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Chapter 1

Introduction

Normally we express the content of our mind by actions or speech. Cur-
rent advances in brain monitoring devices such as electroencephalography
(EEG), magnetoencephalography (MEG), functional magnetic resonance
imaging (fMRI), or intracranial recordings allow us to think of new ways
of communicating with other people directly through our brains. Recent
findings have shown that we can control various devices by our ongoing
brain activity through brain-computer interfaces (BCIs). Some of the ap-
plications are computer gaming [87, 86], communication devices for highly
impaired patients [5], rehabilitation [84, 32], control of artificial limbs [67],
and neuro-feedback [6].

To bypass muscle activity and directly use the brain for communication
or control, we need to decode a mental state from brain activity. Differ-
ent modalities have been used for brain-computer interfacing. Imaginary
movement [134, 77, 20], steady-state visual evoked potentials (SSVEP) [61],
spatial auditory [98], and tactile stimulation [24] are some of the successful
BCI paradigms. Although depending on the application one may favor one
paradigm over another, it is always beneficial to have more control signals
in order to increase the reliability and information transfer rate of BCIs.
Furthermore, it is important to work towards modalities which allow for a
full two-dimensional continuous control since this affords applications such

1
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as wheelchair or cursor control.
Covert visual spatial attention, which is called in short ‘covert attention’

in this thesis, is a well studied psychological process that has its unique
brain signature. Humans can voluntarily deploy attention to locations in
visual space without moving their eyes [88, 89]. While some modalities
such as imaginary movement are natural for prosthetic control, they are
less natural for settings in which a visually displayed object has to be
controlled. We believe that, in this context, covert attention will provide a
more natural control signal requiring less training.

Using EEG, covert attention has been shown to be characterized by
changes in the alpha band (8-12 Hz) over the visual cortex [137]. It has
been shown that on average when attention is directed to the left visual
hemifield, alpha activity decreases in the right posterior hemisphere while
simultaneously increasing in the left hemisphere and vice versa. Based on
this result, in a preliminary MEG experiment by van Gerven et al. [118],
we showed that it is possible to classify the direction of covert attention
(left from right) on a single trial basis using alpha power extracted from
the visual cortex. We further evaluated the possibility of having an online
BCI setup, in which participants were asked to fixate at the center of the
screen and to move the ‘background’ by directing their attention to the left
or right. We showed that out of ten, two of the participants succeeded in
moving the background in the desired direction in up to 83% of the given
trials [12]. As a BCI gives the feeling of control if its performance is above
70% [66], the reported performance is very promising.

We know that the ability to covertly direct attention is not limited to
only left and right. Many behavioral studies have shown the effects of
different directions of visual attention [7, 16, 26, 138, 52]. The results hint
at the possibility of going beyond left-right control in the context of covert
attention-based BCIs. Furthermore, Rihs et al. set up an EEG experiment
in which participants were asked to direct their attention to eight different
directions [90]. Looking at the topographical alpha maps, they showed that
there is a high correlation between the spatial distribution of alpha power
between the neighboring directions, and the closer the directions, the higher
the correlations. Are these changes robust enough to allow for decoding
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different directions of covert attention on a single trial basis? To answer this
question, we investigate the possibility of decoding all directions of covert
attention using alpha extracted from the visual cortex in chapter 2. We
develop an MEG study in which subjects are asked to fixate centrally and
covertly track the direction of a moving target. The outcomes of this study
are discussed at the end of the second chapter of this thesis. Subsequently,
after studying the directions of covert attention, we explore the other free
parameter that we have in two-dimensional space. In the third chapter, we
investigate the effect of eccentricity on the modulations of brain activity by
covert attention. We are also interested to see whether the results obtained
for single trial classification of MEG data can be generalized to EEG. So,
we study the possibility of decoding the direction of covert attention using
EEG in chapter four. In that chapter, we also explore the possibility of
using covert attention as a control signal for subject-independent BCI.

As we are interested in not only the application of covert attention
for BCIs, but also in the neural sources underlying covert attention, we
need to develop methods for source localization and apply them to our
available covert attention data-set. As most source localization algorithms
have not directly taken into account the modulation of source activations
induced by certain experimental manipulations, we introduce a new source
localization technique which incorporates the experimental design in the
source localization procedure in the fifth chapter. We further incorporate
source dynamics in the commonly used beamformer setup to explore the
improvement over this standard source localization algorithm in chapter
six. We end the thesis by a general conclusion and closing remarks.
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Chapter 2

Covert Attention Allows For
Continuous Control Of
Brain-Computer Interfaces

1

While brain-computer interfaces (BCIs) can be used for controlling ex-
ternal devices, they also hold the promise of providing a new tool of studying
the working brain. In this chapter we investigated whether modulations of
brain activity by changes in covert attention can be used as a continuous
control signal for BCI. Covert attention is the act of mentally focusing on
a peripheral sensory stimulus without changing gaze direction. The ongo-
ing brain activity was recorded using magnetoencephalography in subjects
while they covertly attended to a moving cue while maintaining fixation.
Based on posterior alpha power alone, the direction to which subjects were
attending could be recovered using circular regression. Results show that
the angle of attention could be predicted with a mean absolute deviation
of 51 degrees in our best subject. Averaged over subjects, the mean devi-

1This chapter is based on: Bahramisharif, A., van Gerven, M. A. J., Heskes, T.,
Jensen, O., ‘Covert attention allows for continuous control of brain-computer interfaces’,
European Journal of Neuroscience, Vol. 31, pp 1501–1508, 2010
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ation was approximately 70 degrees. In terms of information transfer rate,
the optimal data length used for recovering the direction of attention was
determined to be 1700 ms which resulted in a mean absolute deviation of
60 degrees for the best subject. The results were obtained without any
subject-specific feature selection and did not require prior subject train-
ing. Our findings demonstrate that modulations of posterior alpha activity
due to the direction of covert attention has potential as a control signal
for continuous control in a BCI setting. Our approach will have several
applications, including a brain-controlled computer mouse and improved
methods for neuro-feedback that allow direct training of subjects’ ability
to modulate posterior alpha activity.

2.1 Introduction

There is a growing interest in the development of brain-computer interfaces
(BCIs) and brain-machine interfaces (BMIs) [133, 84, 17, 132, 120, 79, 126].
In BMI/BCI applications, real-time brain activity is used to control various
devices. One important application is the control of mechanical prosthe-
ses [104, 49, 127, 79]. BMI/BCI has also been proposed to be used for
communication to aid severely paralyzed patients suffering, for instance,
from amyotrophic lateral sclerosis (ALS) [18]. Possibilities with respect
to neurological rehabilitation are currently under investigation [32]. Im-
portantly BCI/BMI holds the promise of providing new tools which can
be used to study the working human brain. Examples are neurofeedback
[45, 92] and brain-state-dependent interventions [65, 114].

Impressive results on prosthetic control have been obtained using in-
tracranial recordings in humans and monkeys [104, 49, 85, 79]. However,
due to the invasive nature of intracranial recordings, there is a clear need
to improve BMIs/BCIs using non-invasive techniques. Important progress
has been made using EEG, MEG and fMRI [83, 17, 120]. With respect to
EEG, convincing results have been obtained using evoked potentials and
modulations in oscillatory activity [83, 28]. Often, imagined movement is
applied to modulate the brain activity being used as a control signal [77].
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It has been demonstrated that it is possible for subjects to achieve control
in both one- and two-dimensions using motor imagery [134, 72]. While mo-
tor imagery has proven to work, it is obviously advantageous to have more
control signals in order to increase the reliability and information transfer
rate of BMI/BCI. In particular, it is important to work towards continuous
control in two dimensions.

Cognitive research has demonstrated that posterior alpha activity (8–
13 Hz) is strongly modulated in paradigms where fixation is kept centrally
but attention is directed covertly [137]. When attention is directed to the
left visual hemifield, alpha activity decreases in the right posterior hemi-
sphere while increasing in the left hemisphere. The reverse pattern holds
for covert attention directed to the right visual hemifield. Recently it was
demonstrated that covert attention to the upper and lower hemifield mod-
ulates the vertical distribution of alpha activity [90].

The prospects of using covert attention and alpha modulation provide a
new exciting possibility for a control signal to be used in BMI/BCI. Setups
using covert attention would be convenient for controlling objects in the
visual domain such as a computer mouse. Furthermore, it is well established
that posterior alpha activity reflects the allocation of attentional resources.
Thus, when subjects are learning to control their posterior alpha activity,
it is likely to impact their ability to direct attention.

A few studies have applied multivariate classification approaches to
demonstrate that the direction of covert attention can be coded on a single-
trial basis from EEG and MEG data. Kelly et al. [61, 58, 60] have shown
that left-right shifts in covert attention can be predicted at the single-trial
level from alpha activity using EEG measurements. This has been con-
firmed in a subsequent MEG study [118]. Furthermore, inspired by the
result of Rihs et al. [90], van Gerven et al. [121] have shown that four di-
rections (up-down; left-right) of covert attention can be detected at the
single-trial level with up to 69% accuracy (25% chance level).

The aim of this study was to investigate if an arbitrary direction of
covert attention could be decoded from MEG data. If so, this will allow for
continuous BMIs/BCIs control based on covert attention. To investigate
this possibility we used MEG to record the ongoing brain activity from
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eleven subjects. The task of the subjects was to covertly track the direc-
tion of a rotating cue while keeping fixation central. A circular regression
algorithm was used to infer direction from posterior sensors.

2.2 Materials and methods

2.2.1 Data collection

Subjects

Eleven healthy volunteers were recruited for the experiment. The study
was approved by the local ethics committee and written informed consent
was obtained from the subjects.

MEG recordings

Brain activity was recorded by an MEG system with 275 axial gradiome-
ters (VSM/ CTF systems, Port Coquitlam, Canada) while the subjects
were in sitting position, data were sampled at 1200 Hz. Bipolar electrodes
were attached to record the electrocardiogram (ECG) and electrooculogram
(EOG) simultaneously with with MEG data. Three coils were placed at
the nasion and in both ear canals to monitor head position.

The task

The task required subjects to fixate centrally at a cross while covertly at-
tending to a target placed at a ‘wheel’ around the fixation cross. The wheel
had one target and three differently colored distracters (Fig. 2.1). The vi-
sual angle between fixation cross and display was 7.5 degrees. The radius
of the target and distracters was 0.33 degrees (visual angle). Subjects were
sitting 50 cm away from the screen. The stimuli were constructed off-line
using MATLAB (The MathWorks, Inc.) and stimulus presentation was
controlled using Psychtoolbox3 [23]. All stimuli were presented via a mir-
ror system on a back-projection screen using a calibrated LCD projector
(60 Hz refresh rate).
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5°/s

Figure 2.1: The display used in the task. Subjects were asked to covertly
attend to the target dot, while fixating at the cross. The ‘wheel’ slowly
rotated (5 degrees/s) while randomly changing directions.

An experiment consisted of six sessions each five minutes long. Within
each session, the colors of both target and distracters changed eighteen
times at random time points. The subjects were asked to count the number
of times the color of the target changed, which served to keep the subjects
alert. The distracters served two purposes. First, they balanced the visual
display. Second, it has been proposed that the posterior alpha modula-
tion serves to suppress visual distracters (e.g. [92]). Thus we expected the
distracters to enhance the attention related modulation of alpha activity.
Within a five minute session the rotation direction of the wheel was changed
four times at random time points. To make the direction changes smooth,
rotation speed increased or decreased exponentially from 0 to 5 degrees (po-
lar angle) per second over a 1500 ms interval. Aside from direction changes,
the rotation of the wheel was held constant at 5 degrees (polar angle) per
second. The sessions were separated by three minutes rest periods. In the
next session, the colors of both the distracters and the target were swapped
in order to keep the design balanced.
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2.2.2 Preprocessing

The data were down-sampled to 150 Hz after being lowpass filtered at 75
Hz. The planar gradient was approximated for each sensor using the signals
calculated from a sensor and its neighboring sensors, effectively emulating a
setup with planar gradiometers [14]. Following this approach, the strongest
activity is measured directly above the sources [42].

Informed by the results of previous studies [61, 60, 58, 118, 121], we used
the signals from 38 sensors over the left and right occipital regions (marked
in Fig. 2.2). The analysis was focused on a frequency band centered at
10 Hz. The power was calculated using a 500 ms sliding Hanning window
shifted every 30 ms. Due to the 500 ms window, the frequency smoothing
was approximately 2 Hz, meaning that power over the 8–12 Hz alpha band
was included.

Different trial lengths were obtained by averaging the power estimates
over a number of consecutive time windows. For instance, since the time
windows were shifted 30 ms, 160 consecutive time windows yielded an ef-
fective trial length of 5270 ms.

2.2.3 Circular regression

Since we are interested in predicting the angle of covert attention based
on recorded brain activity, a circular regression algorithm was applied [35].
Circular regression is characterized by the fact that predictions for angles
θ modulo 2π should be identical.

We approached the circular regression problem by estimating (‘train-
ing’) the regression coefficients for the recorded data with respect to the
sine and cosine components of the target angle. This allowed us to later
predict (‘test’) the sine and cosine components from a given time window
and reconstruct the angle using an arctangent transform [69].

Let (θ,x) be a pair where x is the vector of estimated alpha activity
for 38 occipital sensors measured with respect to the angle θ of the target.
β1 and β2 are the regression coefficients for cos(θ) and sin(θ), respectively.
The aim is to estimate β1 and β2 given the measured data (θ,X) with



MEG decoding of the direction of covert attention 11

θ = (θ1, . . . , θn)T and X = (x1, . . . ,xn)T where n is the number of time
windows. The sum of the squared residuals are minimized by an ordinary
least squares approach [33]:

β1 = (XTX)−1XT cos(θ)

β2 = (XTX)−1XT sin(θ).

Finally, given the observed data x the predicted angle φ is computed as
φ = atan2 (xβ2,xβ1), where atan2 stands for the four-quadrant inverse
tangent.

2.2.4 Evaluation

We used data from five sessions for training the circular regressor and data
from one session for testing. We repeated this training and testing over
all six sessions using a six-fold cross-validation scheme. Since the sessions
were separated by a rest period, there was no information regarding the
test session in the training phase.

To evaluate the performance, we were interested in the absolute differ-
ence between true (θ, orientation of target) and predicted (φ, output of
regression analysis) angles. Let ψ = θ − φ denotes the difference between
the real and predicted angles. Note that |ψ| is always in the range of [0, π].
We compute the mean absolute deviation (error) |ψ| as follows:

|ψ| = atan2 (〈sin(|ψ|)〉, 〈cos(|ψ|)〉) (2.1)

where 〈·〉 represents the averaging operator across trials.

In order to compute the standard deviation of the error for a given angle
θ′, we use the following equation [35, 69]:

SD(φ′ − θ′) =
√
− ln (〈cos(φ′ − θ′)〉2 + 〈sin(φ′ − θ′)〉2)

where φ′ denotes the subset of predicted angles φ for which the real angle
was θ′.
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T-linear association is a measure of goodness of prediction for a circular
regression problem. Assuming that n is the number of samples, T-linear
association is calculated as follows [35]:

T =

∑n
j=1

∑j
i=1 sin(θi − θj) sin(φi − φj)√∑n

j=1

∑j
i=1 sin2(θi − θj)

∑n
j=1

∑j
i=1 sin2(φi − φj)

(2.2)

The significance level was calculated using a one-sided t-test on a distribu-
tion over one million randomly generated T values. The randomly gener-
ated T values were obtained using the true angle θ and ‘prediction’ φ which
was generated by adding a uniformly distributed angle between 0 and 2π
to the angle θ.

Information transfer rate (ITR, bits per minute) is an important factor
in BCI applications because it informs about the number of binary decisions
which can be made per unit time and allows one to determine the optimal
trial length. We calculated the ITR by dividing mutual information by
trial length [99]. Mutual information between true (Θ) and predicted (Φ)
responses is defined as follows [99]:

I(Θ,Φ) = H(Θ)−H(Θ | Φ) (2.3)

whereH is the differential entropy. If we assume that the random variable X
has a probability density function p, then the differential entropy is defined
as follows:

H(X) = −
∫
p(x)logp(x)dx (2.4)

In order to compute the mutual information, we used the following ap-
proach. Let us assume that a random variable X is distributed according
to the von Mises distribution

p(X = x) = VM(x;µ, κ) =
1

2πI0(κ)
eκ cos(x−µ)

with mean µ, concentration parameter κ, and where I0 is the modified
Bessel function of order 0. The concentration parameter κ is the inverse
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measure of dispersion, i.e., if κ is zero, the distribution is uniform and if
κ is large, the distribution becomes concentrated around µ. In fact, as
κ increases, the distribution approaches a normal distribution in X with
mean µ and variance 1

κ .

The differential entropy (base 2) for a von Mises distributed random
variable X is given by

H(X) =
1

ln 2

(
−κI1(κ)

I0(κ)
+ ln(2πI0(κ))

)
When calculating H(Θ), the concentration parameter κ of the von Mises

distribution has to be 0 because true labels are uniformly distributed on the
circle. Furthermore, assuming that the estimated angle is the true angle of
attention which is subjected to additive von Mises noise, it follows that the
conditional entropy H(Θ | Φ) is equal to H(Ψ) where Ψ = Θ−Φ. Again, if
we assume the von Mises distribution for Ψ, the concentration parameter
can be approximated using the following equations [35]:

κ =


2r + r3 + 5

6r
5 r < 0.53

1/(r3 − 4r2 + 3r) r > 0.85
−0.4 + 1.39r + 0.43/(1− r) otherwise

where r = n
√
〈cos(ψ)〉2 + 〈sin(ψ)〉2 and n is the number of samples. This

can then be applied to Eq. (2.3) in order to obtain the mutual information
from which the information transfer rate (the bit-rate) is derived.

2.3 Results

First, for illustration we calculated the average power over subjects for the
full recording period with respect to sixteen angular divisions (Fig. 2.2).
The power averaged over all divisions (middle figure) was subtracted from
the individual divisions. These results show that the spatial distribution
of alpha power in posterior sensors reflects the angle of attention. This is
consistent with previous findings [90, 121].
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Figure 2.2: The distribution of alpha power with respect to 16 divisions.
The arrangement of the figures reflects the direction of covert attention
which is clearly correlated with the spatial topography. The central figure
shows the alpha power averaged over all directions and the black dots show
the selected sensors. Note that data is log-transformed prior to averaging.

We then set out to investigate to what extent single trial activity pre-
dicted the direction of covert attention. Figure 2.3a depicts an example
where we estimated the angle of attention using the circular regression
approach applied to the data of one subject. The individual trial lengths
were in this case 1700 ms. Although the estimates (stars) showed deviations
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around the mean (dots), the true angle of attention is predicted reasonably
well. Figure 2.3b shows the mean and standard deviation of the predicted
angle of attention for the same subject. A six-fold cross-validation scheme
was used: the regressors were trained on data from 5 sessions and applied
to predict the angle for the remaining session. The average standard devi-
ation for this result was 80 degrees. Figure 2.3c shows the sine and cosine
components predicted from the circular regressor.

Next, we applied the regression analysis to all subjects. Figure 2.4a
shows how the mean absolute deviation (Eq. (2.1)) of the estimated an-
gle varies over all trials and directions using occipital alpha. The analysis
was done for time windows of increasing length. Chance level is 90 de-
grees (dashed line). Using occipital alpha, the absolute deviation decreased
systematically with trial length. While the mean absolute deviation over
subjects went down to approximately 70 degrees, the absolute deviation
was as low as about 50 degrees in one subject. Since we wanted to es-
tablish that our results derive from brain activity and not eye movements,
we repeated our analysis using horizontal and vertical EOG measurements
recorded from four bipolar EEG electrodes (Fig. 2.4b). This demonstrated
that activity derived from ocular artifacts does not carry information about
the angle to which the subject covertly attends.

The information transfer rate was calculated using Eq. (2.3) in order to
determine the optimal trial length in terms of the amount of information
that can be transferred per unit time. Figure 2.5 shows that the average
ITR is maximal for a trial length of about 1700 ms.

For the time window of 1700 ms, T-linear association values for occip-
ital alpha and alpha computed using the EOG electrodes are calculated
using Eq. (2.2) and shown in Table 2.1. This table shows that using oc-
cipital alpha, in seven out of eleven subjects we were able to estimate the
attended angle beyond chance. This result correlates well with performance
in terms of the mean absolute deviation. When considering the T-linear
association for the EOG signals, the values were below chance which is in
line with the findings in Fig. 2.4. These results substantiate the claim that
ocular artifacts do not contribute to the estimate of the direction of covert
attention.



16

Time Signal of interest
1700 ms Occipital alpha EOG

Subject TB TE

11 –0.00 0.00

10 –0.00 –0.00

9 0.00 0.00

8 0.01 –0.01

7 0.01 0.00

6 0.01 –0.00

5 0.03 0.00

4 0.03 –0.00

3 0.04 –0.00

2 0.05 –0.00

1 0.09 –0.00

Table 2.1: T-linear association of the regression fits for occipital alpha and
EOG data. Subjects are ranked according to performance in Fig. 2.4. A
1700 ms time-window was used. Significant values (p < 0.01, Bonferroni
corrected) are shown in boldface.

In four subjects, we were not able to predict the angle of covert attention
from the MEG data. Based on what has been shown in [121], we suspected
a relationship between occipital alpha power and ability to predict the
angle. To test this, we computed correlation (Spearman’s rank correlation)
ρ between T values and average occipital alpha power over subjects [102].
This results in a correlation coefficient of ρ = 0.67 which shows that average
alpha power is significantly (p < 0.05) correlated with the ability to predict
covert attention from the neurophysiological data. In short, if the alpha
power from a given subject is not sufficiently strong, the modulations in
alpha activity are too small in order to be of use in the covert attention
paradigm. We did not find any (linear) relation between the behavioral
performance of the subjects on counting the number of color changes and
the performance when predicting the angle of attention.
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2.4 Discussion

In this chapter, our goal was to examine whether a covert attention paradigm
could serve as the basis for continuous control in non-invasive BCIs. We
have shown that, based on occipital alpha power alone, the direction to
which a subject was attending could be estimated using a circular regres-
sion approach. The results obtained over all subjects (Fig. 2.4), show that
the angle of attention could be predicted with a mean absolute deviation of
51 degrees in our best subject. Averaged over subjects, the mean deviation
was approximately 70 degrees. The trial length ensuring optimal informa-
tion transfer was 1700 ms. This is a reasonable time-window for realistic
BCIs. For this time-window, the best subject’s mean absolute deviation
was 60 degrees and the mean over all subjects was 77 degrees. Finally, we
showed that subjects with strong alpha power during the task also were the
best performers.

We asked subjects to covertly track a slowly moving visual target on
a circular array. The experimental setup used here is strictly speaking
one-dimensional as only one parameter is varied - the polar angle. How-
ever, this is a step towards two-dimensional control. Imagine that a cursor
(or the background) moves in the direction of attention. The second di-
mension would then be constituted by time. Another way to achieve full
two-dimensional control would be to allow subjects to direct covert atten-
tion both in terms of polar angle and radial distance. Whether or not it is
achievable to predict radial distance from the brain signals as well remains
an open question.

The moving target was applied since it would correspond to a real life
situation in which the desired direction of the control signal is continuously
changed, e.g. two-dimensional cursor control. It also allowed us to sample
many angles in a short period of time. It should be noted that the neuronal
processes following cueing of a relevant spatial locations can be interpreted
as a consequence of anticipatory attentional deployment [88, 137, 57]. This
may imply that subjects in our experiment are using anticipatory processes
to predict the movement of the target on the circle and this anticipation
might be controlling the modulation in the alpha band. This does by no
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means invalidate the use of our paradigm for BCI applications, even though
it does change the interpretation of the alpha modulation in terms of its
underlying neurophysiological substrate.

Another point of concern with regard to the current paradigm is whether
the modulations in alpha activity are caused by exogenous modulations re-
sulting from the moving cue with the different color rather than endogenous
changes in attention. It should be mentioned that the color of the cue and
distracters were counter-balanced over blocks. Furthermore, there is strong
evidence that covert attention modulates posterior alpha activity in the
absence of visual cues [137, 90, 121]. Thus, it is most likely that it is covert
attention being the main cause of the modulation of the alpha activity ap-
plied for the decoding. However, the issue could be further investigated in
future paradigms in which a momentarily cue indicates the target.

In the current design there was a tradeoff with respect to window length.
For short time windows estimation accuracy would be low due to little data.
For long time windows the cue would move substantially and thus result
in estimation errors. Thus, an optimal design in a BCI setup would allow
for enough data to be collected before it has consequences for the interface
(e.g moving a cursor).

Inter-individual differences in alpha-band power during spatial atten-
tion tasks have been discussed in several studies [44, 76, 63, 91]. As a
consequence of these differences, the performance of the regression analysis
varied over subjects. We were able to reliably estimate the angle of covert
attention in about half of the subjects. However, it remains to be tested
if this can be improved by training. There were some preferred angles for
individual subjects where we were able to do better predictions. However,
those preferred angles were different from one subject to another and we
could not infer any general patterns pertaining to all subjects.

Our analysis did demonstrate a strong correlation between absolute
alpha power and the ability to make use of the alpha activity modulated by
covert attention [121, 91]. Certainly, in a practical setting, this insight could
be of use in order to pre-screen subjects. The stage is now set for testing
how well covert attention can be used to control a BCI system in a closed-
loop setting. First, we do expect the performance to increase as subjects
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control a given setup by covert attention and receive visual feedback on
how well they do. This will increase accuracy. Second, as the ability to
control improves, it is also likely that the optimal time-window required for
the estimation will reduce. Both of these factors will result in an increase in
the information transfer rate. Had we constrained the predictions to only
left-right directions performance would be likely to increase since an index
of left versus right alpha power could be applied [118, 58, 57].

Using covert attention as a control signal for BCI will have several
advantages. Often imaginary movements have been used to control BCI
systems [134, 77, 72]. While this is natural for prosthetic control, it is
less natural for settings in which a visually displayed object has to be
controlled. We believe that, in this context, covert attention will provide
for a more natural control signal requiring less training. One example is a
cursor on a screen that moves in the direction to which the subject covertly
attends, i.e., a brain controlled mouse. Such an achievement will have a
large number of potential applications including control of BCI spellers
and navigation in graphical user interfaces as well as wheel-chair control.
An additional advantage of using spatial attention as an alternative to
the imagined movement paradigms could be in the case of reduced motor
cortex activity resulting from changes in cortical plasticity after injury or
degenerative processes.

Several studies strongly suggest that posterior alpha activity reflects the
active inhibition of regions not participating in a given task [137, 59, 90, 54,
113]. This active inhibition might be important for ensuring the allocation
of computational resources to task-relevant areas in the engaged brain. It
is quite conceivable that if alpha modulation by covert attention is being
used as a control signal for BCI, extensive training by this principle also
will increase a subject’s ability to control their alpha activity. This might
then impact performance in paradigms in which visual attention is tested
behaviorally. Such studies hold the promise of providing new knowledge on
the physiological substrate of resource allocation in the brain by changing
a subject’s ability to modulate alpha activity.
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Figure 2.3: (A) Example from one subject showing the circular regression
applied to 180 non-overlapping time-windows 1.7 s long. The dotted line is
the actual angle of the target and the stars show the predicted angle. Note
the change of direction around four random time points. (B) The regression
results applied to the full data for the same subject. Error bars show the
standard deviation. Mean absolute deviation was 61 degrees and average
standard deviation was 80 degrees. (C) Sine and cosine components of the
mean predicted angles.
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Figure 2.4: Mean absolute deviation using circular regression on (A) oc-
cipital alpha and (B) EOG. Solid line shows the average while dashed line
shows the chance level.
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Figure 2.5: The information transfer rate (ITR) as a function of time for
each subject. The solid line shows the grand-average indicating an optimal
trial length of 1700 ms.
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Chapter 3

Lateralized Responses
During Covert Attention
Are Modulated By Target
Eccentricity

1

Various studies have demonstrated that covert attention to different
locations in the visual field can be used as a control signal for brain com-
puter interfacing. It is well known that when covert attention is directed
to the left visual hemifield, posterior alpha activity decreases in the right
hemisphere while simultaneously increasing in the left hemisphere and vice
versa. However, it remains unknown if and how the classical lateralization
pattern depends on the eccentricity of the locations to which one attends. In
this chapter we study the effect of target eccentricity on the performance
of a brain computer interface system that is driven by covert attention.
Results show that the lateralization pattern becomes more pronounced as

1This chapter is based on: Bahramisharif, A., Heskes, T., Jensen, O., van Gerven, M.
A. J., ‘Lateralized responses during covert attention are modulated by target eccentricity’,
Journal of Neuroscience Letters, Vol. 491, pp 35–39, 2011
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target eccentricity increases and suggest that in the current design the min-
imum eccentricity for having an acceptable classification performance for
two targets at equal distance from fixation in opposite hemifields is about
six degrees of visual angle.

3.1 Introduction

Covert attention is the act of mentally focusing on a sensory stimulus with-
out changing gaze direction [88]. Several studies have shown that when
covert attention is directed to the left visual hemifield, posterior alpha ac-
tivity decreases in the right hemisphere while simultaneously increasing in
the left hemisphere and vice versa [137, 58, 90, 121]. Therefore, the ratio
between left and right posterior alpha power, referred to as the alpha lat-
eralization index (ALI), is strongly correlated with the direction of covert
attention.

Kelly et al. [58] have introduced the use of the covert attention paradigm
in a brain computer interface (BCI) setting using EEG. His results have
been replicated in a subsequent MEG study by van Gerven et al. [118].
Furthermore, Rihs et al. [90] have shown the strong correlation between
alpha power in posterior channels and covert attention to stimuli in eight
different orientations. Inspired by these results, van Gerven et al. [121] have
shown that, using the covert attention paradigm, four directions with a 90
degree angle between them can be detected at the single trial level with up
to 70 percent accuracy. Finally, Bahramisharif et al. [11] have shown that
continuous control is achievable by covertly attending to a target which
describes a circular trajectory around the central fixation point.

These studies have shown that the lateralization pattern changes with
the direction of the target to which one attends. While Kelly et al. [58]
have located the center of the targets at 5 degrees of visual angle, Rihs et
al. [90], van Gerven et al. [121, 118], and Bahramisharif et al. [11], have
located them at 7.5 degrees of visual angle. This suggests, however, that
the conventional covert attention paradigm, where two targets are placed
on the midline in the left and right visual field at a fixed eccentricity, might
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constitute a suboptimal design for driving a BCI in particular subjects. It
remains an open question how the alpha lateralization pattern is modulated
as a function of the eccentricity of the targets to which one should attend.
Locations too close to central fixation might not induce the classical lateral-
ization pattern observed in covert attention whereas locations too far away
from central fixation might not lead to proper suppression of the distracter
target in the contralateral visual field. Such interactions will directly affect
the performance of a BCI system.

Multiple behavioral studies have shown the effect of eccentricity of
covert attention on reaction times and spatial resolution in a variety of
tasks, such as acuity, visual search, and texture segmentation [138, 26, 27].
It has been shown that directing attention to a given location allows us to
better resolve the fine details of the visual scene at that location [138, 26,
27]. In this study, we examine the influence of target eccentricity on pre-
dictive performance in BCI systems. Specifically, we compute classification
accuracy and ALI values as a function of eccentricity. Finally, we examine
whether target eccentricity as such can be used as an additional degree of
freedom in covert attention BCI paradigms.

3.2 Materials and Method

3.2.1 Data collection

Brain activity was measured during the task using an MEG system with
275 axial gradiometers (VSM/ CTF systems, Port Coquitlam, Canada)
while the subjects were in sitting position. Data were sampled at 1200 Hz.
Four EOG electrodes (2 horizontal and 2 vertical) were used to monitor
eye movement. Eight healthy volunteers (six males and two females) were
recruited for the experiment. Seven of the participants were naive and
one of the participants was well-trained (subject 3). The well-trained sub-
ject practiced with this and similar experimental designs for more than 30
hours over the last year. The study was approved by the local ethics com-
mittee (CMO) and in agreement with the Declaration of Helsinki. Written
informed consent was obtained from each of the subjects.
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3.2.2 Experimental design

1 s

2 s + up to 1 s jitter 
80 ms

3 s 1 s

24

cue trial taskrest response time 

24

9-9 3-3-6 6

dummy target dummy target
Fixation dot

Figure 3.1: Experimental paradigm. Target dots were located in [-9 -6 -3
+3 +6 +9] degrees of visual angle from the fixation dot.

There were nine equally spaced dots on the screen which was placed
at a distance of 48 cm from the nasion (Fig. 3.1). The middle dot was
marked with two small vertical lines and represented the fixation point.
The diameter of each dot was one degree and the distances between the
centers of the neighboring dots were three degrees of visual angle. I.e, the
target dots were located at the following visual angles: [-9 -6 -3 +3 +6 +9].
The task was to fixate at the center of the screen and covertly attend to
the location indicated by a cue (Fig. 3.1). The two far most right and left
dots (visual angle of -12 and 12 degrees) were dummy targets and used to
balance the design such that each target dot has two neighbors. The cue
was given by showing a plus sign on the target dot and a minus sign on
the five other possible targets for one second. During the cue, there was no
minus sign on the fixation dot nor on the dummy targets. After at least two
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seconds of attending to each target location, either an up or down arrow
was shown on the target dot for 80 milliseconds. The task of the subject
was to indicate whether an up or down arrow was presented by means
of a button press with the right index or middle finger respectively. The
response time was limited to one second. For each subject, each eccentricity
was presented for fifty times, resulting in 300 trials for all six conditions.

3.2.3 Preprocessing

The planar gradient was approximated for each sensor using the signals
calculated from a sensor and its neighboring sensors to obtain the strongest
activity directly above the sources [42]. The first 500 ms of each trial were
discarded since activity might be driven by the evoked response due to
the cue. The power in the attention period was calculated using a 500 ms
sliding Hanning window. Due to the 500 ms window we obtain a frequency
smoothing of about 2 Hz, meaning that power over the 8–12 Hz alpha band
was included. In this study, we only used the 10 Hz power components
of 81 posterior channels (Fig. 3.2). Average alpha power over the 1500
ms attention period was centered to have mean zero and unit variance and
used as input to the classifier. The alpha lateralization index was computed
as the ratio between left and right posterior alpha power. It was used as
an indirect measure of lateralization but not directly used for classification
as [118] has shown that this leads to suboptimal classification performance.

3.2.4 Classification

L2 regularized logistic regression was used for classification. Logistic re-
gression solves a classification problem by expressing the probability of
class membership as [105, 139]:

p(c | x,θ) ∝ exp(θTc x)

where x = (x1, ..., xM ) is the set of features (including a bias term) and
θc is the parameter vector associated with class c ∈ {1, . . . , C}. A logistic
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regression model is trained by minimizing the objective function:

E(θ) = L(θ) +R(θ)

where L(θ) =
∑N

n=1

(
log(

∑C
c=1 exp(θTc xn))− θTcnxn

)
is the loss term which

captures the fit of the model to the data and R(θ) = λ
∑C

c=1 θ
T
c θc is the L2

regularizer which induces small parameter values [106]. A small fixed value
of λ = 1 was used throughout all experiments in order to avoid collinearity
issues.

Classification performance was calculated as the ratio between the num-
ber of correctly classified samples and the total number of samples. Sig-
nificance levels for classification outcomes were computed using McNemar
(approximate binomial) test comparing the classification outcomes with
random outcomes (p < 0.05). For each subject, classification performance
was averaged over ten subsets of data in a ten-fold cross-validation scheme.

3.3 Results

-9 -6 -3 average 3 6 9

0                Scaling of the middle plot                   5   x10-26

10-27
-1           Scaling of the eccentric  plots 1   x10-27

Figure 3.2: Relative differences of the average posterior alpha pattern for
each eccentricity (from -9 to 9 degrees) with the average over all conditions.
We plotted the 10 Hz power components of 81 posterior channels. The
middle plot depicts the average over all conditions.

We first computed the change in posterior alpha power as a function
of eccentricity averaged over all subjects. Figure 3.2 shows that there is a
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clear alpha lateralization for the right and left directions and the pattern
changes with the eccentricity of covert attention.
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Figure 3.3: The alpha lateralization index versus eccentricity of the covert
attention for all subjects. Average ALI over subjects is indicated by stars.

We then computed the ALI per subject for each eccentricity by dividing
the average alpha power over left posterior channels by the average alpha
power over the right ones (Fig. 3.3). Note that for most of the subjects, the
ALI lies below one, meaning that the average posterior alpha power in the
right hemisphere is stronger than in the left hemisphere. Furthermore, for
each subject, we computed the Spearman rank correlation [102] between
the ALIs and eccentricities. The average rank correlation over subjects
was ρ = −0.6 (p < 0.001). When focusing on the eccentricities within
one visual hemifield only, the average rank correlation would be ρ = −0.25
(p < 0.1). The obtained correlations imply that increasing eccentricity
leads to a larger difference in the ALI with respect to baseline.
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0.4 1individual subjects

0.5 0.7

j

average

Figure 3.4: Pairwise classification performance versus eccentricity of covert
attention for each subject and averaged over subjects. Significant discrimi-
nations are marked with a plus sign or a star (Bonferroni corrected). Ran-
dom performance is 0.50.

We examined whether eccentricity could be used as an additional degree
of freedom in a covert attention BCI. To this end, we trained regularized
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logistic regression classifiers on all condition pairs in order to see which
pairs of conditions are more classifiable than the others. Figure 3.4 shows
the classification results for the pairwise comparisons of all six conditions
averaged over all subjects as well as for the best subject (Subject 3). The
significant pairs are indicated by means of a plus sign (p < 0.05) or a
star (Bonferroni corrected for both the number of subjects and the number
of pairs of conditions). The significance level for the average figure was
obtained by first concatenating all trials over subjects and then comparing
the results with assignments to a randomly selected class. For the average
plot, the significance level was Bonferroni corrected for the number of pairs
of conditions in order to control the family-wise error. It is evident that
neighboring targets are often misclassified. Furthermore, it can be observed
that for targets in the same visual hemifield, the performance is much lower
than when they are from the different sides of the visual field. Still, for
the best subject, classification of neighboring targets in the same visual
hemifield can be achieved with classification performance that is above
chance level.

In order to determine the optimal eccentricity for a left-right controlled
covert attention BCI, we need to consult the opposite pairs in Fig. 3.4.
From the average plot we see that classification of 3 versus -3 degrees of
visual angle does not give significant results. However, classification of 6
or 9 degrees of visual angle with their contralateral counterparts does give
significant classification performance (p < 0.05 Bonferroni corrected for the
number of pairs of conditions).

We suspected a relationship between the classification performance and
the differences of the ALIs for each pair of conditions. To check that, we
computed correlation (Spearman’s rank correlation) between the classifi-
cation performances and the differences of the lateralization indexes over
subjects[102]. This test resulted in a significant correlation of ρ = 0.41
(p < 0.001).

To check for confounds, we conducted the same analysis using the EOG
electrodes. Our result showed that there is no direction-related information
in the EOG data. We also checked for how well the subjects performed the
task of producing the correct button response. The behavioral performance
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Figure 3.5: Average unnormalized (top-left) and normalized (bottom-left)
reaction time together with the average unnormalized (top-right) and nor-
malized (bottom-right) behavioral performance over all subjects for each
eccentricity. The behavioral performance of the subject was defined as the
ratio between the number of hits and the total number of hits and misses.
The total number of hits and misses for each eccentricity for each subject
was 50. The behavioral performances and reaction times were normalized
by subtracting the mean and dividing by the standard deviation over all
eccentricities within each subject. Error-bars indicate the standard error
over eight subjects.

of the subject was defined as the ratio between the number of hits and the
total number of hits and misses. Average behavioral performance decreases
with target eccentricity and is inversely related to the average reaction
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time, as shown in Fig. 3.5 and in line with previous findings [26, 27]. There
was no correlation between the behavioral performances and the obtained
classification performances.

3.4 Discussion

In this chapter we explored the influence of target eccentricity on the per-
formance of a covert attention BCI. We found that the alpha lateralization
index increases as a function of eccentricity, which is positively correlated
with classification performance. The results suggest that in the current
design, the minimum eccentricity for having an acceptable classification
performance for classifying a target against its contralateral counter part is
about six degrees of visual angle while performance does not change much
as target eccentricity is further increased. Figure 3.5 shows that average
normalized behavioral performance decreases with target eccentricity and
is inversely related to the average reaction time. There was no correlation
between the behavioral performances and the classification performances
shown in Fig. 3.4.

Some of the subjects could not achieve proper BCI control, which is
typical for most BCI experiments and referred to BCI illiteracy [125]. We
found a significant correlation between the ALI differences and the classi-
fication performances, which implies that the ALI can be used to monitor
subjects for BCI illiteracy. The well-trained subject showed by far the high-
est classification performances (>90% for left-right control) which indicates
that subject training can lead to profound improvements. With regard to
classification of targets in opposing hemifields, subject 2 did not follow the
general trend in that he showed significant above chance performance for
6 degrees but not for 9 degrees of visual angle. Behavioral results for this
subject nevertheless show the normal pattern of decreasing performance
with increasing eccentricity.

Based on the classification performances for the six different eccentric-
ity pairs, we conclude that target eccentricity cannot be used reliably as
an additional degree of freedom in covert attention BCIs. The results do
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indicate that peripheral targets can be distinguished from targets close to
fixation. This may be useful with regard to the notion of a brain-controlled
switch [70], where attending to fixation is used to activate or deactivate the
BCI system.

Figure 3.2 shows that the lateralization pattern changes as a function of
target eccentricity. Changes in the lateralization pattern are also observed
when attention is directed towards targets at different angles relative to
fixation [90, 121, 11] and may be due to the fact that visual attention to a
spatial location is retinotopically organized [107], i.e., directing attention to
a certain spatial location will cause stronger activations in different parts
of visual cortex and therefore lead to different spatial topographies at the
MEG sensor level. With respect to eccentricity, we find that the further
one moves away from fixation, the larger the difference in alpha lateraliza-
tion index with respect to fixation. Figure 3.3 shows that on average the
difference in ALI when moving from an eccentricity of minus three to three
degrees of visual angle is much larger than the difference when moving from
three to six or nine degrees which could be the result of cortical magnifi-
cation [93, 51]. Finally, the results also indicate that in six out of eight
subjects the ALI has a bias in favor of the right hemisphere which could be
related to asymmetries in cortical visual field representations [117, 16, 100].

Concluding, we have shown that target eccentricity strongly influences
classification performance in covert attention BCIs. The observation that
target eccentricity modulates the observed lateralization pattern in occipito-
parietal cortex is also of importance and indicate that target eccentricity
should be considered as an important confound when comparing studies of
covert spatial attention.



Chapter 4

Decoding the direction of
covert attention with EEG

1

Visual brain-computer interfaces (BCIs) often yield high performance
only when targets are fixated with the eyes. Furthermore, many paradigms
use intense visual stimulation, which can be irritating especially in long BCI
sessions. However, BCIs can more directly tap the neural processes under-
lying visual attention. Covert shifts of visual attention induce changes in
oscillatory alpha activity in posterior cortex, even in the absence of visual
stimulation. The aim was to investigate whether different pairs of direc-
tions of attention shifts can be reliably differentiated based on the elec-

1This chapter is based on:

• Treder, M. S., Bahramisharif, A., Schmidt, N. M., van Gerven, M. A. J., Blankertz,
B., ‘Brain-Computer Interfacing using modulations of Alpha activity induced by
covert shifts of attention’, Journal of NeuroEngineering and Rehabilitation, 8:24,
2011

• Wouters, H. J. P., van Gerven, M. A. J., Treder, M. S., Heskes, T., Bahramisharif,
A., ‘Covert attention as a paradigm for subject-independent brain-computer inter-
facing’, NIPS workshop on Machine Learning and Interpretation in Neuroimaging,
Sierra Nevada, Spain, 2011
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troencephalogram. To this end, healthy participants (N=8) had to strictly
fixate a central dot and covertly shift visual attention to one out of six cued
directions. As expected, covert attention shifts induced a prolonged alpha
synchronization over posterior electrode sites (PO and O electrodes). Spec-
tral changes had specific topographies so that different pairs of directions
could be differentiated. There was substantial variation across participants
with respect to the direction pairs that could be reliably classified. Mean
accuracy for the best-classifiable pair amounted to 74.6%. Furthermore, an
alpha power index obtained during a relaxation measurement showed to be
predictive of peak BCI performance (ρ = .66). Results confirm posterior al-
pha power modulations as a viable input modality for subject-independent
BCI. The pair of directions yielding optimal performance varies across par-
ticipants. Consequently, participants with low control for standard direc-
tions such as left-right might resort to other pairs of directions including
top and bottom.

4.1 Introduction

A brain-computer interface (BCI) serves to decode user intention from brain
signals, enabling a direct communication between brain and computer.
Since the main target group of BCIs is patients with motor impairments, it
is vital that the control of a BCI does not involve motor activity. However,
this is not always the case. For instance, for the widely used Matrix speller
(P300-speller), evidence accumulates that BCI control is efficient only when
the target symbol is fixated with the eyes [108, 25].

Different routes have been taken to circumvent the problem of gaze
dependence. For instance, one may fall back on other sensory modalities
such as spatial auditory [98, 50] and tactile feedback [24]. Alternatively,
one may rely on other paradigms such as motor imagery [40, 20]. However,
motor imagery paradigms face the problem that a subset of participants
does not obtain significant BCI control, a problem that is only partially
solved [22, 125]. Also in the visual domain, there have been promising
approaches to gaze-independent BCIs. For instance, recently, three visual
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gaze-independent spellers have been introduced [108, 109]. In contrast to
the Matrix speller, the selection process was broken down into two suc-
cessive steps, and for the best speller, mean symbol selection accuracy
amounted to about 97%. In another study, rapid serial visual presenta-
tion of symbols was used, with a mean symbol selection accuracy of up to
90% for selecting one symbol out of thirty [1].

Note, however, that these paradigms rely on visual stimulation. In
particular, they exploit the fact that the event-related potential (ERP) as-
sociated with a visual stimulus can be modulated by attention. In the
present study, we take a more fundamental approach. It has been shown
that covert spatial attention shifts are accompanied by power changes in
the alpha band (8–12 Hz) of the electroencephalogram (EEG) at posterior
electrode sites [97]. Therefore, rather than measuring the effects of atten-
tion on the neural response to visual stimulation, we directly tap the neural
process underlying covert attention shifts. This approach has several ad-
vantages over conventional paradigms based on ERPs. First, continuous
visual stimulation, which can be tedious and irritating especially in long
BCI sessions, is superfluous. Second, for some application domains such as
spatial navigation, it seems more intuitive to shift attention to the desired
location rather than to perform a task such as counting the occurrences
of a flashing target. Third, a BCI based on changes in oscillatory alpha
activity potentially allows for asynchronous control. That is, the user initi-
ates a covert attention shift whenever he or she wants to issue a command,
whereas in an ERP paradigm, the user has to adhere to the pace and timing
of the visual stimulation sequence.

Kelly et al. suggested that the alpha paradigm may indeed be a feasible
input modality for EEG-based BCIs [58]. Participants were instructed to
deploy covert spatial attention to a target that was located either left or
right of the fixation point. Offline classification showed that it is possible
to discern attention shifts to either direction based on modulations of the
posterior alpha rhythm. However, one of the caveats of this study was that
the authors used targets flickering in different frequencies. Since the flicker-
ing might interact with the deployment of attention, it is unclear how these
results transfer to a paradigm without continuous visual stimulation. Re-
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cent studies using magnetoencephalography (MEG) mapped out multiple
directions of attention shifts. It was shown that shifts to multiple spatial
directions, including top and bottom, yield distinctive patterns of alpha
modulation [90] that can be reliably classified [118, 121]. Follow-up studies
investigated the role of stimulus eccentricity [10] and showed that arbitrary
directions can be decoded [11]. However, it remained unclear whether the
results from MEG transfer to EEG. After all, the former has a substan-
tially higher spatial resolution which allows for a more accurate estimate of
the topographical distribution of alpha power. Regarding practical appli-
cation, however, an EEG-based solution is desirable due to its lower cost,
portability, and the possibility to use it in a home environment.

The aim of the present study was to bring together these strands of
research on visual alpha based BCIs. Expanding on the work by Kelly et
al. [58], we investigated whether attention shifts to directions other than
left-right would also induce distinctive patterns of alpha modulation.

4.2 Materials and methods

4.2.1 Data collection

Eight healthy volunteers (seven male, one female), aged 18–27 years, par-
ticipated in this study. All participants had normal or corrected-to-normal
vision. All participants gave written consent and the study was performed
in accordance with the Declaration of Helsinki.

EEG

EEG was recorded from a Brain Products (Munich, Germany) 64 channel
actiCAP, digitized at a sample rate of 1000 Hz, with impedances kept be-
low 20 kΩ. We used electrodes Fp2, AF3,4, Fz, F1–10, FCz, FC1–6, T7,8,
Cz, C1–6, TP7,8, CPz, CP1–6, Pz, P1–10, POz, PO3,4,7–10, Oz,1,2 and
Iz,1,2, placed according to the international 10-10 system and referenced
against a nose reference. Additionally, an EOG electrode labeled EOGvu
was placed below the right eye. Vertical and horizontal bipolar EOG chan-
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nels were created by referencing Fp2 against EOGvu, and F10 against F9,
respectively. Stimuli were presented on a 24” TFT screen with a refresh
rate of 60 Hz and a resolution of 1920 × 1200 px2. The experiment was im-
plemented in Python using the open-source BCI framework Pyff [124] with
Pygame (http://pygame.org). Data analysis and classification were per-
formed with MATLAB (The MathWorks, Natick, MA, USA) using custom
functions and the Fieldtrip toolbox [80].

Task and Stimuli

Participants performed a cued visual attention task. The course of a trial
is depicted in Fig. 4.1. First, a white central fixation dot surrounded by
six white target discs was presented. The discs had a size of 3.27◦ of visual
angle and they were presented at an eccentricity of 9◦ from the fixation dot.
A cue appearing for 200 ms in the center of the screen indicated the target
location. Participants had to shift attention to the cued disc while strictly
fixating the central dot. Instead of arrows, we used an omnidirectional
cue to reduce the danger of evoking event-related potentials specific to the
direction of the cue. The cue was a hexagon with each of the six faces
pointing to one of the target discs. Three of the faces were grey and the
other three were colored blue, red, and green, respectively. One of these
colors was used as target indicator, that is, the participant had to covertly
direct and maintain attention to the disc to which this color was pointing.
The use of one of the three colors as target color was counterbalanced across
participants. After a variable duration (500–2000 ms) the target appeared
for 200 ms in the disc as either a ‘+’ or a ‘×’. Participants indicated which
symbol they had perceived by pressing with their thumb on one of two
buttons lying in the palm of the right and left hands. Two different targets
had been chosen to reduce readiness potentials for pressing a button, as
suggested by [90]. After 200 ms, a star-shaped masker (‘∗’) was presented
at the target location for 200 ms in order to prevent an afterimage of the
target and thereby increase task difficulty.

Each participant completed 600 trials in six blocks of 100 trials with
two-minute breaks between blocks. Cues were valid in 80% of the trials.
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Directing attention:

Target: 200 ms

Masker: 200 ms

Fixation: 1000 ms

Cue: 200 ms

Directing attention: 
500 ‐ 2000 ms

Figure 4.1: Covert attention task. After 1000 ms, a cue in form of a hexagon
appeared. Participants had to attend to either the blue, red, or green face
of the hexagon, and they had to covertly shift attention to the disc the
face was pointing at. After a variable amount of time (500–2000 ms), a
target (‘+’ or ‘×’) appeared, followed by a masker (‘∗’). The participant
indicated the perceived symbol by means of a button press with the right
or left hand.
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In the other 20% of the cases, the target appeared at a different random
location. The target symbol was randomly chosen, with equal chances for
‘+’ and ‘×’. Target latency (i.e., the time between cue onset and target
onset) was 2000 ms in 50% of the trials. To ensure that the participants
shift their attention immediately after the appearance of the cue, 30% of
the trials featured a short target latency of 500 ms. In the remaining trials,
the target latency was randomized between 500 ms and 2000 ms in order
to ensure that attention is sustained continuously until target appearance.

4.2.2 Preprocessing

For each electrode, a single spectral feature was extracted by estimating
bandpower in the alpha range (8–12 Hz) for the 500–2000 ms interval using
the Welch method [81]. In other words, the interval was split into 8 seg-
ments with 50% overlap between segments. Each segment was windowed
using a Hamming window. Spectral power was estimated in each segment
and then averaged across segments. During cross validation, for each sub-
ject, data was normalized to have zero mean and a standard deviation of
one in the training set of the outer fold.

4.2.3 Classification

For each participant, and for each of the fifteen possible pairs of directions,
we performed binary classification using L2-regularized logistic regression
(LR) [139, 36] and a correlation based classifier (Cor) [48, 74] and com-
puted classification accuracy under a ten-fold cross-validation scheme [64].
LR is explained in Sec. 3.2.4. The correlation based classifier (Cor) com-
pares the Pearson correlation coefficient of a trial to a class template. The
class templates are the average of all trials belonging to a class in the train-
ing set. A test sample is classified as the class which corresponds to the
template with which the object has the highest correlation. In order to
determine the optimal regularization parameter for LR, a grid search was
performed and the smallest parameter value was chosen that gave highest
accuracy as computed with five-fold cross-validation using just the training
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data of the outer ten-fold cross-validation. Subsequently, the classifier was
retrained using all training data in order to test the classifier on the test
data. Significance levels were calculated by comparing classification out-
comes with an assignment of all outcomes to the majority class using the
binomial test [96].

4.3 Results

4.3.1 Behavioral results

Overall response accuracy was 86.62%±8.46% SEM. The accuracies in the
valid and invalid condition were compared using a paired-samples t-test and
found to be not significantly different (p = .199). In contrast, the geometric
means of the reaction times were significantly smaller in the valid condition
than in the invalid one (t = 4.49, p < .01), indicating that the participants
attended correctly the cued positions (valid: 719 ms ± 51 ms SEM; invalid:
881 ms ± 76 ms SEM).

We repeated the analysis on the subset of trials wherein the target la-
tency was 2000 ms, since only this subset was used for neurophysiological
analysis and classification (see next paragraph). For this subset, overall
response accuracy amounted to 87.2%± 8.6%. The accuracies in the valid
and invalid condition were not significantly different (p = .233). The geo-
metric means of the reaction times were significantly smaller in the valid
condition than in the invalid one (t = 3.92, p < .01; valid: 742 ms ± 55 ms;
invalid: 896 ms ± 84 ms).

4.3.2 Neurophysiological results

For neurophysiological analysis and classification, we used the subset of tri-
als with a 2000 ms target latency. Trials with shorter target latencies were
not considered since they were only intended to stimulate participants to
shift their attention immediately after cue onset. In the former trials the
whole 2000 ms contain the shift and maintenance of attention to the target
without any external stimulus. The spatial resolution of the EEG data was
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Figure 2: Grand average wavelet spectra. In each time-frequency plot, the interval of -800 to 2000 ms
relative to cue onset (vertical line) is depicted on the x-axis. Morlet wavelet center frequencies, ranging
from 4 to 30 Hz, are depicted on the y-axis. Color signifies wavelet amplitude in (a) and the phase-locking
factor in (b). (a) At posterior electrode sites, three neurophysiological events can be observed, namely
an early synchronization in the delta and theta bands, followed by a desynchronization and subsequent
synchronization in the alpha band. (b) Phase-locking factor (PLF), specifying the amount of phase-locking
to stimulus onset. Only the early synchronization in the delta and theta bands is phase-locked to stimulus
onset. This supports the idea that the early component reflects the processing of the visual cue, while the
alpha (de)synchronization is associated with the deployment of covert visual attention.
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Figure 4.2: Grand average wavelet spectra. In each time-frequency plot,
the interval of -800 to 2000 ms relative to cue onset (vertical line) is de-
picted on the x-axis. Morlet wavelet center frequencies, ranging from 4 to
30 Hz, are depicted on the y-axis. Color signifies wavelet amplitude in (a)
and the phase-locking factor in (b). (a) At posterior electrode sites, three
neurophysiological events can be observed, namely an early synchronization
in the delta and theta bands, followed by a desynchronization and subse-
quent synchronization in the alpha band. (b) Phase-locking factor (PLF),
specifying the amount of phase-locking to stimulus onset. Only the early
synchronization in the delta and theta bands is phase-locked to stimulus
onset. This supports the idea that the early component reflects the pro-
cessing of the visual cue, while the alpha (de)synchronization is associated
with the deployment of covert visual attention.
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enhanced using a current source density estimate [56]. Figure 4.2 depicts
grand-average wavelet spectra for a subset of scalp channels, averaged over
all six directions and all participants. In Fig. 4.2a, wavelet coefficients were
determined for single trials and then averaged over all trials and partici-
pants. Note that wavelets are acausal filters, that is, post-stimulus activity
can leak into the pre-stimulus baseline. Therefore, baseline-correction was
performed on the -800 to -419 ms interval, as indicated by the grey bar in
each subplot. Choosing -419 as upper bound prevented post-cue activity
from leaking into the baseline because it corresponds to half the width of the
widest wavelet. The spectra show three distinct neurophysiological events
preponderating at posterior electrode sites, with little event-related activ-
ity at other electrode sites. First, a synchronization in the delta and theta
bands peaking at 200–300 ms. Second, a desynchronization in the alpha
band peaking roughly at 500 ms. Third, a subsequent late synchronization
alpha band evident from about 1500 ms. In Fig. 4.2b, the phase-locking
factor (PLF) was calculated by first normalizing wavelet coefficients to unit
magnitude, averaging over epochs and then determining the magnitude of
the result [103]. Only the first of the events depicted in Fig. 4.2a dis-
plays phase-locking with stimulus onset, suggesting that the early delta
and theta activity is caused by ERPs that reflect the visual processing of
the cue. In line with the literature (e.g., [137, 97, 121]), we found that an
alpha desynchronization and a subsequent synchronization indexes shifts of
covert visual attention.

Alpha power over the occipital channels for different directions of atten-
tion averaged over all participants is shown in Fig.4.3. In this plot, there
is a clear overall difference between different conditions. The obtained plot
is consistent with the results shown in [11].

Moreover, the alpha lateralization index (ALI) is calculated as the ratio
between the average alpha power over the left posterior channels and the
average over the right ones. The average ALI over all subjects is shown in
Fig. 4.4.
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Figure 4.3: Occipital alpha activity for different directions of covert atten-
tion. The central panel shows the average alpha over all directions over
all subjects. The peripheral panels show the relative differences with the
average. The selected channels are marked with black stars.

4.3.3 Classification

Since alpha power peaks over occipital electrodes sites (see Fig. 4.9a), the
subset of electrodes comprising PO3,4,7–10, and Oz,1,2, was selected as
input to the classifier. We focused only on alpha synchronization, because
the preceding alpha desynchronization did not show distinctive patterns for
the different directions.

Average classification performances of all pairs of directions over all
subjects for Cor and LR were 60.6%± 0.7% and 61.9%± 0.7%, respectively.
Figure 4.5 shows that there was a correlation of 0.78 (p < .001) between
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Figure 4.4: Average alpha lateralization index (ALI) for each direction of
covert attention. Bars indicate the standard error of the mean ALI. Down-
left (DL) and down-right (DR) have the highest and the lowest values,
respectively.

the two sets of classification performances. As there was no significant
difference between the results of the two classifiers and performance of LR
was a bit higher, we show the results based on using LR.

Mean accuracy for the best pair of directions was 74.6% ± 2.3%. Fig-
ure 4.6 depicts the classification accuracy for each participant and for each
pair of directions based on using LR. Colored pie pieces represent direc-
tions that were significant under a significance threshold of 0.05. Moreover,
for three participants (iac, mk, and iaa) results were highly significant
(p < .001). The figure reveals large individual differences. In particular,
the pair of directions yielding the best classification performance varies sub-
stantially across participants. In most cases, some combination of left and
right directions yields the best classification performance.

In line with earlier work [10], we suspected a relationship between the
classification performances and the differences of the alpha lateralization
indexes (ALIs). We found a correlation of 0.69 and 0.79 (p < 0.001) between
the ALI differences and the classification results of LR and Cor, respectively.



EEG decoding of the direction of covert attention 47

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

LR

C
or

Figure 4.5: Classification accuracies of Cor versus LR.

To check for confounds, we applied a logistic regression classifier on the
time series obtained with two bipolar EOG channels. Highly significant
classification performance (p < .001) was obtained for only one direction
in one participant. Under a significance threshold of 0.05, EOG data alone
was not sufficient to obtain significant classification outcomes for three par-
ticipants. For participants mk, iae, and iac, only one pair of directions was
classifiable. For participant gao, this was the case for two pairs of direc-
tions (top-right versus top-left and bottom-right versus bottom-left). For
participant nh, five pairs of directions could be classified. Note that the
latter participant yielded the worst classification results on the EEG data
(see Fig. 4.6), which suggests a dissociation of the processes underlying
EOG activity and posterior alpha activity. In line with this, the scatter
plot shown in Fig. 4.7 makes clear that there is no significant correlation
(ρ = .029, p = .75) between the classification outcomes obtained using
either EEG or EOG measurements.
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iac [85%] mk [81%] gao [74%] iaa [72%]

iai [72%] iah [70%] iae [69%] nh [66%]

Figure 4.6: Binary classification results for each of the eight participants
and for each pair of directions using L2-regularized logistic regression. Peak
accuracy for the best-classifiable pair of directions is given in brackets after
the participant code; this pair is also indicated by a double arrow. Classi-
fication scores are depicted for all binary pairings of directions. For each
participant, the data consists of six polar plots placed at spatial locations
analogous to the locations used in the experiment. Each polar plot contains
five pie slices depicting classification accuracies between the location of the
plot and each of the five other possible directions. Classification accuracies
that are significantly different (p < .05) from chance level (50%) are given
as yellow-red pie slices, non-significant accuracies are shaded grey. Both the
length of a pie piece and its color indicate classification accuracy (lighter
color for higher accuracy, darker color for lower accuracy). For instance,
for participant iai, only the top-left and the bottom-right directions could
be differentiated from each other significantly.
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Figure 4: Classification accuracies using EOG versus EEG. For each participant, only those direction pairs are
depicted which yielded significant classification results based on EEG and/or EOG. Notably, high accuracy
for EEG-based classification usually comes with low accuracy for EOG-based classification, and vice versa.
This suggests a dissociation between EEG- and EOG-based classification.
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Hamming window. Spectral power was estimated in each segment and then averaged across segments.

During cross validation, for each subject, data was normalized to have zero mean and a standard deviation

of one in the training set of the outer fold.

Mean accuracy for the best pair of directions was 74.6% ± 2.3%. Figure 3 depicts the classification
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To check for confounds, we applied a logistic regression classifier on the time series obtained with two
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Figure 4.7: Classification accuracies using EOG versus EEG. For each par-
ticipant, only those direction pairs are depicted which yielded significant
classification results based on EEG and/or EOG. Notably, high accuracy for
EEG-based classification usually comes with low accuracy for EOG-based
classification, and vice versa. This suggests a dissociation between EEG-
and EOG-based classification.
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4.3.4 Left hemisphere versus right hemisphere contribution

There is evidence that the left and the right hemisphere do not contribute
equally to shifts of visual attention [73]. In particular, the left hemisphere
mainly supports shifts of attention in the contralateral (right) hemifield,
while the right hemisphere is involved in attention shifts in both hemi-
fields. To investigate whether this asymmetry applies to the present data
as well, we pooled over both left and both right directions and estimated
alpha power in the classification interval (500–2000 ms) for both directions.
Subsequently, we calculated the signed square of the point-biserial correla-
tion coefficient sgn r2 (see, e.g., [21]), contrasting shifts to right directions
with shifts to left directions. The results are depicted in Fig. 4.8a. In line
with the literature, alpha power is higher at left hemisphere electrode sites
when attention is directed to the right than when attention is directed to
the left. For right hemisphere electrode sites, alpha power does not differ
significantly for shifts to right and shifts to left directions.

As a consequence, one would expect an asymmetric impact of electrode
position on BCI performance, with left hemisphere electrodes contributing
more to classification success than right hemisphere electrodes. As Fig. 4.8b
suggests, this is indeed the case. For most participants, classification on
left hemisphere electrodes yields better scores than classification on right
hemisphere electrodes. Nevertheless, taking into account both hemispheres
usually improves performance, suggesting that right hemisphere electrodes
add independent information. To compare these three conditions quanti-
tatively, we performed a 1-way analysis of variance (ANOVA) on the peak
performances in the three conditions. We found a significant effect of the
electrode subset (left, right, or both hemispheres) on BCI performance
(F = 6.11, p < .01). Tukey-Kramer post-hoc tests revealed that classifica-
tion using both hemispheres gives better accuracy than classification using
left hemisphere only. The other contrasts were not significant.
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Figure 5: Contribution of left and right hemispheres to classification success. (a) Point-biserial correlation
coefficient contrasting spectral power for shifts to right versus left directions. The sgn r2 is peaking over
the left hemisphere only. No differential effect is observed over the right hemisphere. (b) Peak classification
accuracy when only left hemisphere electrodes, only right hemisphere electrodes, or both sets are used for
classification. For illustrative purposes, data points belonging to the same electrode montage have been
connected by lines. The graph suggests that left hemisphere electrodes yield a higher performance than
right hemisphere electrodes.

Alpha rhythm based predictor of BCI performance

In light of the availability of numerous BCI systems and the fact some users do not obtain significant BCI

control, prediction of BCI performance using simple neurophysiological indices is a topic that is gaining

increasing attention [9]. Our aim was to use posterior alpha power from the resting EEG as a predictor of

BCI performance. To this end, we investigated the relaxation data recorded prior to each experiment. We

considered the epochs wherein participants relaxed with eyes closed. After current source density

filtering [24], the spectral peak in the 8–12 Hz alpha range was extracted for each electrode.

Figure 6a shows that alpha energy dominates at parieto-occipital electrode sites. Consequently, we

considered pooled alpha power of symmetric electrode pairs at parieto-occipital sites as a predictor. For

electrode pair PO3-PO4, a correlation of r = .66 (p = .07) was found, see Figure 6b. For electrode pair

PO7-PO8, correlation drops (r = .54; p = .17), despite the higher absolute power. We suppose that this

might stem from the fact that mean impedance was lower for PO3-PO4 than for PO7-PO8, yielding a

cleaner EEG signal (Figure 6c).
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Figure 4.8: Contribution of left and right hemispheres to classification suc-
cess. (a) Point-biserial correlation coefficient contrasting spectral power
for shifts to right versus left directions. The sgn r2 is peaking over the left
hemisphere only. No differential effect is observed over the right hemisphere.
(b) Peak classification accuracy when only left hemisphere electrodes, only
right hemisphere electrodes, or both sets are used for classification. For
illustrative purposes, data points belonging to the same electrode montage
have been connected by lines. The graph suggests that left hemisphere
electrodes yield a higher performance than right hemisphere electrodes.
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4.3.5 Alpha rhythm based predictor of BCI performance

Due to the proliferation of BCI research in the last decade, there exists now
a wide palette of BCI systems. However, there is no a priori criterion for
assigning a particular BCI system or a particular input modality (such as
event-related potentials or sensorimotor rhythm) to a new BCI user, despite
the fact that there is high variability across users regarding the efficiency
of particular BCI paradigms. As a result, BCI users might use a system
that does not yield optimal performance. This problem is aggravated by
the fact that a non-negligible proportion of participants fails to exhibit
significant BCI control. For paradigms based on the modulation of the
sensorimotor rhythm (SMR), this proportion amounts to 15–30% of the
subject population [22].

Consequently, there is growing need for efficient screening procedures
that allow for the estimation of prospective BCI performance. To be useful,
screenings should be obtained within few minutes using a simple paradigm,
in order to prevent a tedious and, upon failure, frustrating calibration pro-
cedure. For instance, Blankertz et al. showed that the mu rhythm gener-
ated in motor cortex is predictive of BCI performance in a motor imagery
paradigm [22]. The predictor was obtained from a 2 minutes measure-
ment during which participants were instructed to relax with eyes open. It
showed a correlation of ρ = .53 with BCI performance.

In a similar fashion, our aim was to use posterior alpha power from the
resting EEG as a predictor of BCI performance. To this end, we investi-
gated the relaxation data recorded prior to each experiment. We considered
the epochs wherein participants relaxed with eyes closed. After current
source density filtering [56], the spectral peak in the 8–12 Hz alpha range
was extracted for each electrode.

Figure 4.9a shows that alpha energy dominates at parieto-occipital elec-
trode sites. Consequently, we considered pooled alpha power of symmetric
electrode pairs at parieto-occipital sites as a predictor. For electrode pair
PO3–PO4, a correlation of ρ = .66 (p = .07) was found, see Fig. 4.9b. For
electrode pair PO7–PO8, correlation drops (ρ = .54; p = .17), despite the
higher absolute power. We suppose that this might stem from the fact that
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Figure 6: Prediction of BCI performance based on the alpha rhythm. (a) Spatial distribution of alpha
energy during relaxation with eyes closed. Alpha amplitude is highest over the electrode subset that was
used for classification (i.e., PO3,4,7–10, and Oz,1,2), with absolute peaks at electrodes PO7 and PO8. (b)
Correlation between alpha power at electrode pair PO3-PO4 and peak classification accuracy (r = .66). The
grey line gives a linear fit. (c) Mean impedances across participants show lower impedance for PO3-PO4
than for PO7-PO8. This possibly explains why the former pair is more predictive of BCI performance than
the latter.

Discussion

Shifts of covert visual attention induce changes in alpha power over posterior electrode sites. Initial

analyses revealed that an early desynchronization was of little discriminative value regarding the direction

of attention shifts. We believe that this early desynchronization may be related to the preparation of

covert attention shifts. A subsequent synchronization, however, yielded distinctive topographic patterns for

the different directions and served as a basis for classification.

Using regularized logistic regression, significant binary classification performance was obtained for each

participant, with a mean accuracy of 73.65% for the best pair of directions. A classification accuracy of 70%

was proposed as performance threshold above which BCI performance can be considered as robust [33, 34].

In the present study, six participants had a peak performance above 70%, and two participants had a

performance that was slightly lower (66% and 69%). Interestingly, this figure is close to the accuracy

obtained in earlier MEG studies, in spite of the significantly higher spatial resolution of MEG as compared

to EEG [19,22]. This suggests that changes in alpha power following covert attention shifts are rather

broadly distributed in visual cortex and, hence, can be mapped with sufficient precision using EEG.

Mean classification accuracy obtained in the present study is similar to the accuracy obtained by Kelly et

al. [17]. However, there are significant methodological differences. First, Kelly et al. used visual

stimulation in form of two flickering stimuli. It is unclear how the flickering affects the ease of deploying
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Figure 4.9: Prediction of BCI performance based on the alpha rhythm.
(a) Spatial distribution of alpha energy during relaxation with eyes closed.
Alpha amplitude is highest over the electrode subset that was used for clas-
sification (i.e., PO3,4,7–10, and Oz,1,2), with absolute peaks at electrodes
PO7 and PO8. (b) Correlation between alpha power at electrode pair
PO3–PO4 and peak classification accuracy (ρ = .66). The grey line gives a
linear fit. (c) Mean impedances across participants show lower impedance
for PO3–PO4 than for PO7–PO8. This possibly explains why the former
pair is more predictive of BCI performance than the latter.

mean impedance was lower for PO3–PO4 than for PO7–PO8, yielding a
cleaner EEG signal (Fig. 4.9c).

4.3.6 Subject-independent learning

For subject-independent learning the goal is to decode the direction of at-
tention of a subject without any previous class information about that
particular subject. For that, all trials except the ones belonging to the test
subject are pooled in a single training set and used to build a classifier.
This model is then used to classify data of the test subject. Evaluation
was done using a leave-one-subject-out (LOSO) strategy. Pooling is shown
with postscripts ‘P’ in the rest of this chapter.

The average classification performance of Cor P and LR P were 58.2%±
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Figure 4.10: Classification performance of Cor P versus Cor. Different
symbols stand for different subjects. For all subjects, all pairs of directions
are included.

0.7% and 56.9% ± 0.7%, respectively. Although for subject-specific learn-
ing, LR was performing a bit better than Cor, for subject-independent
learning, Cor P was performing a bit better than LR P, so here we show
the result of using Cor P. As Cor is a very simple classifier without any
parameter to be tuned, it is expected to perform well in the context of
subject-independent learning.

Classification performance of Cor P versus Cor is shown in Fig. 4.10.
There is a correlation of 0.78 (p < 0.001) between the two sets of perfor-
mances. This result implies that the performance of our BCI system highly
depends on the subjects and how they perform the task and not whether
the BCI system is trained using data of the same subject or not. Figure 4.11
shows the average classification performance of all pairs of directions over
all subjects for Cor and Cor P. It is shown in Fig. 4.10 that using Cor,
on average, 7 pairs of directions out of 15 can be classified significantly
(p < 0.01). This number reduces to 5 for Cor P. If we only count the
highly significant ones (Bonferroni corrected), we can only classify 4 pairs
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Cor [70.6%] Cor_P [65.0%]

( ) (b)(a) (b)

Figure 4.11: Average classification performance of all pairs of directions for
(a) Cor and (b) Cor P. Polar plots placed at spatial locations analogous to
the locations used in the experiment. Each polar plot contains five pie slices
depicting classification accuracies between the location of the plot and each
of the five other possible directions. Significant accuracies (p < 0.01) are
color coded in red. The brighter the color, the higher the accuracy. Peak
accuracies are given in brackets. The increasing circle radii indicate 50%,
75%, and 100% classification performance.

of directions in both cases. That is, referring to each direction with the
first letter of the direction (such as ‘D’ for down), the highly significantly
classifiable pairs of directions are DR versus DL, DR versus UL, and U
versus DR for both Cor and Cor P, and D versus DL only for Cor and UR
versus DL only for Cor P.

4.4 Discussion

Shifts of covert visual attention induce changes in alpha power over poste-
rior electrode sites. Initial analysis revealed that an early desynchroniza-
tion was of little discriminative value regarding the direction of attention
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shifts. We believe that this early desynchronization may be related to the
preparation of covert attention shifts. A subsequent synchronization, how-
ever, yielded distinctive topographic patterns for the different directions
and served as a basis for classification.

Using regularized logistic regression, significant binary classification per-
formance was obtained for each participant, with a mean accuracy of 73.65%
for the best pair of directions. A classification accuracy of 70% was proposed
as performance threshold above which BCI performance can be considered
as robust [66]. In the present study, six participants had a peak performance
above 70%, and two participants had a performance that was slightly lower
(66% and 69%). Interestingly, this figure is close to the accuracy obtained
in earlier MEG studies, in spite of the significantly higher spatial resolution
of MEG as compared to EEG [121, 118, 11]. This suggests that changes in
alpha power following covert attention shifts are rather broadly distributed
in visual cortex and, hence, can be mapped with sufficient precision using
EEG.

Mean classification accuracy obtained in the present study is similar to
the accuracy obtained by Kelly et al. [58]. However, there are significant
methodological differences. First, Kelly et al. used visual stimulation in
form of two flickering stimuli. It is unclear how the flickering affects the
ease of deploying attention to the visual periphery. Second, just as we did,
Kelly et al. used cross-validation to estimate classification performance.
However, epochs were partly overlapping. In other words, the training set
(used to train the classifier) partly contained information about the test set
(used to verify the classifier), which might have led to an overestimation of
classification accuracy.

Significant results were obtained for subject-independent learning. Ac-
curacies shown in Fig. 4.11 demonstrate that on average, down-left versus
down-right gives the highest classification performance using both Cor and
Cor P. As there is a highly significant correlation between the ALI differ-
ences and the classification accuracies, this result is consistent with Fig.4.4.
It is also shown in Fig. 4.3 that for these two directions, the brain pattern
changes in both left and right side of the occipital hemispheres compared
to the average.
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Averaged over all participants and directions, switching from Cor to
Cor P results in the decrease of 2.39 ± 0.7% in classification accuracy.
Nevertheless, the high correlation between the two performances shown
in Fig. 4.10 suggests that although the overall performance of subject-
independent learning is lower than the subject-specific approach, almost
the same pairs of directions can be classified significantly in a leave-one-
subject-out setting. Furthermore, Fig. 4.10 shows that we can get a high
accuracy of 0.84 for a well-performing participant, even if we do not train
the classifier with the participant’s own data. We expect to further im-
prove performance by utilizing more sophisticated methods for the analysis
of multi-subject data [95, 38].

The pair of directions yielding the highest classification performance
varies considerably across participants (see grey double arrows in Fig. 4.6).
For all but one participant, locations at opposite sides of the fixation point
yield optimal performance. Furthermore, for seven participants, highest
performance is achieved with a combination of left and right directions.
Mostly, this combination also has a vertical offset (i.e., top-left combined
with bottom-right, or bottom-left with top-right). For the other partici-
pant (iah), peak performance is achieved when attention is shifted in the
vertical direction. This indicates that left versus right is not necessarily
the optimal pair of directions. Therefore, participants with low control for
these directions may resort to other pairs of directions including top and
bottom.

Furthermore, we found an asymmetry regarding the contribution of elec-
trode sites to classification success. In particular, left hemisphere electrodes
contributed more to classification success than right hemisphere electrodes.
This is in line with evidence that the left hemisphere supports mainly at-
tention shifts to the right hemifield, while the right hemisphere is involved
in attention shifts to both the right and the left hemifields [73].

In sum, the present study suggests that modulations of alpha power
associated with covert attention shifts form a viable input modality for
EEG-based BCIs. Furthermore, an alpha index obtained during a short
relaxation measurement can predict prospective BCI performance. Anal-
ogous to the motor imagery paradigm, where different types of imagery
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(e.g., movement of left hand, right hand, and foot) are tested preliminary
and the best pair is chosen, eligible participants might then be screened for
different directions of covert attention shifts. In order to maximize perfor-
mance, the BCI would be tuned to the pair of directions that provides the
best classification accuracy.



Chapter 5

Task-Specific Source
Localization

1 A key problem in brain research is to identify and reconstruct active neu-
ronal sources from extracranially collected electrophysiological data. This
problem of projecting signals measured in sensor space back to source space
is often tackled by inverting a biophysically realistic forward model together
with the use of particular prior assumptions for the sources. To date, how-
ever, most source localization algorithms have not directly taken into ac-
count the modulation of source activations induced by certain experimental
manipulations. In this chapter, we introduce a new source localization tech-
nique which incorporates the experimental design in the source localization
procedure. We show that this improves source reconstruction for simulated
data as well as for an empirical data-set collected using a covert attention
BCI paradigm.

1This chapter is based on: Bahramisharif, A., van Gerven, M. A. J., Schoffelen, J. M.,
Heskes, T., ‘Task-specific source localization’, submitted
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5.1 Introduction

Brain computer interfaces (BCIs) not only hold the promise as a tool for
aiding the disabled and for augmenting human performance, but they also
provide us with the ability to study the brain at work. A recent review
paper has shown the utility of and the need for BCIs in the context of
brain research [53]. One of the challenging topics in brain research is to
identify and reconstruct active neuronal sources from electrophysiological
data. Measures of brain activity obtained from EEG or MEG are known
to have excellent temporal resolution but poor spatial resolution. In order
to identify the location of neuronal generators which are responsible for
the signals measured at the scalp, a lot of research has been devoted to
solving this source localization problem [31, 43, 123, 30, 39]. This problem
is typically addressed by inverting a biophysically realistic forward model
which is constructed using an anatomical MRI. As normally the number
of possible sources is much higher than the number of sensors, this inverse
problem has many solutions, and it is required to use additional assump-
tions concerning the sources. One common approach is to assume the indi-
vidual sources to be temporally uncorrelated, allowing for a reconstruction
of each source independent of the other sources, referred to as beamform-
ing [122]. Assumptions on the sparseness or smoothness of the sources have
also been introduced [111, 101, 29, 46]. Such constraints are incorporated
in recent Bayesian approaches to source localization using appropriate pri-
ors [71, 130, 119, 136].

Source localization studies are often conducted in a setting where dif-
ferent experimental conditions are compared with one another. In that
case, the default approach is to construct a source estimate by comparing
differences between the source estimates for two conditions. However, this
approach is unsuitable in case the experimental design is characterized by
multiple conditions or when the condition of interest is continuous-valued
instead of discrete.

To cope with these problems, Trujillo-Barreto et al. [110] have intro-
duced a Bayesian framework which combines contributions of both the ex-
perimental design and observed sensor readings. Here, in contrast, we use
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an alternative approach which directly generalizes standard source localiza-
tion algorithms. In our approach the sources are constructed such that they
not only explain the sensor-level observations but also predict the experi-
mental conditions as accurately as possible. We show that these require-
ments can be satisfied by solving a bi-convex problem using an iterative
coordinate-descent scheme. This solution critically depends on the insight
that, given fixed regression parameters that predict the experimental condi-
tion, we end up with a quadratic programming problem with linear equality
constraints. The benefits of our approach are illustrated on simulated and
empirical MEG data.

As empirical data we used a data-set which has previously been used in
a covert attention BCI paradigm. The ability to identify the neural gen-
erators involved in such a paradigm should ultimately increase our under-
standing of what functional mechanisms give rise to good BCI performance.

5.2 Source localization

Let m, n, and t denote the number of sources, sensors, and samples, re-
spectively. The goal of source localization is to estimate active sources
S ∈ Rm×t from sensor readings X ∈ Rn×t. In the source localization prob-
lem, sources are assumed to project linearly to the sensors via a leadfield
matrix L ∈ Rn×m. In other words, X = LS, where L and X are given and
S is to be estimated.

5.2.1 Standard approach

If we assume that the solution to the source localization problem can be
written as a linear mapping from sensors to sources, the problem of source
localization reduces to estimating the linear projection matrix W ∈ Rn×m
that projects the sensors to the sources. In other words, S = W TX. Equiv-
alently, W should be an inverse of the leadfield matrix L. As L is not square,
this inverse problem has many solutions for m > n.

Let us first consider the case m < n (more sensors than sources). The
leadfield matrix L then corresponds to an expansion and W to a projection.
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That is, S = W TX = W TLS, which implies that W TL = Im where Im
denotes the m ×m identity matrix. A standard approach is to minimize
the variance of the sources and find the W which minimizes 1

2 TrSST =
1
2 TrW TΣW subject to W TL = Im, where Σ ≡ XXT is the data covariance
matrix and Tr is the trace operator. The solution is shown to be [123]:

Ŵm<n = Σ−1L
(
LTΣ−1L

)−1
. (5.1)

We now consider the case m > n (more sources than sensors). In
this case, W T expands X to S and L projects back to X. That is, X =
LS = LW TX, which implies LW T = In. So here we have to consider the
constraint LW T = In instead. The solution is given by

Ŵm>n =
(
LLT

)−1
L (5.2)

and is known as the pseudo-inverse of the leadfield matrix [75, 31, 43]. In
this chapter we refer to it as Sp ≡ Ŵ T

m>nX. A more common approach to
source localization in the m > n setting is to assume that all the sources
are independent from each other. This approach is widely used in the
neuroscience community and is known as beamforming [123]. Given this
assumption, we can solve the inverse problem for each source location in-
dividually. In other words, for each source Si, Eq. 5.1 can be used to give

Ŵi = Σ−1Li
(
LTi Σ−1Li

)−1
(5.3)

where Li is the leadfield matrix of the i-th location. The individual source
estimates are then given by Si = Ŵ T

i X. We refer to the beamformer
solution as the ‘standard’ beamformer.

5.2.2 Task-specific approach

Source localization is almost never performed in isolation but rather in the
context of some experimental design Y ∈ Rr×t, where r is the number of
outputs and t the number of samples. These outputs can be experimen-
tal conditions but they can also be nuisance factors such as heart rate or
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head movement. Our goal is to make use of the information embodied by
the experimental design in order to obtain improved source estimates. A
straightforward way of achieving this is to assume that the reconstructed
sources should be predictive of (rows of) Y . That is, at the source level,
we wish to minimize the sum-squared error

C(Θ, S) ≡ 1

2
Tr
(
ΘTS − Y

) (
ΘTS − Y

)T
with Θ ∈ Rm×r. The solution to the source localization problem changes
depending on whether or not S can also be estimated as a linear projection
of X. If we assume that S can be estimated as a linear projection of X,
we can write S = W TX and we need to find a proper W based on our
assumptions. However, if we assume that it is not necessarily optimal to
project S to X linearly, we need to directly solve the equations for S. In the
following we discuss both options and show how the experimental design
can be integrated in the source estimation procedure.

Solving for W: a linear solution

Making use of S = W TX, we want to find W and Θ that minimize

C(Θ,W ) =
1

2
Tr ΘTW TΣWΘ− Tr ΘTW TB +

1

2
TrY Y T

with B ≡ XY T , under the constraint W TL = Im if m < n and WLT = In
if m > n. Obviously, we can add additional regularization terms, both for
Θ and W . Here, in order to enforce sparsity on the regression parameters,
we choose an `1 regularization term for Θ [105]. To minimize the variance
of the sources we add the usual term 1

2 TrSST . Ignoring constant terms,
the regularized cost function becomes:

Cα,λ(Θ,W ) ≡ α

(
1

2
Tr ΘTW TΣWΘ− Tr ΘTW TB

)
+

1

2
TrW TΣW + λ||Θ||1
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where || · ||1 stands for norm one and α and λ are regularization parameters.
This problem is bi-convex, i.e., given W it is convex in Θ and given Θ it
is convex in W . This observation suggests an iterative coordinate-descent
scheme, in which we consecutively minimize Θ andW under the appropriate
constraints and with the appropriate regularization terms. Solving for Θ
given W boils down to a standard regularized regression problem [36]. Let
us now consider solving for W , which boils down to the minimization of

R(W ) ≡ α

2
Tr ΘTW TΣWΘ− αTr ΘTW TB +

1

2
TrW TΣW

under the constraint W TL = Im or WLT = In for fixed Θ.

An important contribution of this chapter is the realization that this
minimization problem can be formulated as a quadratic programming prob-
lem with linear equality constraints. As shown in Appendix 5.A, Theorem
A1 and A2, making use of the definitions A ≡ Im+αΘΘT , Ã ≡ Ir+αΘTΘ,
Q ≡ αΣ−1XY T Ã−1ΘT and W̃m>n ≡

(
LA−1LT

)−1
LA−1, we obtain the

closed form solutions:

Wm<n = Q+ Ŵm<n(Im − LTQ) (5.4)

Wm>n = Q+ (In −QLT )W̃m>n (5.5)

for m < n and m > n, respectively. Note further that A−1 can be com-
puted efficiently from A−1 = Im − αΘÃ−1ΘT using the matrix inversion
lemma [135].

Source estimates W T
m<nX or W T

m>nX can be computed from these equa-
tions. We are particularly interested in the regime where we have more
sources than sensors. We use Sl ≡ W T

m>nX to refer to the linear solution
to task-specific source localization. We can also assume independence be-
tween sources, and enforce each source to explain all the sensor readings
and be predictive for the experimental condition. We can then compute
Wm<n for individual sources in the setting where we have more sources
than sensors. This gives the task-specific extension to the beamformer,
denoted by Sb.
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Solving for S: a nonlinear solution

It is not necessarily optimal to write S as a linear projection of X. In
fact, we could restrict ourselves to the constraint X = LS. This equation
does not have an exact solution for m < n, as then we would have more
equations than unknowns. Therefore, we only consider the case m > n. To
incorporate the experimental design, similar to solving for W , we need to
minimize

R(S) =
α

2
Tr ΘTSSTΘ− αTr ΘTSY T +

1

2
TrSST

for S and Θ under the constraint LS = X. As shown in Appendix 5.B,
Theorem B1, using the same notation as introduced before, this leads to
the following non-linear solution to task-specific source localization when
we have more sources than sensors:

Sn ≡ α(Im − W̃ T
m>nL)A−1ΘY + W̃ T

m>nX . (5.6)

Note that if we set α = 0, we obtain the linear solution mentioned in
Eq. 5.2.

5.2.3 Regularization parameters

As large values for α would result in higher separability for conditions with
respect to the experimental design and small values would result in lower
variance in the sources, the important question remains how to choose α.
As can be seen in the definition of A = αΘΘT + Im, large α results in the
first term being dominant and vice versa for small α. To reach a compromise
between the first and the second term, we choose α such that the sum of the
eigenvalues for each of the terms is the same. That is, given Θ we choose

α =
m

Tr ΘTΘ
. (5.7)

Note that the optimal Θ depends on λ and S, which are both yet un-
known. We therefore first compute Sp and then use cross-validation to
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determine the optimal λ when regressing Y against Sp. We use the imple-
mentation of [36] to solve this regression problem. We use the estimate of
Θ based on this optimal λ to compute α from Eq. 5.7.

For the task-specific beamformer, we start with the standard beam-
forming solution. We opt for having a general λ and α for all sources
(Si, i = 1 . . .m). Using a cross-validation procedure, we find the value of λ
that minimizes the average sum-squared error obtained when regressing Y
against each Si. Given this λ we compute an αi for each individual source
Si and then average these to obtain a single α for all sources.

5.3 Experiments

We evaluated our method using simulated and empirical data. For the
simulation, we projected randomly generated sources S onto the sensors X
using a leadfield L whose entries were drawn from a uniform distribution
on the unit interval. Sources were projected onto the experimental design
Y using another randomly generated matrix. For the empirical validation
we used data of two subjects reported in [11].

5.3.1 Simulated data

Simulated data were generated in order to compare the performances of
the task-specific source estimates with standard source estimates. Since in
practice we are dealing with a number of sources that is much higher than
the number of sensors (m� n), we only focused on that scenario.

In the first simulation, we were interested in analyzing how the quality
of the source estimates changes as a function of the number of outputs
r (rows of Y ) when comparing the linear and nonlinear solutions Sl and
Sn. Note that the standard solutions do not depend on this number and
are thus equivalent to the solutions obtained for r = 0. We used eight
sensors and 100 sources and varied the number of outputs from 0 to 90.
Source activations were drawn from a standard normal distribution. Sensor
amplitudes were generated by multiplying the leadfield matrix with the
source activations and adding Gaussian noise with mean zero and variance
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10−2. In this simulation, we focused on quantifying how source estimates
change as a function of the number of outputs. Therefore, we assumed
that the regression model Θ, which was used to generate the outputs, was
known. That is, when estimating task-specific sources, we fixed Θ and only
computed the closed form solutions as described in Eqs. 5.5 and 5.6.
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Figure 5.1: Impact of output dimension on the source reconstructions for
the proposed linear and non-linear approaches for source localization.

Figure 5.1 shows how increasing the output dimension affects the source
reconstruction using the linear or non-linear solution. It is evident that Sn

outperforms Sl for increasing output dimension. The estimates for Sl only
improve slightly, indicating that the assumption that S can be written as
a linear projection of X is untenable.

In the second simulation, we focused on comparing the pseudo-inverse
solution with the nonlinear solution Sn and the beamformer solution Sb. We
assumed that there was only one source with strong amplitude among 100
sources which carried task-specific information. This source flipped from an
amplitude of 2 to -2 (relative to baseline) after 1000 samples. Other sources
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unrelated to the task were assumed to have zero amplitude. Amplitudes
for ten sensors were generated by multiplying the leadfield matrix with the
source activations and adding Gaussian noise with mean zero and variance
one. An output was generated by multiplying the task-specific source with
a constant. Contrary to the previous simulation, we solved for Θ as well,
which required the application of the iterative coordinate-descent scheme
advocated in this chapter. Hence, Θ was estimated by repeatedly solving a
sparse regression problem.

Figure 5.2: The original sources and their reconstruction using methods
Sp, Sn, and Sb. There was hardly any difference between the results of the
task-specific beamformer and the standard beamformer.

The results for the second simulation are shown in Fig. 5.2. It is clear
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that both the pseudo-inverse solution Sp as well as the (task-specific) beam-
former solution Sb fail to properly detect the relevant source while the
task-specific solution Sn identifies the source correctly.

5.3.2 Empirical data

For the empirical data, we used data for two subjects that have previously
been used in [11]. The subject’s task was to maintain central fixation while
covertly attending to a target which followed a circular trajectory. The
output Y was given by the sine and cosine of the angles between the target
and the positive x-axis over time. To construct the leadfield matrix, we
used a structural MRI and the head model developed in [78]. Then we
discretized the brain volume into a grid with 1× 1× 1 cm3 resolution. For
each grid point the leadfield was calculated. Preprocessing and leadfield
generation was done using FieldTrip [80].

As shown in [11], task-specific information for this data shows up as
modulations of occipital alpha power (8–12 Hz) in the frequency domain and
not in the amplitude of individual time points. Since estimating the power
is a non-linear operation, we need to replace it with a linear preprocessing
procedure in order to apply our source localization algorithm. To cope with
this problem, we need a reference signal to align sensor readings and extract
their power using a linear operation. We used the linear trick explained in
Appendix 5.C to estimate the power.

Figure 5.3 shows the average absolute alpha source reconstructions over
all directions using Sb, Sp and Sn. Clearly, both Sb and Sp fail to iden-
tify the occipital sources whereas Sn correctly identifies occipital sources
that are known to be involved when subjects are covertly attending to a
peripheral target [15]. Figure 5.3 also shows that the beamformer suffers
from a bias towards deep sources [2, 128]. The default way to deal with
this problem is to examine the difference between two conditions, thereby
removing the contribution of the depth bias. In order to do so, we need to
discretize our continuous condition of interest. As an illustration, we chose
to focus on four directions on interest: ‘left’ when cos(Y ) < 0, ‘right’ when
cos(Y ) > 0, ‘up’ when sin(Y ) > 0, and ‘down’ when sin(Y ) < 0. Figure 5.4
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0

Figure 5.3: Source estimates using the task-specific beamformer Sb, the
pseudo-inverse solution Sp, and the non-linear method Sn for two subjects.
There was hardly any difference between the results of the task-specific
beamformer and the standard beamformer.

shows the normalized differences of the standard beamformer results for left
versus right and up versus down. As expected, there is an overall occipital
activity, which is very coarse compared to the results obtained for Sn in
Fig. 5.3.

5.4 Discussion

In this chapter we proposed a new method for source localization which
makes use of task-specific information. We showed that by starting from
the standard solutions to source localization, as shown in Eqs. 5.1 and 5.2,
and by adding the constraint that the estimated sources should explain the
design matrix, we arrive at the solutions for task-specific source localiza-
tion. The task-specific source estimates are obtained by solving a bi-convex
problem using an iterative coordinate-descent scheme. It depends on the
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Figure 5.4: Normalized differences of the standard beamformer outputs.
The angle is discretized into left,right, up, and down.

observation that, given fixed regression parameters that predict the exper-
imental condition, we end up with a quadratic programming problem with
linear equality constraints, which has a closed form solution.

For the proposed method, the underlying assumption is that the exper-
imental design affects the sources and can help locating these sources by
acting as additional virtual sensors. When there is no correlation between
the experimental design and the sources, the method reduces to standard
source localization.

Depending on whether sources can be described by a linear projection of
sensors or not, we derived a linear (Eq. 5.5) and a non-linear (Eq. 5.6) solu-
tion, respectively. Simulation results showed that the non-linear variant of
the proposed task-specific source localization method Sn outperformed the
linear variant Sl. The non-linear method was also shown to outperform the
(task-specific) beamformer results Sb as well as the pseudoinverse results
Sp. This result implies that it is not optimal to assume that the solution to
the source localization problem can always be written as a linear mapping
from sensors to sources.

The second simulation showed that the task-specific beamformer Sb did
not perform well. It seems to perform suboptimally in the presence of high-
variance sensor noise. With regard to the empirical data, the task-specific
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beamformer was found to perform similar to the standard beamformer.
Since the experimental conditions cannot be properly explained from sin-
gle source activity, the regression parameters vanish and the influence of
the experimental conditions on the source reconstruction disappears. Fur-
thermore, Fig. 5.3 shows that Sb suffers from a depth bias. In the case
of having a discrete set of conditions, we can look at the differences of
the beamformer results to get a rough estimate about the location of the
sources as shown in Fig. 5.4. Note however that, next to the coarse esti-
mation of the source locations, in our case, this required the discretization
of a continuous condition of interest, which may not be desirable.

The results on empirical data confirmed the good performance of the
non-linear method as the source locations that were hypothesized to be
involved in the task were correctly identified by Sn. Interestingly, Subjects
1 and 2 had one occipital source in common for Sn. Additionally, Subject
2 showed another occipital source in the opposite hemisphere. Not surpris-
ingly, the obtained solution depends on the (procedure for the) setting of
the regularization parameter λ and, to a lesser extent, α. For example,
we do find another active source in the left hemisphere of Subject 1 as
well when we slightly increase λ. An arguably better strategy could be to
consider a regularization path, along the lines of LARS [34], considering
a range of λ’s that all lead to (close to) optimal prediction performance
instead of taking a single value.

To incorporate task-specific information, we minimized the sum-squared
error of the task predictions. Other error functions or maximum likelihood
approaches, possibly in combination with other regularizers such as the
elastic net [36], can be treated within the same framework, but will require
more involved optimization procedures. These may then also be translated
to a Bayesian approach, along the lines of [119].

The proposed method can be applied either in the time domain or in the
frequency domain. Using the method in the time domain is straightforward
but presupposes that outputs can be predicted from instantaneous source
activations. Application of the methods in the frequency domain allows one
to make use of induced responses restricted to particular frequency bands
but needs additional preprocessing steps based on a proper reference signal
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as shown in the analysis of the empirical data. Evidently, the choice of the
reference signal itself will affect which sources will be identified.

From the result of the first simulation, it is evident that the task-specific
source localizer starts to outperform the standard methods when there are
multiple independent outputs. In a way, these outputs can be interpreted
as additional virtual sensors for which the leadfield matrix is unknown. In
practice, the task-specific source localizer Sn is expected to show the most
benefit for experimental designs in which multiple stimulus properties are
varied independently throughout the course of an experiment.

Finally, identification of the neural generators involved in BCI paradigms
can result in improved BCI performance. For instance, identification of the
relevant sources reduces BCI calibration time [3] and may facilitate multi-
task learning approaches [4]. Follow-up studies could further explore the
merits of task-specific source localization in such contexts.

5.A Appendix A: Solving for W

Theorem A1

For fixed Θ, minimization of

R(W ) =
1

2
TrW TΣWA− TrW TC

with C ≡ αBΘT under the constraint W TL = Im, results in the solution
shown in Eq. 5.4.

Proof

Build the Lagrangian:

L(W,Λ) =
1

2
TrW TΣWA− TrW TC − Tr

(
W TL− Im

)
ΛT .

Setting the derivative for W T to zero and solving for W gives

W = Σ−1
(
C + LΛT

)
A−1 .
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Plugging this back into the constraint LTW = Im and solving for ΛT yields

ΛT =
(
LTΣ−1L

)−1 (
A− LTΣ−1C

)
,

and thus

W = Σ−1L
(
LTΣ−1L

)−1
+αΣ−1

[
In − L

(
LTΣ−1L

)−1
LTΣ−1

]
XY TΘTA−1

where we plugged in the definition of C. Using the Woodbury identity [135],
we further have

A−1 = (Im + αΘΘT )−1 = Im − αΘ(Ir + αΘTΘ)−1ΘT ,

and thus
A−1Θ = Θ(Ir + αΘTΘ)−1 .

Substitution then leads to

Wm<n = Ŵm<n + (In − Ŵm<nL
T )Q = Q+ Ŵm<n(Im − LTQ) .

Theorem A2

For fixed Θ, minimization of

R(W ) =
1

2
TrW TΣWA− TrW TC

with C ≡ αBΘT under the constraint LW T = In, results in the solution
shown in Eq. 5.5.

Proof

Here we get the Lagrangian

L(W ) =
1

2
Tr ΣWAW T − TrCW T − Tr ΛT

(
LW T − In

)
.

Setting the derivative for W T to zero and solving for W now gives

W = Σ−1
(
C + ΛTL

)
A−1 .
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Plugging this back into the constraint WLT = In and solving for ΛT yields

ΛT =
(
Σ− CA−1LT

) (
LA−1LT

)−1
,

and thus

W =
(
LA−1LT

)−1
LA−1 + Σ−1CA−1

[
Im − LT

(
LA−1LT

)−1
LA−1

]
which leads to

Wm>n = W̃m>n +Q(Im − LT W̃m>n) = Q+ (In −QLT )W̃m>n .

5.B Appendix B: Solving for S

Theorem B1

For fixed Θ, minimization of

R(S) =
1

2
TrSTAS − TrDTS

with D ≡ ΘY under the constraint LS = X, results in the solution shown
in Eq. 5.6.

Proof

Build the Lagrangian:

L(S,Λ) =
1

2
TrSTAS − TrDTS + Tr ΛT (LS −X)

Setting the derivative for S to zero and solving for S gives

ST =
(
DT − ΛTL

)
A−1

or equivalently:

S = A−1
(
D − LTΛ

)
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Plugging this back into the constraint X = LS and solving for Λ yields

Λ =
(
LA−1LT

)−1 (
LA−1D −X

)
which leads to

Sn ≡ α[Im − W̃ T
m>nL]A−1ΘY + W̃ T

m>nX .

5.C Appendix C: Linear trick to estimate the power

Imagine that we have a reference signal which has the same frequency and
the same phase as the signal that we want to decode. We take the Fourier
transform of the data, which is a linear operation, only focusing on the
desired frequency, and subtract the phase of the reference signal. Then,
the real part of the Fourier transform would represent the amplitude of
the signal which, averaged over a time window, results in an estimate of
the power of the signal over that frequency. Note that the reference signal
is extracted from the sensor readings and is not necessarily related to the
location of the sources. This method is widely used in telecommunication
for amplitude demodulation [81]. There is no non-linearity involved in these
steps, which means we can just apply it to our data before using it as input
to the source localization algorithm. As the reference signal we choose the
average signal over eight channels which showed the highest average alpha
power. For the Fourier transform, we used a 500 ms time window.



Chapter 6

The Dynamic Beamformer

1 Beamforming is one of the most commonly used methods for estimating
the active neural sources from the MEG or EEG sensor readings. The ba-
sic assumption in beamforming is that the sources are uncorrelated, which
allows for estimating each source independent of the others. In this chap-
ter, we incorporate the independence assumption of the standard beam-
former in a linear dynamical system, thereby introducing the dynamic
beamformer. Using empirical data, we show that the dynamic beamformer
outperforms the standard beamformer in predicting the condition of inter-
est which strongly suggests that it also outperforms the standard method
in localizing the active neural generators.

6.1 Introduction

As the number of possible neural sources is much higher than the number
of MEG or EEG sensor readings, the inverse problem of estimating source
amplitudes from sensor readings has many solutions. A common approach
to tackle this problem is to assume that all sources are independent from

1This chapter is based on: Bahramisharif, A., van Gerven, M. A. J., Schoffelen, J. M.,
Ghahramani, Z., Heskes, T., ‘The dynamic beamformer’, NIPS workshop on Machine
Learning and Interpretation in Neuroimaging, Sierra Nevada, Spain, 2011
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each other. This approach is widely used in the neuroscience community
and is known as beamforming [31, 43, 30, 39].

Since the source amplitude is likely to change smoothly over time, we
expect to improve the source localization by taking the temporal dynamics
into account. Smoothness constraints have been combined with source lo-
calization in a Bayesian framework [82, 71, 129]. Furthermore, source local-
ization with a multivariate autoregressive source model has been presented
in [47], where the sources are assumed to be independent and identically
distributed in time and the components are subject to non-Gaussian dis-
tributions. The Kalman filter and particle filter have also been introduced
in the context of EEG and MEG source localization based on dipole-fitting
approaches [8, 9]. The model introduced in [8, 9] relies on the integration
of many dynamic dipolar neural models. In this chapter, in contrast to the
previous methods, we start from the standard beamforming solution and we
show that we can incorporate the independence assumption of the standard
beamformer in a linear dynamical system. We demonstrate that by using
the leadfield matrix as the observation model and setting the covariance of
the observation noise proportional to the covariance of the observation, we
arrive at the dynamic beamformer.

6.2 Method

6.2.1 Beamforming

Let m, n, and T denote the number of sources, sensors, and samples, re-
spectively. The goal of source localization is to estimate active sources
S ∈ Rm×T from sensor readings X ∈ Rn×T . In the source localization
problem, sources are assumed to project linearly to the sensors via a lead-
field matrix L ∈ Rn×m. In other words, X = LS, where L and X are
given and S is to be estimated. If we further assume that the solution to
the source localization problem can be written as a linear mapping from
sensors to sources, the problem of source localization reduces to estimating
the linear projection matrix W ∈ Rn×m that projects the sensors to the
sources; in other words: S = W ′X.
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Beamforming derives from the assumption that the sources are un-
correlated. Defining si ≡ Si·, `i ≡ L·i, and wi ≡ W·i , for each source
si ≡ (si,1, . . . , si,T ), we can write: si = w′iX = w′i`isi, which implies that
w′i`i = 1 for all i ∈ 1, . . . ,m. A standard approach is to minimize the vari-
ance of the sources and find the wi which minimizes sis

′
i = w′iΣwi subject

to w′i`i = 1, where Σ ≡ XX ′. The solution is shown to be [123]:

si = (`′iΣ
−1`i)

−1`′iΣ
−1X (6.1)

for all i ∈ 1, . . . ,m.

6.2.2 Linear Gaussian model

l

si,t‐1 si,t
aiai aisi,t‐1 si,t

lll li

xt

lilili

xt‐1xtxt‐1

(a) (b)

SS StSt‐1

Li Li
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Figure 6.1: (a) Graphical representation of a linear Gaussian model. (b)
Graphical representation of the dynamic beamformer.

The beamformer can be interpreted as a specific kind of linear proba-
bilistic model. Assume that we have a linear Gaussian model, as shown in
Fig. 6.1a, in which xt ≡ X·t is the observation at time t where 1 ≤ t ≤ T ,
and `i is given. Sensor observations linearly depend on source activations
through xt = `isi,t+ui,t, where ui,t ∼ N (0, R). Now we try to find si which
maximizes the likelihood of the parameters given the observations and R.
Ignoring the constant terms, the negative log-likelihood can be written as
1
2(X − `isi)′R−1(X − `isi) , which is minimized by

si =
(
`′iR
−1`i

)−1
`′iR
−1X . (6.2)
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Comparing Eqs. 6.1 and 6.2, we see that with R proportional to Σ, the
model depicted in Fig. 6.1a is equivalent to the standard beamformer. In
other words, a linear Gaussian model is a beamformer if we assume that
the covariance of the observation noise is proportional to the covariance of
the observations and use the leadfield matrix as the observation model.

6.2.3 Dynamic beamforming

The correspondence between the beamformer and the linear Gaussian model
suggests that a similar correspondence can be exploited using a linear dy-
namical system. We introduce the dynamic beamformer, which can be
obtained by just using the leadfield matrix as the observation model of a
linear dynamical system and setting the covariance of the observation noise
to be proportional to the covariance of the observation. The graphical
model of the dynamic beamformer is shown in Fig. 6.1b. For each source
si ≡ (si,1, . . . , si,T ), dynamic beamforming can be mathematically expressed
as

xt = `isi,t + ui,t (6.3)

si,t = aisi,t−1 + vi,t (6.4)

where ui,t ∼ N (0, αiΣ) and vi,t ∼ N (0, qi) independently for i ∈ 1, . . . ,m
and 1 ≤ t ≤ T . Note that si,t, ai, qi, and αi are scalar values. Note further
that each si should be predictive for the full observation X, so there is no i
in the left side of Eq. 6.3. Following the equations reported in [94], we can
find ai, qi, αi, and si by means of an expectation maximization algorithm.
We use both filtering and smoothing (forward and backward) equations to
have a better estimate of the sources.

6.2.4 Empirical data

We evaluated our method using MEG data of the best performing subject
reported in [11]. The subject’s task was to maintain central fixation while
covertly attending to a target which followed a circular trajectory. The
condition was given by the sine and cosine of the angles between the target
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and the positive x-axis over time. To construct the leadfield matrix, we
used a structural MRI and the head model developed in [78]. Then we
discretized the brain volume into a grid with 1× 1× 1 cm3 resolution. For
each grid point the leadfield was calculated. Preprocessing and leadfield
generation was done using FieldTrip [80].

The complexity of the dynamic beamformer increases with the num-
ber of time points. As shown in [11], task-specific information for this
data shows up as modulations of occipital alpha power (8–12 Hz) in the
frequency domain. Applying the dynamic beamformer on the frequency
domain results in a much lower processing time. In this study we used
the linear trick explained in Appendix 5.C to estimate the power in order
not to violate the linearity of the beamformer. To include all variations of
the alpha band in predicting the conditions, there was a 400 ms overlap
between the consecutive trials.

6.2.5 Validation

Brain source localization is difficult to validate as mostly there is no certain
knowledge about the exact location of the active sources. In this chapter,
we validated our method by decoding the experimental design from the
source estimates. We used 25 minutes of data for training and 5 minutes
for testing our algorithm. To optimize parameters based on the training
set, we used a two-fold cross-validation approach, i.e., the first half (12.5
minutes) for training and the second half for testing and vice versa. After
optimizing parameters, we computed the performance on the test set. We
used the correlation between the actual and predicted sine and cosine of
the angle as the performance measure.

We validated our beamformer results using two different approaches: a
stationary and a dynamic approach. The stationary validation approach
uses two L2 regularized linear regressors to predict sine and cosine of the
direction of attention from the alpha sources. Showing sine and cosine of
the direction of attention with Θ ∈ R2×T , we obtain the graphical repre-
sentation of our linear regression model as shown in Fig. 6.2a.

From the experimental design reported in [11], we know that the di-
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Figure 6.2: (a) Graphical representation of the linear regression model used
to predict the direction of attention from the reconstructed sources. R
stand for the regression coefficients. (b) Graphical representation of the
linear dynamical system used to predict the direction of attention from the
reconstructed sources. B and C stand for the state transition matrix and
the observation model in the linear dynamical system, respectively.

rection of attention changes smoothly over time. That is, the predicted
direction of attention not only depends on the alpha activity but is also
highly related to the previous predicted direction. In our dynamic vali-
dation approach, we model this smoothness assumption again in a linear
dynamical system framework. The graphical representation of this model
is presented in Fig. 6.2b. Using data of the training set and again following
the equations reported in [94], we can learn the parameters of this model
and use it for predicting the conditions of the test set.

6.3 Results

We computed the absolute correlation of the sources reconstructed using
both the beamformer and the dynamic beamformer with the experimental
design which, in our case, is given by the sine and cosine of the direction of
attention. As shown in Fig. 6.3a, occipital sources are more correlated with
the experimental design in the dynamic beamformer reconstruction. These
occipital sources are known to be involved when subjects are covertly at-
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tending to a peripheral target [15]. Here, the higher correlation is expected,
as the experimental design changes very smoothly and the dynamic beam-
former enforces the smooth transition of the sources which results in a
higher correlation.
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Figure 6.3: (a) Correlation of the sources reconstructed using both the
beamformer and the dynamic beamformer with the experimental condi-
tions. (b) Correlation between actual and predicted experimental design
based on the sources reconstructed using either the beamformer or the dy-
namic beamformer. Significant correlations (p < 0.001) are marked with a
‘*’.

Following the stationary validation approach, we show the prediction
results using two L2 regularized linear regressors. Figure 6.3b shows the
correlation of the predictions for sine and cosine based on the sources recon-
structed using the beamformer and the dynamic beamformer with the true
values. As shown, the dynamic beamformer results in a better prediction
of the conditions than the standard beamformer. Specifically, the dynamic
beamformer is performing much better for the sine component of the angle
than the standard version. As the sign of the cosine and sine represent
left versus right and up versus down, respectively, Fig. 6.3b implies that it
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is more difficult to discriminate up from down than left from right using
the sources reconstructed with standard beamforming. Furthermore, if we
look at the absolute regression coefficients obtained by either standard or
dynamic beamforming shown in Fig. 6.4, we see that only the regression
coefficients of the dynamic beamformer are consistent with the correlations
shown in Fig. 6.3a. As the trained regressor on the sources reconstructed
from standard beamforming focuses on the task-irrelevant brain regions,
the poor performances of the beamforming part of Fig. 6.3b is expected.

max

00

(a) (b)

Figure 6.4: Average absolute value of the regression coefficients for predict-
ing sine and cosine of the direction of attention using the sources obtained
by (a) standard beamforming and (b) dynamic beamforming.

We further checked whether we could improve predictive performance
by making use of a linear dynamical system on the dynamic beamformer
results following the dynamic validation approach. Having the sources re-
constructed from the dynamic beamformer, based on the training data, we
sorted the sources according to their correlation with the experimental con-
dition. We then checked whether we need all the sources to have a good
prediction. Using a linear dynamical system on a subset of sources, from 1
to 500 sources, we show how the average absolute correlation between the
predictions and the true directions changes in Fig. 6.5a. As the performance
drops dramatically by adding more sources than 400, we did not go beyond
analyzing 500 sources. It can be seen in Fig. 6.5a that the optimal number
of sources to be used for predicting the direction of attention is about 300.
Using a linear dynamical system on the 300 sources, the prediction result is
shown in Fig. 6.5b. This result is equivalent to a correlation of 0.42 for sine
and 0.58 for cosine compared to the results shown in Fig. 6.3b. In other
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words, making use of a linear dynamical system on a subset of sources, the
prediction of the experimental condition becomes about three times better
than using two linear regressors. The predictions are consistent with the
results shown in [53].

(a) (b)

Figure 6.5: (a) Average absolute correlation between the experimental con-
dition and the predictions using a linear dynamical system model. (b) The
prediction on the test set using 300 sources. Red dots show the true angle
and blue dots show the predictions.

6.4 Conclusion

In this chapter, we showed that we can incorporate the independence as-
sumption of the standard beamformer in a linear dynamical system by using
the leadfield matrix as the observation model and setting the covariance of
the observation noise to be proportional to the covariance of the observa-
tion. This led to our formulation of the dynamic beamformer. We eval-
uated our method using an MEG data-set reported in [11]. We validated
our method by decoding the experimental design from the sources extracted
using both the standard beamformer and the dynamic beamformer. Our
validation as shown in Fig. 6.3b, demonstrated that the dynamic beam-
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former outperforms the standard beamformer in predicting the direction to
which a subject was covertly attending. We further showed in Fig. 6.5 that
we can improve the prediction of the attended direction from the sources
by making use of a linear dynamical system. Our results strongly sug-
gest that the dynamic beamformer outperforms the standard approach in
estimating the active neural generators. Further Bayesian optimization ap-
proaches other than the maximum likelihood can be applied to improve the
performance of the dynamic beamformer in future studies [19].



Chapter 7

General Conclusion

Covert attention is the act of mentally focusing on a target without chang-
ing gaze. Offline MEG and EEG-based experiments in this thesis, which
were presented in the first four chapters, demonstrate that modulations in
alpha activity with covert attention can be used as a robust control signal
for BCI. The results offer the possibility of extending the current appli-
cations of covert attention from one-dimensional left-right control to full
two-dimensional control over different directions and eccentricities. Such a
two-dimensional BCI control has only been achieved in a few non-invasive
BCI studies [134, 68]. Furthermore, the possibility of subject-independent
decoding of the direction of attention as shown in chapter 4 shows how
robust the modulation of alpha activity induced by covert attention across
subjects is, which shows that there is a similar general structure in the
mechanism that individuals covertly direct their attention. As attention
is a fundamental brain mechanism, the notion that this is implemented
similarly in different people may offer new insight into the nature of cogni-
tion [131].

The last two chapters of this thesis were dedicated to the source local-
ization algorithms. The source localization approaches introduced in this
thesis were applied on the covert visual attention data-set from chapter 2.
However, the methods are general and can be applied in place of stan-
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dard source localization algorithms. Future studies might show whether
the methods are beneficial for other data-sets.

Although in this thesis we focused on modulations of alpha activity
caused by manipulating covert visual attention, it might be interesting
to look at modulations of oscillatory activity due to covert attention in
other modalities as well. Shifting attention from the visual to the auditory
modality, directing the auditory attention to sounds presented to the left
or the right, or shifting attention from the left to the right hand provides
modulations in alpha activity [37, 62, 13, 55, 116, 115, 41]. These findings
can be further evaluated and used as a basis to introduce new alpha-based
BCIs.

Mostly, BCIs have been used for communication and control, whereas
they can also be used for cognitive enhancement. One can think of the
covert-attention BCI as a way to train people to better direct their atten-
tion by giving proper neurofeedback. As there is some evidence on the ap-
plications of neurofeedback for improving performance of various cognitive
tasks [6, 112], training attention might benefit people with attention disor-
ders such as people who suffer from attention deficit hyperactivity disorders
(ADHD). This training approach and its consequences on the performance
of people in their daily life can be seen as a future direction of BCI research.
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Samenvatting

Wanneer we uiting willen geven aan onze gedachten, maken we gebruik van
onze spieren, om bijvoorbeeld te spreken, te schrijven, gebaren te maken,
of te typen. Dankzij de huidige ontwikkelingen in het monitoren van herse-
nactiviteit kunnen we nu echter ook nieuwe manieren van communiceren
onderzoeken door middel van direct gebruik van onze hersensignalen. Re-
cente bevindingen hebben aangetoond dat we verschillende apparaten kun-
nen aansturen met onze hersenactiviteit in de zogenoemde brein-computer
interfaces (BCIs). Verschillende modaliteiten zijn gebruikt voor BCI. Voor-
beelden hiervan zijn het inbeelden van een beweging zonder deze te maken
en het richten van aandacht op visuele stimuli van een specifieke frequen-
tie of op auditieve of tactiele stimuli op specifieke locaties. Hoewel men,
afhankelijk van de toepassing, de voorkeur kan hebben voor de ene exper-
imentele opstelling boven de andere, is het altijd gunstig om meer cont-
role signalen te hebben om de betrouwbaarheid en snelheid van BCIs te
verhogen. Voorts is het waardevol om te streven naar modaliteiten die
gemakkelijker een volledige tweedimensionale controle mogelijk maken, zo-
dat deze toegepast kunnen worden in bijvoorbeeld rolstoel- of cursorbe-
sturing.

Coverte visuele spatiële aandacht, in dit proefschrift aangeduid met
‘covert attention’, is de mogelijkheid vrijwillig onze (visuele) aandacht te
richten in de wereld om ons heen, zonder onze ogen daarbij te bewegen.
Het is een uitvoerig bestudeerd psychologisch proces dat gepaard gaat met
unieke patronen van hersenactiviteit. Dit proefschrift onderzoekt de mogeli-
jkheid deze ‘covert attention’ te gebruiken als een BCI modaliteit. De eerste

105



106 Samenvatting

vier hoofdstukken laten zien dat met behulp van magneto-encefalografie
(MEG) en electro-encefalografie (EEG) signalen het mogelijk is om zowel
de richting als de excentriciteit van de ‘covert attention’ te bepalen. In
hoofdstuk 4 blijkt dat het ook mogelijk is om ‘covert attention’ als stu-
ursignaal te gebruiken voor persoonsonafhankelijke BCI.

De laatste hoofdstukken van het proefschrift zijn gewijd aan de ont-
wikkeling van nieuwe methoden voor het lokaliseren van bronnen binnenin
het brein op grond van EEG of MEG metingen op de schedel. Hoofdstuk 5
introduceert een nieuwe techniek voor bronlokalisatie die de additionele in-
formatie, zoals de experimentele set-up, mee kan nemen. Hoofdstuk 6 ver-
betert de standaard ‘beamformer’ methode voor bronlokalisatie door expli-
ciet de dynamiek van de bronnen te modelleren. De voorgestelde methoden
resulteren in een consistente bepaling van de lokatie van de neurale bron-
nen die aan de grondslag liggen van ‘covert attention’. Toekomstige studies
zullen het potentieel van deze algoritmen voor bronlokalisatie in andere
contexten verder verkennen.



Summary

Normally we express the content of our mind by actions or speech. Cur-
rent advances in brain monitoring devices allow us to think of new ways
of communicating with other people directly through our brains. Recent
findings have shown that we can control various devices by our ongoing
brain activity through brain-computer interfaces (BCIs). Different modal-
ities have been used for brain-computer interfacing. Imaginary movement,
steady-state visual evoked potentials, spatial auditory, and tactile stimula-
tion are some of the successful BCI paradigms. Although depending on the
application one may favor one paradigm over another, it is always beneficial
to have more control signals in order to increase the reliability and infor-
mation transfer rate of BCIs. Furthermore, it is important to work towards
modalities which more easily allow for a full two-dimensional continuous
control since this affords applications such as wheelchair or cursor control.

Covert visual spatial attention, which is called in short ‘covert attention’
in this thesis, is a well studied psychological process that has its unique
brain signature. Humans can voluntarily deploy attention to locations in
visual space without moving their eyes. This thesis explores the possibility
of using covert attention as a BCI modality. The first four chapters show
that using magneto-encephalography (MEG) and electro-encephalography
(EEG) signals, it is possible to decode the direction and eccentricity of
covert attention. Chapter 4 shows that it is also possible to use covert
attention as a control signal for subject-independent BCI.

The last chapters of the thesis are dedicated to developing novel meth-
ods for source localization and applying them to data sets related to covert

107



108 Summary

attention. Chapter 5 introduces a new source localization technique which
incorporates the experimental design in the source localization procedure.
Chapter 6 further incorporates source dynamics in the commonly used
beamformer setup to explore the improvement over this standard source
localization algorithm. The proposed methods resulted in a consistent es-
timation of the neural sources underlying covert attention. Future studies
will reveal the potential of these algorithms for source localization in other
contexts.
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