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Abstract

Probiotic-fermented carrot juice (PFCJ) is a fumuéil food, for which colloidal stability
during storage is essential. The water-soluble gaagharides (WSPSs) it contains provide this
stability as colloidal stabilizers; they are pejnmainly containing galacturonic acid,
galactose and arabinose as monosaccharide ungspditicle-size distributiori; potential,
centrifugal sediment ratio, soluble solids conté¢atal acid and structural features of these
WSPs were evaluated as functions of storage tirhe. AFCJ displayed pseudoplastic fluid
behavior. Molecular weight and solid morphologWe8Ps did not change significantly with
storage, although the molecular weights of WSPaveloa slight decrease. The storage
stability is ascribed to its WSPs acting as eleténic stabilizers (which are very robust
colloidal stabilizers) by adsorbing onto the inddéuplant cell wall polysaccharides which
comprise the dispersed phase in the suspensiortosiig and particle size remained
relatively stable when stored at 4 °C and 25 °Cilevbentrifugal sediment ratio, soluble
solids content and total acid all increased sigatiitly; these can also be explained in terms of
the structure of the WSPs. This can provide guiddanachoosing ingredients which improve
storage stability and other properties of imporéat@ consumers by using the precepts of
electrosteric colloidal stabilization: e.g. the g@ece of water-soluble polysaccharides with

long hydrophilic moieties.

Keywords: Carrot juice; Polysaccharide; Colloid chemistryal$lization; Physicochemical

property
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1. Introduction

Fruits and vegetables can be functionally improwsd fermentation with probiotics
(Sharma, Karki, Thakur, & Attri, 2012), which caddavalue and greatly improve storage,
including during transport (Lee & Salminen, 199bhe carrot known as ‘Eastern ginseng’
(Daucus carotal.) is popular in many countries, and is rich atrients. It is commonly
processed into juice, but poor colloidal stabilitfythe juice is a significant problem (Xie,
Xiong, & Guan, 2014). Our group has developed tgue fermented by actobacillus
plantarumNCU 116 (Xiong, Xie, Guan, Song, & Gao, 2013; ZeK®png, Wang, & Huang,
2001), which was found to have better regulatingpprties for blood glucose, blood lipids,
hormones and oxidative stress in type-Il diabetts than the non-fermented carrot juice. (Li,

et al., 2014). It was also found to have improvedagie qualities.

This study is about two important properties foorage stability according to colloid
chemistry approach: changes in colloidal stabaityl changes in viscosity of the suspension.
For the present purposes, the juice can be comsider a polymer colloid: a water suspension
of solid particles comprising water-insoluble osll polysaccharides, mainly cellulose,
hemicellulose and water-insoluble pectinic polym@slant, Luzio, Widmer, & Cameron,
2014). The characteristic structure of pectins hat tthey contain (> 4)-a linked D-

galacturonic acid_(https://pubchem.ncbi.nim.nih/gompound/441476#section=Top); as the

largest monosaccharide component of the WSP (T&flan Supporting Information) is

galacturonic acid, these WSPs are pectinic.

There are two basic mechanisms for stabilizing lboical suspension (Goodwin, 2009;
Hunter, 2001): electrostatic and steric. Althouds tsubject is well-known in physical
chemistry, some of those working in the area afgigtability may not be particularly familiar

with it, so a brief summary now follows.
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The first mechanism is electrostatic stabilizatiamereby charges on the surface of the
suspended particles result in the particles rameliach other. These charges are from ionic
stabilizers, which can either be chemically bouodhe particle, or adsorbed; the latter is
when the suspension contains a stabilizer (surigctamprising a hydrophobic group and an
ionic moiety. The colloidal stability of electrositastabilizers is affected by the nature of the

charged moiety, and by ionic strength (because tugit strength can mask the charges). It

can also be affected by pH, because the chargeetynoiay change with pH, e.g. -O—-$0

going to —O-S@H with a decrease in pH (thereby losing surfacegdand hence no longer
able to act as an electrostatic stabilizer). THecdffeness of an electrostatic stabilizer is
controlled by the inter-particle potential, whiciincbe measured as theotential. It has been
observed that changesd{mpotential relate to juice storage stability (Marasco, Piotrkowski,
Calabro, Alonso, & Chiaramoni, 2015; Schultz, Anth®ungan, & Barrett, 2014; Schutz,

Barrett, & Dungan, 2014).

High free energy Low free energy

L ; NI Y

roon &

Figure 1. Schematic of the mechanism of steric colloidabisitation.

The second mechanism (which does not seem to heue donsidered in the literature for
stability of carrot juice) is steric, or polymer&tabilization (Dickinson, 2018; Napper, 1983).
Here the stabilizer is a polymer, again with twatgpaone hydrophobic and the other
hydrophilic. The hydrophobic moiety may be eithés@bed or chemically bonded to the

surface of the particle; in the present case, tbaasaccharide composition of the WSPs is
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such that parts of them will adsorb onto the palgbaride solids comprising the discrete
phase of the colloidal suspension because of hgdrbgnding (which is well known to occur
between sugar groups). Colloidal stability arisedadlows (this is somewhat of a simplified
mechanistic description, but is adequate for thesgmt purposes). If two particles with
attached water-soluble polymers (as water-soluatesf the electrostatic stabilizer in Fig. 1)
approach each other, it is entropically unfavorghlgh free energy) for these polymers to be
compressed together; this tends to keep the pestimpart (Figure 1). The level of steric
stability is controlled by the chain conformatiointiee steric stabilizer (if the conformation of
the chains is compact in the solvent, they willdss effective as stabilizers (Napper, 1983)),
and thus by both the nature of the continuous pfiaskiding changes in ionic strength) and

the chemical nature of the water-soluble moiety.

Finally, electrosteric stabilizers are ones whieveéi both ionic and steric properties, for
example if carboxylic acid groups on the water-bt@dupolymer become ionized. These are
particularly robust and effective stabilizers, hesmthey have two stabilization mechanisms
present in the one species (Dickinson, 2018; Eoma&s Berg, 1993; Goodwin, 2009). This is
why they are widely used, for example, in latexpaisee, e.g. (Einarson, et al., 1993; Soula,
Guyot, Williams, Grade, & Blease, 1999), to giveotvepresentative papers on this subject.
As electrosteric stabilizers can be charged (depgnoh pH), thel potential will also give

information relevant to colloidal stability.

Because of the presence of water-soluble polysacdegsawith a range of compositions in
fruit juice, it is likely that one or all the abowveechanisms may be operative in the storage

stability of juices.

If the colloidal suspension (the juice) is colldigiaunstable to the extent that there is
significant coagulation during storage, this is ppealing to consumers. Consumer appeal

and rate of colloidal coagulation are also relai@dhe viscosity of the continuous phase

5



109 (water in the present case), as has been obsaw@ddes (Mirondo & Barringer, 2015; J. Q.
110 Wang, et al., 2015; Wojdylo, Teleszko, & Oszmiangi14). Changes in viscosity during
111 storage are important for many functional propsertiéjuices: for example, if the viscosity of
112 the suspension increases significantly during gmréhe product may be less acceptable to
113 consumers. The viscosity of a suspension is cdettddy both the size distribution of the
114 colloidal particles, and by the viscosity of thentinouous phase (Dickinson, 2018; Einarson,
115 et al.,, 1993; Goodwin, 2009). The presence of wsbdrble polysaccharides strongly
116 influences the latter, the extent depending onam®unt of these and on their molecular

117 weight (and/or molecular size) distribution.

118 This study aims to understand for the first time #tability of carrot juice fermented by
119 probiotics (mainly composed @f. plantarumNUC116) under different storage conditions,
120 using colloid-stabilization precepts. Various plegsihemical properties and the basic
121 structure of its constituent polysaccharides weeasared. Monosaccharides were measured
122 by high performance anion exchange chromatograghAEC), the molecular size
123 distribution was determined by size exclusion chatography (SEC, a type of gel permeation
124 chromatography, GPC) and the morphology was cheniaetd by scanning electron
125 microscopy (SEM). This is the first systematic nmaaktic study of the stability of probiotic-

126 fermented carrot juice.

127 2. Materials& Methods

128 2.1 Chemicals and materials

129 PFCJ was provided by Kuangda Biotech Co. (Nanch3iaggxi, China). This was made as
130 follows. Fresh carrots were washed, peeled and ¢ineand into juice. High-fructose corn
131 syrup, which both enhances palatability and in@eadscosity (thus increasing colloidal
132 stability, because it slows down the Brownian motid the particles and thus the likelihood

133 of two colloidal particles having enough kineticeegy to overcome the energy barrier to
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coagulation) was added to a final concentratioB8%f(v/v). The mixture was then sterilized
by pasteurization. After cooling, carrot juice wasculated withL. plantarumNUC116 and

fermented at 37 °C for 24 h. Finally, the juice wggexilized at 105 °C for 20 s and packaged.

Monosaccharide standards (L-fucose, L-rhamnosetrabhaose, D-galactose, D-glucose,
D-xylose, D-mannose, D-fructose, D-glucuronic acigkgalacturonic acid) and dextran

standards for SEGV{y = 5 x 1@, 8 x 1# and 1.5 x 19 Da, M,/M, = 1.36, 1.47 and 1.47
respectively, wher#l,, andM,, are respectively the weight- and number-averagkecutar

weight) were obtained from Merck Corp. (Darmst&kymany) or Sigma Chemical Corp. (St.

Louis, USA). All other reagents used were of anefytgrade unless otherwise specified.

2.2 Storage stability of PFCJ

Samples of PFCJ were stored at 4 °C, 25 °C andC3Aliquots of these were collected at
0, 5, 10, 30, 60, 90 and 120 days storage. Thecleasize distribution and potential were
characterized at 25 °C by a Zetasizer Nano (Malwestruments Company, Worcestershire,

UK).

The centrifugal sediment ratio, as a measure dbidall stability of the suspension, was
measured by centrifuging at 4070 g for 15 min @hpernatant became clear after 10 min
centrifugation). After removing the supernatantnsoadditional water in the sediment was
removed by leaving it spread out on filter paperlfd min. The sediment ratio was calculated
as the ratio of the dried sediment to the totalgWeiof the suspension. The soluble solid
content was determined refractometricly (Yan, et 2017). The total acid in PFCJ was
measured by acid-base titration as described elB=ew{Qiu, Wang, & Gao, 2014). The
rheological properties of PFCJ were tested by arE®&#&&2 rheometer (TA Instruments
Company, New Castle, DE, USA) at shear rates froint® 1000 §" at 25.0 °C using a

parallel plate geometry (40 mm diameter, 1 mm gap).
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2.3 Extraction of the polysaccharide

Polysaccharide was extracted from the PFCJ asafsl(d. M. Xu, Yin, Wan, Nie, & Xie,
2016). The PFCJ was centrifuged at 4100 g for 29 and the supernatant was concentrated
in a 70% vacuum at 55 °C with a rotary evaporapogtein was then removed using the
Sevag method (Staub, 1965). The resulting modiBegernatant was dialyzed against
deionized water for 3 days, in dialysis bags witB680 Da cut-off at 4 °C in excess distilled
water which was changed every 8 h. A fourfold voduof 95% ethanol was added to produce
precipitation. The precipitate, which contains soetkanol, was redissolved in deionized
water. This solution was concentrated under 70%iwacat 55 °C to remove ethanol and also
reduce the volume. The concentrated solution wais lyophilized in a vacuum freeze drier

to obtain water-soluble polysaccharide (WSP).

2.4Polysaccharide composition and characterization

Total sugar content was measured by a phenol suldgid assay using D-glucose as
standard (Dubois, Gilles, Hamilton, Rebers, & SmitB56). The present system contains a
number of monosaccharides, and the effect of uracids in this case have been pointed out
(Guo, et al., 2011). In such cases, glucose is\afsed to construct the calibration curve and
the results are then given as glucose equivalétdgse, both total sugar content and uronic
acid content are examined. D-glucuronic acid waduss the standard in total uronic acid
content analysis following the sulfate-carbazolethod (Blumenkrantz & Asboe-Hansen,

1973).

The WSP was hydrolyzed by 2 Mb8O, in an oil bath at 100 °C for 4 h. The sample was
then diluted with ultra-pure water. The monosaccleaand uronic acid composition of the
diluted sample were analyzed by high-performandenaexchange chromatography (HPAEC)

using a Dionex™ ICS-5000 (ThermoFisher Corporatid8A).

The SEC characterization was as follows. Firsis moted that particular care is required

obtaining molecular weight information for compldxanched polymers using SEC
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(Gaborieau, Gilbert, Gray-Weale, Hernandez, & @astiles, 2007). It has not yet been
determined whether these WSPs are branched, ahhihigywill be the topic of a separate
paper; for the present purposes, it is assumedemnecessary that they are branched. The
size is the SEC separation parameter, the hydrodgneadiusRy, (or the corresponding
hydrodynamic volume); see for example (Kostanskellé¢, & Hamielec, 2004). For a
complex branched polymer, there is no unique wlabetweenR, and molecular weight.
With differential refractive index detection, asedshere, one can obtain the SEC weight
distributionw(logRy), which is the relative weight, not molecular weigof polymers with
sizeRy. It is not recommended to present SEC data ingerfrelution time, because that is
not reproducible and varies with the SEC set-up taedstate of the columns at the time the
elugram is obtained (Gidley, et al., 2010). Thenges inw(logRy) will show whether there
was a change in the molecular size distributionndustorage. The SEC (Wyatt Technology
Co., Santa Barbara, CA, USA) was equipped withfracgve index detector (RI) (Optilab T-
rEX, Wyatt, Santa Barbara, CA, USA), an Ohpak SBpfard column (50 mnx 6.0 mm
[.D., 10 um), SB-806 HQ column (300 mma 8.0 mm I.D., 13um) and SB-804 HQ column
(300 mmX 8.0 mm I.D., 10um) (Shodex Denko Inc., NY, USA) were used in seridse
temperatures of the RI detector and columns weratenaed at 35 °C. The mobile phase
containing 0.02% (w/w) NajNand 0.1 M NaN@was used with a flow rate of 0.60 mL/min.
100 uL sample solution was injected in to the systenerafiassing through a 0.2#m

membrane filter. All data were collected using ASTRO0 software.

The morphology of the WSPs was characterized bgrsog electron microscopy (JEOL
Ltd, Tokyo, Japan) at room temperature with an lacagon voltage of 5 kV under high

vacuum. The procedure was to redissolve 1 mg opkam 1 mL deionized water, and the
solution frozen at80 °C to make it easier to lyophilize, then lyop®d. The resulting

powder was placed in the SEM.



209 2.5 Statistical analysis

210 One-way analysis of variance (ANOVA) from Duncamisltiple range test was analyzed

211 by SPSS 22.0 (Chicago, IL, USA), willx 0.05 taken as statistically significant.

212 3. Results

213 3.1  Stability of PFCJ during different storage conditgo

214 There were no statistically significant trends ither the particle size aof potential of
215 PFCJ with storage time and temperature (Figur@ajicle size fluctuated in the range 640

216 680 nm. The absolute gfpotential varied between 19 and 20 mV.
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218 Figure2. The Changes of physical characteristics of PF@gwudifferent storage conditions.
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The centrifugal sediment ratio (Figure 2) of PF@dréased slightly but significantly with
storage time. The rate of centrifugal precipitatimcreased significantly with storage
temperature. There was no significant differenceantrifugal sediment ratio at 4 °C, while
significant differences appeared on th& @@y at 25 °C, and somewhat earlier at the storage
temperature of 37 °C. The centrifugal sedimenbratiPFCJ fluctuated between around 10%

and 11% during the characterization period.

The soluble solids content of PFCJ changed sliglly statistically significantly
(according to the one-way analysis of variance (AMDPfrom Duncan’s multiple range test),
from 10.5 to 10.7%, with the increase of storageeti

[ 1od 727 5d B 10d [ 30d [ = J60d [T ]90dFE=7] 120d

! _ _rfE
1o il 2 e

£

Total acid (g/kg)
B=F=E=E=

0.5

SE=ESH=F=E=@=

0.0

4 25 37
Temperature (°C)

Figure 3. The total acid of PFCJ under different storageddams

The total acid of PFCJ showed a slight increasé stibrage time (Figure 3). Significant

differences were seen on thé"iday at 4 °C, and on thd'Slay at 25 °C and 37 °C.

11
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233 Figure 4. The rheological behavior of PFCJ under differéatage conditions.

234 All the PFCJ under different storage conditionsvet pseudoplastic fluid properties, as is
235 typical of a polymer colloid, e.g. (Berend & Richig, 1995), the viscosity of PFCJ
236 decreasing with increasing of shear rate (Figur@Hé viscosity exhibited similar rheological
237 properties under the various storage conditions thmre were moderate low-shear viscosity

238 changes with time and temperature.
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Stability of WSP under various storage conditions
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Figure 5. The physicochemical properties of WSP under dfiéstorage conditions.

241

Figure 5 shows the physicochemical characteristics of WSHeurdifferent storage

242

conditions. The particle sizes of polysaccharideagted under different storage conditions

243

244 were slightly different. The particle sizes werteefively constant at ~110 nm when stored at

°C. The maximum

but varied between 110 and 130 mmanvstored at 37

°C

245 4 °C and 25

M @ay. The trend in the potential of WSP was similar to that of

value was obtained on the

246

PFCJ, and their absolute values decreased witkasuorg storage. The most obvious change

247

also happened at 37 °C for WSP. The proportionugas content ranged from 40% to 60%

248

and that of uronic acid varied betws5% and 56%.

under storage

249
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Figure 6. SEC weight distribution of WSPs from fermentedagjuice as a function of

hydrodynamic radius of the polymer at differentage times and temperatures.

The SEC results (Figure 6) show that th@gog R,) were either bi- or trimodal, and with

increased storage time, all components were eitbestant or moved to slightly lower

molecular sizes. The multimodality suggests sewdiffédrent WSP components, as is often

seen in natural products such as these (Shi, e2@l7); compositional analysis of these

separate components would be interesting but nevaet to the direct aim of the present

paper.
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259

260 Figure 7. SEM images of WSP under different storage conaltih.etters a-d give solid
261 morphologies of different samples under variousisgotime periods (0, 10, 60, 120 days
262  respectively) at 4 °C, while letters e-h and idegthe solid morphologies at 25 °C and 37 °C
263 during the same time period.

264 SEM shows the presence of both flakes and filam@fitpure 7) in the solid WSP, and

265 there was no obvious difference for WSP obtainethfdifferent storage conditions.

15
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4. Discussion

Flavor and taste in the juice are related to itgspal properties, such as particle size and
acidity (Z. Z. Xu, Lin, Wang, & Liao, 2015). The enage particle size of PFCJ was about 650
nm, smaller than that other juices (Schutz, e28l14; Zhang, et al., 2016). Total acid values
of PFCJ were around 2.0 g/kg, and did not changehnati various temperatures in the same
period, although with a slight increase over tirltes possible that the slight degradation,
manifest in the slight decrease in the SEC molecsilze distributions, might be due to
formation of some intermediates and/or degradatide-products, e.g. disaccharides (Herraiz

& Galisteo, 2002; H. Y. Wang, et al., 2006).

The storage stability of juice is related to itsrtjgée size distribution, solid content,
centrifugal sedimentatiori, potential and viscosity, all of which are germanecolloidal
stability. If all other factors are constant, cadla stability (as indicated by centrifugal
sedimentation) increases with the absolute valuehef( potential, the viscosity of the
continuous phase, and a more extended conformatidror higher molecular weight of the
(electro)steric stabilizer. However, the presenCPEystem is a complex one, in which all

these colloidal parameters may change under staxagitions.

The patrticle size and soluble solids content of JPE@ not show significant change over
the storage time used here (Figure 2). The ratesenfrifugal sedimentation showed no
significant changes with time except a small bugnsicant increase at the highest
temperature (37 °C). Thé potential of PFCJ did not vary much under différetorage
conditions, consistent with the good colloidal digb (there being little change in
sedimentation rate except at the highest tempe&fatline viscosity of PFCJ remained stable
(Figure 4), and its high value prevented the susipenfrom layering (Abedi, Sani, &

Karazhiyan, 2014). The lack or small amount of ¢eanvith storage in these various

16
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functional properties, which is technically desleabshows the colloidal stability of the

system, as is typical for systems with electroststabilization.

Certain macromolecules such as pectinic polysam#®mill interact with cations in the
system (Aadil, et al., 2015; Klavons, Bennett, &nviger, 1994), which probably provides
electrosteric stabilization and thus maintainsdbiéoidal stability of the juice system. This is
because the WSPs would partially adsorb onto the particles in the juice, these particles
being plant cell wall materials themselves compgsiwater-insoluble polysaccharides.
Water-soluble polysaccharides have been obtaired this PFCJ by centrifugation (M. M.
Xu, et al.,, 2016), and include exopolysacchariddsciv can be extracted from this
Lactobacillus plantarum(Zhou, et al., 2017). In the present paper, we idensall the
polysaccharides in the fermented juice, irrespectiff whether they come from endogenous
carrot polysaccharides or are exopolysaccharidesh@ aim of this project is to understand
the colloid chemistry of the storage stability efrhented carrot juice, there is no need to

distinguish exo- and endopolysaccharides.

The suspension was subjected to centifugation badcontinuous phase was analyzed.
While some steric stabilizers would be incompletsdparated from the solid phase by this
treatment, analysis of the continuous phase woutVige useful knowledge about the
stabilizer composition. The particle size of WSPswirgcreased at high storage temperature
(Figure 5), consistent with the decreased collostiability at higher temperatures. The neutral
sugar, and uronic acid, and molecular of WSP ch@mgghtly under different storage
conditions, but there was negligible change in Yi&P monosaccharides of WSP with
storage temperatures (Table S1). The monosacchaeadgosition of the total WSPs is
sufficient for understanding the colloidal stalyilithe component monosaccharides are such
that the polysaccharides can adsorb onto the fegrtic the suspension (NMR could provide

linkage information of the structures of the polyd@arides (Izydorczyk & Biliaderis, 1995),
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but such information is irrelevant to the aim oé §haper). This suggests no major structural
change in the WSPs except for some slight moleanksight degradation. While a fixed
number of shorter (electro)steric stabilizers wobll itself result in decreased colloidal
stability, what is happening here is that the gligacrease in molecular weight would be
accompanied by an increase in the number concemtraft these polymers, which in isolation
would increase colloidal stability; the two effegtsuld seem to largely compensate for each
other in the present system. A knowledge of theineabf products formed in the slight

degradation is not needed for the aims of this pape

As stated, this is a complex system and theretaseniot a simple matter to separate the
different contributions to colloidal stability. Aay of doing this in the future would be to
study a variety of juice systems which showed aiSaant range for all of the structural
parameters contributing to colloidal stability.dfsufficient structural range and number of
substrates can be obtained, then a conventionsbtstal analysis, including principal
component analysis and correlation coefficients, sgparate the effects from each parameter,
and then this knowledge could be used to choosegaopents (including additives) to give
enhanced colloidal stability. The basis for thatigkely good colloidal stability for the WSP-
stabilized juices which are the subject of the @mésstudy is that these function as
electrosteric stabilizers; as is well known in $atic polymer colloids (e.g. in latex paints)
(Gilbert, 1995), these are very robust stabilizers.

In the future, improved storage stability can bmgd by using the precepts of electrosteric
colloidal stability: for example, seeing if the negients are such that the stabilizing polymers
have a sufficient number of long hydrophilic chajméich contain some groups which ionize

at the juice pH) attached to a hydrophobic moiety.
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Figure captions

Figure 1. Schematic of the mechanism of steric colloidal iiztion.

Figure 2. The Changes of physical characteristics of PF@&wudifferent storage conditions.
Figure 3. The total acid of PFCJ under different storage aaor.

Figure 4. The rheological behaviors of PFCJ under differéotagye conditions.

Figure 5. The physicochemical properties of PFCJ under diffestorage conditions.

Figure 6. SEC weight distribution of WSPs from fermented ctijuice as a function of

hydrodynamic radius of the polymer at differentrate times and temperatures.

Figure 7. SEM images of WSP under different storage condstidretters a-d give solid
morphologies of different samples under variousistpotime periods (0, 10, 60, 120 days
respectively) at 4 °C, while letters e-h and iNegthe solid morphologies at 25 °C and 37 °C

during the same time period.
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Highlights:

> Probiotics-fermented carrot juice is afunctional food.

» Colloidal stability with storage is essential.

» Changesin molecular structure, viscosity and colloidal properties are examined.

» Thegood colloidal stability is caused by WSPs acting as steric stabilizers.



