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Abstract In an era of global change and rising sea levels, the capacity for inshore reefs to survive is
increasingly unclear. We report on recent colonization of an inshore reef-flat environment at Sanya Bay,
northern South China Sea, in shallow, muddy, eutrophic, and turbid conditions, which are widely viewed as
marginal for sustained coral growth. U-Th dating of fossil Acropora substrate indicated that the reef flat has
existed in a dormant state since ~5,400 years BP, with no vertical space available to accommodate coral
expansion. Our surveys revealed that populations of free-living Porites compressa have recolonized the reef
flat through asexual fragmentation, covering 13.9 ± 1.3% of reef-flat substrates. Age-frequency analysis
indicated that the majority (86%) of P. compressa colonies were less than 30 years old. Analysis of long-term
sea-level data indicated that recent recolonization of the reef flat occurred in response to a sea-level rise of
16.2 ± 0.6 cm over the past 30 years (1987–2016). Modern sea-level rise at Sanya Bay appears to have
turned on reef growth which has existed in a senescent turned off state for over five millennia. The asexual life
history strategy of P. compressa colonies, which involves forming free-living colonies (coralliths), allows
them to overcome turbid environmental conditions that are otherwise adverse to sexual recruitment. Our
results provide novel insight into the response of marginal habitats to sea-level rise, and suggest that coral
cover on degraded coral reef flats could increase under future sea-level rise, albeit with assemblages
dominated by a few well-adapted species.

Plain Language Summary Inshore coral reefs throughout the world are highly susceptible to
anthropogenic disturbance (e.g., increasing pollution and changing land use) and have declined in recent
decades. Modern sea-level rises associated with global warming could theoretically increase accommodation
space for corals growing on shallow reef flats. Whereas, the potential for degraded inshore coral reefs to
respond to increased sea-level rise is as yet unclear. In this study, fringing reefs in Sanya Bay, a typical inshore
reef system impacted by severe anthropogenic perturbations, provide a case study of disturbed inshore reefs
response modern sea-level rise. With ecological surveys, coral demographic and age-frequency analyses,
and high-precision U-Th dating, we provide evidence of a recent switch on of reef growth over the past
50 years in response to rising sea levels that is unprecedented since themid-Holocene. The unique life history
strategy of the dominant coral taxa (free-living Porites) driving this partial recovery allows them to overcome
highly turbid and eutrophic environmental conditions that have previously been considered adverse to recovery
through sexual recruitment. Our results provide novel insight into the response of marginal habitats to sea-level rise,
and a glimpse into a potential future condition, or new state, of heavily disturbed Indo-Pacific coral reefs.

1. Introduction

Coral reefs are extremely valuable ecosystems, due to their high biodiversity and the many goods and
services they provide, but they are highly vulnerable to natural and anthropogenic perturbations. Threats
to coral reefs range from regional (e.g., overfishing, destructive fishing, mining, dredging, and pollution) to
global scale (e.g., climatic warming and ocean acidification). Coral bleaching due to ocean-warming
(Hughes et al., 2018) has impacted pristine, oceanic coral reefs throughout the Indo-Pacific Ocean, with ocean
acidification causing additional stress (Pandolfi et al., 2011). For coral reefs in coastal areas, especially near
developing countries such as the northern South China Sea (NSCS), acute and chronic damages from human
activities are the major drivers of local reef deterioration (Hughes et al., 2012). The current status apparently
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indicates a gloomy future for those inshore reefs (e.g., Hoegh-Guldberg et al., 2007; Hughes, 1994; Hughes
et al., 2012).

From a geological perspective, modern fringing reefs in the Indo-Pacific region mainly formed relatively
recently, in the early Holocene (~10,000–7,000 years BP; BP means before 1950 CE) and reached sea level at
~7,000–6,000 years BP (e.g., Kennedy & Woodroffe, 2002; Montaggioni, 2005). Since then, reef flats have
existed in a largely senescent state, with no space to accommodate vertical growth (e.g., Leonard et al.,
2013; Smithers et al., 2006). As reef growth approaches the sea-level surface, increasingly intense solar radia-
tion, intermittent aerial exposure, and frequent resuspension of fine sediments create an upper limit for reef
growth; accommodation space refers to the vertical zone below that limit that is available for reef growth.
However, modern sea-level rise associated with global warming is projected to change the dynamics of reef
flat environments through an increase in accommodation space for coral growth. Evidence from Pacific coral
reefs in clear-water environments such as Heron Island, Australia (Scopélitis et al., 2011), Solomon Islands
(Saunders et al., 2016), and Palau (van Woesik et al., 2015) indicates that rising sea levels can promote coral
colonization on reef flats. However, the potential for degraded inshore coral reefs to respond to increased
sea-level rise is still unclear. The colonization and growth of inshore reef flats is critically important, because
modern fringing reefs play an important role as protective barriers against storms and coastal erosion in
many heavily populated and developing regions (e.g., Alegria-Arzaburu et al., 2013; Reguero et al., 2018)
and are more accessible for tourism use.

In this study, we use ecological surveys, annual growth band analysis, and coral demographic analyses, and
high-precision U-Th dating, to explore the response of a reef flat to recent sea-level rise in the NSCS. The NSCS
is one of the highly impacted regions of the world (Halpern et al., 2008), where human activities have
degraded inshore coral reefs and nonreefal coral communities over decades prior to recent climate change
impacts (Hughes et al., 2012). We provide evidence that marginal inshore reefs are responding to increasing
sea-level rise through colonization of the reef flat by populations of free-living Porites compressa corals.
Importantly, recolonization is occurring not through settlement of larvae from ordinary sessile corals, but
through the unique life-history strategy of mobile, free-living corals. The regeneration of previously dormant
reef flats highlights the importance of understanding coral adaptations and survival strategies under local
human-induced disturbances and large-scale sea-level rises and provides insight into resilience of inshore
coral reefs and their possible futures.

2. Materials and Methods
2.1. Study Site

Sanya Bay is adjacent to Sanya City in southern Hainan Province/Island, NSCS (Figures 1a and 1b). Sanya City
has a resident population of ~700,000, but experiences an annual influx of more than 16,000,000 tourists each
year (McCook et al., 2017). Sanya River (Figure 1b), with an annual flow of 2.11 × 109 m3 (Huang et al., 2003),
continuously inputs freshwater, sediments, and urban, industrial, and agricultural pollutants into Sanya Bay.
Coupled with marine aquaculture and tourism industry development, the water environment in Sanya Bay
has experienced substantial eutrophication and increases in turbidity over recent decades (Hughes et al.,
2012; Zhao et al., 2012). As a consequence, coral reefs in Sanya Bay have deteriorated dramatically over
the past 50 years, with coral cover declining from ~80% in the 1960s to ~12% at present and at least one third
of coral species now regionally extinct (Zhao et al., 2012). Destructive fishing and extensive coastal develop-
ment (e.g., expansion of Sanya port, new hotels, artificial islands) have further added to the decline (Fiege
et al., 1994; Hughes et al., 2012; Zhang et al., 2006; Zhao et al., 2012). Chronic rates of sedimentation are
exceptionally high, sometimes exceeding 20 mg·cm�2·day�1, and resuspension of fine silt-clay sediments
affect recovery and survival of coral assemblages (Li, Huang, Lian, Liu, et al., 2013). Increased turbidity asso-
ciated with high resuspension during the rainy and typhoon seasons (Li, Huang, Lian, Liu, et al., 2013) and
extreme sedimentation events from dredging (Li, Huang, Lian, Yang, et al., 2013) create an adverse environ-
ment for coral survival.

2.2. Field Sampling

Surveys on the Sanya Bay reef flat were conducted in May 2016 and June 2017 at low tides, within an
~800 × 200 m2 study area (Zone A, Figure 1c). Total coral cover was determined by surveying three 100-m-
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long line intercept transects parallel to the shore (Figure 1c). The maximum width of Porites colonies (>5 cm
in size, n = 166 total) were measured along five ~100-m-long transects placed perpendicular to the
shore (Figure 1c).

In Zone A (Figure 1c), one slice, ~8 mm-thick, was cut from four, individual medium-sized live Porites colonies
in situ for species identification and estimates of skeletal extension rates. To determine the Holocene accre-
tionary history and surface age of corals on the reef flat, 11 fossil Acropora branches (Figure 2c) were ran-
domly collected throughout Zone A, and a small fragment (~200 g) was collected from each of 12 fossil
microatoll Porites in Zone B as indicators of historical sea-level maxima (Figure 2d).

2.3. X-Ray Photography and Species Identification

In the lab, the four coral slices were immersed in 10%H2O2 for 24 hr, then cleaned with fresh water in an ultra-
sonic cleaner (10 min, three times) and then dried at 50 °C in an oven. The coral slices were X-rayed and the
positive prints revealed the annual density pattern (Figure 3). Microstructures of the Porites corallite were
examined with a stereomicroscope and used as the basis for species identification (Veron, 2000; Zou,
2001). The annual growth rate of each coral slice was measured directly on the X-ray photos according to
the width of the annual bandings (Figure 3). The mean growth rate for the Porites species was calculated
based on the four slices.

2.4. U-Th Dating for Fossil Corals

Surfaces of all fossil Acropora branches and Porites fragments were polished and the fresh skeletons were
crushed into ~1-mm-diameter grains. Grain samples from each coral (~150 mg) were cleaned and weighed
at the Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland.
U-Th isotopic ratio measurements were performed on a multicollector inductively coupled plasma mass
spectrometer following the analytical protocol described by Clark, Roff, et al. (2014) and Clark, Zhao,
et al. (2014).

2.5. Sea-Level Data

Annual mean sea-level data (Figure 4) from Dongfang (1970–2016), Haikou (1975–2016), and Zhapo (1959–
2016) monitoring stations (Figure 1a) were obtained from the Permanent Service for Mean Sea Level (http://
www.psmsl.org/). To compare local sea-level rise with global sea-level rise, reconstructed global mean sea
level (Church & White, 2011) was obtained from CSIRO (http://www.cmar.csiro.au/sealevel/sl_data_cmar.
html). Sea-level anomalies were determined as deviations from 1993 to 2011 baselines for each time series.

Figure 1. Maps of the study site. (a) Hainan Island/Province and the northern South China Sea; inset (b) Sanya Bay, Sanya River, and Sanya City; and inset (c) reef flat
study sites (zones A and B). Parallel yellow lines (n = 3) in Zone A represent the locations of line intercept transects for living coral cover measurements, and per-
pendicular green lines (n = 5) in Zone A represent the transects for Porites colony size measurements. Surface U-Th dates of Holocene reef flats were collected in
Zones A and B to determine the accretionary history of the fringing reef in Sanya Bay. All base maps here were downloaded from Google Earth (Google Company).
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Figure 2. Photos of living and fossil corals in our study area. (a) Dense live Porites coral assemblages on the reef flat (Zone A). Aerial exposure of those Porites occurs at
low spring tides. Somemicroatolls, that is, coral colonies with living, steep-sided perimeters but dead top surfaces, on the reef flat are indicated by yellow arrows. (b)
The biggest live Porites colony (a microatoll) in Zone A, with a maximum width of ~120 cm. (c) Fossil Acropora branches adjacent to living Porites corals. (d)
Representative in situ photos of the fossil Porites microatolls in Zone B. Red bars in photos (b), (c), and (d) represent 10 cm as scale.

Figure 3. X-radiography positives of four Porites slices collected from the reef flat in Sanya Bay. Dark bands represent the
high density portion of the coral skeletons, while light bands represent the low density portion. A couplet of high
density and low density bands represent a single year of growth (blue bars = 2 cm scale). Transects for measurements of
annual banding are indicated by the red lines, with banding marked by years.
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3. Results
3.1. U-Th Dating of the Holocene Reef Flat

The U-Th dating results (Table 1) indicate that surface fossil Acropora and Porites corals on the reef flat ceased
growing in the mid-Holocene. U-Th ages obtained from fossil Porites heads in Zone B were ~6,400 years BP,
while fossil Acropora branches in Zone A were younger (from 5,802 to 5,341 years BP). These ages indicate
that the reef flat ceased growing following the end of the mid-Holocene high sea level, which was ~1–2 m
above modern sea level in the western Pacific from ~7,000 to ~5,500 years BP (e.g., Leonard et al., 2016;
Meltzner et al., 2017; Yu et al., 2009).

3.2. Modern Sea-Level Rise

Analysis of local sea-level anomalies fromDongfang (1970–2016) and Haikou (1975–2016) are consistent with
the longer trend of increasing sea levels from the Zhapo monitoring station between 1959 and 2016
(Figure 4). Local sea-level rise was 16.2 ± 0.6 cm over the past 30 years (1987–2016), consistent with the trend
of increasing global mean sea level over recent decades (Figure 4). This rise has generated increased accom-
modation space on these reef flat habitats.

3.3. Species Identification and Skeletal Growth Rate

Based upon morphology and corallite microstructures, the dominant species of Porites coral on the reef flat
was identified as P. compressa (Dana, 1846). X-ray analysis of skeletal density banding patterns (Figure 3) indi-
cates a mean growth rate of 10.8 ± 1.7 mm/year (mean ± SD; n = 58).

3.4. Ecology of Porites Assemblages

Living coral cover along the three line-intercept transects on the reef flat (Zone A) averages 19.9 ± 1.5%.
P. compressa is the dominant species, averaging 13.9 ± 1.3% cover (Figure 2a). The remaining coral species
include branching Montipora digitata, massive Favites spp., and massive Platygyra sp., all of which are grow-
ing attached to hard substrate. In contrast, the dominant P. compressa forms free-living colonies that grow
unattached on muddy substrates, with a subspheroidal submassive growth form (Figure 5). P. compressa
colonies range in size from ~5 to 120 cm. Assuming a direct relationship between size and age for free-living
P. compressa colonies, colonies range between 2 and 56 years old, with the majority (86%) of colonies less
than 30 years of age (Figure 6).

Smaller mobile colonies of P. compressa (<~50 cm in diameter) remain submerged during temporary aerial
exposure at low spring tides (Figure 2c), while the upper surface of larger colonies (>~50 cm in diameter)
are emergent at low tide, resulting in the formation of permanent microatolls (Figure 2b).

The unique morphology of the P. compressa colonies changes through at least four different growth phases.
Small free-living colonies, or coralliths, with diameters under ~10 cm, are completely covered by living tissue,
although the upward parts appear gray (Figures 5a and 5b). Juvenile colonies have a radial, subspheroidal
morphology, with branches occurring on either the top or bottom (Figure 5a). Sections of small-free living
colonies revealed no solid material other than coral skeleton, indicating that the colonies form primarily from
asexual fragmentation of existing colonies and not through settlement of larvae onto dead coral fragments.
The radial, subspherical morphology implies that these fragments move and rotate in response to water
motion and bioturbation. As the P. compressa coralliths increase in size and weight, they become less sphe-
rical and form an oblate spheroid (Figures 5b and 5c). These rotate less frequently, and when they eventually

Figure 4. Anomalies of annual mean sea-level records from Dongfang, Haikou, and Zhapo for the northern South China
Sea, and reconstructed GMSL data for the global mean sea level. GMSL = global mean sea level.
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become stationary, the downward polyps die, apparently due to food shortage and/or smothering with
sediments. As their upward growth is restricted by subaerial exposure during low tides, the Porites
coralliths eventually develop into the microatoll form, with a dead flat top and a living steep-sided
perimeter (Figure 5d).

4. Discussion

During the mid-Holocene (~7,000–6,000 years BP), reef flats in Sanya Bay were well developed with abundant
branching Acropora spp. and scattered colonies of massive Porites and were able to keep up with rising sea
levels. By around 5,400 years BP, declining sea levels were constraining vertical growth on the reef flats in

Figure 5. Four different growth phases of P. compressa at Sanya Bay reef flat: (a) Juvenile mobile colony (~6 cm) with a
radial, submassive morphology; (b) mid-size mobile colony (~10 cm) with a near round shape; (c) larger mobile colony
(~20 cm) with an oblate spheroidal shape; (d) fixed (no-longer mobile or free-living) microatolls with living coral polyps
around the perimeter and dead skeleton on the exposed upper surface (blue bars = 10 cm scale).
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Sanya Bay. This pattern is largely consistent with patterns of growth and
decline throughout the Pacific (e.g., Leonard et al., 2013; Smithers et al.,
2006). Contemporary sea-level rise (Figure 4) is releasing these constraints,
providing increased space for coral assemblages in reef flat habitats. Our
surveys indicate that over the past 30 years, reef flat habitats have been
recolonized, reinitiating vertical growth after being dormant for millennia.
Importantly, from an ecological perspective, this recolonization has
occurred not through the sexual recruitment of new corals that has been
critical for recovery of reefs following disturbance (e.g., Gilmour et al.,
2013), but instead by asexual reproduction, forming free-living colonies
that are able to survive in highly turbid environments. Asexual fragmenta-
tion and transport allow corals to bypass settlement and postrecruitment
bottlenecks that typically inhibit corals exposed to high sediment levels
from recovery following disturbance (see Jones et al., 2015, for a concise
review). From a geological perspective, modern sea-level rise appears to
be switching on reef growth which has been turned off due to limited
accommodation space for over 5,000 years.

While Holocene coral assemblages were dominated by branching
Acropora, modern assemblages are dominated primarily by P. compressa, along with isolated colonies of
Montipora, Favites, and Platygyra that have recruited to the marginal reef flat environment. In deeper water
on the reef flat (Zone A), modern living P. compressamicroatolls appear to be keeping up with contemporary
sea-level rise. Similar to fossil Porites microatolls formed during the mid-Holocene sea-level highstands,
P. compressa microatolls exhibit predominantly lateral growth, with living tissues around the perimeter and
dead skeleton on the exposed upper surface. Large (>~100 cm in diameter) microatolls on the reef flat are
very sparse, and the majority of colonies (>80%) are small, mobile, and free-living, indicating ongoing colo-
nization of the reef flat in recent decades in response to sea-level rise. The largest P. compressa microatoll
surveyed was ~120 cm in diameter (Figure 2b), with an estimated age of ~56 years based on the average
extension rate of P. compressa. The fact that modern coral assemblages on the reef flat have formed in the
past ~50 years is remarkable, given the substantial eutrophication and environmental degradation that has
occurred during this period (Zhao et al., 2012).

While our findings suggest that recolonization of reef flats in marginal environments can occur in response to
sea-level rise, the high rates of sedimentation and eutrophication of surrounding coastal waters have resulted
in a low diversity habitat, with only four genera and five species represented in our transect surveys. This
contrasts with the adjacent diverse reef slope habitats, where 69 coral species from 24 genera are present
(Zhao et al., 2012). Corals on the reef flat are growing in a shallow, muddy, eutrophic, and turbid inshore envir-
onment, widely considered to be marginal habitat and unfavorable for sustained coral growth. Sensitive taxa
such as Acropora spp. that were historically dominant in the Holocene and occur in adjacent reef slope habi-
tats (Zhao et al., 2012) are likely absent due to the effects of adverse environmental conditions on settlement
and recruitment. High rates of sedimentation and low light levels negatively affect coral survival rates
(Rogers, 1990). The combined effects of anthropogenic sedimentation and nutrient enrichment can severely
inhibit coral recruitment and settlement, slow coral recovery, reduce resilience, and eventually induce
declines in coral coverage and species richness (Abelson et al., 2005; Birrell et al., 2005; Naumann et al.,
2015; Nava & Tamírez-Herrera, 2012; Wielgus et al., 2003; Yeemin et al., 2013).

In Sanya Bay, the apparent regeneration of coral reef flats by P. compressa and a few other species suggests
that acclimatization and recovery are strongly taxon dependent. Similar cases have been noted on other
inshore reefs, where distinctive community assemblages, with relatively high live coral cover, develop in
suboptimum conditions (e.g., suboptimal salinity, destructive fishing, high turbidity, and eutrophication),
due to the survival and successful reproduction of distinctive tolerant taxa or even a single tolerant species.
This results in coral reefs dominated by a small number of tolerant coral species (e.g., Bauman et al., 2015;
Brown et al., 2012; Guest et al., 2016; Lirman & Manzello, 2009; Sawall et al., 2013). Surveys of reef slopes in
Sanya Bay have found that P. compressa is either uncommon or absent (Zhao et al., 2012), indicating that mar-
ginal environments may represent a niche space for remarkably stress-tolerant taxa. Additionally, the radial,

Figure 6. Age structure of P. compressa colonies on the reef flat.
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subspherical morphology of smaller colonies allows them to colonize the reef flat through water motion and
bioturbation (Capel et al., 2012; Tortolero-Langarica et al., 2016). The biggest benefit of the strategy is prob-
ably the ability of juvenile colonies to survive and continue growth without burial by sediments. Between
rotations, water movement through the surface layer of sediments might provide enough flushing to ensure
the downward polyps remain alive (Scoffin et al., 1985).

On a local scale, while the reef flat environment at Sanya Bay is adverse to coral survival, several factors
promote the persistence of the newly recolonized coral assemblages. High turbidity caused by sediments
and phytoplankton blooms may further reduce light penetration and protect corals from intense solar radia-
tion during summer, which could reduce the incidence of coral bleaching and mortality in the shallow reef-
flat environment (Cacciapaglia & van Woesik, 2016). Increased levels of particulate organic matter and other
components in sediments may provide an alternative source of energy for corals P. compressa (Anthony,
2006; Fabricius, 2005; Sofonia & Anthony, 2008). In the future, the relatively low levels of destructive fishing
on the reef flat compared to reef slope environments may offer emerging assemblages protection from addi-
tional human disturbances.

On a global scale, sea-level rise of up to 0.4–0.8 m by 2100 has been predicted by the IPCC (2014). If settle-
ment of the Sanya Bay reef flat by free-living corals persists into the future, our results suggest that sea-level
rise can promote vertical and lateral growth of presently constrained coral communities in marginal, inshore
reef-flat environments. Therefore, inshore coral reefs in highly degraded environments (like Sanya Bay) may
change species assemblages, but not disappear entirely. Small numbers of species with high potential for
adaptation to disturbance will hold important roles in local coral reef recovery. From a palaeo-ecological, evo-
lutionary perspective, these results are broadly consistent with the hypothesis proposing the evolution of
reef-building scleractinian corals in turbid environments (Potts & Jacobs, 2000). The persistence of such tur-
bid inshore habitats through geological time may have promoted ecological and evolutionary continuity,
providing a consistent refugia for corals during nonreef building periods (Potts & Jacobs, 2000). Further
observations of recolonization of marginal reef flats will be critical to record the diversity and life history stra-
tegies of these unique coral assemblages. Our study provides a glimpse into a potential future condition, or
new state, for heavily disturbed Indo-Pacific coral reefs.

5. Conclusions

As a representative inshore reef with severe human disturbances, reef habitats in Sanya Bay becamemarginal
and unfavorable for coral growth and have declined markedly in recent decades. During this period, how-
ever, relatively abundant populations of submassive P. compressa and some other species gradually started
to assemble on the reef flat. Relatively fast rise in local sea level during the last ~30 years can explain a high
proportion of the observed variation in age structure of P. compressa colonies, with overall increasing vertical
accommodation space for coral colonies, promoting coral settlements on the shallow reef flat. Modern sea-
level rise potentially acts to turn on reef growth which has been previously turned off in the Mid-Holocene
(~5,400 years BP) due to constrained accommodation space with sea-level decrease. Only P. compressa colo-
nies appear to have benefitted from sea-level rise and developed into assemblages with a relatively high
cover percentage. This reflects the combination of their distinctive tolerance to the marginal conditions,
and their growth strategy, involving progressive modification of morphology from free-living, juvenile sub-
spheroidal colonies to a microatoll form. Our results suggest that disturbed inshore coral reefs have been
changing, with a shift toward dominance by a few well-adapted species, but will not disappear entirely.
With the sustaining sea-level rise in the near future, those few species will hold an important position in local
reef recovery.
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