheid kan door verschillende factoren zijn 

verlaagd, zoals door natuurlijk verworven transmissie reducerende immuniteit. In hoofstuk 

6 laten we zien dat antilichaam reacties tegen transmissie blokkerende vaccine kandidaat 

antigenen in onze studiepopulatie natuurlijk verworven worden. De immuun responsen 
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verlagen de transmissie van mens naar mug door het voorkomen van bevruchting en 

ontwikkeling van de parasiet in de muggenmaag. Deze responses zijn niet altijd het hoogst 

in volwassenen en inductie van de responsen is meer een functie van recente blootstelling 

dan een cumulatieve blootstelling aan malaria. 

 

Concluderend laat dit proefschrift een leeftijds- en seizoens afhankelijke 

gametocytemie zien met een belangrijke rol voor submicroscopische gametocyt 

concentraties. Ondanks natuurlijk verworven immuniteit tegen seksuele antigenen bleef de 

transmissie behouden in de onderzoekspopulaties. Dit benadrukt de noodzaak voor 

controle strategieën die malaria transmissie en daarmee malaria morbiditeit reduceren. 
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