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Abstract  

Chronic cancer pain remains prevalent and severe for many patients, particularly in those 

with advanced disease. The effectiveness of analgesic/adjuvant drug treatments in routine 

practice has changed little in the last 30 years. To address these issues herein, we have 

developed sustained-release poly(lactic-co-glycolic acid) (PLGA) microparticles of 

hydromorphone for intrathecal injection aimed at producing prolonged periods of satisfactory 

analgesia in patients, as a novel strategy for alleviation of intractable cancer-related pain. 

These hydromorphone-loaded microparticles were produced successfully using organic 

solvent free supercritical fluid polymer encapsulation. Drug loading at 9.2 % and 

encapsulation efficacy at 92 % were achieved for particles in the desired size range (20-

45µm) with sustained release over a 5 week period in vitro.  

Keywords 

Chronic cancer pain; Intrathecal injection; Poly(lactic-co-glycolic acid) (PLGA); 

microparticles;  Satisfactory analgesia, Supercritical CO2.  

Introduction  

One of the most common symptoms caused by cancer is chronic pain, which is the most 

feared symptom by patients throughout the course of the disease 1. The pain may be 

exacerbated by treatment with chemotherapy drugs or by radiation resulting in poorly 

alleviated pain complicated by a neuropathic component 2,3. Despite administration of 

escalating doses of strong opioid analgesics such as morphine, up to 30% of patients do not 

achieve satisfactory pain relief 4. The effectiveness of treatment in the clinical setting has 

changed little in the last 30 years 1,5. Hence, new strategies are needed to address this issue of 

intractable cancer-related pain. One such strategy is the development of sustained-release 

biodegradable analgesic-containing microparticles for intrathecal injection as a means to 

produce continuous analgesia for several weeks in patients suffering from severe chronic 

cancer-related pain 6. Poly(lactic-co-glycolic acid) (PLGA) based hydromorphone-loaded 

microparticles were prepared by a water-in-oil-in-water (w/o/w) double-emulsion method 

because of the safety, biodegradability, and successful application of PLGA in the clinical 

setting 7. However, micro-encapsulation of drug payloads using conventional w/o/w emulsion 

methods resulted in particles with poor hydromorphone loading at 1.6% 6. Additionally, large 

quantities of toxic organic solvents and surfactants/emulsifiers were also used, potentially 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

leading to unacceptable levels of residual impurities in the microparticles necessitating 

further purification steps 8. However, the use of supercritical fluids such as supercritical CO2 

(scCO2) provides a ‘clean’ and effective alternative to traditional methods of drug and 

polymer processing. In particular, scCO2 has a number of unique properties that make it 

possible to produce sustained-release drug-loaded microparticles without using toxic organic 

solvents or elevated temperatures 9,10.  

 

In the present study, we produced sustained-release microparticles containing the strong 

opioid analgesic, hydromorphone, for the first time using organic solvent free supercritical 

fluid polymer encapsulation (CriticalMix) technology. Hydromorphone drug loading of these 

microparticles was 9.2% which is very close to our target loading of 10% for intrathecal 

injection. The particle sizes were the designed size range (<45µm). Importantly, 

hydromorphone release was sustained over a 5 week period in vitro.  

1 Materials and Methods  

1.1 Preparation of hydromorphone-loaded polymeric microparticles  

Hydromorphone HCl (Sigma Aldrich) was converted to the corresponding free base form by 

adjusting the pH to ~10 using 2 M NaOH added dropwise 6. The scCO2 microparticle 

manufacturing (CriticalMix) process was optimised according to Whitaker et al. 11.  Briefly, 

the PLGA50:50DLG1.5E (Poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer 

(50:50); ester end-capped, inherent viscosity (0.1-0.2 dl/g) and ~Tg 28°C measured by 

Differential scanning calorimetry (DSC), custom made by Evonik Health care) and 

hydromorphone at a ratio of 90 to 10 were loaded into a pressure vessel, pressurised with 

CO2 (pharmaceutical grade CO2 was from BOC Special Gasses, UK) and heated to 40°C at a 

pressure of 14 MPa for reaching the supercritical point and ensures that the polymer is 

fluidised 12. Once temperature was reached the mixture of CO2/polymer/drug inside the 

vessel was mixed using mechanical stirring. Liquefaction of the polymer by the scCO2 

facilitated drug incorporation into the polymer. About half to one hour later heating was 

stopped and the polymer-hydromorphone-scCO2 allowed to cool to below 25°C before the 

CO2 was slowly vented, depressurised through a nozzle with a 0.6 mm orifice. The polymer 

solidified to entrap hydromorphone and form microparticles containing hydromorphone. The 

temperature was reduced to 25°C before unloading to ensure that the drug remained in the 

polymer and that drug loss was minimized during CO2 venting.  Microparticles were 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

collected and grounded with a pestle and mortar, and sieved through a 45 micron sieve. The 

final product was stored refrigerated at a mean (±SD) temperature of 5(±3)°C and protected 

from light in a desiccator. 

1.2 Characterizations of drug-loaded PLGA microparticles  

Drug incorporation efficiency. Triplicate ~5mg samples were weighed and dissolved in 2ml 

aliquots of acetonitrile. The hydromorphone concentrations were quantified using HPLC with 

UV detection at 280nm. Drug incorporation efficiency, expressed as actual drug loading (% 

w/w) and encapsulation efficiency (EE % w/w) were calculated using equations (1-2) 

respectively. The individual values for three replicate determinations and their mean (±SD) 

values are reported. 

Eq. (1) Drug loading (%) = 100 × mass of drug in microparticles/ mass of microparticles  

Eq. (2) EE (%) = 100 × mass of drug in microparticles/ mass of drug in microparticles 
theoretically  

In vitro drug release. Triplicate samples (~10mg) of hydromorphone-loaded polymeric 

microparticles (n=3) were suspended in 1 mL of PBS and transferred to dialysis tubes. Each 

dialysis tube was sealed, placed into a capped container containing 20ml PBS, and then 

placed into an incubator maintained at 37.5°C and shaken horizontally at an oscillating 

frequency of 120 min-1. Timepoints were taken at 3 and 24 h, 3, 7, 14, 21 and 28 days. At 

each timepoint a 1 ml aliquot of buffer was taken for analysis, and replaced with fresh buffer. 

At each time point, the 1 ml samples (n=3) were analysed by HPLC and the cumulative 

release determined.  

Morphology and Particle Size. The sustained-release hydromorphone-loaded PLGA 

microparticles were sputter coated with platinum using an Auto Smart Coater (JFC-1300, 

JEOL Ltd. Tokyo, Japan) and then examined using a scanning electron microscope (Jeol 

IT300, JEOL Ltd. Tokyo, Japan) to determine particle shape and surface morphology.  

2 Results and Discussion  

Sustained-release hydromorphone-loaded PLGA microparticles were successfully prepared 

for the first time using organic solvent free supercritical fluid polymer encapsulation 

(CriticalMix) technology by incorporation of hydromorphone into PLGA50:50DLG1.5E at a 

ratio of 10 to 90 respectively, followed by milling. Importantly, hydromorphone was stable 

under the scCO2 processing conditions. Hydromorphone loading at 9.2(±0.2)% was achieved 
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with EE at 92% with these parameters being 4-5 times higher than our previous work using a 

w/o/w emulsion method (drug loading of 1.6% and EE of 26%) 6 (Table 1). Additionally, the 

microparticle size was mainly in the range of 20-45 µm after Grinding (Figure 1) which was 

within our designed size range of 20-60 µm 6. Regarding release, there was an initial 20.7% 

burst release in the first 24 hours that was followed by a slower zero-order release phase 

lasting for up to ~35-days (Figure 2). Grinding and sieving should have little effect on burst 

release as shown by the in vitro release profile in Figure 2. There was no clear difference in 

the morphology of sustained-release hydromorphone-loaded microparticles (Figure 1A) and 

drug free microparticles (Figure 1B). Both microparticles were random in shape without 

aggregation even after 9 months in storage at 2-8°C. Our findings demonstrate that scCO2 

encapsulation technology has potential as a drug delivery platform for  small molecules such 

as hydromorphone (as the free base) with the polymeric particles being free from organic 

solvent residues and surfactants after processing 13.  

Our data extend work by others whereby large protein molecules such as human growth 

hormone (hGH, a 22 kDa protein) 14 and vaccines of tetanus toxoid (TT) 15 were successfully 

encapsulated into PLGA/poly(lactic acid) (PLA) and PLA particles respectively using the 

scCO2 CriticalMix process. These results together with our data herein demonstrate the 

potential of the scCO2 CriticalMix process for preparation of clean, organic-solvent free, 

particles loaded with either large and small molecules. 

Importantly, our simple CriticalMix process to produce hydromorphone-loaded 

microparticles extends previous work by Cabezas et al. 16-18 who used a one-step scCO2 

procedure to produce either indomethacin or 5-fluorouracil impregnated PLGA porous 

scaffolds. In the present study, the temperature of 40°C was needed to be above the critical 

point of 31.1°C and it ensured that the polymer was fluidised12. Temperature also has some 

effect on drug loading and encapsulation.  If the drug is soluble in the CO2 then raising the 

temperature would lead to higher solubility in CO2 and lower the loading. On the other hand, 

raising the temperature will also reduce the viscosity of the CO2 plasticised polymer. This can 

enhance mixing and hence could increase loading.  So a sensible balance point has to be 

achieved. The scCO2 mixing process yielded a monolithic material that was of the order of 

centimetres cubed – it filled the high pressure vessel.  This material was then controllably 

milled to yield the particles for release analysis. It is clear from our collective findings that 

payload solubility in scCO2 as well as CO2 sorption and swelling of the polymer vary with 

temperature, pressure, contact time, stirring rate of the scCO2/polymer/drug solution as well 
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as depressurization conditions including CO2 venting rate and venting temperature. By 

systematically varying these parameters, the desired loading and release profile can be 

optimised for each drug of interest incorporated into PLGA-particles or PLGA porous 

scaffolds.  

3 Conclusion 

Hydromorphone encapsulated PLGA microparticles were successfully prepared using organic 

solvent free supercritical fluid polymer encapsulation technology followed by milling. The 

~35-day sustained-release profile was achieved using PLGA50:50DLG1.5E with 

hydromorphone loading at 9.2% and EE of 92% in vitro in the absence of organic solvents or 

surfactants.  Our data show that supercritical fluid polymer encapsulation technology has 

potential for producing microparticles containing analgesic drugs for sustained release over 

several weeks for potential administration by the intrathecal route, as a means to improve the 

management of otherwise poorly-alleviated severe cancer-related pain.  
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Figure Legends:  

Figure 1. Microparticle size and morphology.  

There is no clear difference between hydromorphone-loaded PLGA microparticles (A) and 

drug free PLGA microparticles (B) after 9 months of storage at 2-8°C. The particles are 

similar in shape and size as freshly prepared particles.   

 

 

Figure 2. Mean (±SEM) in vitro release profile of hydromorphone microencapsulated in 

PLGA5050-1.5E (n=3) with particles prepared using a scCO2 method. Sustained-release 

PLGA5050-1.5E based hydromorphone-loaded microparticles released their payload over an 

approximately 35-day period in vitro.  
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Table 1. Physical characteristics of hydromorphone-loaded PLGA microparticles 

 

 

 

 

 

 

 

 

 

 

 

DCM, dichloromethane; EE, encapsulation efficiency; IV, inherent viscosity; PLGA, 
poly(lactic-co-glycolic acid); PVA, poly (vinyl alcohol); scCO2, supercritical CO2 

Parameters scCO2 method Emulsion method 

Polymers  
IV (dL/g) 

PLGA5050 ester end-
capped  
IV (0.1-0.2) 

PLGA5050 acid 
end-capped  
IV (0.55-0.75) 

Theoretical drug loading 
(%) 

10 
 

6-12 
 

Drug loading (%) 9.2 1.6 

EE (%) 92 26 

Size (µm)  20-45  20-60 

Period of in vitro release ~35days ~28days 

Solvent  
& surfactants  

None  
 

DCM, PVA 
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