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Abstract 

Nanomaterials with different surface designs and biophysical properties are being developed to 

improve the efficacy of hydrophobic drugs. To date, these improvements have not overcome the 

complexity of biological and physical barriers via different delivery routes, however, nanoemulsions 

(NEs), in particular tailorable nanocarrier emulsions (TNEs), are emerging as promising drug carriers. 

The novel oil-in-water NEs are stabilised with chemically-engineered biosurfactants (AM1) that 

allow top-down sequential addition and modification with a chemically-related 4-helix bundle 

protein, DAMP4, which can be fused to various biomolecules. In this project, the feasibility of using 

TNEs for diagnostic/therapeutic applications via different delivery routes was investigated. The 

initially stages of the work were to evaluate the encapsulation and retention capacity of hydrophobic 

compounds within the oil core of TNEs with varying surface properties. Polyethylene glycol (PEG), 

an important pharmaceutical tool, was chemically conjugated to DAMP4 and influenced cargo 

retention within the oil core. In collaboration with Professor Tarl Prow, tuning the TNE surface 

charge, which was found to be indirectly related to PEG density, allowed TNEs to coat elongated 

microparticles via electrostatic interactions, creating a promising tool for topical drug delivery. Co-

functionalising TNEs with antibody fragments showed receptor-specific targeting in vitro, however, 

in vivo active targeting was not achieved following intravenous administration. Biodistribution 

studies suggested rapid clearance via the renal route with some liver involvement, however ex vivo 

studies involving cytokines, serum and urine analyses demonstrated TNE safety for drug delivery 

applications. This work suggests that the structure-function relationship of the TNEs interface has a 

strong influence on their interactions with the surrounding environment, therefore deeper 

understanding of the structure of TNE interface and how it relates to functional performance was 

needed. Tuning the amount and type of PEG displayed on TNEs showed that the molecular weight 

of PEG has considerable impact on the surface charge of the emulsion. Also, targeting moieties 

presented on TNE surfaces were equally accessible to their receptors even when the PEG layer created 

differences in interfacial thicknesses determined by X-ray reflectometry that showed a role in 

reducing non-specific targeting. These findings suggest that precise and controlled bioconjugation of 

functional moieties to DAMP4 is needed in the design and characterisation of sophisticated interfaces. 

Genetic engineering of DAMP4 with cysteine residues produced variants with conserved structure, 

stability, and surface activity that can be specifically conjugated to PEG via maleimide-thiol reaction 

with nearly 100% yield and showed with molecular precision how interfacial activities of 

biosurfactants can be affected by the number and mass of their conjugates. Consequently, the ability 

of DAMP4 variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilised 

emulsions was reduced. These findings contribute to the design and modification of biosurfactants 
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increasingly used in industrial processes, nutritional and pharmaceutical formulations. This research 

investigated the challenges facing the surface design of TNEs and their interactions, helped to better 

understand the physicochemical properties regarding ligand accessibility and receptor-binding 

performance; and provided tools to further explore functional interface design and better understand 

the relationship between genetic and chemical modifications of polypeptides and their function.	
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PBS   Phosphate buffered saline 

PDI   Polydispersity index 

PEG   Poly ethylene glycol 

PIT   Phase inversion temperature 

QCM   Quartz crystal microbalance  

QCM-D  Quartz crystal microbalance with dissipation monitoring 

RP-HPLC  Reversed phase – high performance liquid chromatography 

RSV   Respiratory syncytial virus 

scFv   Single chain variable fragment 

SLD   Scattering length density 

TCEP   Tris(2-carboxyethyl)phosphine 
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TNE   Tailorable nanocarrier emulsion 

TRI   Translational research institute 

VECT   Vectibix® 

W   Wet coating  

W/O   Water-in-oil 

W/O/W  Water-in-oil-in-water 

XRR   X-ray reflectometry 
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1 Chapter 1: Project Overview 

1.1 Background 

Advances in biotechnology have led to the development of various promising diagnostic and 

therapeutic small molecules. However, a large number of these molecules are not being exploited 

successfully due to several disadvantages including toxicity, hydrophobicity and, therefore, 

insufficient bioavailability levels (De Jong and Borm, 2008). It has been estimated that approximately 

40% of newly discovered therapeutic agents are eliminated from the drug development pipeline 

because of poor aqueous solubility. Also, 90% of the active pharmaceutical ingredients (APIs) in the 

discovery and development stages feature poor solubility (Loftsson and Brewster, 2010). Various 

strategies have been developed to overcome the drawbacks of these lipophilic drugs for the treatment 

of diseases such as cancer. These include the synthesis of different isoforms of APIs to enhance 

solubility and the development of drug delivery nanocarriers (Devalapally et al., 2007). 

Nanotechnology is a rapidly growing multidisciplinary field that has been applied to the formulation 

of nanoscale pharmaceutical carriers to improve therapeutic outcomes. It is defined by The Royal 

Society and Royal Academy of Engineering  as ‘the study of phenomena and manipulation of 

materials at atomic, molecular, and macromolecular scales, where the properties differ significantly 

from those at a larger scale; and “nanotechnologies” are the design, characterisation, production, and 

application of structures, devices, and systems by controlling shape and size at the nanometer scale’ 

(Dowling, 2006). It involves the application, characterisation and engineering of synthetic particles 

and structures ranging from 1 to 500 nanometres in one or more dimensions (Devalapally et al., 2007). 

The application of nanotechnology to the medical or pharmaceutical field is known as nanomedicine. 

The motivating concepts of nanomedicine are to enhance drug safety, solubility, bioavailability and 

specificity (Jeevanandam et al., 2016); to have a positive impact on clinical diagnosis and treatment 

of disease (Evers, 2017). 

Various nanotechnologies are considered very promising in diagnosis and treatment, particularly for 

cancer, and some are currently undergoing clinical development. These include nanoparticle (NP) 

platforms such as polymer-based NPs including dendrimers; inorganic materials-based platforms 

such as carbon nanotubes and quantum dots; and lipid-based NPs such as liposomes and 

nanoemulsions (NEs) (Shi et al., 2016) (Table 1.1). Nanotechnology-based drug delivery has the 

potential to overcome the limitations of traditional chemotherapeutic drugs (Cho et al., 2008). Even 

though chemotherapy can kill cancer cells, it has several serious disadvantages. These include poor 

selectivity, the emergence of multi-drug resistance (MDR), limited bioavailability, and the 
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consequent administration of high drug doses that can lead to cytotoxicity in normal body tissues 

(Szakacs et al., 2006, Cho et al., 2008). MDR can be developed through different mechanisms 

including the increase in drug efflux and drug evasion via apoptosis (Gillet and Gottesman, 2010). 

Because of these disadvantages the development of various NPs for cancer nanomedicine is urgently 

needed in order to deliver anticancer drugs efficiently, selectively and safely to the diseased tissues. 

Achieving this goal has become increasingly realistic with the rapidly growing number of 

nanodiagnostics and nanotherapeutics, both in clinical studies and the pharmaceutical market. Key 

benefits of such platforms include biocompatibility, prolonging circulation time and improving drug 

localisation via targeting. 

It is believed that the market for nanomedicines will have a growing share in cancer therapeutics over 

the next few decades (Scheinberg et al., 2010, Peer et al., 2007, Kim et al., 2010). However, the 

development of nanomedicines is showing slow progress, which is attributed to the complexity of the 

nanomaterials’ structures and, therefore, their specific analytical requirements. Also, it is difficult to 

control batch-to-batch variability in manufacturing, which is problematic in meeting regulatory 

requirements (Ragelle et al., 2017). The difficulty of obtaining superior therapeutic benefits over 

existing approved nanomedicines or API is another major challenge. Recently, it has been estimated 

that only 0.7% of injected NPs can reach their target site. This almost results in 99% off-target drug 

delivery, which increases cytotoxicity risks (Wilhelm et al., 2016). The development cost is also high 

and considered a burden for clinical translation of NPs due to the need for high number of NPs per 

an injected dose, therefore, cost management of NPs synthesis is also required (Min et al., 2015). In 

addition, high injected volumes of NPs may cause technical difficulties for patient use (Wilhelm et 

al., 2016). These issues indicate that patients are not benefiting from the ‘magic bullet’ idea to date, 

but this does not mean that these issues cannot be overcome. Therefore, our thinking should be 

deviated from just targeting, and be focused on exploring new means to accelerate clinical translation 

of NPs efficiently (Lammers et al., 2016). Also, more fundamental understanding is required into the 

assembly of NPs and their interactions with biological environments. This includes understanding the 

target disease, choosing safe and effective materials, exploring methods of surface modifications and 

routes of administration.  
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Table 1.1. Nanomaterials classes, subclasses, properties, products and their applications. 

  

Nanomaterial 

classes and 

subclasses 

Size Shape Toxicity 

Examples of 

approved 

nanomedicines 

Product 

Application 

Approval 

year 

Inorganic NPs  

Carbon 

nanotubes 

1-100 (Kaushik 

et al., 2017) 

Cylindrical 

with open or 

close ends 

(Kaushik et 

al., 2017) 

Variable based 

on geometry and 

surface 

chemistry (De 

Volder et al., 

2013)  

No approved 

products 
- - 

Silica NPs 
<500 (Argyo et 

al., 2014) 

Amorphous 

(Murugadoss 

et al., 2017) 

Variable based 

on size and 

dosage(Kim et 

al., 2015, 

Murugadoss et 

al., 2017) 

No approved 

products 
- - 

Gold NPs 
10-100 (Yeh et 

al., 2012) 

Spheres, 

cages and 

rods (Kaushik 

et al., 2017) 

Low or no 

toxicity (Connor 

et al., 2005) 

No approved 

products 
- - 

Quantum dots 
2-20 (Kaushik 

et al., 2017) 

Spherical or 

ellipsoid 

(Kaushik et 

al., 2017) 

Toxicity is a 

main challenge 

in drug delivery 

(Volkov, 2015) 

No approved 

products 
- - 

Polymeric NPs  

Dendrimers 

1-13 (Cheng et 

al., 2008b, 

Müller et al., 

2007, 

Dobrovolskaia 

et al., 2012) 

Highly-

branched tree-

like structures 

(Sikwal et al., 

2017) 

Variable toxicity 

based on 

structure (Cheng 

et al., 2008a) 

No approved 

products 
- - 

Micelles  

10-100 (Ahmad 

et al., 2014b, 

Yokoyama, 

2014) 

block 

(Spherical) or 

random 

copolymers 

(Jones and 

Leroux, 1999) 

Low toxicity 

(Movassaghian 

et al., 2015)  

 EstrasorbTM 

(Novavax) 

(Simon, 2006) 

Menopausal 

therapy 

(Simon, 2006) 

2003 
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Magnetic NPs  

Sliver NPs 
10-100 (Marin 

et al., 2015) 

spheres, 

cubes, rods 

(Helmlinger et 

al., 2016) 

Variable 

toxicities based 

on size and 

synthesis 

method (Wei et 

al., 2015) 

No approved 

products 
- - 

Iron oxide NPs 
1-100 (Laurent 

et al., 2008) 

Spheres 

(Mahmoudi et 

al., 2011) 

Variable toxicity 

based on coating 

Nanotherm® 

(MagForce) 

(Magforce, 2018) 

Solid tumours 

(Bobo et al., 

2016, 

Magforce, 

2018) 

2010 

(Bobo et 

al., 2016) 

Lipid-based NPs  

Liposomes 

Nanosize range 

(Malam et al., 

2009) 

Sphere 

(Malam et al., 

2009) 

Low or no 

significant 

toxicity 

(Bozzuto and 

Molinari, 2015) 

Doxil® (Janssen) 

(Barenholz, 

2012b) 

Kaposi’s 

Sarcoma  

1995  

 

DaunoXome® 

(Galen) (Forssen, 

1997) 

Kaposi’s 

Sarcoma 

1996 

 

AmBisome® 

(Gilead Sciences) 

(Stone et al., 

2016) 

Fungal or 

protozoal 

infections  

1997 

 

Marqibo® 

(Spectrum 

pharmaceuticals) 

(Silverman and 

Deitcher, 2013) 

Acute 

lymphoblastic 

leukaemia   

2012 

Nanoemulsions 
20-500 (Gupta 

et al., 2016) 

Sphere (Ganta 

et al., 2014b) 

Low or no 

toxicity 

(Borthakur et 

al., 2016) 

Intralipid® (Baxter 

healthcare) 

(Hippalgaonkar et 

al., 2010) 

Nutritional 

therapy 
1962 

Diprivan® 

(AstraZeneca) 

(Chidambaran et 

al., 2015) 

Anaesthesia  1989 

Restasis® 

(Allergan) (Ames 

and Galor, 2015) 

Dry eye 

syndrome 
2003 

Durezol® (Alcon 

pharmaceuticals) 

(Smith et al., 

2010) 

Eye 

inflammation 

and uveitis 

2008 
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1.2 Lipid-based drug nanocarriers 

Lipid-based nanocarriers include liposomes, emulsions and solid lipid NPs, and they have a promising 

future in meeting the ideal requirements (Lederer and Parascandola, 1998) for a drug delivery system. 

These requirements include primarily protection of the drug from harsh environments, such as pH 

(Chanana et al., 2013) and enzymatic degradation (Soenen et al., 2015); increasing the safety profile 

of these lipophilic drugs in order to reduce their undesirable side effects; and the potential to introduce 

tissue specificity by cell receptor targeting. In this section, I will discuss only soft lipid carriers, 

including liposomes and emulsions.    

1.2.1 Liposomes 

Liposomes are spherical NPs that comprise a lipid bilayer enclosing a central aqueous phase. They 

have been extensively studied in vivo and show remarkable biocompatibility and biodegradability, as 

well as low immunogenicity (Torchilin, 2005). However, liposomes can be easily removed from the 

blood circulation by opsonisation. Thus, additional surface coating molecules, such as polyethylene 

glycol (PEG), are required for the liposomal carriers to extend their serum half-life and enable them 

to evade the immune system (Hauser-Kawaguchi and Luyt, 2015). Nevertheless, liposomes possess 

a distinctive feature, the capacity to encapsulate both hydrophobic and hydrophilic drugs in the lipid-

bilayers and the aqueous core, respectively (Hauser-Kawaguchi and Luyt, 2015). Currently, several 

liposomal formulations of different anti-cancer drugs have been approved for human use (Table 1.1). 

In cancer therapy, Doxil (PEGylated form) (Safra et al., 2000) and Mycoet (non-PEGylated form) 

(O'Shaughnessy, 2003, Swenson et al., 2001), which are liposomal  formulations of the anthracycline 

doxorubicin, are approved for treating metastatic breast cancer. It was found that Doxil improved the 

drug accumulation of doxorubicin 10-fold compared to administration of the drug alone (Rosenthal 

et al., 2002). Currently, numerous liposomal formulations are in preclinical development and are 

being evaluated in clinical trials. 

1.2.2 Nanoemulsions as drug delivery systems       

NEs, heterogeneous systems in which one liquid is dispersed as nanosized droplets within another 

liquid, have evolved as robust carriers for the delivery of a wide range of hydrophobic drugs (Ganta 

et al., 2014b). NEs are non-equilibrium, kinetically stable systems that feature small droplet sizes 

typically ranging from 20 to 500 nm (Gupta et al., 2016). NEs are characterised by advantageous 

features, including ease of production, high loading capacities, long-term stability, increased 

bioavailability and protection and controlled release of cargos, all of which make them promising 

carriers for use in nanomedicine (Talegaonkar and Negi, 2015). The presence of commercialised NEs 
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in various applications (Table 1.2) demonstrates their suitability and their long history of safety in 

pharmaceutical applications. 

Both oil-in-water (O/W) and bicontinuous water-in-oil-in-water (W/O/W) NEs are suitable for the 

delivery of hydrophobic compounds in aqueous environments. NEs have four main components: the 

dispersed phase, continuous phase, surfactant and co-surfactant. The selection of the oil type 

determines the solubility of the encapsulated drug and, therefore, the loading capacity. Surfactants 

reduce the interfacial tension between liquid phases imparting thermodynamic stability, and they can 

be anionic, cationic, non-ionic or zwitterionic. In the last few years, NEs have shown promising 

results as preclinical cancer theranostics (Ganta et al., 2014a). For instance, a recent study has shown 

a synthesis of a theranostic NE platform that involves the use of vitamin E and D-α-tocopheryl-

PEG1000-succinate as an oil core and surfactant, respectively. This platform was applied to co-

deliver an imaging probe (sulforhodamine B) and paclitaxel for cancer imaging and therapy (Yang et 

al., 2014). Another study also showed that NEs hold promise for use as a theranostic platform, where 

a targeted docetaxel-loaded NE was applied to ovarian cancer using folate as a targeting moiety and 

gadolinium for magnetic resonance imaging (MRI) (Ganta et al., 2016). 
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Table 1.2. Pharmaceutical NE formulations on the current market (Mansoor and Sandip, 2006, 

Lovelyn and Attama, 2011). 

 

 

 

 

 

  

Active agent Indication Brand name Company 

Propofol Anaesthetic Diprivan® Astra Zeneca 

Dexamethasone 

palmitate 
Steroid Limethason® 

Mitsubishi 

Pharmaceuticals 

Palmitate alprostadil Vasodilator platelet inhibitor Liple® 
Mitsubishi 

Pharmaceuticals 

Flurbiprofen axetil NSAID Ropion Kaken Pharmaceuticals 

Vitamins A, D, E or K Parenteral nutrition Vitalipid® Fresenius Kabi 
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1.2.2.1 Tailorable nanocarrier emulsions 

Tailorable nanocarrier emulsions (TNEs) were recently invented by the Middelberg group at the 

Australian Institute for Bioengineering and Nanotechnology (AIBN) and have shown promising 

results in the selective delivery of antigens (Zeng et al., 2013). TNEs are easily formulated by the 

assembly of protein-based surfactants in a bottom-up fashion followed by the top-down sequential 

addition of reagents. The core of TNEs is made from a pharmaceutical-grade oil, Miglyol 812, which 

is classed as a generally recognised as safe (GRAS) substance by the US Food and Drug 

Administration (FDA) (Dexter et al., 2006). It is stabilised by a 21-residue surface active peptide 

called AM1 (Ac-MKQLADSLHQLARQVSRLEHA-CONH2) (Malcolm et al., 2006) (Figure 1.1). 

The design of AM1 was based on an amphipathic peptide Lac21 which adsorbs at fluid-fluid 

interfaces (Fairman et al., 1995). The difference between AM1 and Lac21 is only in the insertion of 

two histidines residues at positions 9 and 20. These histidines give AM1 its metal binding properties 

that allow the cross-linking between AM1 molecules at the oil-water interface, and facilitates the 

formation of stable foams and emulsions (Dexter et al., 2006). AM1 molecules adsorb at the oil-water 

interface where the hydrophobic residues (positions 1, 4, 8, 11, 15 and 18) oriented toward the oil 

phase (Figure 1.1). AM1 has also switchable properties allows easy reversible destabilisation of 

emulsions through pH change or chelating effects (Dexter et al., 2006, Malcolm et al., 2006).  

DAMP4, a recently reported protein-based biosurfactant that shows chemical similarity to AM1 

(Dwyer et al., 2013) spontaneously integrates into the oil-water interface of TNEs, which have already 

been stabilised by AM1. Genetic or chemical conjugation of bioactive moieties to DAMP4 for 

subsequent TNE surface integration enables decoupling of the physical stabilisation and biological 

functionalities of the TNEs (Sainsbury et al., 2014) (Figure 1.2). That is, it separates emulsification 

from functionalisation, which is unique among NEs. In this way, DAMP4 allows for the display of a 

wide range of molecules on the surface and the engineering of sophisticated surfaces at the oil-water 

interface (Zeng et al., 2013). For example, DAMP4 was chemically conjugated to PEG (Zeng et al., 

2013), a non-immunogenic and non-toxic hydrophilic polymer that is widely applied in 

pharmaceutics for shielding from immune system detection (Harris and Chess, 2003). The importance 

of PEG for decorating and applying drug delivery systems will be discussed in the next paragraphs. 

The TNEs were then also functionalised by fusing DAMP4 to a monoclonal antibody (anti-Clec9A), 

targeting the Clec9A receptor on the dendritic cells (DCs) (Zeng et al., 2013). Functionalising the 

TNEs with anti-Clec9A antibody enables the specific targeting of the DCs subset in in vivo studies. 

Immunotherapeutic TNEs remain under development for various diseases, including cancer 

(Sainsbury et al., 2014). However, because of their versatile features, such as ease of production, high 
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drug loading capacities, cargo protection and cell-selective targeting, they show remarkable potential 

as carriers for hydrophobic compounds. 
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  Figure 1.1. Schematic representation of AM1 peptide. The hydrophobic chains of AM1 are 

presented in green. The metal binding properties of AM1 via histidine molecules are shown in 

yellow. 
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Figure 1.2. Diagrammatic depiction of how TNEs are fabricated. This shows the addition of 

the PEGylated DAMP4 to the AM1-stabilised TNEs to stabilise the emulsion and impart 

hydrodynamic stability (Sainsbury et al., 2014). AM1 shown in red, DAMP4 shown in blue 

and PEG shown in white. 
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1.3 Bioconjugation 

Since the pioneering studies done by Ringsdorf (Ringsdorf, 1975), bioconjugation chemistry has 

become a central element in pharmaceutical applications as well as fundamental research (Veronese 

and Morpurgo, 1999). It is defined as ‘the covalent derivatisation of biomolecules’ (Kalia and Raines, 

2010), and it has been the basis of most stabilisation mechanisms against physiological processes, 

including enzymatic degradation (Fee and Van Alstine, 2006), immunogenicity (Jokerst et al., 2011) 

and clearance (Monfardini and Veronese, 1998). Therefore, bioconjugation of polymers to 

biomolecules can improve their properties and, thus, their pharmacokinetic profile (Lu et al., 2002). 

Bioconjugation is widely used in various applications, including biochemical assays (Newman and 

Zhang, 2008), discovery of ligands (Rup and O'Hara, 2007) and diagnostics which, in turn, include 

in vivo imaging (Parker, 1990, Wester and Schottelius, 2007), industrial applications (Wong and 

Whitesides, 1994) and PEGylation (Harris and Chess, 2003, Zalipsky, 1995). Bioconjugates can be 

attached to their biomolecules either through conjugation to natural amino acids (which will be 

discussed in this work) or incorporated unnatural amino acids. The most widely used method for 

protein conjugation is the nucleophile to electrophile attacks where cysteine is the most robust 

available nucleophile as a natural amino acid, although cysteines are rarely present in most proteins 

(Veronese and Morpurgo, 1999). The reaction of maleimide to thiol groups of cysteines is a common 

example for thioether formation (Figure 1.3f). A more commonly applied approach is protein 

conjugation of the amino groups in lysines by N-hydroxysuccinimides (NHS-chemistry) (Kalia and 

Raines, 2010). Primary amines of proteins can also react with conjugates having carboxylic groups 

(Figure 1.3c). The presence of amino groups in most proteins reduces the opportunity for site-

specificity conjugations (Veronese and Morpurgo, 1999). Site-specific bioconjugation of proteins can 

occur through the incorporation of functional groups such as the sulfhydryl group or other reactions 

such as copper-catalysed azide-alkyne cyclo-addition (Kakwere et al., 2010). 
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  Figure 1.3. List of amino and thiol functional reactive groups.a. Reaction of primary amines 

with N-succinimidyl activated ester leads to amide formation. b. Reaction of primary amines 

with pentafluorophenyl activated ester leads to amide formation. c. Reaction of primary 

amines with carboxylic acid in the presence of N,N’-dicyclohexyl carbodiimide (DCC) or 

carbodiimide (1-ethyl-3-(-3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) leads 

to amide formation. d. Reaction of pyridyl disulphide with sulfhydryl group (thiol) leads to 

disulphide formation. e. Michael addition of alkene to thiol leads to thioether formation. f.  

Reaction of maleimide to thiol leads to thioether formation. g. Michael addition of vinyl 

sulphone to thiol lead to formation of thioether group (Cobo et al., 2014). 
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1.3.1 PEGylation   

PEG is the most common FDA-approved polymer used for stabilising colloidal nanocarriers in 

pharmaceutical applications (Gref et al., 2000). It has been reported that PEG can affect the surface 

charge, size and hydrophilicity of drug delivery systems. Circulation time is considered an important 

benchmark in the evaluation of drug delivery systems, including emulsions, via the intravenous (IV) 

route. The half-life of drug delivery systems in blood circulation is usually short due to the rapid 

clearance by macrophages via the opsonisation mechanism (Juliano, 1988). Hence, coating with 

hydrophilic polymers, such as PEG and poloxamines, is crucial to extend their half-life in the 

bloodstream and improve therapeutic efficacy (Allen and Martin, 2004). That is, PEG coating can 

reduce protein adsorption (opsonisation) (Owens and Peppas, 2006) onto the interface, which 

prolongs circulation half-life by avoiding phagocytosis. Successful PEG presentation can also 

minimise aggregation by improving colloidal and steric stability (Moore et al., 2015). In contrast, it 

has been reported that IV-administered PEG-labelled formulations can induce immune response or 

opsonisation. The complement system as well can be activated through injected PEG-conjugates or 

formulations which can result in hypersensitivity reactions (Knop et al., 2010). Even though there are 

a few concerns surrounding the use of PEG, it is still considered the gold standard polymer for use in 

drug delivery.    

Controlling the surface properties (size, surface charge and hydrophilicity) of an NE system is 

essential to enable modification and synthesis of a promising drug delivery system for various 

biological applications (Ganta et al., 2014b). The density of PEG coating is also crucial to any direct 

drug delivery system for a particular route of delivery. PEG density also relates to targeting efficiency 

for both passive and active targeting (Xu et al., 2015). PEG also might have a positive or negative 

impact on the function of conjugated molecules, such as antibodies and surfactants. Therefore, 

studying the application of PEG molecules on surface-modified emulsions is an important area of 

research as it provides insight into the future direction for the medical applications of NEs. For 

example, tuning a biophysical property, such as the surface charge, can affect the interaction of NPs 

with cells in several ways, including the minimisation of non-specific binding. It can also affect 

interfacial thickness, stiffness and activity of co-displayed molecules by varying parameters, such as 

size, PEG length or orientation (D’souza and Shegokar, 2016). Due to the importance of PEG and 

these possible impacts on the interface of an emulsion system, this research project investigated and 

characterised the TNEs’ interface using the designer biosurfactant, DAMP4, which allows 

functionalisation with molecules such as PEG. In addition, due to the importance of DAMP4 in 

imparting stability and functionality to TNEs, the impact of PEG on DAMP4 activity was 

investigated.  
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1.4 Thesis aims  

The overall aim of this thesis is to further refine the nanocarrier emulsions previously developed by 

the Middelberg group at the University of Queensland. This aim is addressed by tuning the platform 

to suit different applications based on the biophysical properties of the oil-water interface.  The 

structural elements of the interface consist of the ensemble of molecules at the surface including 

AM1, coordinated metal ions and DAMP4 as well as bioconjugated moieties such as PEG and 

targeting ligands. Together, these determine functional properties of TNEs. Investigation of the 

structure-function relationship of the interface will be achieved through the following three 

objectives:  

1- To broadly explore the suitability of TNEs in diagnostic and therapeutic applications 

employing different routes of administration. 

2- To gain insight into the interfacial structure-function of the polyethylene glycol-decorated 

peptide-stabilised Nanocarrier emulsions, and  

3- To gain better control over the interface of the TNEs through genetic engineering of DAMP4 

for precise bioconjugation of DAMP4 and interfacial activities. 

 

To achieve the first aim of this project, I evaluated the feasibility of using TNEs for 

diagnostic/therapeutic applications via the IV and topical (skin) routes. This includes the 

encapsulation and retention capacity of hydrophobic compounds within the oil core of TNEs based 

on variable DAMP4-PEG densities on TNE interfaces. Control over the surface charge of TNEs was 

harnessed for electrostatic interactions to form a hybrid system with a promising technology called 

silica elongated microparticles (EMPs) developed by Professor Tarl Prow at the Translational 

Research Institute (TRI). 

The application of TNEs as a targeted drug delivery system was also evaluated by developing a 

DAMP4-scFv fusion protein. The integration of this fusion into the TNE interface was evaluated, and 

the scFv-labelled TNEs were applied to cancer cells for in vitro targeting studies. Targeted and un-

targeted TNEs were tested for in vivo studies in tumour mouse models.  

The second aim was addressed by exploring the interfacial structure-function relationship of the 

polyethylene glycol-decorated peptide-stabilised nanocarrier emulsions, which have profound 

influence on biodistribution, stability and efficiency of functional surface properties such as active 

targeting. Surface modification of drug delivery systems is commonly applied to improve their 

stability and further biological applications. PEG is an FDA-approved hydrophilic polymer widely 

applied to fabricate nanomaterial surfaces to achieve better pharmacokinetics. Therefore, 
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understanding the molecular characteristics of the PEG layer offers insight into the structure-function 

relationship for the development of soft nanomaterials more broadly.  

The third aim involved studying the impact of covalent modification on genetically engineered 

DAMP4 variants. DAMP4 variants were evaluated for structural and functional alterations following 

the introduction of cysteine residues. The variants allow for more accurate design and analyses of the 

TNE interface. They provide more precise information on the structure of biosurfactants following 

the covalent attachment of PEG, and how this can affect their functional properties including 

interfacial activity, stabilisation of emulsions and presentation of biomolecules.  

1.5 Thesis organisation 

Chapter 2 - Comprises a literature review (publication manuscript) under the title of 

‘Nanoemulsions: promising drug delivery systems for medical applications’. The review addresses 

the basic science of NE formulations as it relates to the medical application and route of 

administration. It summarizes the dispersion and stabilisation of O/W emulsions and discusses their 

physical properties in terms of pharmacological performance. Then, it critically examines the uses of 

NEs in the treatment and prevention of disease by route of administration. Finally, we comment on 

the potential for the functionalisation of NEs by both bottom-up and top-down self-assembly 

mechanisms to formulate sophisticated NEs for specific applications. 

Chapter 3 - Investigates the use of TNEs as a drug delivery and imaging tool for topical and IV route 

applications. This work was to elucidate the possible biological challenges that might be faced during 

topical and IV administration. A hydrophobic fluorescent dye, 1,1′-dioctadecyl-3,3,3′3′-

tetramethylindocarbocyanine perchlorate (DiI) used to evaluate the interfacial properties of TNEs 

including the capacity of cargo retention and physical and colloidal stability. These tuneable 

properties were explored for coating a promising EMPs for human skin applications and stabilising 

TNEs for IV delivery.      

Chapter 4 - Presents a fundamental insight into the interfacial structure-function of the polyethylene 

glycol-decorated TNEs. This chapter relates physio-chemical properties of TNEs as a tuneable model 

interface to ligand accessibility and receptor-binding performance. PEG-mediated surface shielding 

is commonly used to impart anti-fouling and immune-evading characteristics on interfaces and NPs. 

This chapter uses the precise control over the surface decoration of TNEs to study the interfacial 

properties of a PEG-modified oil-water interface, and examines how the physical properties of 

different PEG layers influence the accessibility of a co-decorated single-chain fragment antibody.  
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Chapter 5 - Reports the development of a second generation of the protein biosurfactant, DAMP4, 

to enable precise and efficient bioconjugation of PEG and, therefore, more controlled investigation 

of the impact of DAMP4 adsorption on interfacial activity.	The second-generation biosurfactants 

(cysteine variants of DAMP4) were engineered using rational amino acid substitution, and their 

structure, stability and interfacial activity were studied and compared to the parent molecule. The 

mass and number of bioconjugated PEG molecules to the cysteine variants were evaluated for their 

impact on the interfacial activity of DAMP4 and the overall stability of the TNEs interface. 

Chapter 6 - Provides a summary of all the thesis findings and relates these to the future directions of 

research.    
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2 Chapter 2: Literature Review: Nanoemulsion: a Promising Drug Delivery 

System for Medical Applications  

The following literature review manuscript will be submitted to the Journal of Nanomedicine, 

Future medicine:   
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1 The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, 

QLD 4072, Australia. 

2 King Abdul Abdul-Aziz University, Faculty of Applied Medical Sciences, Jeddah, Kingdom of 
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Abstract 

Emulsions are heterogeneous systems of two immiscible liquids stabilised by emulsifiers or 

surfactants.  Nanoscale oil-in-water emulsions (NEs) show great potential in a broad range of medical 

applications because of their attractive characteristics for drug delivery. These include enhanced drug 

solubility, the use of generally recognised as safe ingredients (GRAS), ease of production and high 

loading capacity. NEs have been explored as therapeutic delivery vehicles for hydrophobic 

compounds via various routes of administration including via the skin, ocular, nasal cavity, 

respiratory tract, and ingestion and via injections. In some cases, NEs provide opportunities to 

improve drug delivery via alternative administration routes. However, deep understanding of the 

fundamental processes of NE manufacturing and functionalisation, and how they relate to the choice 

of administration route and pharmacological profile is still limited. These challenges remain to be 

overcome to ease the transition of NEs from laboratories to patients use. Here we review the diversity 

of medical applications for NEs and how that governs their formulation, route of administration, and 

the emergence of increasing sophistication in NE design for specific applications. 
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2.1 Introduction 

NEs, also known in the literature as ultrafine emulsions, mini-emulsions and submicron emulsions, 

are heterogeneous systems in which one liquid (dispersed phase) is dispersed as nanosized droplets 

in another liquid (continuous phase) (Solans and Solé, 2012, Ganta et al., 2014b, McClements, 2011, 

Lu et al., 2012). The droplet size range of NEs is between 20-500 nm (Gupta et al., 2016).  NE types 

are based on the class of the dispersed and continuous phases, for example, oil-in-water (O/W), water-

in-oil (W/O) and double emulsions (W/O/W or O/W/O) (Figure 2.1). NEs can be relatively easily 

fabricated with biocompatible and biodegradable ingredients involving FDA-approved oils. They are 

non-equilibrium (thermodynamically unstable) and kinetically stable systems (Solans et al., 2005, 

McClements and Jafari, 2018). Therefore, they require energy input (high or low energy methods) 

for their formation (Tadros et al., 2004) and surfactants or emulsifiers to impart colloidal stability. 

Surfactants and co-surfactants used to stabilise NEs can be lipid-based molecules (Gianella et al., 

2013) or peptides/proteins (Malcolm et al., 2006, Dwyer et al., 2013) both of which show a degree of 

compatibility for human use. Surfactants reduce the interfacial tension (IFT), surface energy (δA) per 

unit area (A), between the dispersed and continuous phases, providing thermodynamic instability 

which leads to an increase in the shelf-life stability (Mason, 1999). Surfactants can also act to stabilise 

NEs through repulsive electrostatic forces (Mason et al., 2006) 

Our review addresses the basic science of NEs formulation as it relates to the medical application and 

route of administration. We summarize the dispersion and stabilisation of O/W emulsions and discuss 

their physical properties in terms of pharmacological performance. We then critically examine the 

uses of NEs in the treatment and prevention of disease by route of administration. Finally, we 

comment on the potential for the functionalisation of NEs by both bottom-up and top-down self-

assembly mechanisms to formulate sophisticated NEs for specific applications.  
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Figure 2.1. Types of emulsion based on the dispersed phase. 
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2.2 Preparation methods of nanoemulsions 

NEs are synthesised by various techniques that fall under one of two energy input paradigms; high-

shear forces (e.g. ultrasonication) and low-shear forces (e.g. phase inversion temperature (PIT) (Fryd 

and Mason, 2012, Talegaonkar and Negi, 2015, Gupta et al., 2016). The high energy methods involve 

the use of mechanical devices to exert shearing forces to split the dispersed phase into fine droplets 

(Musa et al., 2013). Sonication devices are mostly used in research laboratories; however, rotator-

stator and high-pressure devices are usually used in industry (Solans et al., 2005, Kentish et al., 2008). 

The low energy methods leverage the internal chemical potential of the system to formulate NEs 

(Komaiko and McClements, 2016). The production of NEs using high-energy approaches is 

determined by the formulation composition and the required energy input. There are two major 

mechanical-shearing methods using high energy, ultrasonication and homogenisation (Figure 2.2). 

The ultrasonication method applies high-frequency sound waves to two immiscible liquids. These 

generated shearing forces break up the dispersed phase into small droplets in the presence of a 

surfactant that prevents droplet coalescence or flocculation by reducing the IFT (Maa and Hsu, 1999). 

Homogenisation involves the application of very high pressures on the formulation mixture which is 

then pumped via a restrictive valve. This generates high shearing force resulting in the formation of 

small droplets of the dispersed phase (Tadros et al., 2004, Quintanilla-Carvajal et al., 2010, 

Håkansson and Rayner, 2018).   

The low energy methods utilise the chemical potential of the system internal components to formulate 

dispersions. Low energy emulsification and condensation methods use the phase transitions that take 

place in response to temperature and composition changes (Gupta et al., 2016, Usón et al., 2004). The 

phase inversion temperature (PIT) method, first reported by Shinoda and Saito (Shinoda and Saito, 

1968), is one of these methods widely applied in industry. 

2.3 Nanoemulsion-destabilising mechanisms  

In the absence of the following mechanisms: flocculation, creaming, cracking and Ostwald ripening, 

NEs are generally known as a stable platform. The most common destabilisation mechanism is 

Ostwald ripening (Delmas et al., 2011, Kabalnov, 2001). It is defined as the growth of the dispersed 

phase larger droplets at the expense of the smaller droplet (Figure 2.3). In other words, Ostwald 

ripening is the process by which smaller droplets of the dispersed phase (higher Laplace pressure) 

migrate via the continuous phase into large droplets that have lower Laplace pressure (Mason et al., 

2006).  
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Figure 2.2. The common techniques used for the formulation of NEs. 
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Figure 2.3. The destabilising mechanisms of the NEs. The continuous phase and the dispersed phase 

are in (blue) and (yellow) respectively. 

  



47 
 

Laplace pressure differential allows for mass transfer from smaller to larger droplets. The solubility 

of the dispersed phase (e.g. oil) in the continuous phase plays a major role in the ostwald ripening 

phenomena (Rahn-Chique et al., 2012, Lifshitz and Slyozov, 1961), which can be suppressed by 

selecting two phases that are highly immiscible where the dispersed-phase droplets have very low 

solubility in the continuous phase.  

Flocculation or coagulation occur when two or more droplets join and form dispersed larger clumps 

or floccules due to attractive forces. These floccules move in the solution as a single object (Figure 

2.3). The DLVO theory suggests that when the repulsive minimum between two droplets is low, these 

droplets tend to form floccules or clumps (Rahn-Chique et al., 2012). Floating of these clumps is 

known as creaming; therefore, flocculation might lead to creaming (Jaiswal et al., 2014, Rahn-Chique 

et al., 2012). This floating (buoyancy) occurs because of an upward exerted force by the fluid because 

the pressure under the floating droplet is greater than the pressure on the top of the droplet. This 

buoyant force controls the degree of freedom of a particular system when it dominates thermal 

fluctuations and Brownian motion. In the case where the dispersed phase is less dense than the 

continuous phase, it leads to floating of the droplets (creaming) (Mewis and Wagner, 2012). In the 

case where the dispersed phase is denser than the continuous phase, it leads to sedimentation (Figure 

2.3). These floating droplets form a thick (concentrated) layer of the dispersed phase. A cracked NE 

is characterised by the separation of the dispersed phase from the continuous phase where the NE 

cannot be reverted to its normal condition. However, creamed NE can be reconstituted by mixing 

(Jaiswal et al., 2014). 

2.4 Nanoemulsion stabilisers 

Long shelf-life and stability in various environments are important requirements for the use of  NEs 

in medical applications (McClements and Gumus, 2016). Surfactants or emulsifiers are surface-active 

molecules that can maintain the kinetic stability of NEs by reducing IFT between the dispersed and 

continuous phases. Stabilisers can be ionic, non-ionic surfactants, polymers or solids. Polymers and 

non-ionic surfactants can help to prevent destabilisation of NE through steric hindrance. Ionic 

surfactants (charged surfactants) can also prevent instability of NEs via electrostatic repulsion (Otto 

and du Plessis, 2015). Currently used stabilisers are either chemically-synthesised (Spans, Tweens or 

Cremophors) (Kralova and Sjöblom, 2009, Kaur et al., 2016) or bio-sourced (egg lecithin, whey 

protein, caseinate and microbial) (Dickinson, 1986, Dickinson, 1994, Rodrigues et al., 2006). Some 

of these surfactants are associated with toxicity concerns, therefore considering selection criteria that 

include surfactant source, concentration and safety profile is important for the formulation of stable 

NEs.  For example, the stabilisation of NE systems usually requires high concentration of surfactants 
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and co-surfactants, and this may cause irritation and toxicity in oral and topical drug delivery 

applications. The selection of surfactants based on chemical properties is also another important 

aspect in the formulation of NEs for drug delivery. For instance, it has been reported that non-ionic 

synthetic surfactants show less toxicity when compared to ionic surfactants, which can damage 

biological membranes (Azeem et al., 2009). In addition, non-ionic surfactants tend to have better in 

vivo stability in comparison with their ionic counterparts (Kawakami et al., 2002). Although non-

ionic surfactants such as Cremophor have been marketed as part of paclitaxel formulation (Taxol), 

this formulation still have a considerable level of toxicity (Kaur et al., 2016). In addition to toxicity, 

chemically synthesised surfactants are not biodegradable and non-renewable, whereas biosurfactants 

are gaining interest as stabilisers in food and medical applications due to their biocompatibility, 

biodegradability and sustainability. Even though biosurfactants are less toxic than chemically-

synthesised surfactants, some of these can still provoke adverse reactions such as egg lecithin. 

Biosurfactants can be classified as low molecular weight (peptides, proteins and glycolipids) or high 

molecular weight (proteins, lipoproteins and polysaccharides) compounds (Marchant and Banat, 

2012, Rodrigues et al., 2006). Lipid-based surfactants have been used to stabilise multifunctional NE 

in drug delivery applications (Gianella et al., 2013). Glycolipids extracted from microorganisms were 

studied extensively as surfactants with antimicrobial activity (Gerard et al., 1997). They were also 

applied for stabilising NE for drug delivery applications such as analgesia (Ahmad et al., 2014a). 

Proteins have a safety profile history in both food and pharmaceutical applications. Peptide and 

polypeptide surfactants are promising amphiphilic molecules for stimuli-responsive and self-

assembly systems (Dexter et al., 2006, Malcolm et al., 2009). They can be conjugated to a wide range 

of molecules to stabilise and functionalise NEs for a particular application (Zeng et al., 2013, 

Sainsbury et al., 2014). These conjugates include polymers such as PEG that is commonly used in 

drug delivery to achieve immune shielding and in vivo stability through steric hindrance. Thus 

protein-based surfactants can potentially be utilised to functionalise NEs for a wide range of medical 

applications. 

2.5 Nanoemulsions in medical applications 

The emergence of high-throughput screening methods and combinatorial chemistry has facilitated the 

design of potent therapeutics. However, most of these promising therapeutic agents show poor 

aqueous solubility. It is estimated that approximately 40% of newly discovered therapeutic agents are 

eliminated from the drug development pipeline because of poor aqueous solubility (Ganta et al., 

2014b). NEs have evolved as a robust carrier for the delivery of a wide range of hydrophobic drugs. 

Their attractive features, including ease of production, enhanced loading capacities, long-term 
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stability, increased bioavailability and protection and controlled release of cargos, make them 

promising carriers for use in nanomedicine (Fryd and Mason, 2012). NEs have been broadly applied 

to a broad range of applications including food industry (Silva et al., 2012, McClements and Rao, 

2011), cosmetics (Sonneville-Aubrun et al., 2004) and medicine(Jaiswal et al., 2014, Singh et al., 

2017).  They have been applied via different administration routes and they are applied as dried 

(powdered) formulations, aerosols, ingestible and injections (Figure 2.4). NEs have been widely 

applied to improve pharmacokinetics and bioavailability of water-insoluble drugs. 

Our review addresses the fundamentals of O/W NE formulation as it relates to drug delivery 

applications. The physiochemical properties of NE formulations including charge, size and the type 

of oil or surfactants are important for successful medical application. Therefore, studying and relating 

the physiology of both application and indication is essential for integrating desired properties into 

bespoke NE formulations.  

2.5.1 Topical applications 

Skin provides a layer of protection for the human body against the surrounding environment. 

However, it is also considered as an administration route for topical drug delivery. The skin is a multi-

layered organ (Cosco et al., 2008). The stratum corneum (SC), the outer layer, is composed of the 

epidermis, dermis and subcutaneous tissues. The lipid matrix of the SC comprises keratinocytes, 

cholesterol, fatty acids and ceramides (Morrow et al., 2007). This lipid matrix provides a barrier 

against environmental factors such as radiation.  

Drug application to the skin offers various advantages including the non-invasive administration of 

medicines either locally or systemically (Barry, 2004). However, this requires diffusion of a drug to 

the dermis layer, which presents a challenge in topical drug delivery due to the presence of a 

protection layer, the epidermis. The inherent properties of O/W emulsions can enhance the absorption 

of lipophilic drugs when applied topically to the skin. Firstly, the encapsulation of lipophilic drugs 

within the NEs oil core can improve their bioavailability. Also, the use components (surfactants and 

co-stabilisers) within the interface can enhance penetration activity of the SC layer (Rhee et al., 2001). 

The small size and the low-surface tension of NEs might also improve the permeation rate of the 

encapsulated drug (Talegaonkar and Negi, 2015). A large number of studies have been published on 

NEs for topical skin drug delivery (Mou et al., 2008, Salim et al., 2016) and various NE candidates 

have entered clinical trials (Table 2.1). NE have shown improved bioavailability and pharmacological 

effect of various water-insoluble compounds. For example, Quercetin is a flavonoid that has potential 

chemo-protective effects including antioxidation and wound healing. However, it has also low 

bioavailability because of poor aqueous solubility and low skin absorption and penetration (Galho et 
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al., 2016). The enhancement of quercetin permeation through the skin was demonstrated when loaded 

into the lipid core of positively-charged NEs formulated using spontaneous emulsification (Fasolo et 

al., 2009). 
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Figure 2.4. Drug delivery applications of nanoemulsions. It illustrates the medical 

application of NEs based on the routes of administration. These include the nasal, ocular and 

oral cavities, injections and topical applications. 
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This indicates the importance of tuning the biophysical properties to improve drug permeation where 

the positively charged interface of NEs enhance the interaction with the negatively-charged epithelial 

cells. However, the composition of these NEs include the use egg-lecithin as emulsifier (Fasolo et al., 

2009). Egg lecithin is not approved by FDA for medicinal use because of safety concerns, and 

therefore, biocompatible, FDA-approved, or generally recognised as safe (GRAS) surfactants should 

be considered to enhance the translation of NE formulations to the clinic. 

Skin layers can be targeted through various drug delivery approaches. For example, the treatment of 

psoriasis requires drug delivery to keratinocytes (epidermis) and deeper layers involving 

angiogenesis. Formulations for the treatment of psoriasis showed higher bioavailability of paclitaxel 

at the respective skin layers with minimal leakage to the blood stream when they loaded paclitaxel 

into NE formulation (Khandavilli and Panchagnula, 2007). The surfactant, labrasol (Hu et al., 2001), 

known as skin penetration enhancer, was used to improve drug permeation to the required site of 

action (Khandavilli and Panchagnula, 2007). NE formulations have been developed for poorly soluble 

compounds with a range of therapeutic effects including anti-proliferative (Pham et al., 2016), anti-

microbial (Savi et al., 2005, Kelmann et al., 2016), and antioxidation (Kuo et al., 2008).  

Skin drug delivery also offers great opportunities for water-insoluble drugs that show low availability 

when taken via other routes of administration. To avoid systemic delivery and its side effects for 

breast cancer therapy, local or intraductal drug delivery to mammary tissues using topical application 

of cationic NEs loaded with C6 ceramide was recently reported. This study showed that NEs can 

prolong the drug localisation within the mammary tissues compared to IV delivery of the API in 

solution (Migotto et al., 2018). Also, it provides convenient non-invasive systemic drug delivery via 

systemic escape. Allowing systematic escape of encapsulated drugs through dermal layers without 

accumulation in these layers is known as transdermal delivery. NE properties can be harnessed to 

disrupt the stratum corneum (barrier), increase thermodynamic activity against skin or flux using 

penetration enhancers as alternative promising approaches to systemic delivery of hydrophobic drugs 

(Aqil et al., 2016). For example, the transdermal delivery of indomethacin, an anti-inflammatory drug, 

using NE facilitated skin permeation via surfactants and co-surfactants that penetration enhancing 

capabilities (Williams and Barry, 2004). This suggests that the transdermal route can be an alternative 

non-invasive IV route. Here we suggest the use of biocompatible surfactants to ease the formulation 

and fabrication of NEs for topical delivery, and also to facilitate the approval of NEs candidates for 

patient use. Understanding of drug absorption mechanisms through the skin layers in accordance with 

the composition, formulation, fabrication and the biophysical properties of NEs is crucial to accelerate 

the progress in topical therapy. 
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Ocular drug delivery via the cornea is a type of topical applications of NEs, for which there are 

particular formulation considerations. These include the refractive index, transparency and viscosity. 

To control these elements, the type and concentration of the dispersed phase (oil) should be chosen 

carefully. O/W cationic NEs carrying antisense oligonucleotides have been developed to prevent 

neovascularisation and treat retinopathy (Hagigit et al., 2012). The benefit of using NE in this context 

was to prevent degradation of the antisense oligonucleotides and improve their ability to cross the 

cellular membranes. The delivered oligonucleotides targeted the tyrosine kinase vascular endothelial 

growth factor receptor-2, which is responsible for angiogenesis (Hagigit et al., 2012). In addition, 

NEs have also been used to improve the delivery efficiency of other APIs for ophthalmic diseases 

including lutein (Lim et al., 2016) and loteprednol etabonate (Patel et al., 2016).  
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Table 2.1. Examples of NEs in clinical trials for skin applications (Singh et al., 2017). 

* Active pharmaceutical ingredient 

  

Disease 

(application) 

Encapsulated 

API* 

Clinical trial 

stage 
Formulation Sponsor 

Clinical trials, 

gov identifier 

Osteoarthritis Diclofenac 
II 

(completed) 

3%-Diclofenac-

NE Cream 
Pharmos NCT00484120 

Women 

(menopause) 

libido 

Testosterone 
II (not 

complete) 

Testosterone 

NE 

(Biolipid/B2) 

University Potiguar NCT02445716 

Multiple 

actinic 

keratosis 

Aminolevulinic 

acid 

VI 

(completed) 

BF-200 ALA 

cream 

Joint Authority for 

Päijät-Häme Social and 

Health Care 

NCT01966120 

Lentigo 

maligna 

5-

aminolevulinic 

acid 

VI (not 

complete) 

NE as light 

sensitising 

cream 

Joint Authority for 

Päijät-Häme Social and 

Health Care 

NCT02685592 

Basal cell 

carcinoma 

Aminolevulinic 

Acid 

II (not 

complete) 

BF-200 ALA 

NE 

Joint Authority for 

Päijät-Häme Social and 

Health Care 

NCT02367547 
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2.5.2 Ingestible nanoemulsions  

The oral route is considered a viable and promising option for the delivery of hydrophobic drugs 

(Strickley, 2004). This is because orally-administered drugs can be conveniently self-administered 

and do not require intervention by healthcare professionals (Sastry et al., 2000). In contrast, the drug 

administration via the oral route faces many obstacles, including the pH changes and the presence of 

digestive enzymes within the gastrointestinal route that can degrade ingested drugs. Other contents 

of the gastrointestinal tract such as fat and proteins released from food can also interact with orally-

administered drugs (Kong and Singh, 2008). Therefore, protecting the ingested drugs from 

endogenous factors as well as minimising their side effects are primary concerns for orally 

administered therapeutics.  

In addition to improving solubility, NE formulations can also increase absorption and efficacy of 

orally-administered drugs by prolonging residence in the gastrointestinal tract (Rubinstein et al., 

1991) and initiation of the intestinal lymphatic transport pathway (Kotta et al., 2012). The intestinal 

lymphatic pathway can be stimulated via increasing the association of lipophilic drugs to 

chylomicrons (Subramanian and Ghosal, 2004, Dahan and Hoffman, 2005), resulting in avoidance of 

the first-path metabolism by the liver. Furthermore, NE formulation can also improve reproducibility 

of systemic drug delivery via the oral route (Tirnaksiz et al., 2010). NEs are proven to protect 

hydrophobic compounds when encapsulated in the oil phase from hydrolysis and degradation (Khani 

et al., 2016, Sun et al., 2012). In contrast, utilising the high surface area of NEs, in comparison to 

coarse emulsions and suspensions, can enhance drug absorption by increasing lipid digestion and 

drug release (Nicolaos et al., 2003). 

Improving the efficacy of administered drugs is one of the major aims of drug delivery. An example 

of that was shown in an in vivo study of orally-administered curcumin-loaded NEs that showed an 

improved anti-inflammatory effect of curcumin when compared to curcumin in a surfactant solution 

(Young et al., 2014, Wang et al., 2008). Another example is the Primaquine-loaded NEs, which 

showed better antimalarial activity when administered orally using 25% lower dose when compared 

to free primaquine (Singh and Vingkar, 2008). Orally-administered NEs have been intensively 

investigated as well for systemic delivery via the oral route in various medical applications (Tiwari 

et al., 2006, Tang et al., 2012, Borhade et al., 2012). However, as discussed, there are many 

considerations to improve drug delivery via the digestive system that need to be overcome for clinical 

success via this route.  
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2.5.3 Aerosolised nanoemulsions  

Aerosolised therapeutics and diagnostics using colloidal nanocarriers for respiratory diseases are a 

promising alternative for non-invasive drug delivery (Courrier et al., 2002, Azarmi et al., 2008). The 

pulmonary delivery route provides a large surface area for drug absorption, low enzymatic activity, 

thin epithelial barrier, accessible vasculature and avoidance of the first-path metabolism (Azarmi et 

al., 2008, Patton and Byron, 2007, Gaspar et al., 2008). During last 20 years, many nanocarriers have 

been developed for different respiratory diseases including liposomes, solid NPs and emulsions, and 

some have obtained clinical approval to reach the pharmaceutical market. Showing the potential of 

lipid-based NPs to act as surfactants in the lung, the liposomal formulation, Alveofact®, was approved 

in 1980 as a synthetic lung surfactant. It is mainly used to prevent or treat respiratory distress 

syndrome in premature babies who were born with immature lungs (Beija et al., 2012). 

The type and characteristics of a pulmonary drug delivery device are important elements for the 

delivery and, therefore, NE formulations for this route of administration. Examples of these are active 

breath inhalers (dry powder inhalers) (Islam and Gladki, 2008) or passive breath nebulisers 

(Groneberg et al., 2003). Active breath inhalers depend on patient inspiratory force (Virchow, 2004) 

and the internal turbulence of the device (Kruger et al., 2014). Nebulisers are based on the breakdown 

mechanism of any pre-filled formulation such as the air-blast atomisation (Martin and Finlay, 2015). 

All these devices are selected for compatibility with particle drug formulations based on a number of 

factors including their pore size. The optimal pore size is defined by the biophysical characteristics, 

particle/droplet size, of any given formulation (Groneberg et al., 2003). 

There are relatively few published studies demonstrating NEs for drug delivery via the pulmonary 

route (Table 2.2). Because NEs act as solutions with a large fine particle fraction (FPF), they show 

high aerosolisation performance after nebulisation when compared to suspensions (Amani et al., 

2010). For example, the emulsification of budesonide NE showed a significant improvement in the 

aerosolisation capacity when compared with the commercially available suspension-based 

budesonide, PulmecortRespules® (Amani et al., 2010).   

Amphotericin B (AmB) is an antifungal antibiotic applied for both local and systemic fungal 

infections such as Aspergillosis, a life-threatening infection (Tomee and van der Werf, 2001, Soubani 

and Chandrasekar, 2002) caused by the inhalation of Aspergillus conidia. However, AmB possesses 

poor aqueous solubility which limits its therapeutic window (Brajtburg et al., 1990). Two AmB NE 

formulations, intralipid® and clinoleic®, are commercially available products for the treatment of 

aspergillosis. Both intralipid® and clinoleic® have high encapsulation efficiencies, however, the 

clinoleic® formulation was shown to have higher drug deposition (over 80%) when compared to 
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Intralipid (57%). This is due to the fact that clinoleic® NEs have higher FPF than the Intralipid® NEs 

(Nasr et al., 2012). 

Ibuprofen O/W NE mists have also been synthesised as an inhalable formulation for asthma and other 

inflammatory diseases (Nesamony et al., 2014). NEs were also prepared as a carrier for 

oligonucleotides through electrostatic interactions. These carriers were used to protect against 

Mycobacterium tuberculosis (pulmonary immunisation). The pulmonary immunisation was achieved 

via the delivery of DNA to the lungs using cationic submicron emulsions (Bivas-Benita et al., 2004). 

Cyclosporine A (CsA)-loaded NEs were also prepared as dry formulation (lipid-based powder) using 

the spray-drying technique. These emulsions can be rehydrated to form the original O/W emulsion 

formulation (Onoue et al., 2012). CsA plays a role as an anti-inflammatory (asthma and other 

respiratory inflammations), anti-fungal and anti-parasitic drug. It is not commonly used in clinics 

because of its poor solubility and limited oral bioavailability (Beauchesne et al., 2007). However, 

CsA dry emulsions combined with a lactose carrier and obtained a remarkable 4,500-fold 

improvement in the dissolution behaviour of CsA resulting in a dispersion suitable for inhalation 

therapy (Onoue et al., 2012). 

Drug delivery via the intranasal route is also considered desirable because it is painless and non-

invasive, and can be used to administer drugs either locally (paranasal sinuses) or systemically. This 

route provides an opportunity for NE formulations that have excellent aerosolisation capacity. The 

nasal route is mainly utilised for the local treatment of nasal aliments and paranasal sinuses, including 

the sinusitis, nasal congestion and infections (Pardeshi and Belgamwar, 2013). However, to date, 

there are no approved NEs for local delivery of drugs such as corticosteroids or antihistamines to treat 

these indications. There are some examples of intranasal NE for local delivery including vaccination 

by the delivery of an influenza vaccine to mucosal immune cells (Das et al., 2012), and small molecule 

delivery for psychological and neurological disorders (Boche and Pokharkar, 2017, Kumar and Jain, 

2017, Mahajan et al., 2014, Pandey et al., 2015). 
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Table 2.2. Examples of the diversity of APIs delivered by aerosolised NEs. 

  

Encapsulated API Encapsulated API Finding Reference 

Fungal infections Amphotericin B 

Nebulisation 

(Higher drug efficacy 

than chitosan-coated 

AmB liposomes 

(Nasr et al., 

2012) 

Inflammatory diseases and asthma 

Budesonide 

Nebulisation 

(better aerosol 

outputs and FPF 

values compared to 

suspensions 

(Amani et al., 

2010) 

Ibuprofen 

Nebulisation 

(biocompatible and 

sterile Ibuprofen 

pulmonary delivery.  

(Nesamony et 

al., 2014) 

Transplantation Cyclosporine A 

Dry-powdered 

inhaler (lower 

systemic exposure 

compared to drug 

only) 

(Onoue et al., 

2012) 

Gene delivery DNA 

Nebulisation (Not 

toxic to cells and 

protect DNA) 

(Bivas-Benita et 

al., 2004) 
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On the other hand, there are a number of formulations developed for systemic delivery via the nose. 

For example, aerosolised NE formulations have been developed for the treatment of migraine 

(Zolmitriptan) (Abdou et al., 2017) and immunisation (inactivated respiratory syncytial virus) 

(O'Konek et al., 2015). 

Nasal systemic delivery offers many advantages including rapid absorption and the avoidance of the 

first-path metabolism. NEs can improve the delivery of hydrophobic drugs via the nasal mucosa, 

improving their bioavailability when compared with drug solutions or suspensions. Nasally-

administered drugs have shown an improved systemic bioavailability (Comfort et al., 2015). For 

example, nitrendipine, a highly lipophilic calcium channel blocker used for hypertension treatment, 

bioavailability was improved in a NE formulation and delivered through the nasal cavity (Jain and 

Patravale, 2009). Avoiding the blood brain barrier and the first-path metabolism through the nasal 

route is another alternative strategy for the treatment of central nervous system disorders (Kumar et 

al., 2008), to minimise invasiveness, bioavailability issues and undesired side effects. Therefore, NE 

use in the systemic delivery of hydrophobic drugs through the nasal route can be a promising way of 

overcoming some of the hurdles of IV injections. 

2.5.4 Injectable nanoemulsions   

2.5.4.1 Nutrition therapy 

By the 17th century, the first trial of IV administration of olive oil to a dog at 1 g olive oil/kg as a 

nutritional supply was conducted by William Courten and resulted in embolism and death because 

injecting a pure oil into the circulation is fatal. In 1962, the first safe lipid-based IV nutritional NE, 

Intralipid®, was approved in Europe (Hippalgaonkar et al., 2010). Intralipid® is still marketed and 

used for calories, and essential fatty acids supply for nutrition-deficient and ill patients. It is composed 

of made up of 20% soybean oil, 1.2% egg yolk phospholipids, 2.25% glycerine, and water for 

Injection. Even though Intralipid® was approved and marketed for clinical use, hypersensitivity has 

been observed in a small number of patients, who are allergic to egg yolk, egg whites and soybean 

protein (Rotenberg et al., 1991).  

NEs have since been investigated for use in various parenteral applications. Cancer diagnosis and 

therapy are major targets for the use of drug delivery systems in general and the improved parenteral 

administration of lipophilic materials. 
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2.5.4.2 Cancer therapy 

The tumour microenvironment contains a diversity of biochemical conditions and cell types. Tumour 

progression into malignancy is promoted by the components of its particular microenvironment. 

There are critical differences between the growth of tumours and normal tissues, depending on 

various parameters, such as vascular abnormalities and angiogenesis, oxygenation and perfusion, 

which can potentially be harnessed for the development of drug delivery systems (Jaiswal et al., 

2014). Drug delivery to tumours can be either through passive or active targeting (Figure 2.5) which 

will be discussed in the coming sections. 

2.5.4.2.1 Passive targeting 

Targeting cancer cells can be achieved by passive targeting via the enhanced permeability and 

retention (EPR) effect, where the size of the delivery system is crucial (Kumar Bishwajit and Md. 

Lutful, 2014). Conditions with EPR effect occur due to unrestricted angiogenesis that leads to the 

development of poor tumour vasculature, deficiency of pericytes and abnormal basement membranes, 

thus increasing vascular permeability (Maeda et al., 2000) (Figure 2.5). Drug delivery systems should 

be between 10 and 100 nm to achieve optimum levels of the accumulation of the therapeutic agent at 

the tumour mass (Danhier et al., 2010).  

Particles sizes less than 10 nm can be cleared by the reticuloendothelial system (RES), whereas 

particles larger than 100 nm can be engulfed by immune cells (Caron et al., 2013). Engineering of 

colloidal carriers with neutral or negative charges can help to evade the immune system (Ganta et al., 

2014b). Coating NEs with hydrophilic polymers, such as PEG (Ikeda and Nagasaki, 2012, Harris and 

Chess, 2003) and poloxamines, modifies their surface properties (charge and size), extends their 

serum half-life and can improve their therapeutic efficacy (Allen and Martin, 2004). Thus, the size, 

surface charge and hydrophilicity of NEs are important parameters that can be modified to tune the 

effectiveness of drug delivery to cancer cells by passive targeting (Ganta et al., 2014b). 

There are a number of reports of NEs for passively targeting cancer (Ragelle et al., 2012, 

Venkateshwarlu et al., 2010, Desai et al., 2008). Ganta et al. studied the delivery of chlorambucil 

using NEs for adenocarcinoma where the effect of PEGylation on circulation was investigated. The 

PEGylated NEs in this study showed longer circulation and higher accumulation of the drug in the 

colon-38 adenocarcinoma tumours (Ganta et al., 2010). TOCOSOL™ is an example of the use of 

NEs to achieve better accumulation and efficacy of a chemotherapeutic at the tumour site that reached 

the clinic. 
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The tumour suppression of colon adenocarcinoma was higher using this NE formulation, however, 

this formulation was discontinued because it did not meet phase 3 efficacy targets (Insight, 2017). 

Controlling the interface of the NE systems is crucial to obtain the optimum stability against the 

surrounding biological environment and determine biodistribution. Ideally, PEG density, and other 

surface biophysical properties can be precisely tuned. 

2.5.4.2.2 Active targeting  

Active targeting of NEs can be achieved by surface modification with targeting ligands, such as 

antibodies (Ansell et al., 2000), aptamers (Wu et al., 2015, Aaldering et al., 2015) and small molecules 

(Kue et al., 2016) specific to cell surface receptors in cancer tissues. Distinct from passive targeting, 

therapeutics can theoretically be delivered to their target with high specificity, thereby minimising 

interaction with healthy tissues. 

Moreover, internalisation and endocytosis can be facilitated by active targeting in cases where 

endocytic receptors are targeted, delivering payloads intracellularly where their cytotoxic effects are 

executed. For optimum selectivity of the tumour-related receptors, it is crucial to select receptors that 

are overexpressed in cancer cell lines but not in normal tissue. For example, folate, transferrin and 

the epidermal growth factor receptor (EGFR) are overexpressed in several types of cancers, such as 

ovarian and breast cancers (Milane et al., 2010). Targeting moieties that can be conjugated to NEs to 

target a specific antigenic site include vitamins, aptamers, sugars, peptides, antibodies and synthetic 

polymers, (Zeng et al., 2013, Tayeb et al., 2017, Talekar et al., 2012, Mulik et al., 2010). Monoclonal 

antibodies and their derived fragments are commonly used for active tumour targeting due to their 

exquisite specificity, high affinity and, in the case of Fab fragments and scFv antibodies, their small 

size (Ahmad et al., 2012). 

Many studies of NEs have been published on the active targeting of cancer to deliver a broad range 

of water-insoluble drugs, including the exploration of this concept as a way of overcoming multidrug 

resistance (Meng et al., 2016). For example, NEs loaded with aclacinomycin A and externally 

functionalised with folate for targeting human nasopharyngeal tumour cells showed better efficacy 

of the loaded drug compared to an untargeted formulation (Ohguchi et al., 2008).   
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Figure 2.5. Targeting strategies of drug delivery systems. 
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2.5.5 Other parenteral applications of nanoemulsions 

NE can be applied to overcome challenges of a particular route or delivery through alternative routes. 

Parenteral delivery of NEs has been developed to treat health problems including sepsis (curcumin) 

(Shukla et al., 2014), hypertension (Clevidipine, Cleviprex®) (Cleviprex, 2018) and erectile 

dysfunction (Alprostadil, Liple®) (Ganta et al., 2014b, Hörmann and Zimmer, 2016) to protect API 

from degradation, and minimise their side effects. IV-administered NEs have also been applied and 

improved the bioavailability of an anti-convulsing (anti-epileptic) agent, Carbamazepine (CBZ), 

when compared to oral administration (Kelmann et al., 2007). In addition, NEs have been utilised to 

facilitate the IV administration of drugs for patients having upper gastrointestinal tract complications 

(such as ulcers) and difficulties in taking oral therapies (Araújo et al., 2011).  

2.5.6 Nanoemulsions in biomedical imaging 

Non-invasive diagnostic imaging is one of the important future applications of nanomedicine.  In 

2002, the word “theranostic” first appeared in the literature by Funkhouser, and it is defined as the 

integration of diagnostics and therapeutics in a particular delivery system (Chen and Wong, 2014). 

Before the initiation of any treatment plan for complex pathologies such as cancer or cardiovascular 

disease, it is beneficial to conduct diagnostic imaging to reveal the location, cellular phenotype and 

the heterogeneity of the affected tissue (McCarthy, 2009, Sumer and Gao, 2008, Warenius, 2009). 

Thus, rather than the development of two individual systems for each process, theranostics can offer 

both diagnostic and therapeutic tools in one package that have the potential to overcome the 

biodistribution and selectivity issues of traditional imaging modalities and cancer therapies. NEs have 

the potential to be harnessed for localising imaging and drug delivery to the site of action that will 

eliminate the unwanted side effects of some hydrophobic drugs. 

 

In MRI imaging, perfluorocarbons (PFCs) are considered highly promising intracellular MRI tracers, 

however, they are highly hydrophobic (Krafft and Riess, 2007). NEs developed to improve the 

delivery of PFCs to allow for monitoring and imaging of specific cell types or pathologies of diseases 

such as cancer and atherosclerosis (Balducci et al., 2013, Kislukhin et al., 2016, Lanza et al., 2010). 

They have also been developed as targeted imaging tools using metallic MRI contrast agents. For 

example, ScFv-functionalised NEs loaded with iron oxide particles have been used to image 

atherosclerosis (Prévot et al., 2017). Theranostic NEs with folate-targeting have been developed to 

deliver docetaxel to ovarian cancer cells (Ganta et al., 2015). The surface of these NEs was 

functionalised with gadolinium as an imaging agent, and their diagnostic efficiencies were compared 

favourably to a clinically-relevant MRI contrast agent, Magnevist® (Ganta et al., 2015), This showed 
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that the NEs formulation was less toxic than cisplatin in the treatment of ovarian cancer model in 

mice. 

 

NEs have also been used as platforms for fluorescence-based imaging. Vascular inflammation was 

targeted, treated and visualised using a P-selectin-targeted NE loaded with dexamethasone to treat 

inflammation, and rhodamine as a molecular imaging agent (Simion et al., 2016). This approach has 

also been used for the simultaneous monitoring and treatment of inflammation by celecoxib delivery 

(Patel et al., 2015), and for cancer theragnosis by paclitaxel delivery (Yang et al., 2014). Furthermore, 

careful NE design has allowed the combination of imaging modalities within a single particle, for 

example, integrin-targeted paramagnetic and fluorescent NEs designed to target human umbilical 

vein endothelial cells (HUVEC) cells (Hak et al., 2012). 

2.5.7 Emulsions for vaccine applications 

Historically, emulsions have been used as effective adjuvants for vaccine formulations in both human 

and animals (Table 2.3). Paraffin W/O emulsions including inactivated mycobacterial cells is known 

as Freund’s complete adjuvant (FCA) and a non-bacterial form of these emulsions, Freund’s adjuvant 

(FIA), have been used as immunopotentiators in animals (Hilleman, 1966) and human vaccines (Salk 

et al., 1951, Edelman, 1980). However, the w/o formulation is generally reactogenic due to the 

presence of high content of oil (Allison and Byars, 1986). W/O emulsions have also been applied as 

adjuvants for human immunodeficiency virus and malaria, but they also showed undesired local 

reactions (Aucouturier et al., 2002).  In the 1980s, Syntax Adjuvant Formulation (SAF), was used as 

the first squalane O/W emulsion with an antigen (Allison, 1999). As a less toxic replacement for 

mineral oils, SAF is also able to induce a robust cell-mediated response (Lidgate and Byars, 1995), 

however, SAF is associated with muramyl dipeptide (MPL) analogue and discontinued because it had 

evoked reactogenicity (Allison, 1999) as well as muscular irritation (Lidgate and Byars, 1995). 

Squalene/squalane emulsions are considered non-toxic adjuvants of growing interest (Allison, 1999). 

One of the most widely used squalane emulsion adjuvants is the MF59®, which shows higher potency 

in triggering the cell-mediate immune response when it is compared to aluminum-based adjuvants. 

MF59 was first licensed as Fluad® in 1997 and is currently approved in US, Canada and various 

European countries for human use. It is an O/W emulsion that is prepared with 5% v/v squalene in 

citrate buffer (Ott et al., 1995, O’Hagan and Podda, 2008). MF59 is considered safe and contributes 

to a potent trivalent (2 subtype A and one B) vaccine against influenza mainly for over 65 years-old 

patients (O’Hagan and Podda, 2008).  
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Squalene emulsions and those of its hydrogenated form, squalane, have also been developed as 

immunotherapeutic and immunostimulant adjuvant. The DETOX® formulation is composed of a 

bacterial cell wall and monophosphoryl lipid A (MPL) dissolved in squalane and Tween 8 (Baldridge 

and Ward, 1997). It showed potent adjuvanting activity against melanoma cell lines as a cancer 

immunotherapy, however, reactogenicity and granulomas have also been observed at the injection 

site (Ott and Van Nest, 2007). Despite that, DETOX® was licensed for the treatment of melanoma as 

Melacine®.  

Other examples of squalene-based emulsions as adjuvants include the Ribi adjuvant system (RAS) 

(Table 2.4) (Gomez et al., 1998) and the so-called stable emulsion (SE) (Leesman, 2003). The 

addition of MPL to SE resulted in a potent vaccine adjuvant for the prevention of leishmaniasis (Reed 

et al., 2009). Other prominent examples are the SB62 and its two-fold diluted form, AS03. AS03 was 

approved as a constituent of prepandrix®, the pandemic flu vaccine (Reed et al., 2009). AS03 was 

also a component of other vaccines including the Arepanrix® for the prevention of influenza caused 

by H1N1, and H5N1 pre-pandemic vaccines. AS02 is formulated by adding immune-stimulatory 

agents such as MPL and triterpenoid saponin molecules (QS21) to AS03 (Fox, 2009) and has been 

tested as an effective adjuvant for vaccines against malaria (Cohen and Druilhe, 2002), HIV, hepatitis 

B and tuberculosis (Reed et al., 2009). However, the development of AS02 vaccines was discontinued 

due to the presence of undesirable reactogenicity at the injection site (Table 2.3) (Roestenberg et al., 

2008, Garçon and Di Pasquale, 2017). Using emulsions as adjuvant systems are of growing interest 

for various prophylactic and therapeutic vaccines. Balancing the immunogenic benefits with the 

safety profile of any formulation is a major concern in vaccine development. Selecting the right 

antigen or adjuvant and the emulsion composition directly affects the benefit-risk scale. Therefore, 

rational selection of the oil composition, the adjuvants, surfactants, particles size for a particular 

disease could provide more efficient vaccines against pandemic diseases such as influenza.  
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Table 2.3. List squalene O/W emulsions as vaccine adjuvants. 

  
Adjuvant name  Application (disease) References 

MF59® 

(Novartis) 
 Influenza 

(Ott et al., 1995, 

O’Hagan and 

Podda, 2008, 

Mosca et al., 

2008, Pellegrini 

et al., 2009)  

AS03 

(GSK) 
 

H5N1 (pre-pandemic) and H1N1 (pandemic) 

influenza 

(Fox, 2009, 

Garçon et al., 

2012, Schwarz et 

al., 2009) 

AS02 

(GSK) 
 Malaria, HIV and tuberculosis (discontinued) 

(Roestenberg et 

al., 2008, Garçon 

and Di Pasquale, 

2017) 

MPL® SE ( Monophosphoryl lipid A-Stable 

emulsion) 

(Infectious Disease Research Institute, IDRI) 

 Leishmaniasis 
 (Leesman, 2003, 

Fox et al., 2008) 

AF03 

(Sanofi) 
 Pandemic H1N1 influenza 

 (Klucker et al., 

2012) 

DETOX® (MPL in squalane)  

(Corixa corporation) 
 Melanoma (Melacine®) 

(Sosman and 

Sondak, 2003) 
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Table 2.4. Examples of squalene O/W emulsion under investigation 

Adjuvant name Application (disease) References 

Thermo-reversible O/W emulsions (E6020 in 

AF03) 
Immunostimulants 

(Klucker et al., 

2007, Haensler et 

al., 2015) 

RAS 

(Synthetic trehalose dicorynomycolate, 

bacterial cell wall skeleton, and MPL) 

Immunostimulants (Sigma-Aldrich) for 

research 

(Gomez et al., 1998, 

Sjolander et al., 

1996) 

ESA 

Abil®-Care (polysiloxan polymer 

dimethicone copolyol) 

Veterinary vaccine 

(Suli et al., 2004, 

Benı́šek et al., 

2004) 

Baldridge (Monophosphoryl lipid A) Immunostimulants 
(Baldridge and 

Crane, 1999) 

Hjorth1 and Hjorth2 Veterinary vaccine (Allison, 1999) 
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2.6 The future of nanoemulsions in nanomedicine through top-down assembly  

Nanosized formulations can be fabricated using bottom-up, top-down or both approaches 

(McClements, 2015). Bottom-up assembly is characteristic of most approaches to add functionality 

to NE interfaces, where functional moieties are covalently linked to one or more emulsifiers. 

However, this restricts the tuneability of NE interfaces due to the need to maintain compatibility with 

stable emulsification (Sainsbury et al., 2014). In contrast, top-down approaches to modifying NEs 

has traditionally relied on the rather unspecific adsorption of functional layers by electrostatic 

deposition. While this approach separates functionality from the need to impart stability during 

emulsification, it does not result in controlled deposition or the rational presentation of functional 

groups (Sainsbury et al., 2014). Recently, a novel peptide-stabilised NE system has been developed 

that decouples emulsification from controlled surface modification. Characterised by the spontaneous 

and step-wise addition of functional moieties linked to a designer protein biosurfactant (Zeng et al., 

2013), this platform allows the rational generation of sophisticated interfaces (Tayeb et al., 2017). 

Such interfaces will provide valuable insight into the interaction of NEs with their environment, and 

will aid in the functional design of NEs tailored to specific applications and routes of administration. 

2.7 Conclusion and future directions 

The continued progress in NE development shows great promise in nanomedicine and is expected to 

attract greater attention as a versatile platform for drug delivery, molecular imaging and vaccine 

formulation. Oral delivery was the inspiration for the development of therapeutic emulsions, however, 

they were first clinically applied as injectable formulations. NE have enjoyed most success as vehicles 

for delivery of APIs to various epithelial or mucosal surfaces. With the use of clinically approved 

ingredients and the success of injectable formulations such as vaccine adjuvants, the potential of NEs 

to improve solubility, bioavailability and pharmacokinetics of hydrophobic compounds they have a 

bright future in IV applications. In addition, NE formulations can improve the therapeutic efficacy of 

APIs via alternative routes of administration in many situations, as highlighted in this review. 

Amenable to the incorporation of multiple functionalities, either loaded in the oil core or presented 

on the surface, they have also demonstrated great potential in molecular imaging and theranostics. 

The further development of NE technologies will require a deep understanding of the relationship 

between NE formulation science and the various physical, chemical and physiological challenges 

associated with various pathologies and routes of administration. To facilitate the translation of 

candidate NEs from research laboratories to the pharmaceutical market, numerous considerations 

must be met. These include careful selection of components, including the oil phase and emulsifiers 

with regards to safety concerns including hypersensitivity (Galho et al., 2016, Khandavilli and 
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Panchagnula, 2007). Therefore, formulating NEs with biocompatible surfactants and FDA-approved 

excipients is a pre-requisite for any future pharmaceutical application. In addition, formulation 

challenges including ease of synthesis at large scale, storage and stability must be addressed with the 

application in mind. The continued research on approaches to create ever more sophisticated NEs 

with controlled interfacial structure will lead to increasing opportunity for clinical translation of NEs 

for a wide range of indications. 
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3 Chapter 3: Exploring the Use of Nanocarrier Emulsions in Drug Delivery 

3.1 Introduction 

Nanoscience in medical research focuses on the potential role of drug nanocarriers to improve the 

therapeutic outcomes of hydrophobic drugs. The application of nanotechnology that involves 

multidisciplinary sciences including physics, chemistry and biology in medicine is known as 

nanomedicine (Webster, 2006). According to the European Science Foundation, nanomedicine aims 

at “ensuring the comprehensive monitoring, control, construction, repair, defence and improvement 

of all human biological systems, working from the molecular level using engineered devices and 

nanostructures, ultimately to achieve medical benefit.”(Anderson, 2005).   

Nanocarriers, such as liposomes, have evolved as successful vehicles for solubilising hydrophobic 

drugs whilst also prolonging their circulation time and accumulation at target sites due to the EPR 

effect (Torchilin, 2005, Northfelt et al., 1998, Safra et al., 2000). Doxil® was the first successful 

liposomal formulation approved by FDA for the treatment of Kaposi’s sarcoma (Barenholz, 2012a). 

Nanocarriers have also been applied to a broad range of diseases including fungal infections, multiple 

sclerosis and late-stage renal conditions (Zhang et al., 2008). Most of these applications have led to 

improvements in patient safety and have possibly contributed to lower morbidity rates (Gradishar et 

al., 2005), however these improvements are still considered minor when compared to the benefits of 

traditional formulations (O'Brien et al., 2004).  

Nanocarriers face many biological barriers including opsonisation, phagocytosis (Gustafson et al., 

2015) and off-target delivery (Wilhelm et al., 2016) that limits optimum bioavailability and 

functionality. The complexity of these barriers varies with different routes of administration (IV, oral, 

skin, etc.), disease type (cancer, infections) and condition (stage of disease) (Blanco et al., 2015). 

Nanocarriers designed with targeting (Wang and Thanou, 2010, Lammers et al., 2016), stimuli-

responsive (Lopes et al., 2013) or controlled release functionalities (Mura et al., 2013) fail to 

overcome most of these barriers resulting in minimal therapeutic impact. The clinical translation of 

nanocarriers could be improved by addressing and overcoming these biological barriers through the 

rational and informed design of a particular drug delivery system (Blanco et al., 2015).  

Nanocarriers offer a variety of possible advantages when compared to free drugs such as drug 

protection, enhanced drug solubility and cellular targeting (De Jong and Borm, 2008). However, 

ensuring biocompatibility in their design is probably going to be the key to transforming nanocarriers 

into nanomedicine platforms (Farokhzad and Langer, 2009). Well-defined characteristics, simple 
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surface functionalisation, specific cellular uptake, aqueous solubility and colloidal stability are other 

important considerations in the design of effective nanocarriers. Developing sophisticated nanocarrier 

design is challenging and may not be compatible with a specific route of administration and disease. 

This design challenge may be addressed through the development of nanocarrier screening techniques 

for specific applications or by exploring different routes of administration (Peer et al., 2007).  

The aim of this chapter is to explore TNEs as a carrier of lipophilic compounds via topical (skin) and 

IV routes to elucidate the possible biological challenges that might be faced during topical and IV 

administration. A lipophilic fluorescent dye, DiI (Li et al., 2008) was used as a model drug to evaluate 

the properties of TNEs including the capacity of cargo retention and physical and colloidal stability. 

Encapsulation of DiI within the oil core (miglyol 812), which is a material generally recognised as 

safe (GRAS) by FDA, was investigated after varying the density of PEGylated DAMP4 integrated 

on the interface of AM1-stabilised TNEs. DAMP4 (Middelberg and Dimitrijev-Dwyer, 2011), was 

chemically-conjugated to PEG and integrated onto the TNE interface to impart colloidal and 

functional stability.  

TNEs were assembled in a bottom-up fashion via the top-down sequential addition of reagents. The 

bottom-up approach starts with the individual components leading to the formulation of TNEs. These 

components include the surfactant (AM1), coordinated metal ions, and the oil and water phases. In 

contrast, the top-down modification comprises the sequential addition of functional moieties, such as 

PEG, bioconjugated to DAMP4, which promotes self-assembly at the oil-water interface.  Varying 

the PEG density onto the TNE interface using spontaneous integration of DAMP4 facilitated control 

over TNE surface properties like surface charge. This surface optimisation enabled TNEs to be 

combined with a EMPs (Raphael et al., 2013) technology via electrostatic interactions subsequently 

translating TNEs into a promising drug delivery system for topical applications. The EMPs facilitated 

physical targeting, allowed penetration through the dermal-epidermal junction and maximised the 

bioavailability of payloads into the epidermis (Raphael et al., 2014). The coating efficiency of EMPs 

with TNEs was also studied with respect to the density of the PEG layer, electrostatic interactions 

and the method of coating. To investigate the release profile in vivo, a human-safe dye, 6-

carboxyfluorescein (CFC), was loaded into the TNE oil core before being applied to human skin. 

To explore TNEs in IV applications, a DAMP4-single chain variable fragment (scFv) fusion protein 

was genetically engineered and expressed in mammalian cells to impart surface targeting 

functionalities. Receptor and cell-based studies evaluated the potential use of emulsions in parenteral 

drug delivery systems encapsulating DiI as a model drug. As a pilot study to test the feasibility of in 

vivo targeting, scFv-functionalised and DiI-labelled TNEs were administered intravenously in a 
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breast cancer animal model. Rapid clearance of TNEs prompted an investigation of biodistribution 

through the analysis of urine, serum and cytokines immediately post-injection and at short time 

intervals thereafter. These studies provided important information regarding biocompatibility and 

safety, targeting and the possibility of using TNEs as an IV formulation. This information directed 

further studies towards understanding the fundamentals of the TNE interface that impact the structure-

function relationship of TNEs. These studies are discussed in chapter 4. 

3.2 Experimental section 

3.2.1 DAMP4 expression, purification and quantification 

DAMP4, a protein biosurfactant, sequence (MD(PSMKQLADSLHQLARQ VSRLEHAD)4) was 

expressed in E-coli, and purified as previously published (Middelberg and Dimitrijev-Dwyer, 2011). 

DAMP4 purified using chromatography in three steps; immobilised metal affinity chromatography 

harnessing the presence of eight histidine molecules, ion exchange chromatography taking advantage 

of the neutral charge of DAMP4 at pH 7.0 and reversed phase (RP) HPLC. These combined 

techniques were sufficient for the removal of endotoxins from the expressed protein samples. 

Endotoxin levels of DAMP4 were evaluated using the LAL-based endosafe PTS™ (www.criver.com). 

The collected RP-HPLC fractions of DAMP4 were lyophilised, quantified using analytical HPLC and 

stored at ˗ 80°C.   

3.2.2 Preparation of tailorable nanocarrier emulsions 

The custom synthesis of AM1 (Ac-MKQLADSLHQLARQVSRLEHA-CONH2) peptide, with a 

molar mass of 2473 Da and ≥ 95% purity, was performed by Genscript (www.genscript.com). 

Lyophilised AM1 was dissolved using 25 mM 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) containing 800 µM ZnCl2, to a final concentration of 400 µM. DiI, 1,1′-dioctadecyl-3,3,3′3′-

tetramethylindocarbocyanine perchlorate (www.thermofisher.com), stock was prepared by 

dissolving DiI powder in 100% ethanol at a final concentration of 10 mg/ml. This stock was diluted 

in Miglyol 812, the oil core of TNEs (AXO Industry SA, www.axoindustry.com) to a final 

concentration of 1 mg/ml. Miglyol 812, also known as caprylic/capric triglyceride, is a neutral and 

clear medium chain triglyceride excipient. Miglyol 812 is a derivative of saturated coconut oil and 

comprises 6 to 12 carbon (C) chain fatty acids (Sellers et al., 2005). Miglyol 812 is composed of 50-

65% caprylic acid (C8) and 30-45% capric acid (C10) (Cremer, March 2013). DiI-labelled Miglyol 

812 was added to the AM1 solution to a final oil composition of 2% v/v. This mixture was sonicated 

in an Eppendrof tube by the Branson Sonifier 450 Ultrasonicator (www.emersonindustrial.com) using 

four 45 s bursts. Emulsions with a polydispersity index 0.2 or below were accepted for subsequent 
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surface modification. PEGylated DAMP4 products were integrated drop-by-drop onto the AM1-

stabilised emulsions (P0) with vigorous stirring at a 1:1 volumetric ratio. To prepare TNEs with 

different DAMP4-PEG densities, a one-step of addition of different concentrations of PEGylated 

DAMP4 to P0 was performed and included 2 µM (P1), 4 µM (P2), 10 µM (P5), 20 µM (P10), 40 µM 

(P20) and 400 µM (P200).  

3.2.3 Preparation of targeted and un-targeted TNEs 

To prepare untargeted TNEs, 40 µM PEG-DAMP4 was used as an initial addition to the AM1-

stabilised emulsions to obtain the P20-TNEs. Subsequent addition of PEGylated DAMP4 (400 µM) 

to the P20-TNEs formulated the P200-P20-TNEs (untargeted). Targeted TNEs, prepared by 

sequential addition using the same technique, were made by mixing 40 µM PEG-DAMP4 with P0 

emulsions, followed by 2 µM scFv-DAMP4 fusion and 400 µM. PEG-DAMP4. Size measurements 

with associated polydispersity indices and ζ-potentials were measured using a Malvern Zetasizer 

Nano ZS (www.malvern.com). All samples were diluted to 1:100 in Milli-Q water with ζ-potential 

measurements made using an electrophoretic cell (www.malvern.com). 

3.2.4 Cargo retention within the TNE oil core 

Cargo retention within the TNEs was assessed after surface modifications were made to the TNE 

interface by integrating various concentrations of PEGylated DAMP4 to AM-TNEs. A standard curve 

was established, using two-fold serial dilutions of DiI-labelled P20-TNEs (0.25 µg/ml DiI 

concentration), to estimate the difference between the fluorescence of DiI in hydrophilic (H2O) and 

hydrophobic (miglyol 812) media. Fluorescence was measured at excitation and emission 

wavelengths 535 and 570 nm respectively using the infinite® M200 Pro plate reader 

(www.thermofisher.com). Retention of DiI was evaluated by measuring the decrease in fluorescence 

from the TNE oil core. Cargo retention was investigated in the P0, P1, P2, P5, P10, P20 and P200 

TNEs. Measurements were performed in triplicate for 13 days in water. Size of the same TNEs was 

also measured in a Malvern Zetasizer Nano ZS (www.malvern.com) using a 1:100 final dilution in 

milli-Q water. Size measurements were collected within 24 hours and at the final point of cargo 

retention at 13 days. 

3.2.5 Stability of TNEs in different storage conditions  

P0, P20, P50, P100 and P200 TNEs, prepared using the method detailed in section (3.2.2), were stored 

for one week at 4 different temperatures including 25 °C (room temperature), 4 °C (fridge), -20 °C 

(freezer) and -80 °C (freezer). The stored TNEs were diluted 1:100 in milli-Q water before dynamic 

light scattering (Malvern Zetasizer Nano ZS) was used to investigate TNE size. 



74 
 

3.2.6 Coating efficiency of EMPs by TNEs  

P20 and P200 DiI-encapsulated TNEs were prepared as described in section 1.2.1. The hydrodynamic 

radius of the TNEs was determined using dynamic light scattering (Malvern Zetasizer Nano ZS). 50 

µl of each P20 and P200 DiI-loaded TNEs was added to 25 mg powdered EMPs. Four different 

methods were used to coat EMPs with TNEs including wet coating (W), freeze-dry coating (F), 

alginate cross-linking plus freeze-dry coating (AF), and alginate cross-linking (A). Wet coating was 

conducted by adding EMPs to the TNE formulation for 4-5 hours. Freeze-dry coating was performed 

by vigorously vortexing TNEs with EMPs in an Eppendorf tube with the resulting suspension 

incubated for 24 hours at 4 °C. Excess supernatant was removed before freeze-drying was performed 

under a vacuum at -80 °C for 4-5 hours. TNEs were also added to alginate coated-EMPs, that were 

generously supplied by Miko Yamada, either with (AF) or without freeze drying (A). Average size 

of the DiI-encapsulated P20 and P200 TNEs was collected before coating the EMPs and following 

each coating method. The coating efficiency of each method was estimated by comparing the 

percentage of coated TNEs with the percentage of uncoated TNEs (supernatant) following 

resuspension of the TNEs-EMPs mixture in milli-Q water. 

3.2.7 Release profile of 6-carboxyfluorescein (CFC)-encapsulated TNEs 

The release profile of CFC-loaded P20 TNEs (25 µg/ml dye concentration) was measured in Costar® 

96-well black polystyrene plates using the Infinite® M200 Pro plate reader (www.thermofisher.com) 

following the release of CFC from the TNEs oil core through dialysis membranes. Fluorescence of 

the released CFC was measured using excitation and emissions wavelengths of 492 and 530 nm 

respectively. Samples of the dye molecules released into the hydrophilic medium were collected at 

the following time points; 0, 6, 18, 24, 48 and 72 hours. 

3.2.8 Expression and purification of DAMP4-antibody fusions 

A synthetic gene encoding a scFv, based on an immunoglobulin light chain signal peptide, was fused 

to DAMP4 via a Gly4Ser linker and codon optimised for expression in chinese hamster ovary (CHO) 

cells. The gene was transferred into the pcDNA 3.1 (+) mammalian expression plasmid 

(www.thermofisher.com) for transient expression before 2 µg DNA/mL was transfected into 3x106 

cells/ml. DNA was complexed with polyethylenimine-Pro (www.polyplus-transfection.com) in Opti-

Pro serum-free medium (www.thermofisher.com) using a DNA (µg) to PEI (µl) ratio of 1:4 for 15 

minutes prior to transfecting suspension-adapted CHO cells. The transfected cells were cultured in 

chemically defined CHO medium (CDCHO; www.thermofisher.com) at 37 °C, 7.5% CO2, 70% 

humidity with shaking at 130 rpm for 6 hours, before feeding with 7.5% CD CHO Efficient Feed A 
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(www.thermofisher.com), 7.5% CD-CHO Efficient Feed B (www.thermofisher.com) and 0.4% anti-

clumping agent (www.thermofisher.com). The viability of the cells was evaluated by trypan blue 

staining from day 7 with cell culturing stopped when viability ≤ 50%. 

After transfection, the cells were pelleted by centrifugation and the supernatant was filtered through 

a 0.22 µm membrane (www.sartorius.com). The scFv-DAMP4 was purified from the supernatant 

utilising a 5 ml Protein-L column (www.gehealthcare.com.au) and eluted from the column using 100 

mM glycine pH 3.0. Elution fractions were buffer exchanged into phosphate buffered saline (PBS) 

pH 7.4 using the HiPrep 26/10 column (www.gehealthcare.com.au). The final product was filtered 

through a 0.22 µm membrane before concentration was determined by measuring absorbance at 280 

nm. The fusion was further analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS PAGE) and size exclusion high-performance liquid chromatography (SEC-HPLC) using a TSK 

gel G3000SW column (www.tosoh.com). The respiratory syncytial virus (RSV1)-DAMP4 fusion 

was synthesised using a gene encoding RSV antibody that was fused to DAMP4. The expression and 

purification protocol of the RSV-DAMP4 fusion is similar to that used for the scFv fusion.  

3.2.9 Epidermal growth factor receptor (EGFR) binding plate assays  

Enzyme-Linked immunosorbent assays (ELISA) were performed for DAMP4-RSV1 and scFv-

DAMP4 fusion proteins. Maxisorp plate wells were coated overnight with 100 μl 1 μg/ml antigen 

(EGFR-hfc). EGFR-fc was expressed in CHO cells and purified using protein A. After coating, the 

solution was decanted and the EGFR-hfc-coated wells were blocked with 2% (w/v) non-fat dry milk 

solution in PBST (PBS, 0.05 v/v % tween 20) for 1 hour. Blocking solution was decanted and each 

DAMP4 fusion (DAMP4-RSV1 and scFv-DAMP4) was diluted in PBS and added to the wells at 20 

μg/ml for 2 hours at room temperature. Incubated wells were washed three times with 200 μl PBST 

before Anti-His-Horseradish Peroxidase (http://www.miltenyibiotec.com), diluted 1/2000, was added 

and incubated for 1 hour. Three washes with 200 μl PBST were performed before 100 μl 3,3′,5,5′-

tetramethylbenzidine liquid substrate (https://www.sigmaaldrich.com) was added and incubated for 

5-15 minutes to facilitate colour development. 100 μl 2 M sulphuric acid was added to stop the 

reaction before absorbance was measured at 450 nm using a SpectraMax-M4 plate reader. 

3.2.10 Solid state EGFR binding assay 

Targeted and untargeted TNEs were prepared using sequential addition as per section 3.2.3. Firstly, 

40 µM PEG-DAMP4 was integrated onto AM1-stabilised emulsions before 2 µM scFv-DAMP4 

fusion was added to the P20-TNEs. Lastly, 400 µM PEG-DAMP4 was applied following the addition 

of the scFv-DAMP4 fusion. Untargeted TNEs were also formulated with the same technique, 
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however the second addition was RSV-DAMP4 rather than scFv-DAMP4. The human EGFR, diluted 

in PBS to a final concentration of 5 µg/mL (www.sinobiological.com), was immobilised onto 96-well 

black polystyrene plates (www.corning.com) at room temperature for 4 hours. The immobilised 

EGFR was blocked using 2% (w/v) non-fat dry milk powder in PBS for 1 hour. TNE formulations 

were diluted to 0.05% oil, and incubated for 30 minutes at room temperature. Two PBS washes, 

containing 0.05% Tween-20 were used to remove unbound TNEs. A final PBS wash was used before 

adding PBS to the wells and measuring fluorescence in the infinite® M200 Pro plate reader 

(www.thermofisher.com) using emission and excitation wavelengths of 535 and 570 nm, 

respectively.  

3.2.11 Flow cytometry 

Targeted and un-targeted TNEs, prepared as per section 3.2.3, were diluted to a final oil concentration 

of 0.03125%. Prepared TNEs were incubated for 1 hour at 4 °C with the MDA-MB-468 (breast cancer 

cell line, generously supplied by Dr Christopher Howard) cell suspensions (1.5 x 106 cells/ml) in PBS 

containing 10% foetal calf serum (FCS) at 1:1 ratio for binding. Three wash steps were conducted to 

remove weakly bound TNEs. Flow cytometry measurements were set to 20000 events using BD 

Accuri C6 Flow Cytometer System (BD Biosciences). Cell gating and a full analysis were performed 

using Flowing software v2.5.1. Overnight dialysed and un-dialysed, targeted and un-targeted TNEs 

were compared for binding to MDA-MB-468 cell suspensions (1.5 x 106 cells/ml) in PBS containing 

10% FCS at a 1:1 ratio. 

3.2.12 In vivo targeting and biodistribution studies  

The targeting and biodistribution studies were performed in compliance with the Australian National 

Health and Medical Research Council guidelines for the care and use of laboratory animals, and with 

the approval of the EnGeneIC Animal Ethics Committee under ethics application number: 

AIBN/400/13/ARC/NHMRC.  

For the targeting study, 7 female Balb/C athymic nude mice 6 weeks of age were obtained from the 

Laboratory of Animal Services at the University of Adelaide, South Australia. 100 µl (4 x 107 

cells/ml) of MDA-MB-468 cells in serum-free RPMI were injected in the mammary pad of 6 female 

Balb/C athymic nude mice. The mice were divided into three groups as follows: 3 mice were treated 

with targeted TNEs (200 µl, 0.25% oil); 3 mice were treated with un-targeted TNEs (200 µl, 0.25% 

oil); and one control mouse was not injected. The TNEs were injected when the tumour mass reached 

4 mm2. Molecular imaging of the mice was taken at 5 and 24 hours post-injection of TNEs using 

Carestream (www.carestream.com) and In-Vivo Xtreme (www.bruker.com).  
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For the biodistribution study, 12 female Balb/C athymic nude mice 6 weeks of age were obtained 

from the Laboratory of Animal Services at the University of Adelaide, South Australia. The mice 

were divided into two groups as follows: 10 mice were treated with un-targeted TNEs (200 µl, 1% 

oil); and two control mice were not injected. Molecular imaging of the mice was performed using 

Carestream (www.carestream.com) and In-Vivo Xtreme (www.bruker.com). 

3.2.12.1 Ex vivo biodistribution and cytokine analysis of TNEs  

Ex vivo analysis of TNEs was performed using two mice at each time point (30, 60, 90 and 120 

minutes and 24 hours). The analysis included body organs (liver, kidney, heart, gut and lung), blood 

and urine. Blood samples were collected through cardiac puncture with serum isolated via 

centrifugation. Blood and urine samples were evaluated for the presence of DiI-loaded untargeted 

TNEs using the infinite® M200 Pro plate reader (www.thermofisher.com) 

(www.lifesciences.tecan.com) at emission and excitation wavelengths of 535 and 570 nm, 

respectively.  

Cytokines were analysed by Sullivan Nicolaides Pathology using the Milliplex assay 

(www.merckmillipore.com) with kit number; MPMCYTOMAG-70K-06 (Mouse 

Cytokine/Chemokine Panel, 6-plex (IL2, IL-4, IL-6, IL-10, IFN-gamma and TNF-alpha). Cytokines 

were measured in blood samples collected from two mice at each time point (30, 60, 90 and 120 

minutes and 24 hours). The control samples were collected after 4 and 24 hours using subcutaneous 

injections of OVA albumin-TNEs (Zeng et al., 2013). 

3.2.13 DiI retention in simulated plasma fluid  

DiI-labelled TNEs (P0, P5, P10, P20 and P200), prepared as per section 3.2.3, were evaluated for dye 

retention over time in a simulated body fluid (Marques et al., 2011). The ionic concentration of the 

simulated body fluid composition was as follows: 4.2 mM HCO3
-, 5 mM K+, 148.8 mM Cl-, 142 mM 

Na+, 2.5 mM Ca+2, 1.5 mM Mg+2, 1 mM HPO4
-2, 0.5 mM SO4

-2, 50 mM tris(hydroxymethyl) 

aminomethane and 45 mM hydrochloric acid. 
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3.3 Results  

TNEs are O/W emulsions stabilised by the peptide surfactant AM1 (Malcolm et al., 2006) and 

incorporating the protein DAMP4 that is used to tune the interface and allow the addition of various 

functionalities to the system. PEGylation is one of the most common techniques used to provide 

proteins and NPs with stability (Roberts et al., 2002, Ikeda and Nagasaki, 2012). Chemical 

conjugation between DAMP4 and an NHS ester-labelled 5 kDa PEG, allowed PEG presentation onto 

the TNE interface to impart colloidal stability and allow investigations into surface properties. 

3.3.1 Surface properties and cargo retention of the tailorable nanocarrier emulsions  

Controlling the surface charge of nanomaterials is an important element of drug delivery. In this 

study, the surface charge of TNEs was controlled by the integration of different PEG densities onto 

the TNE interface. DiI-labelled AM1, P20 and P200 TNEs were utilised to determine the effect of 

different PEG densities on surface charge. AM1 (P0), P20 and P200 TNEs were formulated with 

average sizes of 173.9 ± 2.4, 175.1 ± 1.7 and 179.2 ± 4.2 nm respectively. Increasing DAMP4-PEG 

density on AM1-TNEs reduced their surface charge from 52.5 ± 1.1 to 47.3 ± 1.5 mV for P20, and 

from 52.5 ± 1.1 to 38.6 ± 1.2 mV for P200 TNEs (Figure 3.1). These results reveal an inversely 

proportional relationship between PEG surface density and the charge of TNEs. Varying PEG 

densities on the TNE interface also allowed an investigation into the in vitro release of a model-drug, 

DiI – a lipophilic carbocyanine dye.  

To investigate the capacity of TNEs to retain cargo over time (13 days), DiI was encapsulated within 

the oil core (Miglyol812) of AM1, P20 and P200 TNEs. DiI has been widely applied to label cell 

membranes (Schlessinger et al., 1977, Struck and Pagano, 1980) and is only weakly fluorescent in 

aqueous solutions. Dilution curves of DiI in miglyol and water showed that DiI in water was more 

than 250 times less fluorescent than DiI in oil (Figure 3.2A). Therefore, cargo retention was evaluated 

by dispersing the TNEs in an aqueous buffer solution to enable any decline in the fluorescence to be 

observed and indicate leakage of DiI from the TNEs over time (Figure 3.2B). The results showed that 

P20 and P200 TNEs retained about 99% of their cargo for five days. However, naked AM1 emulsions 

showed a 10% release of DiI into the medium after only one hour, and an almost 80% loss of cargo 

from the oil core into the aqueous medium after 48 hours. Thus, even the low ratio of DAMP4-PEG 

on the TNE interface (P20 TNEs) enabled cargo retention for at least 120 hours, showing a remarkable 

difference from the unmodified TNEs (Figure 3.2B).  
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Figure 3.1. Size and charge characterisation of TNEs prepared with different PEG densities. It 

demonstrates the Z-average size and ζ-potential of AM1, P20 and P200 TNEs. The results are 

shown as average of triplicates (± standard deviation).    
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Figure 3.2. Effect of PEG density on the DiI retention profile of TNEs. (A) Shows the 

difference in DiI fluorescence between the hydrophilic and hydrophobic media (for measuring 

the percentage of dye retained within the oil core). (B) Shows the percentage of DiI retained 

within the oil core of the AM1, P20 and P200 TNEs, the results are shown as an average of 

triplicates (+ standard deviation). 
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These results suggested that by investigating the effect of changing the PEG densities on TNEs, the 

minimum amount of DAMP4-PEG required to maintain the physical stability of TNEs and cargo 

retention could be determined. Therefore, the cargo retention of lower DAMP4-PEG densities (P0, 

P1, P2, P5, P10, P20 and P200 TNEs) were analysed over 13 days. Results revealed that the amount 

of cargo retained over time increased with an increase in PEG densities on the TNE interface. For 

example, the P2 TNEs showed greatly improved cargo retention when compared to the P0 TNEs. 

Moreover, the P10, P20 and P200 TNEs retained over 90% of the encapsulated cargo for 13 days 

(Figure 3.3A).  

The hydrodynamic size measurements at the first and last day of DiI-labelled TNEs have also 

reflected the effect of PEG density on stability and dye retention with the higher PEG densities 

producing more stable TNE droplets with better in vitro release profiles. For example, P0 and P1 

emulsions showed an increase in size from approximately 170 nm to over 1000 nm. The observed 

size increase (instability) may account for the relatively high dye release from these TNEs over the 

first few hours. In contrast, P20 and P200 TNEs have retained their hydrodynamic stability over time 

(Figure 3.3B). Varying PEG density also affected the stability of TNEs under different storage 

conditions. TNEs with different PEG densities were stable at room temperature and 4 °C. In contrast, 

only P200 TNEs were stable at all freezing conditions, while P100 TNE were stable only at -80 °C. 

(Figure 3.4). TNEs with lower PEG densities (P0, P5 and P50) were unstable at -20 °C and -80 °C. 

This is probably due to  the fact that storage conditions below 0 °C  result in the formation of fat 

crystals within the oil phase, which reduce the stability of O/W emulsions (van Boekel and Walstra, 

1981). These fat crystals protrude into the aqueous phase penetrating the film between adjacent oil 

droplets and causing partial coalescence (Harada and Yokomizo, 2000, Vanapalli et al., 2002, 

McClements, 2004). The slow freezing (-20 °) condition produces large fat crystals when compared 

to fast-cooling (-80 °) that results in smaller crystals formation. Consequently, the slow cooling 

process led to lower stability of TNEs at even high PEG densities (P100 TNEs). Therefore, tuning 

the integration of DAMP4-PEG density onto the TNE interface is an important factor in TNEs 

stability and their use in drug delivery, ultimately determining their structural and functional 

properties. 
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Figure 3.3. Size characterisation and DiI retention within the oil core of TNEs prepared with 

different PEG densities over time. (A) Retention of DiI over time by different TNEs 

formulations including: P0 (red), P1 (grey), P2 (orange), P5 (purple), P10 (green), P20 (blue) 

and P200 (black) shown as average of triplicates (± standard deviation). (B) Results reveal the 

size of TNEs based on their interfacial PEG density when loaded with a lipophilic tracer, DiI. 

Size was measured using dynamic light scattering and performed in aqueous solutions. The 

results are shown as an average of triplicates (± standard deviation). 
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Figure 3.4. Size of TNEs in different storage conditions. The results show the effect of storage 

conditions, including room temperature (25ºC), 4ºC, -20ºC and -80 ºC, on TNE size (measured 

using dynamic light scattering). 
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3.3.2 Exploring the surface properties of TNEs toward topical (skin) applications  

NEs are heterogeneous systems composed of dispersed and continuous phases that can be stabilised 

using emulsifiers or surface-active molecules (Mason et al., 2006). NEs are biodegradable, easily 

produced and show good safety profiles in food (Silva et al., 2012), pharmaceuticals (Singh et al., 

2017) and cosmetics (Sonneville-Aubrun et al., 2004). They have been administered through different 

routes including parenteral (Araújo et al., 2011), ocular (Hagigit et al., 2012), nasal (Hosny and 

Banjar, 2013), oral (Beauchesne et al., 2007) and topical (skin) (Kelmann et al., 2016). These delivery 

routes were discussed in greater detail in chapters 1 and 2. The use of NEs to deliver hydrophobic 

compounds via the skin shows great potential. Topical administration is non-invasive and does not 

require highly trained medical professionals (Barry, 2004). However, topical delivery can be also 

challenging considering the different biological and physical barriers of the dermal layers (Paudel et 

al., 2010).  

Controlling the surface charge of TNEs can be useful in several applications. In collaboration with 

Professor Tarl Prow’s group in the University of Queensland’s School of Medicine, we investigated 

the possibility of exploiting the tailorable surface charge of TNEs for topical drug delivery in humans. 

DiI-loaded TNEs were used to coat the negatively charged EMPs that were recently developed to 

enhance topical delivery (Raphael et al., 2013) and show remarkable penetration into the epidermis 

and dermis layers of pig skin. DiI was used as a model drug to demonstrate that TNEs could be used 

as a carrier for hydrophobic molecules on EMPs. The efficiency of the coating was investigated using 

TNEs with different surface charges achieved by varying the PEG-DAMP4 densities.  

A variety of methods were used to coat the EMPs with TNEs including freeze-dry coating, wet 

coating, alginate cross-linking and alginate cross-linking with freeze-dry coating. Particle size 

analysis was performed to detect any change to the unbound TNEs after each coating method. The 

results showed almost no TNE size change associated with the wet and freeze dried coatings, whilst 

coating methods that involved alginate, a cross-linker, showed larger hydrodynamic radii (Figure 

3.5A). This could explain why the total fluorescence of resuspended TNE-coated EMPs decreased 

after alginate cross-linking, suggesting some TNEs might be disrupted (Figure 3.5C). However, the 

alginate-coating methods using P20 TNEs had much higher percentages of coated EMPs compared 

to wet and freeze dried coatings. Interestingly, the PEG density of TNEs had a considerable impact 

on EMP coating efficiency with P20 TNEs producing less supernatant fluorescence and indicating 

more efficient coating (Figure 3.5C). The ability of EMPs to adhere better to P20 TNEs rather than 

P200 TNEs, is possibly due to a higher surface charge associated with P20 TNEs leading to stronger 

electrostatic interactions (Figure 3.5B).  
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The successful application of P20-TNEs as a drug carrier onto EMP surfaces suggests that this 

combined drug delivery system is promising for human use. To facilitate clinical translation, the 

release profile of a clinically relevant lipophilic fluorescent dye, CFC, was investigated after being 

encapsulated within the of TNEs oil core. The encapsulation efficiency of CFC was estimated at 75% 

with 48% of the dye released from the oil core of P20-TNEs after incubation in an aqueous solution 

for 24 hours (Figure 3.6). CFC-labelled P20 TNEs coated onto EMPs were applied to frozen human 

skin as well as human subjects in collaboration with Dr Miko Yamada and Professor Tarl Prow at the 

School of Medicine in TRI. The excised human skin from abdominoplasty was obtained from the 

Greenslopes hospital, Brisbane Australia, and approved by the University of Queensland Human 

Research Ethics Committee (Ethics approval number HREC_12_QPAH217). The excised human 

skin was also sourced from Massachusetts General Hospital, Boston, USA, with protocol number 

2014P001345, and approval was provided by Harvard University Human Research Ethics committee. 

The patients involved in the study were healthy with no skin health problems, and this study was 

conducted in compliance with the National Health and Medical Research Council of Australia. The 

results show that the TNE formulation was well tolerated by the skin delivery route, and that TNEs 

have improved the delivery to the epidermis skin layer when compared to hydrophobic compounds 

alone (Miko Yamada, pers comm, 21 April 2018). These results suggest that TNEs have a promising 

future in pharmaceutical applications via the skin route.               
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Figure 3.5. Coating efficiency of EMPs by TNEs. (A) Shows the hydrodynamic radius (nm) of 

unbound TNEs released from EMPs following coating (± standard deviation). (B) Illustration of the 

electrostatic interactions between TNEs and EMPs. (C) DiI fluorescence was measured from 

resuspended TNE-coated EMPs and from the supernatant following gravitational separation of 

EMPs. The coating methods used were wet coating (W), freeze-dried coating (F), alginate cross-

linking plus freeze-dried coating (AF), and alginate cross-linking (A). Low supernatant values 

relative to total values indicate efficient coating. 
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Figure 3.6. CFC release from the oil core of P20-TNEs. The increase in fluorescence of 

released CFC is presented as an average of triplicates (± standard deviation) in percentages 

(%) over 72 hours. 
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3.3.3 Tailorable nanocarrier emulsions toward intravenous applications 

The delivery of hydrophobic drugs via the IV route is a major challenge for nanocarriers. Nanocarrier 

design should incorporate strategies that minimise phagocytosis and off-targeting (Gustafson et al., 

2015). However, it is unknown to what degree these obstacles can be overcome, considering the wide 

spectrum of complexity encountered by nanocarrier design to meet the needs of each biological 

barrier in different delivery routes (Peer et al., 2007). Only a few in vivo studies involving targeted 

nanocarriers have shown improvements in the efficacy of their encapsulated drugs (Zhang et al., 2010, 

Xu et al., 2010) and provide evidence that targeted nanocarriers may become important treatment 

regimens for various diseases (Peer, 2014). 

To investigate TNEs as a diagnostic tool and drug delivery vehicle via the IV route, experiments were 

designed to explore how TNEs can actively target cancer cells. To achieve active targeting a scFv 

antibody, specific to EGFR, was fused to the N-terminus of DAMP4 (DAMP4-VECT) via a short 

linker (Figure 3.7A). An isotype antibody against RSV was similarly linked to DAMP4 as a negative 

control (DAMP4-RSV). These experiments were performed to compare the targeting specificity of 

these DAMP4-antibody fusions to EGFR (that were measured using ELISA). The ELISA results were 

as expected for the EGFR-specific DAMP4 fusion and showed high binding specificity to EGFR, 

whereas the RSV-DAMP4 fusion only showed low non-specific binding to the receptor (Figure 3.7B).  

DiI-labelled TNEs were functionalised with 1 µM DAMP4-VECT, and RSV-DAMP4 fusions 

resulting in VECT-1 and RSV-1 TNE formulations with droplet sizes 172.4 ± 0.4 and 186.4 ± 2.8 nm 

respectively (Figure 3.9A). Both formulations were compared to control TNEs (P200 TNEs) to 

investigate their binding specificity to EGFR-coated plate wells. The results demonstrate that the anti-

EGFR labelled TNEs (VECT-1) have much higher binding specificity for the EGFR receptor 

compared to the negative controls, suggesting that DAMP4-VECT is accessible and presented on the 

TNE interface (Figure 3.7.C).  

In the next step, flow cytometry was utilised to examine the functionality of VECT-1 compared to 

P200 TNEs and TNEs displaying the isotype antibody (RSV) with respect to receptor-specific 

targeting of EGFR-expressing cancer cells (MDA-MB-468). At the optimal dilution, fluorescence 

showed that while the negative TNE controls showed some DiI signal, there was a clear positive shift 

for VECT-1 TNEs. These results demonstrated that the targeted TNEs specifically bound to the 

EGFR-expressing cells and therefore had a higher median fluorescence than the controls (Figure 

3.8A).  
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Figure 3.7. Functionalisation of peptide-stabilised TNEs with DAMP4 ScFv fusions. (A) Shows 

functionalisation of the peptide-stabilised TNEs with an anti-EGFR (DAMP4-ScFv fusion, 

VECT-1) targeting ligand to actively target MDA-MB-468 breast cancer cell lines. (B) ELISA 

results of EGFR-DAMP4, RSV-DAMP4 (an isotype antibody labelled TNEs) and PBS (control) 

shown as average of triplicates (± standard deviation) (against EGFR-immobilised plate). (C) 

Binding assay of P200, EGFR-DAMP4 and RSV-DAMP4 TNEs (0.05% oil concentration) to 

EGFR-coated plate shown as average of triplicates (± standard deviation). 
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Figure 3.8. Binding of TNEs to MDA-MB-468 cells using flow cytometry. (A) An overlay 

histogram of DiI-loaded VECT-1, RSV-1 and P200 (untargeted) TNEs that were applied to 

MDA-MB-468 cells and analysed using a flow cytometry software. (B) Comparisons of 

dialysed (light colour) and undialysed (dark colour) TNE samples. DiI-loaded P200 (pink 

and light pink) (i), RSV-1 (green and light green) (ii) and VECT-1 (blue and light blue) (iii) 

TNEs were applied to MDA-MB-468 cells. 
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Dialysed and undialysed TNEs were compared to confirm that TNEs were stable during incubation 

with the cells, helping to validate the comparison between targeted and untargeted TNEs by ruling 

out the presence of free dye in their preparations. Both dialysed and undialysed TNEs showed similar 

results, suggesting no leakage occurred (Figure 3.8B).  

A pilot in vivo study was conducted to evaluate the feasibility of using TNEs in the active targeting 

of breast cancer cells via the IV route. Tail vein injection with VECT-1 TNEs (targeted) and P200 

TNEs (control), at 0.25% oil produced fluorescence in the tail and urinary tract areas, particularly in 

the bladder, five hours post-injection. The injected TNE volume was approximately 10% of mouse 

blood volume, resulting in 0.025% final blood oil concentration. As shown in Figure 3.9B, active 

targeting was not successful using injected TNEs as they were excreted in urine within 2 - 4 hours 

post-injection as evidenced by fluorescence in the legs and feet. However, the potential rapid 

clearance and biocompatibility of TNE formulations could possibly contribute to a satisfactory safety 

profile.  

TNEs with different PEG densities were then tested for stability as a carrier of hydrophobic drugs 

within simulated plasma fluids. The results shown in Figure 3.10A illustrate how the P200 TNEs 

(control) retained their cargo for at least 48 hours. Size measurements were also used to evaluate the 

stability of TNE droplets before and after incubation in the simulated body fluids. The control P200 

TNEs remained stable during the incubation period with no change to the hydrodynamic radius of the 

emulsions, however all other TNEs increased in size following the incubation (Figure 3.10B). These 

findings prompted investigations into the biodistribution of P200 TNEs over 24 hours, although due 

to the fast clearance profile of TNEs demonstrated in the pilot study, the biodistribution study also 

included short time intervals post-injection.    

To explore the biodistribution profile of TNEs across short time intervals, 12 mice were injected with 

DiI-loaded P200 TNEs (control) before organ, blood and urine samples were taken every 30 minutes 

for the first two hours. Final measurements were then taken 24 hours post-injection. The results 

showed very low fluorescence in the liver from DiI-labelled TNEs after only 2 hours post-injection, 

suggesting that the hepatic path was not the main excretion route (Figure 3.11). Fluorescence was 

also detected in the gut that was possibly caused by food-related substances. Serum fluorescence 

revealed that TNEs remained in circulation for at least 120 minutes (Figure 3.12A). Urine 

fluorescence showed that renal excretion of TNEs was detectable from 60 to 120 minutes post-

injection (Figure 3.12B). The fluorescence of DiI in the urine strongly suggested that the TNEs were 

intact as the DiI remained in the oil (based on the weak fluorescence in hydrophilic media).   
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Figure 3.9. In vivo evaluation of TNEs targeting cancer cells. (A) Size measurement of AM1, 

untargeted (control) and targeted TNEs (VEC1-1) shown as average (± standard deviation). (B) 

Mouse back images 4 hours post-injection of targeted TNEs. (C) Mouse back images 4 hours post-

injection of untargeted TNEs. 
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Figure 3.10. Evaluation of DiI retention in TNEs in simulated serum fluid. (A) Evaluation of DiI 

retention in TNEs with different PEG densities (P0, P5, P10, P20 and P200) in the simulated serum 

fluid over time. (B) Shows the size of TNEs loaded with DiI, based on their surface PEG density, 

measured before and after 48 hours incubation in the simulated body fluid (using dynamic light 

scattering). Results are expressed as an average of triplicate measurements (± standard deviation). 
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Figure 3.11. Ex-vivo analysis of TNE biodistribution. (A) Shows organs collected organs 

from the ex-vivo analysis with the liver highlighted by red circles. (B) The data (fluorescence 

of DiI-labelled TNEs) obtained from the liver in each petri-dish over different time points. 

The control mice were not injected with TNEs (n= 2). The number of mice for each time point 

was 2. The results are shown as average of duplicates (± standard deviation). 



95 
 

  

  

Figure 3.12. Biodistribution of TNEs in mouse sera and urine. (A) DiI signal in collected mice 

sera over time. The control sample is a non-injected mouse. (B) DiI signal in collected urine 

from two mice at each time point. The results are shown as average of duplicates (± standard 

deviation). 
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The immunotoxicity potential of nanomaterials following IV injection is an important aspect and 

requires attention because of the adverse reactions that could occur. Here, the immunotoxicity profile 

of TNEs was evaluated by measuring the serum levels of six cytokines (IFN-γ, IL-2, IL-4, IL-6, IL-

10, TNF-α) at each time point post-injection. IFN-γ and IL-4 could not be detected at any time point 

following TNE injection, or in the control. IL-2 was not detected above control levels and was close 

to the assay limit of detection at any time point. Proinflammatory TNF-α and IL-6, as well as the anti-

inflammatory cytokine IL-10, showed a spike in concentration at 60 minutes followed by an 

immediate decrease and return to control levels. The decrease was more intense for IL-6 compared 

to TNF-α and IL-10. The decline in cytokine production suggests these cytokines were produced as 

a non-specific stress response rather than an immune response (Figure 3.13).  

The mice used in this study were athymic, therefore macrophages and endothelial cells were the main 

sources of cytokine production in the initial responses. The very low fluorescence from DiI-labelled 

TNEs in the liver post-injection, that was not observed in the control mice, suggests this organ, which 

is a major site of IL-6 production, was not involved in the immune response.  If TNEs stimulated 

inflammatory cytokines beyond the immediate stress caused by the injection, then the prolonged 

circulation and persistent, low level accumulation in the liver, would cause at least IL-6 to continually 

increase. Therefore, the low cytokine levels and sudden decline could suggest there were no adverse 

reactions. Possibly the response was inflammatory provoked by the formulation components. 

Although TNEs show short circulation times and no active targeting following IV administration, the 

safety profile substantiates their use in other drug delivery applications through IV injection and 

possibly different routes of administration. 
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Figure 3.13. Release of cytokines over time from mice post-TNE injection. The results are shown 

as an average of duplicates (± standard deviation). 
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3.4  Discussion 

Nanomaterials are being developed in different sizes, shapes, and surface designs to improve the 

therapeutic and diagnostic outcomes of hydrophobic compounds. However, there are currently no 

guidelines that specify the use of an appropriate NPs design for a specific application or route of 

administration. Therefore, the present comparative screening methods are just considered speculative 

and investigating the use of a specific NP design is still needed to obtain a promising drug delivery 

application. NEs possess various advantages including biocompatibility, payload protection and high 

loading capacity, making them promising drug carriers in food production, skin care and 

pharmaceutical applications. TNEs are promising peptide-stabilised NEs developed by Professor 

Anton Middelberg’s group and have been administered subcutaneously for targeting dendritic cells 

to obtain specific immune responses (Zeng et al., 2013). In this chapter, TNEs were investigated as a 

topical and IV drug delivery system.  

Controlling the surface properties is an important factor for applying TNEs as a drug delivery system. 

To study the capacity of TNEs to encapsulate hydrophobic compounds and to tune the TNE surface 

charge, PEG density on the TNE interface was varied. This led to promising results for combining 

TNEs with EMPs via electrostatic interactions toward topical drug delivery, where PEG density was 

found to be indirectly related to surface charge. These interesting results suggest that TNEs can be 

promising drug carriers for topical administration. 

Cargo retention within the oil core of the TNEs was also found to be related to TNE surface properties, 

specifically PEG density. Varying the PEG density on the TNE surface directly affected the stability 

of DiI-labelled TNEs and subsequently, DiI retention.  

The solubility of compounds within the oil core of TNEs is an important factor that determines 

retention/release of cargo. The high log P (partition coefficient) value of DiI (+20), that represents 

lipophilicity of compounds, explains the high retention by stable TNEs. Conversely, CFC was 

released from the oil core of the TNEs at a linear rate where a lower log P value may have contributed 

to faster dye partitioning from the oil to the water phase. 

Another possible explanation for the different leakage profiles of DiI and CFC may have been the 

different testing methods used to assess the amount of cargo retained with the oil core of TNEs over 

time. That is, the amount of DiI retained within the oil core was measured by exploiting the 

fluorescent signal of DiI in oil, compared to a negligible signal in aqueous solutions. In contrast, the 

amount of released CFC was measured using dialysis. It is possible that the linear release profile of 

CFC was indicative of diffusion across a consistent surface area into a non-saturating solution, 

whereas the exponential release of DiI in the presence of lower PEG densities may have been due to 
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coalescence. Reorganisation of surfactants (desorption/adsorption) during coalescence of oil droplets 

might have also contributed to leakage of DiI-labelled TNEs with lower stability (lower PEG 

densities).  

FRET (Förster resonance energy transfer) is a common tool in biochemistry, biophysics and 

molecular biology (Jares-Erijman and Jovin, 2003), and it is applied to measure intra-molecular 

distances or to study co-localisation at a nanometer scale. FRET can occur between two different or 

identical donor and acceptor fluorophores (Homo-FRET) (Bader et al., 2011). It has been shown 

previously that the release of hydrophobic probes, such as DiI, from their carrier can be monitored 

via FRET effects (Chen et al., 2008). Thus, Homo-FRET might be another possible technique for 

characterising the release of hydrophobic fluorophores from the oil core of emulsions.          

PEG density also affected the stability of TNEs under different storage conditions. TNEs with 

different PEG densities were stable at 4 °C and room temperature, however, P200 only was stable at 

all freezing conditions, and P100 showed stability only at -80 °C. TNEs with lower PEG densities 

(P0, P5 and P50) showed instability at -20 °C and -80 °C. This is because storage below 0 °C 

temperatures produces fat crystals within the oil phase (crystallisation) that reduce the stability of 

O/W emulsions (van Boekel and Walstra, 1981). The fat crystals can protrude into the water phase 

penetrating the film between adjacent oil droplets and causing partial coalescence (Harada and 

Yokomizo, 2000, Vanapalli et al., 2002, McClements, 2004). A slow freezing (- 20°C) process results 

in the formation of larger fat crystals when compared to fast-cooling (- 80°C) that produces smaller 

fat crystals. Subsequently, slow-cooling led to lower stability of TNEs at even high PEG densities 

(P100) as shown in Figure 3.4.  

Polymer surface coatings are commonly used to improve the in vitro and in vivo performance of 

nanomaterials. Polymers such as PEG can reduce non-specific binding and provide stability for 

nanomaterials during incubation with surrounding biological environments. Even though in vitro 

binding assays involving P200 TNEs (PEG-decorated emulsions) showed non-specific binding 

possibly caused by ionic interactions with cells, PEG display on nanomaterial surfaces can help to 

minimise these ionic interactions. It is also well known that surface coating nanomaterials with PEG 

can provide hydrodynamic stability and help emulsions evade phagocytosis potentially extending 

their blood circulation. However, the complexity of biological barriers, including plasma proteins 

(protein corona), can adsorb onto nanomaterial surfaces and affect the in vivo fate of nanomaterials 

inferring that the short circulation time observed in this study may have been due to the interaction 

of TNE surfaces with plasma proteins following IV injections.  
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The biodistribution study of P200 TNEs suggested clearance through urination, however the droplet 

size of TNEs (170 nm) is bigger than the pore size (10 nm) of kidney filters. In contrast, TNE droplets 

are soft contractible materials with mechanical properties that allow them to shrink and relax back to 

normal shape without affecting their stability (Zeng et al., 2013). The other explanation for renal 

clearance may be cargo (DiI) partitioning from the oil phase, however this is less likely because DiI 

is weakly fluorescent in aqueous solutions, therefore partitioning and clearance through urine should 

not produce a high signal. Consequently, the results from this study demonstrated urine fluorescence 

indicating TNEs (oil droplets-containing DiI) were cleared as intact droplets. The likely interactions 

between TNEs and biological systems strongly suggest that a deeper understanding of TNE interfaces 

and their interactions with surrounding environment is needed. This exploration can be facilitated by 

the tuneable interfacial properties of TNEs. 

To conclude, TNEs were successfully directed toward in vitro receptor-specific targeting of cancer 

cells. However, the in vivo application of TNEs through the IV route for active targeting was not 

successful due to short circulation times, subsequently these findings present opportunities for further 

research. Distribution studies of un-targeted TNEs at short time intervals suggests TNEs were mostly 

cleared via the renal route, and to some extent, through the hepatic path within 24 hours. These results, 

combined with the absence of enduring cytokines levels and the biocompatible design, all contribute 

to an acceptable safety profile for TNEs as a drug carrier of lipophilic drugs. However, the rapid 

clearance of TNEs, due either to bound serum proteins or phagocytosis, suggests that their surface 

decoration, that encodes TNEs functionalities, requires better understanding (and will be discussed 

in further detail in chapter 4). 
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4 Chapter 4: Insights into the Interfacial Structure–Function of Poly(ethylene 

glycol)-Decorated Peptide-Stabilised Nanoscale Emulsions 

The entire chapter 4 is composed of a journal article published as following: 

Hossam H. Tayeb, Stefania Piantavigna, Christopher B. Howard, Amanda Nouwens, Stephen M. 

Mahler, Anton P. J. Middelberg, Lizhong He, Stephen A. Holt and Frank Sainsbury (2017). Insights 

into the interfacial structure–function of poly(ethylene glycol)-decorated peptide-stabilised nanoscale 

emulsions. Soft Matter, 13 43: 7953-7961. doi:10.1039/c7sm01614j 

The rapid clearance of TNEs that minimised the success rate of active targeting, due either to bound 

serum proteins or phagocytosis, suggests that their surface decoration, encoding TNEs functionalities, 

requires better understanding. the following chapter addresses this. The physio-chemical properties 

of a tuneable model interface are related to ligand accessibility and receptor-binding performance of 

nanoscale emulsions. Polyethylene glycol (PEG)-mediated surface shielding is commonly applied to 

impart anti-fouling and immune-evading characteristics on interfaces and NPs. Using precise control 

over the surface decoration of peptide-stabilised emulsions the interfacial properties of a PEG-

modified oil-water interface were investigated. In particular, how the physical parameters of the PEG 

layer impact the accessibility of a co-decorated single-chain fragment antibody were determined. The 

interfacial properties of soft nanomaterials are fundamental determinants of their performance and 

the structure-function findings presented in this chapter also provide a general understanding of 

interfaces. By defining a trade-off window in molecular design space, this work paves the way for 

the rational design of sophisticated nanomaterials that interact with their environment in controlled 

and predictable ways.  
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4.1 Abstract 

The interfacial properties of nanoscale materials have profound influence on biodistribution and 

stability as well as the effectiveness of sophisticated surface-encoded properties such as active 

targeting to cell surface receptors. Tailorable nanocarrier emulsions (TNEs) are a novel class of oil-

in-water emulsions stabilised by molecularly-engineered biosurfactants that permit single-pot 

stepwise surface modification with related polypeptides that may be chemically conjugated or 

genetically fused to biofunctional moieties. We have probed the structure and function of 

poly(ethylene glycol) (PEG) used to decorate TNEs in this way. The molecular weight of PEG 

decorating TNEs has considerable impact on the ζ-potential of the emulsion particles, related to 

differential interfacial thickness of the PEG layer as determined by X-ray reflectometry. By co-

modifying TNEs with an antibody fragment, we show that the molecular weight and density of PEG 

governs the competing parameters of accessibility of the targeting moiety and of shielding the 

interface from non-specific interactions with the environment. The fundamental understanding of the 

molecular details of the PEG layer that we present provides valuable insights into the structure–

function relationship for soft nanomaterial interfaces. This work therefore paves the way for further 

rational design of TNEs and other nanocarriers that must interact with their environment in controlled 

and predictable ways. 
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4.2 Introduction 

Soft nanomaterials, such as emulsions, are attractive for various biomedical applications such as drug 

delivery (Hörmann and Zimmer, 2016), molecular imaging (Rosenblum et al., 2010) and engineered 

vaccines (Leleux and Roy, 2013). Nanoscale emulsions have evolved as robust carriers for a broad 

range of hydrophobic drugs, although until recently they have been at the lower end of the design 

sophistication spectrum. Emulsions offer several advantages over other NPs such as ease of 

fabrication, high loading capacity and colloidal stability (Koo et al., 2005, Solans et al., 2005, Tadros 

et al., 2004). However, approaches to engineering the surface of emulsions have been limited to 

bottom-up integration of functional moieties during emulsification or to deposition by electrostatic 

interactions (Sainsbury et al., 2014). The potential to overcome this limitation exists with peptide-

stabilised emulsions (Dexter et al., 2006) where emulsification is decoupled from subsequent 

controlled functionalisation via the spontaneous integration of a designer protein anchor-surfactant 

onto the interface of kinetically stable emulsions (Sainsbury et al., 2014, Zeng et al., 2013). This top-

down approach to nanoscale emulsion engineering imparts remarkable flexibility on the range and 

number of surface modifications now possible. 

Surface modification of NPs for therapeutic and diagnostic use is commonly performed to optimise 

formulation stability and in vivo performance. PEG is an FDA-approved nonionic and hydrophilic 

polymer commonly used to modify liposomal and NP surfaces to improve their pharmacokinetics. 

PEG provides steric stabilisation during storage and application and may also reduce the adsorption 

of serum proteins (Harris and Chess, 2003), potentially prolonging circulation time in the blood 

stream via immune shielding (Pasut and Veronese, 2007, Knop et al., 2010). A recent report shows 

that PEG also affects the com position of the protein corona surrounding nanocarriers and in doing 

so decreases their non-specific cellular uptake, highlighting the importance of understanding the 

physical properties of NP surfaces (Schöttler et al., 2016). 

The influence of PEG on protein adsorption, as well as the storage and serum stability of PEGylated 

NPs is affected by the molar mass, density and conformation of the PEG moiety (Vonarbourg et al., 

2006, Georgiev et al., 2007). Furthermore, in the case of sophisticated particles possessing one or 

more functional moieties in addition to PEG, the physical characteristics of the PEG layer impact the 

density, accessibility and conformation of additional molecules, such as targeting ligands (Wang and 

Thanou, 2010). The effect of PEG modification on biodistribution, active targeting, and in vivo 

stability are important questions in soft matter engineering that still require fundamental research into 

the physical basis for interpreting the role of PEG. 
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Understanding how the structure–function of nanomaterial interfaces governs their interactions with 

the environment would enable rational design from first principles. Here we seek to understand the 

interfacial structure of a unique tailorable nanocarrier emulsion (TNE), thereby gaining insights into 

the remarkable interfacial self-assembly process of a poly(ethylene glycol)-decorated protein. The 

amphiphilic surface active peptide, AM1 (Malcolm et al., 2006) can be used to stabilise nanoscale 

O/W emulsions (Chuan et al., 2012). Surface modification is enabled by the subsequent spontaneous 

integration of a protein anchor-surfactant, DAMP4 (Middelberg and Dimitrijev-Dwyer, 2011), onto 

pre-adsorbed AM1 interfaces (Zeng et al., 2013, Dwyer et al., 2013). Genetic fusion or chemical 

conjugation of functional molecules to DAMP4 thereby facilitates their display on the aqueous phase 

of the emulsion. Thus, the TNE surface is tuneable in a sequential step-wise fashion, offering great 

flexibility to control the characteristics of the oil–water interface. Following the detailed 

characterisation of PEGylated DAMP4, we confirm the sequential addition of functionalised 

biosurfactants onto the interface. The effects of varying PEG length and density on TNE size, surface 

charge and interfacial thickness were evaluated to systematically assess their influence on the 

accessibility of co-displayed functional moieties. 

4.3 Experimental section 

4.3.1 DAMP4 expression, purification and quantification 

DAMP4, a protein surfactant, sequence (MD(PSMKQLADSLHQLARQ VSRLEHAD)4) was 

expressed and purified as previously described (Middelberg and Dimitrijev-Dwyer, 2011). Briefly, 

DAMP4 was purified in three sequential chromatographic steps; immobilised metal affinity 

chromatography taking advantage of the eight histidine residues, ion exchange chromatography at 

pH 7.0 and reversed-phase (RP)HPLC. RP-HPLC fractions were lyophilised, quantified using 

analytical HPLC against a DAMP4 standard curve and stored at ˗80 °C. 

4.3.2 DAMP4 PEGylation 

DAMP4 was rehydrated with 25 mM HEPES, pH 7.0 and PEGylated using NHS-functionalised 

polyethylene glycol mPEG–NHS; (www.nanocs.com). PEGylation of DAMP4 using 5000 Da 

mPEG:NHS, was carried out at two different molar ratios of PEG : DAMP4 (20 : 1 and 50 : 1) and 

incubated for approximately 16 hours at 4 °C with continuous stirring. 

DAMP4 was also PEGylated with the 10 000 Da mPEG–NHS at a 20 : 1 molar ratio under the same 

conditions. DAMP4 mixtures were analysed by SDS-PAGE using the Any-kD TGX Precast Protein 

Gels (www.bio-rad.com). Samples (3.55 µg of DAMP4) were loaded in triplicate and stained using 
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Coomassie brilliant blue R-250 and densitometric analysis was performed using Image J software 

following destaining to determine the mean percentage contribution of each band in the sample. 

4.3.3 Matrix-assisted laser desorption/deionisation 

5000 Da PEG-labelled DAMP4 was separated from free DAMP4 using size exclusion 

chromatography on a S75 column (www.gelifesciences.com) in 25 mM HEPES, pH 7 at 0.5 mL 

min˗1. Collected fractions were desalted with a C4 ziptip (www.merckmillipore.com.au), where the 

ziptip was first wet with 80% acetonitrile (ACN)/0.1% formic acid (FA), equilibrated with 1% 

ACN/0.1% FA, the sample loaded, washed with 1% ACN/0.1% FA, and eluted first with 80% 

ACN/0.1% FA followed by 100% ACN. Eluted material was dried in a speed vac, and resuspended 

in 3 mL 1% ACN/0.1% FA. An aliquot (0.5 mL) was spotted to a polished steel MALDI target plate 

along with 0.5 mL DHB matrix (7 mg mL˗1) in 50% ACN) and allowed to dry. MS data was acquired 

on an Autoflex III MALDI-TOF/TOF mass spectrometer (www.bruker.com) in positive linear mode. 

MS data were externally calibrated using a mix of cytochrome C and myoglobin. 

4.3.4 Interfacial tension analysis 

The IFT kinetics for PEGylated DAMP4 mixtures were measured using a DSA-10 droplet-shape 

analysis unit (www.kruss.de). Each sample of DAMP4 solution was loaded onto an 8 mL quartz 

cuvette (www.hellma-analytics.com) at 10 mM. A known diameter U-shaped stainless steel capillary 

fed by a glass syringe was used manually to form droplet of Miglyol® 812 (www.axoindustries.be) 

of approximately 9 mL. Interfacial tension was derived by the Young-Laplace equation using images 

of the droplet collected by a connected camera at a rate of about 1 measurement per second. 

4.3.5 Quartz crystal microbalance 

Quartz crystal microbalance with dissipation monitoring (QCM-D) experiments were performed 

using the E4 system with flow cells (Q-Sense, Västra Frölunda, Sweden). The QCM-D instrument 

measures the relative changes to the resonance frequency (f) and energy dissipation (D) of the sensor 

over the course of the experiment. ∆f and ∆D were measured simultaneously at the fundamental 

frequency and the 3rd, 5th, 7th and 9th harmonics. The original data was processed in QTools 

(www.biolinscientific.com) before being exported for further analysis in OriginPro 8 

(www.originlab.com). All experiments were conducted at a temperature of 24 ± 0.05 °C and repeated 

at least twice. In a typical experiment, firstly, a solution of AM1 0.1 mg mL˗1 was flushed, flow rate 

50 mL min ˗1, over the surface of a silicon dioxide sensor chip surface modified with a layer of 

trichloro(octadecyl)silane (OTS; www.sigma-aldrich.com). After the flow was stopped, the peptide 

solution was left to incubate for 30 minutes and the chamber rinsed with HEPES buffer 25 mM pH 7 
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to remove any unbound material. After a stable baseline was reached, a solution of 0.1 mg mL ˗1 10K-

PEG DAMP4 was flushed through the chamber at the same flow rate and left to incubate for 30 

minutes. The experiment concluded with the rinse of the chamber with HEPES buffer. 

4.3.6 Preparation of the tailorable nanosized emulsions (TNEs) 

Lyophilised AM1 (molar mass 2473 Da, ≥ 95% purity) was custom synthesised by Genscript 

(www.genscript.com) and dissolved using 25 mM HEPES containing 800 mM of ZnCl2, to reach a 

final concentration of 400 mM. 1,1'-Dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate 

(DiI; www.thermofisher.com) stock was prepared by dissolving the DiI powder in 100% ethanol at 

10 mg mL ˗1. DiI stock was diluted in Miglyol to a final concentration of 1 mg mL ˗1. Miglyol was 

added to the AM1 solution to a final oil composition of 2 v/v%. The mixture was sonicated four times 

at 45 seconds using the Branson Sonifier 450 Ultrasonicator (www.emersonindustrial.com). Only 

emulsions with a polydispersity index below 0.2 were accepted for surface modification. The 

integration of PEGylated DAMP4 products onto emulsion surfaces was achieved by drop-by-drop 

addition of AM1-stabilised emulsions to vigorously stirring PEG–DAMP4 at a 1 : 1 volumetric ratio. 

To prepare untargeted TNEs, PEG–DAMP4 was used at a DAMP4 concentration of 400 mM. 

Targeted TNEs were prepared by sequential addition using the same technique. First, PEG–DAMP4 

was used at 40 mM, followed by scFv-DAMP4 fusion at 2 mM and a final addition of PEG–DAMP4 

at 400 mM. Hydrodynamic radii with associated polydispersity indices and ζ-potentials were 

measured using a Zetasizer ZS (www.malvern.com). All samples were diluted to 1 : 100 in Milli-Q 

water and ζ-potential measurements were made using an electrophoretic cell (www.malvern.com). 

4.3.7 Interfacial thickness 

The thickness of the air–liquid interface was obtained through X-ray reflectometry measurements 

done with the Panalytical X’Pert Pro reflectometer (Cu-Kα X-rays, λ = 1.5418 Å) at the Australian 

Centre for Neutron Scattering (Sydney, Australia). The intensity of monochromatic X-rays reflected 

from the smooth air–liquid interface was measured as a function of momentum transfer, Q [Q = 

(4π/λ)sin θ, where θ is the incidence angle].  

The samples used for these measurements were 0.05 mg mL-1 DAMP4, 0.1 mg mL-1  5 kDa or 10 

kDa mPEG–NHS, and 0.05 mg mL-1  PEGylated DAMP4 (5K-PEG DAMP4 and 10K-PEG 

DAMP4). Each of these samples was dissolved in 25 mM HEPES pH 7 buffer. Thirteen mL of this 

solution was poured into a teflon trough, 8 ˣ 5 cm ˣ 0.2 cm deep and left to equilibrate for at least 10 

minutes before commencing the measurements. After alignment, measurements were performed by 

scanning from an angle of incidence of 0.007 to 0.56 in 0.001 Å-1 
steps for a total time period of 45 



107 
 

minutes. In order to ensure complete equilibration scans were repeated at least twice. The data fitting 

was carried out using Motofit macros (Nelson, 2006) operating in the Igor Pro environment where 

the interface is described as a series of layers parallel to the interface. Each layer is described by three 

parameters its thickness, scattering length density (SLD), and a Gaussian interfacial roughness. The 

SLD is related to the electron density as follows;  

SLD	 = 	 &'
'(
	r0 ρe 

where λ is the wavelength, r0 the classical electron radius and ρe the electron density. Data were then 

fitted to a single layer using a least-squares genetic algorithm routine by varying the layer parameters 

within physically reasonable bounds.  

4.3.8 scFv-DAMP4 expression and purification 

A synthetic gene encoding an scFv based on panitumumab34, preceded by an immunoglobulin κ light 

chain signal peptide and fused to DAMP4 via a Gly4Ser linker was codon optimised for expression 

in Chinese hamster ovary (CHO) cells. The gene was transferred into the pcDNA 3.1 (+) mammalian 

expression plasmid (www.thermofisher.com) for transient expression. Plasmid DNA was transfected 

using 2 mg of DNA per mL of cells at a concentration of 3 x 106 cells per mL. DNA was complexed 

with polyethylenimine-Pro (www.polyplus-transfection.com) in Opti-Pro serum free medium 

(www.thermofisher.com) at a DNA (µg) to PEI (µL) ration of 1: 4 (w: v) for 15 minutes prior to 

transfecting suspension-adapted CHO cells. The transfected cells were cultured in chemically defined 

CHO medium (CD-CHO; www.thermofisher.com) at 37 oC, 7.5% CO2, 70% humidity with shaking 

at 130 rpm for 6 hours, before feeding with 7.5% CD CHO Efficient Feed A 

(www.thermofisher.com), 7.5% CD-CHO Efficient Feed B (www.thermofisher.com) and 0.4% anti-

clumping agent (www.thermofisher.com). Viability of the cells was evaluated by trypan blue staining 

from day 7 and culturing was stopped when viability ≤ 50%.  

Following transfection, the cells were pelleted by centrifugation and the supernatant was filtered 

through a 0.22 µm membrane (www.sartorius.com). The scFv-DAMP4 was purified from the 

supernatant utilising a 5 mL Protein-L column (www. gehealthcare.com.au), eluting the protein with 

100 mM glycine pH 3.0. Elution fractions were buffer exchanged into PBS pH 7.4 using the HiPrep 

26/10 column (www.gehealthcare.com.au). The final product was filtered through a 0.22 µm 

membrane and the concentration was determined by measuring absorbance at 280 nm. The fusion 

was further analysed by SDS PAGE and size exclusion HPLC using a TSK gel G3000SW column 

(www.tosoh.com).  
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4.3.9 Biolayer interferometry 

Biolayer interferometry was used to determine the binding affinity constants of the scFv-DAMP4 

fusion protein for recombinant EFGR (rEGFR)-Fc targets. The Octet-Red (www.fortebio.com) 

platform was used to evaluate binding using 96 well black plates (www. greinerbioone.com). Each 

well was prepared with 200 µL of sample, the reactions were conducted at 30 oC and 1000 rpm 

agitation was used for each step. Biosensors were hydrated in 200 µL of PBS for 10 minutes prior to 

the start of the binding assay. Anti-human Fc-specific biosensors (www.fortebio.com) were 

immobilised with 100 µg mL-1 rEGFR-hFc (www.sinobiological.com). The assay conditions included 

an initial baseline step in PBS for 5 minutes, followed by loading 100 µg mL-1 rEGFR-Fc for 10 

minutes, PBS baseline for 5 minutes and then an association step with scFv-DAMP4 for 10 minutes 

followed immediately by a 10 minutes dissociation step in PBS. The scFv-DAMP4 was titrated from 

500–6.25 nM to measure the binding kinetics for EGFR using a 1: 1 binding kinetic model.  

4.3.10 Solid state EGFR binding 

The human epidermal growth factor receptor (5 µg mL-1) in PBS (www.sinobiological.com) was 

immobilised onto 96-well black polystyrene plates (www.corning.com) at room temperature for 4 h. 

Then, the immobilised EGFR was blocked using 2% milk PBS for 1 hour. Diluted TNEs (0.05 oil%) 

formulations were applied and incubated for 30 minutes at room temperature. Unbound TNEs were 

removed with two washes of PBS, containing 0.05% Tween-20, and a final wash using PBS, before 

re-filling the wells with PBS. Fluorescence intensity was measured using an M200Pro TECAN plate 

reader (www.lifesciences.tecan. com) with emission and excitation wavelengths of 535 nm and 570 

nm, respectively. 

4.3.11 Flow cytometry 

Targeted and un-targeted TNEs prepared using each DAMP4–PEG species were diluted (0.025–

0.015 oil%) and applied at 1 : 1 volumetric ratio to the MDA-MB-468 cell suspension (1.5  ˣ 106 cells 

per mL) in PBS containing 10% Foetal Calf Serum (FCS). Cells were then incubated 1 hour for 

binding at 4 oC, followed by three washing steps to remove weakly bound TNEs. FACS 

measurements were limited to 20 000 events, cells gating and a full analysis were performed using 

flowing software v2.5.1. 
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4.4 Results and discussion  

4.4.1 Characterisation of protein co-surfactant PEGylation  

The protein co-surfactant DAMP4, is a tetrameric repeat of the peptide surfactant AM1 joined by 

designed fold-permissive linkers. In solution it is a hyper-stable 4-helix bundle formed by 

hydrophobic interaction of the amphipathic helical AM1 units. PEGylation by NHS-coupling is used 

to bioconjugate to the free amines of the four lysine residues plus the amino terminus and this generic 

approach results in mixed species of DAMP4 with varying numbers of conjugated PEG (Figure 4.1). 

SDS-PAGE was used to separate the PEGylated species from un-conjugated DAMP4, which, 

although it could not be used to determine molecular weight of each species (Zheng et al., 2007), did 

allow quantification by densitometry. Matrix assisted laser desorption/ionisation time of flight 

(MALDI TOF) mass spectrometry (Supplementary Figure 4.1) showed that the four species including 

the free DAMP4 (11116 m/z) (Dimitrijev Dwyer et al., 2014) resulting from the conjugation of 5 kDa 

PEG correspond to DAMP4 + 1PEG (16551 m/z), DAMP4 + 2PEG (21537 m/z) and DAMP4 + 3PEG 

(27378 m/z).  

Enriching the DAMP4–PEG conjugate yield could be achieved by increasing the PEG: DAMP4 ratio 

and also by using longer length polymers. The low PEG: DAMP4 ratio (20:1) reaction yields 

approximately 50% PEGylated DAMP4 species (5K-PEG-Lo). However, increasing the PEG: 

DAMP4 ratio (50 : 1) shows a significant increase in the yield of the PEGylated forms to 

approximately 90% (5K-PEG-Hi). The use of 10 kDa NHS–PEG results in more than 90% PEGylated 

DAMP4 at the same 20:1 molar ratio as 5K-PEG-Lo. We suspect that this is due to different reactivity 

of the functional groups of the two NHS–PEG reagents. Due to the presence of multiple free amines 

on DAMP4, the NHS–coupling performed here results in a mixture of products. Although we find 

that the relative abundance of species is consistently obtained, further engineering of DAMP4 could 

permit site-specific and potentially, with the use of click chemistry, stoichiometric bioconjugation 

(Salmaso et al., 2009, Sato, 2002, Kolb et al., 2001, Fee and Van Alstine, 2006)  



110 
 

  

  

 

 

 

 

 

 

 

 

 

 

  

Figure 4.1. Bioconjugation of NHS-mPEG to DAMP4. (A) Cartoon of DAMP4 showing the 

position of the four lysine residues. (B) Densitometric analysis of DAMP4–PEG mixtures 

including DAMP4 conjugated to 5000 Da NHS– PEG using the low (5K-PEG-Lo) and high 

(5K-PEG-Hi) ratio reaction, and DAMP4 conjugated to 10 000 Da NHS–PEG (10K-PEG). 

Values represent the mean percentage composition of the different reaction products from 3 

independent reactions, which each varied by no more than 10% between conjugation 

reactions. 
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4.4.2 Interfacial tension of PEGylated DAMP4  

Due to the kinetic mass transfer limitations of large surfactant molecules on interfacial activity we 

analysed the IFT of the PEGylated DAMP4 species to determine the impact of the bioconjugate. The 

oil–water IFT kinetics of DAMP4 and the various PEGylated ensembles are shown in (Figure 4.2). 

A drop in surface tension from 31 mN m˗1, that of a pristine oil droplet, indicates adsorption of the 

biosurfctant. While an increase in average size due to DAMP4 conjugation results in lower mass 

velocity and migration to the interface, all PEGylated DAMP4 mixtures are interfacially active. The 

increase in PEG length from DAMP4 to 5K-PEG to 10K-PEG reduces the adsorption as would be 

expected due to the decrease in diffusion coefficient (Cussler, 2009). The increasing density of 

conjugated PEG does result in slightly lower interfacial activity, although the different DAMP4 

samples give similar final reductions in surface tension, (Figure 4.2). The IFT is lowest for DAMP4 

at 13.8 mN m˗1 whereas for the 5K-PEG-Lo PEGylated DAMP4 mixture it is 15.5 mN m-1. The 5K-

PEG-Hi and 10K-PEG preparations, which have similar PEGylation reaction yields, also have similar 

IFT measurements of 17.3 and 17.8 mN m-1, respectively. Interestingly, therefore, steady state IFT 

values appear to depend more on the number of conjugated PEG moieties per DAMP4 than the MW 

of the conjugate, indicating an impact of the bioconjugated state of individual residues on interfacial 

activity. 
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Figure 4.2. Interfacial tension analysis of the DAMP4:PEG conjugates. Measurement of the 

interfacial tension (mN m˗1) against time (s) was performed for DAMP4 (black squares), 5K-

PEG-Lo (green triangles), 5K-PEG-Hi (blue circles) and 10K-PEG (red diamonds) at 10 mM. 
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4.4.3 Sequential addition of DAMP4 conjugates  

Previous work has shown that AM1-stabilised O/W emulsions can be modified by the spontaneous 

integration of PEGylated DAMP4 onto the interface (Zeng et al., 2013). Here we investigated the 

interaction of PEGylated DAMP4 with a pre-formed AM1 layer by monitoring the mass variation on 

a hydrophobic interface using QCM-D (Figure 4.3). A decrease in frequency, corresponding to mass 

addition, from ˗6 Hz to ˗37 Hz shows that 10K-PEG–DAMP4 adsorbs at the AM1 layer. This 

interaction is stable and irreversible as the signal is unchanged after initial adsorption during the 

incubation time (Figure 4.3; step c), with only a small amount of material removed by the buffer wash 

(Figure 4.3; step d), which was continued until the signal was stable for two minutes. The response 

of the three harmonics is very similar suggesting that the DAMP4 penetrates the AM1 layer rather 

simply adsorbing on top. The observed stable increase in dissipation (ΔD) may be due to the PEG 

tails protruding in the bulk solution.  

To relate the addition to AM1-stabilised nanoscale emulsions we sought to confirm the stable 

adsorption of PEGylated DAMP4 by quantifying the amount of free AM1 and DAMP4 following 

sequential assembly. Modification with increasing amounts of PEG–DAMP4 showed that up to 

approximately 40 pmol cm−2 DAMP4 can be integrated onto a 1% (v/v) AM1-stabilised Miglyol 

emulsion (Supplementary Figure 4.2). At 57 pmol cm−2 some AM1 is displaced from the interface 

and this increases with higher density of DAMP4. However, even a low amount of PEG–DAMP4 

can confer hydrodynamic stability on the emulsions; preventing coalescence in PBS where 

electrostatic repellent effects are negated, or in the presence of EDTA (Supplementary Figure 4.3), 

which disrupts the cohesive interfacial peptide network (Malcolm et al., 2006). This indicates that 

PEG is functionally displayed on the interface, creating a steric barrier to coalescence. Therefore, 

PEG–DAMP4 is stably integrated onto AM1-stabilised TNEs, presumably with PEG oriented into 

the bulk phase. 
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Figure 4.3. Typical ∆f and ∆D versus time plots of 10K-PEG–DAMP4 interacting with AM1 

peptide. The dashed lines mark the end of each phase. Phase a corresponds to the flow and 

incubation of AM1 solution, whereas c denotes the flow and incubation of PEG–DAMP4. 

The rinse with HEPES buffer solution corresponds to phase b and d. The 5th (red), 7th 

(green) and 9th (blue) harmonics are displayed. 
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4.4.4 Impact of DAMP4 PEGylation on the size and ζ-potential of TNEs 

To investigate the influence of variable DAMP4 PEGylation on the surface properties of TNEs we 

modified the interface of AM1-stabilised emulsions with the DAMP4 mixtures. Application of the 

DAMP4–PEG conjugates results in predictable changes to the size and ζ-potential values of TNEs 

(Figure 4.4). While there is no change in size following the addition of 5K-PEG-Lo DAMP4, from 

165 ± 2 to 166 ± 3 nm, there is a variable size increase following the addition of 5K-PEG-Hi DAMP4 

to 171 ± 7 nm and a considerable and consistent increase with 10K-PEG DAMP4 to 178 ± 2 nm. 

Emulsion preparations remain monodisperse (polydispersity index ≤0.2) following the integration of 

DAMP4–PEG indicating that colloidal stability of the emulsions is maintained. The increase in size 

corresponds to the amount and size of PEG moieties displayed on the surface of each TNE 

preparation. However, recent estimations of the density and linear dimension of anchored PEGs in 

the extended brush format (Damodaran et al., 2010, Meng et al., 2004), suggest that the PEG 

molecules here are displayed in a compressed conformation or even oriented parallel to the TNE oil–

water interface. 

The addition of 5K-PEG (Lo or Hi) also changes the electrophoretic mobility of TNEs (Figure 4.4) 

by masking the positive charge carried by surface-exposed residues of the hydrophilic face of 

AM1/DAMP4 helices (Dexter et al., 2006). Integration of PEGylated DAMP4 reduces the ζ-potential 

of AM1 emulsions from 62.7 to 38 and 39.6 mV for the 5K-PEG-Lo and 5K-PEG-Hi formulations, 

respectively. The integration of the 10K-PEG onto TNEs further reduces the ζ-potential to 24.3 mV, 

indicating that 10K-PEG better shields AM1 and DAMP4 helices at the oil–water interface. Since the 

two 5K-PEG preparations result in the same ζ-potential despite presumed differences in PEG density, 

the effect on apparent surface charge could be due to expansion of the surface double layer such that 

less charge is able to ‘‘shine through’’ from the 10K-PEG TNEs relative to 5K-PEG-Hi TNEs (Pasche 

et al., 2005), as opposed to simply an effect of overall PEG mass. Reducing the ζ-potential of NPs is 

a significant factor for minimising non-specific interactions with serum proteins and cells (Lane et 

al., 2015), thus it is imperative to understand the physical basis for control of this parameter. 
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Figure 4.4. Dynamic light scattering and ζ-potential measurements of TNEs prepared with 

DAMP4-PEG conjugates. (A) Schematic representation of the spontaneous integration of 

DAMP4 conjugates onto the surface of AM1-stabilised emulsions. (B) Z-averaged size and 

ζ-potential of the AM1-stabilised emulsion, as well as the 5K-PEG-Lo, 5K-PEG-Hi and 10K-

PEG TNEs. Values represent the mean of three emulsions ± SD. 
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4.4.5 Interfacial thickness of the PEG layer 

Using an air–water interface as a model that closely mimics the oil–water interface, we have applied 

X-ray reflectometry to probe the thickness and relative density of the PEG layer in the aqueous phase. 

This was compared to interfaces with DAMP4 or PEG only. Figure 4.5 shows the layer fit (see Table 

4.1 for parameters) and the scattering length density (SLD) profile, which is effectively a scaled 

electron density perpendicular to the interface as a function of distance where ‘‘0’’ represents the 

interface and positive values are moving into the bulk solution. The data were fitted simultaneously 

where the upper layer (layer one) was constrained to have the identical thickness across the three 

datasets. As DAMP4 consists of four AM1 units it is not possible to distinguish between them by 

XRR. This modelled density profile showed that for DAMP4, there is a surface excess layer about 11 

Å thick with a higher electron density than pure water, as has been previously observed (Dwyer et 

al., 2013, Li et al., 2016). For a solution containing 5K-PEG-Hi PEGylated DAMP4 there is a surface 

layer with a slight reduced electron density suggesting that the surface packing of the DAMP4 may 

be disrupted. With the 10K-PEG DAMP4 an initial layer similar to that from DAMP4 is observed but 

with a second layer of material and corresponding density gradient extending into solution over a 

distance of about 50 Å. This ‘tail’ is attributed to the 10 kDa PEG molecules extending into the bulk 

solution and is not observed for the 5 kDa PEG. It should be noted that the scattering from this second 

layer is very weak and its inclusion imparts a marginal improvement to the data fitting. 

This intriguing difference in the interfacial structure resulting from PEGs of different molecular 

weight may explain the observed differential influence on physical properties of TNEs. The extension 

of 10 kDa PEG into the aqueous phase is consistent with the marked increase in hydrodynamic radius 

of TNEs modified with 10K-PEG DAMP4. In addition, substantially decreased ζ-potential following 

the addition of 10K-PEG DAMP4 is consistent with expansion of the electrical double layer due to 

the extended density profile of the neutral polymer. On the other hand, negligible or variable size 

changes of TNEs modified with 5 kDa PEG together with density-independent impact on ζ-potential 

and a potential influence on DAMP4 packing, suggest that the 5 kDa PEG is indeed oriented parallel 

to the TNE oil–water interface or remains in an otherwise compressed state. If this were the case, 

then an effect on PEG spacing of DAMP4, as suggested by the SLD profile, would be expected to 

lower the average charge density at the interface. Knowledge of the biophysical properties of the PEG 

layer is fundamental to molecular understanding of the TNE interface and, therefore, the potential for 

rational design of functional interfaces. 
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Figure 4.5. X-Ray reflectivity data and the real space fit to the datasets. (A) Reflectivity data 

multiplied by Q4 for DAMP4, 5K-PEG-DAMP4 and 10K-PEG–DAMP4 where the points 

represent the data and the lines the fit to the data, error bars not shown where they are smaller 

than the symbol. (B) The real space SLD profile according to the data fits presented in (A). 
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Table 4.1. Parameters from the fit to the XRR data sets. Where there are two layers layer one is 

against the air and layer two against the subphase. 

 

  
Parameter DAMP4 5K-PEG DAMP4 10K-PEG DAMP4 

Layer 1 thickness (Å) 11 11 11 

Layer 1 SLD (Å-2) 11.9 11.0 12.6 

Layer 1 roughness (Å) 3.3 3.5 3.8 

Layer 2 thickness (Å) - - 49 

Layer 2 SLD (Å-2) - - 10.3 

Layer 2 roughness (Å) - - 6.5 
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4.4.6 Presentation and accessibility of functional moieties on TNEs 

As we have verified herein, surface modification of TNEs is as simple as adding DAMP4 conjugates 

to a single reaction pot. This approach was used to sequentially introduce cell-specific targeting to 

TNEs, in addition to PEG-mediated shielding from non-specific uptake (Zeng et al., 2013). To 

generate a simple model for surface presentation of functional moieties on TNEs we constructed a 

single-chain variable fragment-DAMP4 fusion as a ligand- binding reporter. As designed, the fusion 

is competent for epidermal growth factor receptor (EGFR) binding, with a 1 nM dissociation constant 

measured by biolayer interferometry (Supplementary Figure 4.4). Following the integration of a low 

density PEG layer to confer hydrodynamic stability on the emulsions, the surface was further 

modified with the scFv-DAMP4, followed by backfilling with PEGylated DAMP4 as previously 

described (Zeng et al., 2013). 

The integration of the 38 kDa scFv fusion onto the TNEs results in an increase in size and while the 

ζ-potential of 5K-PEG-Hi and 10K-PEG TNEs is slightly reduced by the presence of the scFv, there 

is a marked impact on the variability of the 5K-PEG- Lo TNE ζ-potential (Supplementary Figure 4.4). 

Although all preparations again remained monodisperse, this size change suggests some impact on 

the colloidal stability of 5K-PEG-Lo TNE. 

To show that the targeting moiety was functionally presented at the oil–water interface and assess the 

impact of PEG length and density on accessibility of the scFv we devised a solid state binding assay 

to the ligand. The 5K-PEG-Lo TNE shows no specificity in ligand binding (Figure 4.6B). In contrast, 

both the 5K-PEG-Hi and 10K-PEG TNEs display scFv-dependent binding to the receptor in this 

controlled environment. However, the more complex surface of the cell imparts a more stringent test 

for specificity and the coverage of the TNE surface by PEG. Using EGFR-positive breast cancer cells 

and a high emulsion concentration (32.7 droplets per cell) to assess both specific and non- specific 

binding, no difference in median fluorescence can be seen between 5K-PEG-Lo formulations with 

and without the targeting moiety (Figure 4.6C). While the 5K-PEG-Hi targeted formulation only 

improves binding 1.8-fold, the use of 10K-PEG is substantially more effective at preventing non-

specific binding and the display of the scFv on 10K-PEG TNEs results in a 2.6-fold increase in median 

fluorescence. These results show that the scFv was functionally displayed on the surface of TNEs and 

that the specificity of binding can be controlled by the density of PEG at the surface. 
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Figure 4.6. Functionalising TNEs with a ligand-binding reporter. (A) Schematic 

representation of the spontaneous integration of the scFv-DAMP4 fusion protein onto the 

surface pre-PEGylated TNEs. (B) Solid-state binding assay of the functionalised TNEs. 

Depicts the binding of fluorescent TNEs assembled using the 5K-PEG-Lo, 5K-PEG-Hi and 

10K-PEG DAMP4 mixtures both with and without the scFv displayed on their surface, 

applied to EGFR-coated wells. (C) Flow cytometry showing the binding to EGFR-positive 

MDA-MB-468 cells of targeted (black) and control (grey) TNEs assembled using the 

different DAMP4 mixtures. The values shown are median fluorescence values (from 20000 

events). Values represent the mean of three emulsions ± SD. 
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4.5 Conclusions 

The interfacial properties of NPs comprise a set of key determinants for how they interact with their 

environment. For multifunctional particles, the complexity of this interaction is compounded by the 

impact of the functional moieties on one another, defining a competition trade-off window in 

molecular design space. Here we have used a unique model system that permits the controlled 

assembly of multifunctional NPs to probe the structure-function relationship of an interface modified 

with the competing influences of PEG and a targeting moiety. TNEs have been shown to be a 

potentially powerful in vivo delivery system (Zeng et al., 2013) and here we present a detailed analysis 

of their building blocks, preliminary verification of their assembly mechanism and determination of 

the molecular characteristics of the aqueous phase. Despite the expected differences in thickness of 

their respective PEG layers demonstrated by X-ray reflectometry, a solid state binding assay suggests 

that the scFv is equally accessible at the surface of 5K-PEG-Hi TNEs and 10K-PEG TNEs. However, 

the PEG layer proved vital in reducing non-specific interactions. Summarising these results in a 

simplistic model (Figure 4.7) allows us to entertain the possible future rational interfacial design of 

multifunctional TNEs. Continuing work on exploring the assembly and display capacity of TNEs, as 

well as controlled functionality and performance in vivo, is on-going. 
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Figure 4.7. Schematic model of the competing influences on EGFR binding of PEG and an 

anti-EGFR scFv at the oil-in-water interface of TNEs. 
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4.7 Supplementary materials  

Supplementary Figure 4.1 

Matrix assisted laser desorption/deionisation. The figure represents the mass spectrometry traces 

and mass-to-charge ratio (m/z) of DAMP4, DAMP4+1PEG, DAMP4+2PEG and DAMP4+3PEG. 
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Concentrations of free AM1 and DAMP4 following the adsorption of PEG-DAMP4 onto AM1-

stabilised emulsions. Triplicate emulsions, dispersed in the presence of 400 µM AM1 were mixed 

with PEG-DAMP4 at the indicated µM concentrations. Taking the surface area corresponding to the 

subsequent 1% O/W emulsion, the DAMP4 surface densities were as follows: P50 = 14 pmol/cm2, 

P100 = 28 pmol/cm2, P200 = 57 pmol/cm2, P400 = 113 pmol/cm2.  

A sample of the continuous phase was isolated using a centrifugal ultrafiltration device (100 MWCO) 

and peptide concentrations determined by HPLC. Values represent the mean of three emulsions ± 

SD. 

 

  

Supplementary Figure 4.2 
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Stability of TNEs following the addition of DAMP4-PEG. Emulsions containing DiI, dispersed in 

the presence of 400 µM, were mixed with DAMP4-PEG to obtain the indicated final µM 

concentrations (5 µM and 10 µM). Each emulsion prepared with DAMP4, 5K-PEG-Lo, 5K-PEG-Hi 

and 10K-PEG was mixed 1:1 with 100 mM EDTA. The unPEGylated DAMP4 addition at both 

concentrations shows clear aggregation. The addition of the different DAMP4-PEG preparations at 

10 µM stabilises the emulsions, making them resistant to the aggregation in the presence of EDTA. 

While the addition of 10K-PEG also stabilises the emulsion at 5 µM, 5K-PEG-Lo and 5K-PEG-Hi 

did not, resulting in reduction in the colouration of the solution due to aggregation of the droplets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 4.3 



128 
 

 
 

(A) Schematic representation of the spontaneous integration of the scFv-DAMP4 fusion protein onto 

the surface pre-PEGylated TNEs. (B) Biolayer interferometry sensogram showing the association and 

dissociation of the scFv-DAMP4 fusion to EGFR. (C) Z-averaged size and ζ-potential of the 5K-

PEG-Lo, 5K-PEG-Hi and 10K-PEG versions of scFv-functionalised TNEs. Values represent the 

mean of three emulsions ± SD. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 4.4 
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5 Chapter 5: Site-Specific Bioconjugation with Poly(Ethylene Glycol): Impact 

on the Interfacial Activity of a Protein Biosurfactant 

The entire chapter 5 is composed of a journal article submitted 12/01/18 as following: 

Hossam H. Tayeba, Marina Stieneckera, Anton P. J. Middelberga1 and Frank Sainsburya* (2018) Site-

specific bioconjugation with poly(ethylene glycol): impact on the interfacial activity of a protein 

biosurfactant. Submitted to Colloids and Surfaces B: Biointerfaces Manuscript ID: COLSUB-D-18-

00076. 

 

a The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St 

Lucia, QLD 4072, Australia. 

 

1 Present address: Faculty of Engineering Computer & Math Sciences, The University of Adelaide, 

Adelaide, SA 5005, Australia. 

In the previous chapter it became apparent that the precise bioconjugation of functional moieties to 

DAMP4 is necessary for effective design of sophisticated interfaces as well as for the more controlled 

determination of their biophysical properties. This chapter describes the creation of a second 

generation of DAMP4. Rationally designed cysteine variants by amino acid substitution or addition 

were generated to enable specific and efficient bioconjugation of maleimide-functionalised PEG. 
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5.1 Abstract 

Biosurfactants are surface active molecules that can be produced by renewable, industrially scalable 

biological processes. DAMP4, a novel designer biosurfactant, enables the modification of interfaces 

via genetic or chemical conjugation to functional moieties. However, inconsistent bioconjugation 

introduces heterogeneity that limits the precision of functionalisation and the resolution of interfacial 

characterisation. In this work, we successfully designed DAMP4 variants with cysteine point 

mutations to allow for site-specific bioconjugation. These designed DAMP4 variants were shown to 

retain the structural stability and interfacial activity of the parent molecule, while permitting efficient 

and specific conjugation of polyethylene glycol (PEG). PEGylation results in a considerable reduction 

on the interfacial activity of the single and double mutants. Comparison of conjugates with one or 

two conjugation sites shows that both the number of conjugates as well as the mass of conjugated 

material impacts the interfacial activity of DAMP4. As a result, the ability of DAMP4 variants with 

multiple PEG conjugates to impart colloidal stability on peptide-stabilised emulsions is reduced. We 

suggest that this is due to constraints on the structure of amphiphilic helices at the interface. Specific 

and efficient bioconjugation permits the exploration and investigation of the interfacial properties of 

designer protein biosurfactants with molecular precision. Our findings should therefore inform the 

design and modification of biosurfactants for their increasing use in industrial processes, and 

nutritional and pharmaceutical formulations.   
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5.2 Introduction 

Self-assembling biosurfactants have been extensively applied in different areas including food 

science (McClements, 2015, McClements and Rao, 2011), pharmaceuticals (Brokx et al., 2002, 

Gudiña et al., 2013, Rodrigues et al., 2006), cosmetics (Vecino et al., 2017, Varvaresou and Iakovou, 

2015) and the petroleum industry (Perfumo et al., 2010). Biosurfactants offer many advantages when 

compared to chemically-synthesised equivalents such as biocompatibility, biodegradability, and 

sustainable manufacture (Marchant and Banat, 2012, Pacwa-Płociniczak et al., 2011). The interfacial 

activity of biosurfactants is defined by intermolecular and intramolecular electrostatic and 

hydrophobic interactions, as well as hydrogen bonds and van der Waals forces. These interactions, 

that the drive the assembly of protein biosurfactants into supramolecular interfacial arrays, are 

determined by the primary sequence that dictates their fold into α-helices or β-sheets. Genetic or 

chemical modifications provide an opportunity to expand the functional repertoire of protein 

biosurfactants, but they must also consider the possibility of structural alteration and resulting 

biophysical implications on function.    

DAMP4 is an 11.1 kDa protein biosurfactant that was generated by linking four copies of a designer 

amphiphilic peptide into an anti-parallel four-helix bundle (Middelberg and Dimitrijev-Dwyer, 2011). 

It is extraordinarily stable in bulk solution (Schaller et al., 2015) and amenable to industrially relevant 

purification procedures (Dimitrijev Dwyer et al., 2014). Yet it is a highly functional surface-active 

molecule that has the ability to mediate switchable foaming under variable solution conditions 

(Dimitrijev-Dwyer et al., 2012). Highly expressed in Escherichia coli, DAMP4 can be functionalised 

via genetic fusion or chemical conjugation and possesses the unique ability to integrate into interfacial 

films pre-stabilised by the helical monomers that constitute DAMP4 (Dimitrijev Dwyer et al., 2014). 

These features have seen DAMP4 used to modify O/W emulsions providing functionality for 

inorganic shell deposition (Wibowo et al., 2015), immune-shielding (Zeng et al., 2013) and cell-

receptor targeting (Zeng et al., 2013, Tayeb et al., 2017). The extent of non-specific interactions 

between the emulsion interface and the surrounding environment can be controlled by the mass and 

density of decorating polyethylene glycol (PEG) molecules (Tayeb et al., 2017).  

PEGylation is widely applied to improve the performance biopharmaceuticals and NPs by reducing 

immunogenicity, and increasing serum half-life and stability (Mateo et al., 2000, Herman et al., 1995, 

Jokerst et al., 2011). However, PEGylation of proteins has many challenges including polydispersity 

of PEG during chemical synthesis or inefficient reaction yield (Fee and Van Alstine, 2006). We 

recently showed that modification of DAMP4 using NHS-functionalised PEG yields heterogeneous 

reactions products resulting in limitations on the physico-chemical characterisation of DAMP4-
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populated interfaces as well as on the precision of surface modification (Tayeb et al., 2017). However, 

bioconjugation chemistries offer a range of possible modifications dependent on the accessibility of 

suitable amino acid side chains (Stephanopoulos and Francis, 2011). For example, conjugates can be 

coupled to proteins through functional groups including hydroxyl, carboxyl, and thiol-reactive 

compounds. thiol-maleimide chemistry is widely applied to obtain site-specific bioconjugation (Nair 

et al., 2014) due to the less frequent occurrence of solvent-exposed cysteine residues allowing for 

their rational insertion by site-specific mutagenesis.  

Bioconjugation should impart the desired modification on a biomolecule whilst preserving its 

activity. In the case of biosurfactants, function is achieved via adsorption at an interface between two 

phases. This generally occurs in two steps; (A) transfer or transportation of the protein molecule to 

the interface; (B) protein unfolding and rearrangement at the interface (Tcholakova et al., 2006). 

TNEs are peptide-stabilised O/W emulsions that can be functionalised by the spontaneous integration 

of genetically or chemically modified versions of DAMP4 (Zeng et al., 2013, Sainsbury et al., 2014). 

During the assembly of TNEs with multifunctional interfaces, DAMP4 conjugated to polyethylene 

glycol (PEG) is used to provide steric stability during additional functionalisation steps. Here we 

genetically engineered DAMP4 to improve the accuracy with which it can be used to impart 

functionality to the surface of peptide-stabilised emulsions. The rational introduction of cysteine 

residues at select positions designed to retain structure and function of DAMP4 resulted in highly 

efficient site-specific bioconjugation using the maleimide-thiol reaction. We report the impact of 

single and double cysteine insertions on interfacial activity and are able to address whether the 

number of conjugates or the total mass of conjugated polymer affect this parameter. This work shows 

how genetic and chemical modification of amphiphilic structural features relates to the design of 

functional interfaces stabilised by biosurfactants using the TNE model.  
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5.3 Materials and methods 

5.3.1 Molecular cloning 

DAMP4-encoding sequences were ordered from Integrated DNA Technologies (www.idtdna.com) 

with extensions homologous to the flanking insertion site of the E.coli expression vector pET48b+ 

(Novagen; www.merckmillipore.com). Coding sequences were amplified with upstream (5`-

ACTTTAAGAAGGAGATATACAT-3`) and downstream (5`-TGTACAGAATTCGGATCC-3`) 

oligonucleotides corresponding to the extensions and the vector was amplified with their reverse 

complements. Expression constructs were assembled using the NEBuilder HiFi DNA assembly 

master mix (New England Biolabs; www.neb.com) and clones were verified by Sanger sequencing.  

5.3.2 Expression and purification of DAMP4 variants 

DAMP4 variants were expressed and purified in E.coli as previously described except where 

indicated (Dimitrijev Dwyer et al., 2014). Briefly, each variant was purified using sequential 

chromatography steps; immobilised metal affinity chromatography by taking advantage of the 

presence of eight histidine residues in each protein sequence, ion exchange chromatography at pH 

7.0 and reversed-phase (RP) HPLC. Purified proteins were lyophilised and analyzed for purity and 

concentration using analytical HPLC against DAMP4 standard curve. Accurate concentrations were 

determined by amino acid analysis conducted by the Australian Proteome Analysis Facility (APAF). 

5.3.3 PEGylation of DAMP4 variants 

DAMP4 variants were resuspended with 25 mM HEPES (pH 7.0), 2 mM tris(2-

carboxyethyl)phosphine (TCEP) and PEGylated using 5 kDa maleimide-functionalised methoxy 

polyethylene glycol (www.sigmaaldrich.com). PEGylation of DAMP4 variants was carried out at 4 

°C for approximately 16 hours. The PEGylation reaction for all DAMP4 variants was evaluated by 

SDS-PAGE using the Any-kD TGX Precast Protein Gels (www.bio-rad.com). 

5.3.4 Interfacial tension analysis 

The IFT kinetics for the DAMP4 variants were measured using a DSA-10 droplet-shape analysis unit 

(www.kruss.de). The sample volume of each protein (10 µM) is 8 ml in 25 mM HEPES (pH 7.0) 

loaded onto a quartz cuvette (www.hellma-analytics.com). Approximately 10 µl Miglyol® 812 

(www.axoindustries.be) droplets were manually formed using a known-diameter U-shaped stainless 

steel capillary fed by a glass syringe. The obtained interfacial tension was based on the Young-

Laplace equation through images captured by a connected camera for each oil droplet at an 
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approximate rate of 1 measurement/second. The surface tension of a mature pristine oil droplet was 

31 mN/m and IFT values were derived by averaging the final 100 seconds of measurement.  

5.3.5 Circular dichroism (CD) spectroscopy 

To analyze the secondary structure (Helicity level) of each DAMP4 variant, at 0.25 mg/ml in 2.8 mM 

HEPES (pH 7.0), 2 mM TCEP, we determined the CD spectra using (http://www.jascoinc.com) at 

190-260 nm. CD spectra measurements (300 s) were conducted in a 1 mm path length glass cuvette 

(www.starnacells.com) at 20 and 90 °C to evaluate the stability against high temperature for all 

DAMP4 variants. Molar ellipticity was derived from collected data of each variant.    

5.3.6 Differential scanning calorimetry (DSC) 

DSC analysis was performed to evaluate the thermal stability of the DAMP4 mutants before and after 

PEGylation. The experiment was conducted using the MicroCal VP- DSC Microcalorimeter 

(http://www3.gehealthcare.com) and the VPViewer 2000 DSC software. The test and reference 

samples were treated using the ThermoVac degassing station at 25 °C for 5 minutes to eliminate air 

bubbles. The molar ratio of DAMP4 mutant samples (0.75 mg/ml) to TCEP was maintained at 1:10. 

DSC measurements were conducted at scan rate ranging from 25 °C to 125 °C. The collected data 

were analyzed using the MicroCal-enabled Origin data analysis package.  

5.3.7 Preparation and characterisation of TNEs 

Lyophilised AM1 (molar mass 2473 Da, ³  95% purity) was custom synthesised by Genscript 

(www.genscript.com) and dissolved using 25 mM HEPES (pH 7.0) containing 800 µM of ZnCl2, to 

reach a final concentration of 400 µM. Miglyol was added to the AM1 solution to a final oil 

composition of 2% v/v. The mixture was sonicated four times at 45 seconds using the Branson 

Sonifier 450 Ultrasonicator (www.emersonindustrial.com). AM1-stabilised emulsions were added 

drop-by-drop onto to each PEGylated DAMP4 variant (100 µM) while vigorously stirring in a 1:1 

volumetric ratio. Prepared TNEs were analyzed using dynamic light scattering and ζ-potential 

(www.malvern.com). 

For stability analysis the concentration used of each PEGylated DAMP4 variant was 10 µM. TNEs 

modified by PEG-S28C and PEG-D4C2 were diluted in 25 mM HEPES (pH 7.0) or 0.1 M EDTA in 

the same buffer at 1:1. Emulsions were labelled with 1,1′-dioctadecyl- 3,3,3 0 3 0 -

tetramethylindocarbocyanine perchlorate (DiI; www. thermofisher.com) and monitored over time to 

evaluate TNEs stability.  
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5.4 Results and discussion 

5.4.1 DAMP4 variants 

The protein biosurfactant, DAMP4 (11.1 kDa), is composed of four repeats of the helical amphiphilic 

peptide AM1 (Figure 5.1A). Each repeat is linked by a short sequence designed to break the helix and 

provide the conformational flexibility that allows the overall 4-helix bundle structure of the protein 

(Middelberg and Dimitrijev-Dwyer, 2011). In order to insert unique sites for efficient bioconjugation, 

cysteine mutations were generated by replacing serine residues within the linkers. Selecting this 

location should not affect the structure and interfacial activity of DAMP4 given the similarity between 

the substituted side chains. In addition, the C99 variant was created by adding a cysteine residue to 

the carboxy (C)-terminus of DAMP4 (Figure 5.1B). All variants were successfully expressed and 

purified (Supplementary Figure 5.1).  

5.4.2  Structure, stability and activity of cysteine mutants  

DAMP4 is an extremely stable four-helix bundle in solution (Dimitrijev Dwyer et al., 2014) and its 

helicity is preserved at high temperature (Schaller et al., 2015). However, it is possible that even 

rational modifications to the sequence might interfere with the structure or function of DAMP4. 

Therefore, to investigate the structure and stability of the cysteine variants we performed CD 

spectroscopy. At 20 °C, all single cysteine mutants showed similar CD spectra to DAMP4, 

characterised by the double absorption minima at 222 nm and 208 nm (Supplementary Figure 5.2). 

This indicates that all variants show a similar level of helicity. Thermal stability was also performed 

by CD spectroscopy for each protein at 90 °C, which showed that the variants retained the remarkable 

stability of DAMP4 (Figure 5.2A). To evaluate the impact of these changes to the primary structure 

on interfacial activity of each DAMP4 variant, we determined interfacial tension of an O/W bubble 

in the presence of the biosurfactants. Interfacial tension in the presence of DAMP4 shows an 

immediate drop, levelling off to 11.32 Nm/m consistent with the adsorption of the protein at the 

interface (Tayeb et al., 2017). The variants all resulted in a similar surface tension drop indicating 

that all DAMP4 variants possess similar interfacial activity at the oil-water interface (Figure 5.2B). 

This is expected as the interfacial activity of DAMP4 is governed by the designed helical structuring 

present in both the four-helix bundle in bulk and of the repeated helices of the unfolded protein at the 

interface (Middelberg and Dimitrijev-Dwyer, 2011, Dwyer et al., 2013). This shows that the genetic 

modification/substitution with cysteine residues at rationally chosen positions does not have an effect 

on the overall interfacial activity at the oil-water interface. Preserving the interfacial activity for 

DAMP4 variants allows their further use in the stabilisation and functionalisation of TNEs.  
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Figure 5.1. Sequence design for DAMP4 cysteine variants. End (A) and side (B) views 

of a molecular model of the four-helix bundle DAMP4 protein with mutated serine 

residues indicated. (C) The sequence variation between single cysteine mutants 

developed in this study. Dots represent conserved residues. 
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Figure 5.2. Thermal stability and interfacial activity of DAMP4 single cysteine variants. (A) 

CD spectra of DAMP4 variants at 90 °C. (B) Interfacial tension analysis of DAMP4 variants. 
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5.4.3 Functional bioconjugation to DAMP4 variants 

The single cysteine mutants were genetically engineered through the substitution/addition of cysteine 

residues to obtain site-specific bioconjugation.  In previous work we showed that the density and 

mass of PEG molecules presented on the surface of nanoscale emulsions was central to the properties 

of the interface and accessibility of co-presented functional moieties (Tayeb et al., 2017). Here we 

PEGylated each DAMP4 variant using maleimide-functionalised methoxy PEG (5 kDa). The 

efficiency of the PEGylation reaction was evaluated using SDS-PAGE and showed successful 

PEGylation at a yield approaching 100% (Supplementary Figure 5.3). The precise and efficient 

modification of DAMP4-derived biosurfactants with maleimide-thiol chemistry is a significant 

improvement on the variable amine labelling previously employed. Such defined conjugates will 

enable controlled evaluation of the structure and function of DAMP4-modified interfaces. 

DAMP4 facilitates the presentation of a wide range of biomolecules via the spontaneous integration 

onto an AM1-stabilised interface (Figure 5.3A). To test the interfacial activity of PEG conjugates of 

the DAMP4 variants, we assessed their ability to impart colloidal stability on AM1-stabilised 

emulsions. The positive surface charge of individual droplets results in a net repulsion effect that 

prevents coalescence on the timescale of days. However, dilution of the peptide-stabilised emulsion 

into a high salt solution negates the positive charge leading to rapid coalescence in the absence of a 

stabilising modification. The adsorption of PEGylated DAMP4 onto the TNE interface was thus 

confirmed by comparing them to the AM1 stabilised emulsion in PBS. While AM1-emulsions rapidly 

coalesce, TNEs stabilised with PEGylated DAMP4 mutants remain stable (Supplementary Table 5.1). 

PEGylated DAMP4 variants were used at a final surface density of 14 pmol/cm2, which is well below 

the capacity for DAMP4 integration (Tayeb et al., 2017). The presentation of each PEGylated 

DAMP4 variant resulted in a slight increase in the droplet size when compared to AM1-emulsions 

(Figure 5.3B) attributed to an increased hydrodynamic diameter of TNEs with PEG presented into 

the aqueous phase (Tayeb et al., 2017). Furthermore, PEG presentation decreased the ζ-potential of 

TNEs following the integration of each PEGylated DAMP4 variant (Figure 5.3B) due to the effect of 

PEG shielding surface charge. Interestingly, the drop in ζ-potential was variable even though each 

protein carries a single PEG. This suggests that the orientation and/or conformation of the PEG is 

affected by its position, probably due to the orientation of the cysteine insertions within the DAMP4 

sequence. For example, brush-like or mushroom-like orientation of PEG can affect the electrophoretic 

mobility of NPs (Jokerst et al., 2011). Future studies involving PEG orientation and architecture when 

presented on TNE interfaces are required and are enabled by the specifically modifiable 

biosurfactants reported herein.     
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Figure 5.3. Functionalisation of TNEs by PEGylated DAMP4 variants. (A) Schematic 

representation of the spontaneous integration of DAMP4 onto the surface of an AM1-

stabilised Miglyol emulsion. (B) DLS and ζ-potential measurements of the TNEs modified 

with PEGylated DAMP4 cysteine mutants. TNEs size and ζ-potential measurements are 

presented as black circles and grey squares respectively and values represent the average of 

three independent assembly steps. 
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5.4.4 Stability, interfacial activity and bioconjugation to a double cysteine variant 

Devising an emulsion platform with controlled variability in PEG density gives maximum flexibility 

in interface design and will lead to greater understanding of the interactions between soft matter 

interfaces and the surrounding environment. Therefore we designed a DAMP4 variant that combines 

two of the cysteine insertions to enable the comparison of TNE formulations with varied PEG 

densities. Combining the S28C and S76C mutations created D4C2, with cysteines positioned at one 

end of the four-helix bundle (Figure 5.1A). We also cloned a variant that combined the S28C and 

S52C mutations (at opposing ends of the four-helix bundle), but did not pursue this variant due to 

low level expression and a strong propensity to aggregate, even in the presence of high concentrations 

of reducing agents. 

D4C2 is also predominantly helical although it was shown to have less pronounced 222 nm and 208 

nm CD spectroscopy minima compared to DAMP4 (Figure 5.4A). Nevertheless, the helicity is 

preserved at 90 °C indicating that the double variant maintains high thermal Stability. Despite the 

small difference in the helical structure of D4C2, the interfacial activity at the oil-water interface is 

similar to the constituent single mutants and DAMP4 (Figure 5.4B). It is possible that the interaction 

of hydrophobic side chains aligned on one side of the four helices with the oil phase imposes a 

constraint on helical conformation, reinforcing the same structural feature that imparts interfacial 

activity. In any case, the IFT results of D4C2 shows that the slight changes in the level of helicity did 

not interfere with its spontaneous integration onto an oil-water interface, which also suggests that it 

could also be used to modify an AM1-stabilised emulsion. SDS-PAGE separation of PEGylation 

reactions showed that bioconjugation via maleimide-thiol chemistry also efficiently reacts with the 

thiols of both inserted cysteines of D4C2 (Figure 5.5A). We have previously shown by mass 

spectrometry that the additional molecular weight of the conjugates conferred by PEG appears to be 

2-fold higher than expected on a PAGE gel (Tayeb et al., 2017). Thus, the single and double cysteine 

mutants are conjugated to 1 and 2 PEGs, respectively. We investigated the size and charge of TNEs 

stabilised with PEGylated D4C2, S28C and S76C to evaluate the influence of different PEG densities 

on the interface. Again, the adsorption of each PEGylated variant of S28C, S76C and D4C2 was 

confirmed by TNE stability in PBS, which showed that while PEGylated D4C2 was able to stabilise 

TNEs there was a slight increase in hydrodynamic radius (Supplementary Table 5.2). This was 

mirrored in the size variability among replicate emulsions stabilised by this conjugate (Figure 5.5B). 

Despite the two-fold increase in PEG at the interface, there are no significant surface charge 

differences between the TNEs formulated with the single and double PEGylated DAMP4 variants 

(Figure 5.5B). Together this suggested that interfacial activity of DAMP4 variant could be 

differentially altered by PEGylation.  
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Figure 5.4. Thermal stability and interfacial activity of D4C2, a double cysteine variant of 

DAMP4. (A) CD spectra of DAMP4 and D4C2 recorded at both 20 °C and 90 °C. (B) 

Interfacial tension analysis of D4C2 and variants possessing its constituent single mutations 

compared to DAMP4. 
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Figure 5.5. PEGylation and TNE functionalisation by D4C2. (A) SDS-PAGE analysis of 

PEGylated D4C2 and its constituent single mutations. (B) DLS and ζ-potential of TNEs 

formulated with these variants. 
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5.4.5 Interfacial activity is affected by both the mass and number of conjugates 

Conjugation of the relatively large PEG molecules to DAMP4 is expected to have a significant impact 

on the kinetic mass transfer and, therefore, adsorption rate of DAMP4. However, how the mass and 

position of the conjugate impacts steady-state interfacial activity is unknown and highly relevant to 

the design and deployment of tailored interfaces. Comparing the single (S28C) and double (D4C2) 

cysteine variants with either 5 kDa (5K) or 10 kDa (10K) conjugated PEG, revealed that not only 

does the mass of the conjugate impact interfacial activity, so too does the number of conjugates 

(Figure 5.6). While S28C-5K-PEG reduces IFT from the 31 mN/m of a pristine oil droplet to 15.8 

mN/m, S28C-10K-PEG only reduces IFT to 17.2 mN/m. In comparison, the unconjugated protein 

reduces IFT to 11.1 mN/m. PEGylated D4C2 reduced IFT to 19.3 and 21.9 mN/m when conjugated 

to 5K and 10K PEG, respectively. This additional insight enables us to refine our previous 

interpretation using heterogeneous conjugate mixtures (Tayeb et al., 2017), here we show that the 

mass of the conjugate has a considerable impact on IFT in addition to the number of conjugates. The 

efficient, site-specific bioconjugation now achievable allows us to compare the D4C2-5K PEG (19.3 

mN/m) with S28C-10K-PEG (17.2 mN/m), which possess the same theoretical mass of polymer and 

show that the number of PEGs has a considerable impact on IFT. These results highlight the utility 

of the DAMP4 variants and their precise conjugation in enabling the fundamental study of 

biosurfactants and their interfacial properties. To rule out an effect of PEG on the unfolding of 

DAMP4, which is necessary for its adsorption onto the interface, we subjected the PEGylated variants 

to differential scanning calorimetry.  

The transition temperature of both S28C and D4C2 were found to be unaffected by the conjugated 

PEG (Supplementary Figure 5.4), indicating that the polymer has negligible impact on the stability 

of the proteins and, therefore, its capacity to unfold at the interface. Furthermore, although we have 

not enumerated the initial rate of the reduction in IFT, the drop is similar for D4C2-5K PEG and 

S28C-10K-PEG, indicating that as with protein unfolding, transit to the interface is dependent on 

mass and is not affected by the number of conjugates. To examine the functional impact of the 

interference with interfacial activity due to PEG conjugation, we assembled TNEs with a low (1.4 

pmol/cm2) density of PEG-DAMP4. Incubation with 0.1 M EDTA disrupts the cohesive interfacial 

peptide film by chelating the Zn2+ that acts to cross-link histidine-bearing AM1 peptides, resulting in 

susceptibility to coalescence (Tayeb et al., 2017, Malcolm et al., 2009). Using a low density of PEG-

DAMP4 variant ensures that TNEs will coalesce within a reasonable timeframe. TNEs decorated with 

PEGylated S28C remained stable at least for 1 hour (Figure 5.7).  
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Figure 5.6. Interfacial activity of double and single PEGylated DAMP4. Analysis was performed 

on D4C2 and the single cysteine variant S28C conjugated to 5K and 10K PEG compared to 

DAMP4. 
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In contrast, and despite the two-fold increase in PEG density, phase separation of the PEGylated 

D4C2 stabilised TNEs was detectable at approximately 2 minutes, similar to the undecorated AM1 

emulsion (Figure 5.7). Thus, the differences in the interfacial activity of PEGylated S28C and D4C2 

result in a functional impact on their ability to stably decorate TNEs. As the conjugate does not appear 

to affect the unfolding of DAMP4, these results suggest rather that the PEG conjugate can affect the 

conformation of DAMP4 at the interface. This has implications on the effect of conjugates on the 

function of surfactants and, more broadly, the impact that PEGylation potentially has on 

pharmaceutical protein activity. It could be expected that a greater mass of PEG attached to a single 

conjugate could compensate for the reduced activity of the double conjugate, however, TNEs 

modified by S28C-10K-PEG are similarly unstable (data not shown). This leads us to an alternative 

explanation; that the increase in PEG density presents a steric constraint on the permissible density 

of DAMP4 at the interface, effectively preventing adsorption. Although we have previously found 

evidence to suggest the presence of PEG directly at the interface (Tayeb et al., 2017), the low density 

of DAMP4 used here means that this is unlikely to explain the reduced stabilisation of TNEs by 

preventing PEG-DAMP4 adsorption. Nor can we rule out the possibility that electrostatic interactions 

between the AM1 interface and DAMP4 are important for the integration of DAMP4 and that such 

interactions could be masked by the increased mass of PEG, thereby reducing the adsorption of the 

more highly PEGylated variant. 
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Figure 5.7. Stability of TNEs modified with PEGylated DAMP4 variants in the presence of 

EDTA. AM1 emulsions labelled with DiI, and those subsequently modified with PEG-S28C and 

PEG-D4C2 were diluted 1:1 in 25 mM HEPES (pH 7.0) as a control (C) or the same buffer with a 

final EDTA concentration of 50 mM, and monitored for stability over time. 
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5.5 Conclusion 

Controlling the interfacial properties of nanomaterials is essential for understanding their interactions 

with the surrounding environment. Here we used a bioengineering approach to obtain biosurfactants 

amenable to site-specific bioconjugation. Rational design of cysteine mutants of the designer protein 

surfactant, DAMP4, yielded variants with preserved structure, stability and interfacial activity that 

could be specifically PEGylated with almost 100% yield. The biologically produced DAMP4 has 

potential as a renewable surfactant in industrial processes and as a co-surfactant useful in the top-

down functionalisation of sophisticated interfaces for high-end applications. The present work 

demonstrates that the primary sequence can be tailored for specific applications requiring chemical 

modification and will, for example, allow more precise functionalisation of TNEs than was previously 

possible. Furthermore, controlled modification of these versatile biosurfactants will provide tools to 

investigate the fundamental relationship between structure and function of polypeptides at an 

interface. As an example, we showed that the number of conjugates as well as the mass of a 

conjugated polymer, PEG, influences interfacial activity, likely via perturbation of secondary 

structure of the biosurfactant at the interface. We expect that the outcomes of this study will provide 

the tools to further explore the design of functional interfaces and increase understanding of the 

relationship between the genetic and chemical modification of polypeptides and their function.  
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5.7 Supplementary materials  

 

 

SDS-PAGE analysis of the expression and purification of DAMP4 single cysteine variants. L = 

soluble fraction of cell lysate, P = purified DAMP4 variant. 

 

 

 

 

 

  

Supplementary Figure 5.1 
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Structural characterisation of DAMP4 single cysteine variants. CD spectra of DAMP4 variants at 20 

°C. 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 5.2 
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SDS-PAGE analysis of the PEGylation of DAMP4 single cysteine variants. Each cysteine mutant is 

shown before and after incubation with and without maleimide-PEG. 

 

 

 

 

 

 

 

 

 

 

 

  

Supplementary Figure 5.3 
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Supplementary Table  5.1. Stability of TNEs formulated with the PEGylated single cysteine variants 

following dilution in PBS. 

 

 

 

 

 

  

TNEs (P50) Size (d.nm) 

AM1 1370.2 ± 1.6 

S4C 168.3 ± 4.4 

S28C 169.5 ± 4.2 

S52C 165.4 ± 0.1 

S76C 166.3 ± 2.6 

C99 170.4 ± 2.0 
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Supplementary Table  5.2. Stability of TNEs formulated with the PEGylated single and double 

cysteine variants following dilution in PBS. 

 

 

  TNEs (P50) Size (d.nm) 

AM1 1299.3 ± 85.4 

S28C 163.7 ± 1.1 

S76C 165.6 ± 1.8 

D4C2 172.5 ± 2.7 



154 
 

 

Differential scanning calorimetry of PEGylated DAMP4 variants. The single cysteine variant 

(S28C) and double cysteine variant (D4C2) were analysed with and without PEGylation. 

 

 

 

 

 

 

 

  

Supplementary Figure 5.4 
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6 Chapter 6: Conclusion and Future Directions 

Nanoparticle-mediated drug delivery involves the development of nanosized materials loaded with 

pharmaceutical compounds for specific therapeutic and diagnostic applications. Although 

nanomaterials are considered promising, they must overcome a series of complex physical and 

biological barriers encountered through different routes of administration. These barriers lead to 

instability during circulation, non-specific biodistribution, and cytotoxicity to healthy cells (Xin et 

al., 2017).  

Recent studies involving mice report that less than 1% of injected NPs reach their target site (Wilhelm 

et al., 2016) clearly showing how active targeting of NPs is still unrealistic in living organisms. 

Therefore, a deeper understanding of the biophysical properties of a particular NP design, including 

the size, surface charge, and presentation of functional moieties, is required. The biological 

complexity encountered in delivery routes and the type and stage of disease are other aspects that 

must be considered in the design of NPs to enhance the effectiveness of nanomaterials in drug 

delivery. Exploring the potential of a particular drug delivery design through different applications 

or routes of administration can help reveal possible limitations. By addressing these limitations, the 

clinical translation of nanomaterials can be more realistic. 

Despite all the challenges facing nanomaterials in drug delivery, there are few nanomaterials that 

have gained approval for clinical use against diseases such as cancer. For example, the liposomal 

formulation, Doxil®, was approved by the FDA for the treatment of Kaposi’s sarcoma (Barenholz, 

2012b). Lipid-based nanomaterials, including liposomes (Bulbake et al., 2017) and NEs (Singh et al., 

2017), are considered promising vehicles for hydrophobic drugs. Emulsions offer a broad range of 

advantages including high solubilisation and loading capabilities, biocompatibility and ease of 

production, and have been applied with safe profiles in cosmetic, nutritional (Intralipid®) and 

pharmaceutical applications (Liple®).     

The aim of my research project was to refine the use of TNEs toward pharmaceutical applications. 

TNEs were invented recently by the Middelberg group at the AIBN and have shown promising results 

in the targeted, subcutaneous delivery of antigens (Zeng et al., 2013). TNEs are easily formulated by 

the assembly of protein-based surfactants at the oil-water interface in a bottom-up fashion via the top-

down sequential addition of reagents. The TNE core is made from a pharmaceutical-grade oil 

(Miglyol 812) that is generally recognised as safe (GRAS) and approved by the FDA.  

In this project, the properties of TNEs were investigated as well as their administration through topical 

(skin) and IV routes. Specifically, PEGylation was used to alter the surface design of the TNEs and 
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determine the effect of PEG density on the interfacial properties furthering the refining of TNEs for 

drug delivery. PEGylation is a common technique that improves the stability and pharmacodynamics 

of drugs and is one of the most important aspects in drug delivery research. Controlling the surface 

charge of TNEs via PEG density enabled the successful coating of EMPs through electrostatic 

interactions. The combined system showed promising results as a carrier of hydrophobic drugs for 

human skin applications. IV administration of TNEs was also explored showing an acceptable safety 

profile, however circulation time was short and showed that the TNEs were mostly cleared via the 

renal route.   

The research outcomes from my PhD project were divided into three chapters. The aim of the first 

experimental chapter (Chapter 3) was to broadly explore the use of TNEs as a vehicle of hydrophobic 

drugs for topical and IV administration. Exploring the use of TNEs via the IV route provided the basis 

of the second experimental chapter (Chapter 4) that delivered insights into the interfacial structure-

function of poly(ethylene glycol)-decorated peptide-stabilised nanoscale emulsions. With a deeper 

understanding of the TNE interface provided by Chapter 4, the final experimental chapter (Chapter 

5) aimed at gaining better control over the TNE interface through genetic engineering of DAMP4 for 

precise bioconjugation whilst maintaining interfacial activities. A summary of the key findings from 

each chapter will be discussed in the following sections.  

6.1 Exploring the suitability of TNEs in diagnostic and therapeutic applications by 

employing different routes of administration. 

Nanomaterials are being continuously developed into drug delivery systems with various surface 

designs to improve the therapeutic efficacy of lipophilic drugs. However, there are still no specific 

guidelines that help facilitate the fabrication of NP designs capable of overcoming most drug delivery 

challenges. These challenges include the biological barriers encountered within each route of 

administration, as well as the complexity of NPs designs. Subsequently, the feasibility of TNEs in 

diagnostic and therapeutic applications was considered through both topical and IV delivery routes. 

Firstly, by varying the PEG-DAMP4 density on the TNE interface, the surface properties of TNEs 

could be explored revealing that surface charge was inversely proportional to the integrated PEG 

density on the TNE interface. 

To investigate the capacity of cargo retention, a hydrophobic dye was encapsulated within the oil 

phase of TNEs showing that over time the amount of retained dye was directly related to the DAMP4-

PEG density. A leakage profile of the encapsulated cargo also revealed that PEG density was directly 

related to the stability of DiI-labelled TNE droplets over time. By tuning the surface charge, TNEs 

were combined with EMPs via electrostatic interactions and showed promising human skin 
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applications. The coating efficiency of EMPs with TNEs was investigated through different methods 

with results suggesting that freeze drying of DiI-loaded P20-TNEs (positively-charged) droplets onto 

powdered EMPs (negatively-charged), in the presence of alginate as a cross-linker, gave better 

coating results. Having control over the surface charge by simply varying PEG densities is attributed 

to the remarkable and inherent spontaneous integration capability of DAMP4 at the interface of AM1-

pre-stabilised TNEs. These results suggest that TNEs have great potential in topical (skin) drug 

delivery applications. 

The delivery of hydrophobic drugs using active targeting via the IV route is a major obstacle for 

nanomaterials. TNEs were successfully functionalised with DAMP4-scFv fusion for targeting EGFR 

on cancer cells. The fusion complex alone had high binding specificity to EGFR (which was validated 

through ELISA). DAMP4-scFv fusion was also successfully presented on the TNE interface, 

resulting in a VECT-1 formulation that showed high binding specificity to EGFR-coated wells in a 

fluorescence-based plate assay. Binding to EGFR using VECT-1 formulations was also demonstrated 

in vitro using the breast cancer cell line, MDA-MB-468. However to some extent, non-specific 

binding was observed and may have been due to increased targeting complexity going from proteins 

bound to a plate, to surface proteins in a more diverse cellular environment. 

The potential of administering targeted TNE (VECT-1) formulations through the IV route was 

explored using an in vivo pilot study. This study showed that TNEs were mainly execrated via the 

renal route suggesting that TNEs only have a short circulation time that was insufficient to achieve 

active targeting. The rapid clearance of TNEs was then explored in more detail using a biodistribution 

study that involved serum, urine, and cytokines analyses. These analyses suggested that TNEs 

remained in circulation for at least two hours with renal excretion starting one-hour post-IV injection. 

TNEs were also detected in the liver two hours post-injection but at very low levels implying that the 

hepatic path was not the main clearance pathway. The very low cytokine levels, as well as their 

biocompatible design, suggested that TNEs did not cause adverse reactions and showed a safe profile 

during IV administration. However, given the instability of TNEs during circulation that might have 

been due to opsonisation or phagocytosis, it’s obvious that a deeper understanding of the TNE 

interface is required for optimising the surface design for drug delivery.  

6.2 Insight into the interfacial structure-function of the polyethylene glycol-decorated 

peptide-stabilised nanocarrier emulsions 

Interfacial properties of nanocarriers directly influence the biodistribution, stability and efficiency of 

nanomaterials in drug delivery. Chapter 4 aimed to understand the interfacial structure of TNEs and 

gain insights into the molecular interfacial assembly of a poly ethylene-decorated protein 
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biosurfactant (DAMP4). The surface modification of TNEs was facilitated by the remarkable 

spontaneous integration feature of DAMP4 onto the pre-adsorbed AM1 oil-water interface. Genetic 

fusion or chemical modification of DAMP4 with functional molecules facilitates their presentation 

on the aqueous phase of TNEs. TNEs formulated in a sequential step-wise fashion have tuneable 

surface properties that offer great potential to gain control over the oil-water interface. DAMP4 

PEGylation using different PEG lengths was characterised in detail and the sequential addition of 

functionalised DAMP4 molecules at the oil-water interface was confirmed. The influence of varying 

PEG density and length on TNE size, surface charge, and interfacial properties was evaluated by 

determining the accessibility of co-displayed targeting molecules.        

For multifunctional nanomaterials, the complexity of the surrounding environment is compounded 

by the impact of functional molecules on one another, defining a competition-trade off window in 

molecular design space. As a unique model system, TNEs allow controlled assembly and were used 

to probe the structure-function relationship of the interface designed with the competing effects of 

two functional biomolecules: PEG and a targeting ligand. In this research, the building units of TNEs 

were analysed in detail along with verification of the assembly mechanism and determination of the 

molecular characteristics of the TNE aqueous phase. Regardless of the predicted differences in 

interfacial thicknesses with respect to the PEG layer, that were demonstrated using x-ray 

reflectometry, the solid state binding assay indicated that the targeting moieties presented on TNEs 

surfaces were equally accessible to their receptors. In contrast, the difference in PEG layer proved to 

have an essential role in minimising non-specific targeting. These findings validated the concept of 

designing multifunctional TNE interfaces. The next chapter continued to explore TNE assembly and 

presentation capacity of biomolecules at the interface. The use of a homogeneous population of 

DAMP4 conjugates should give better control over interfacial properties. Controlled functionalisation 

of the TNE interfaces using the protein biosurfactant, DAMP4, is discussed in the next section. 

6.3  Site-specific bioconjugation with poly(ethylene glycol): impact on the interfacial activity 

of a protein biosurfactant   

Controlling the interfacial properties of nanomaterials is vital for understanding their interactions 

with surrounding environments. Biosurfactants are amphiphilic surface active molecules that can be 

synthesised using industrially scalable, renewable biological processes. Biosurfactants also offer 

several advantages including biocompatibility, biodegradability, and sustainability. A novel designer 

protein biosurfactant, DAMP4, allows surface modifications through genetic engineering or chemical 

conjugation to functional molecules. However, inconsistent and unpredictable chemical conjugation 
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results in heterogeneous products that restrict precise functionalisation and the resolution of physio-

chemical characterisation of interfaces. 

In this research, we successfully bioengineered DAMP4 variants with single/double cysteine point 

mutations to obtain biosurfactants capable of site-specific bioconjugation. Rational point mutations 

of the designer protein surfactant, DAMP4, with cysteine residues produced variants with conserved 

structure and stability, and surface activity that can specifically conjugate to PEG with nearly 100% 

yield. Bio-synthesised DAMP4 holds great potential as a renewable biosurfactant in industrial 

applications, and as a valuable co-surfactant in the top-down modifications of interfaces for 

sophisticated applications. This work demonstrated that the primary sequence of DAMP4 could be 

tailored toward specific applications that require chemical modifications. For example, it allowed 

precise functionalisation of the TNE interface.  

Controlled functionalisation of DAMP4 provided means to study the fundamentals of the structure-

function relationship of polypeptides at the interface. For example, the number, as well as the mass 

of PEG conjugates, were found to influence the interfacial activity of the biosurfactant probably 

because the secondary structure at the interface was perturbed. Therefore, the capability of DAMP4 

variants with multiple PEG conjugates to impart colloidal stability on peptide-stabilised emulsions 

decreased. This observation was made based on the possible constraints on the amphiphilic helices 

of DAMP4 at the interface that resulted from the attachment of multiple PEG conjugates. 

Specific and efficient chemical modifications enable investigation of the interfacial properties of 

designer protein biosurfactants with molecular precision. The outcomes of this work are expected to 

contribute to further exploring the design of functional interfaces, and help understand more about 

the relationship between the genetic and chemical modifications of protein biosurfactants and their 

function. This research may help to inform the design and modification of biosurfactants for 

increasing their applications in industrial processes, and nutritional and pharmaceutical formulations. 
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6.4 Future directions 

It is well known that the administration of APIs via different routes has various effects on therapeutic 

efficacy. Administered API can be affected by the harsh conditions encountered within biological 

systems including enzymatic secretions and pH changes. To help overcome the challenges of 

administered API, in particular hydrophobic compounds, nanomaterials like polymer-based NPs 

(Chan et al., 2010, Crucho and Barros, 2017), inorganic materials-based platforms (Giner-Casares et 

al., 2016, Ojea-Jimenez et al., 2013), and lipid-based NPs (Qi et al., 2017) have emerged as delivery 

vehicles to improve therapeutic outcomes.  

These vehicles have improved the overall pharmacokinetics of drugs such as water-solubility and 

extended circulation times. However, these improvements, that fall under the umbrella of patient 

safety and lower morbidity rate, and have led to the successful clinical translation of nanomaterials 

like Doxil®, are still considered minimal. The main reason being that once nanomaterials are 

administered through different routes, they face complex environments involving various physical 

and biological barriers that limit their therapeutic efficacy. This evidence therefore suggests that the 

“magic bullet” hype surrounding nanomaterials remains unrealistic to date and that far more 

knowledge of the fundamentals of nanomaterial interfaces and how they relate to specific biological 

applications is still required. 

Tailoring the surface properties of drug carriers is an important aspect of drug delivery and helps to 

contribute fundamental knowledge of the interface and possible solutions for overcoming the 

complexity of biological systems. One of the main obstacles that limits the study of, and precise 

control over, the surface design of nanomaterials is ensuring physical stability that limits the ability 

to functionalise surfaces with biomolecules. TNEs are O/W peptide-stabilised emulsions that are 

easily formulated, biodegradable and allow the decoupling of physical stability imparted during 

emulsification from subsequent functionalisation (Sainsbury et al., 2014). 

AM1, a surface active peptide with rapid adsorption rate, is used to stabilise O/W droplets during 

emulsification (Dexter et al., 2006). AM1 also provides mechanical stability at the oil-water interface 

in the presence of metal ions via histidine residues (Malcolm et al., 2009). DAMP4, a protein 

biosurfactant, is made of four repeats of AM1 joined by linkers that permit folding in solution. 

DAMP4 spontaneously unfolds and integrates at the pre-adsorbed AM1 oil-water interface, allowing 

surface functionalisation via either genetic fusion or chemical conjugation. These remarkable features 

of the surface-active designer molecules (AM1 and DAMP4) provide TNEs with amenability to step-

wise surface modification, independent of droplet formation.   
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Decoupling the biological functionalisation of TNEs from the emulsification process enabled PEG 

density to be varied at the TNE interface. This allowed the surface properties of TNEs to be 

controlled, which directly affected the stability of DiI-labelled TNEs and, concomitantly, cargo 

retention within the oil core. Other factors that may influence cargo retention include the solubility 

level of drugs within the oil phase. Controlling the surface properties of TNEs played an important 

role in coating EMPs with TNEs via electrostatic interactions. The TNE-coated EMPs that 

encapsulated a clinically relevant imaging agent, were explored in human skin applications. Future 

research could be aimed at investigating therapeutic applications of TNE-coated EMPs. For example, 

encapsulating therapeutic agents such as antifungal drugs targeted to specific skin layers for the 

treatment of fungal infections.     

TNEs were successfully directed toward in vitro active targeting using the scFv-DAMP4 fusion that 

was synthesised by genetic engineering, however the accessibility of the scFv-DAMP4 fusion was 

affected by the display of PEG. Therefore, future studies are needed to investigate the accessibility 

of presented functional moieties on the TNE interface. The precise and site-specific bioconjugation 

of PEG to DAMP4 variants, such as S28C, allows greater control of bioconjugation to the protein 

biosurfactant. This should enable characterisation of the accessibility of functional moieties displayed 

at the TNE oil-water interface with greater precision. Improved accessibility might be achieved in the 

future through one of the following proposals: 

1- Chemical modifications of the biosurfactant: the presentation of functional moieties using 

bifunctional PEG molecules where the targeting molecule is conjugated to the opposite end 

of PEG (e.g. via an NHS ester), and displayed on the TNE interface using a DAMP4 cysteine 

variant that can be conjugated to PEG using maleimide chemistry (Figure 6.1A). 

a. Advantages: 

i. It should eliminate the masking of functional molecules by the PEG, leading 

to better accessibility. 

b. Disadvantages: 

i. The need for extra purification steps to remove unconjugated bi-functional 

PEG molecules from DAMP4. 

ii. The interfacial activity of the biosurfactant might be affected.   

2- Optimising the genetic fusion of the scFv to DAMP4 variants by increasing the linker length. 

The previously synthesised scFv-DAMP4 fusion has a single G4S linker and it may help to 

extend this with more copies (Figure 6.1B).  

a. Advantages: 
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i. Increasing the linker length might lead to better accessibility of the presented 

functional moiety by reducing the interference of presented PEG on the 

interface.   

b. Disadvantages: 

i. Folding and stability of the protein fusion might be affected. 

ii. Changing the linker length might introduce challenges for the production of 

the fusion protein within mammalian cells.  

iii. The additional flexibility may prove to be a disadvantage during sequential 

addition if it allows interaction of the targeting moiety with the interface. 

3- Studying the interfacial properties of TNEs with shorter PEG length. Previously applied PEG 

masses on TNEs were 5 kDa and 10 kDa, whereas 2 kDa or 3.4 kDa PEG may be sufficient 

to impart stability (Figure 6.1C).  

a. Advantages:  

i. Less interference with other presented functional molecules. 

ii. Possibly better interfacial activity when compared to DAMP4 variants 

conjugated to PEG with larger mass.   

b. Disadvantages: 

i. Possible increase in non-specific interactions with the surrounding 

environment due to changes in the surface properties, such as surface charge.  

ii. Shorter PEG lengths might not impart sufficient colloidal stability to prevent 

coalescence or aggregation.  
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Figure 6.1. Accessibility of functional moieties displayed at the TNE interface. (A) 

Presentation of functional moiety with bifunctional PEG. (B) Illustrates the display of the 

functional moiety (scFv) genetically fused to DAMP4 by increasing the linker length. (C) 

Presentation of functional moieties fused to DAMP4 at the interface of TNEs functionalised 

with shorter PEG length. 



164 
 

The combined outcomes from this research show that TNEs have great potential in topical 

formulations for human skin applications. TNEs are also considered safe IV formulations for further 

biodistribution studies. Specific and non-specific TNE interactions are directly affected by their 

surface decoration. Site-specific bioconjugation of a biocompatible, renewable, and industrially-

scalable protein biosurfactant, DAMP4, was obtained and permitted the investigation and tailoring of 

the TNE interface for specific applications with precision. The remarkable characteristics of these 

designer protein surfactants make TNE interfaces amenable to a wide range of genetic or chemical 

modifications ensuring that TNEs have a promising future in drug delivery. Based on the combined 

outcomes of my PhD project, further physiochemical and biophysical studies would contribute to 

better understanding of the TNE system and, potential of biosurfactants.  

Physical chemistry, employs techniques to study and monitor the behaviour of a particular matter on 

a molecular and atomic level. Therefore, to reach this level of detail a precise understanding of a 

particular material or system is required. The Controlled site-specific bioconjugation of DAMP4 

variants should facilitate precise fundamental interface studies. These include X-ray reflectometry to 

study interfacial thickness, which may help to elucidate the interaction of TNE surface design with 

the surrounding environment. Also, neutron reflectometry can be applied to determine the precise 

composition at the interface, the density of DAMP4 integration and whether DAMP4 integration 

results in AM1 displacement. Quartz crystal microbalance (QCM) can be used to monitor mass 

changes at the interface, which can provide insights into the molecular assembly of surfactants at air-

fluid or fluid-fluid interfaces. These studies are currently ongoing in collaboration with colleagues at 

ANSTO and Monash University. 

Harnessing the metal-binding properties of surface designer surfactants is another important property 

for the formulation of NEs with PET/MRI imaging agents. Based on the formation of a cohesive 

interfacial network via the coordination of metal ions, the possibility of incorporating additional 

functionality using the radioisotope, Cu64, was investigated (data not shown). Perfluorocarbon 

emulsions are commonly applied as MRI agents but do not easily permit further surface modifications 

in a controlled way. Comparatively, TNEs enable spontaneous integration of a wide range of 

biomolecules in a step-wise fashion via DAMP4, that allows further surface modifications with 

functional moieties, such as PEG, to improve formulation stability and performance within a living 

organism. AM1 stabilises O/W droplets during emulsification and enables the incorporation of 

positron emitting isotopes (Cu64) at the interface via the metal-binding residues (histidine). 

Employing the oil core of AM1-stabilised TNEs by incorporating MRI agents (perfluorocarbons), 

can potentially direct TNEs toward promising bimodal imaging applications. The idea of this work 

was aimed at paving the way for further applications of TNEs as bimodal imaging agents administered 
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through different routes. This research was conducted in collaboration with the research group of 

Professor Andrew Whittaker at the AIBN and the Centre of Advanced Imaging (CAI).      

The potential of TNEs in both localised and systemic delivery can be explored by investigating 

alternative administration routes in the future. The local administration of hydrophobic drugs using 

emulsions offers strategies that can help avoiding biological and physical barriers by modulating their 

surface properties. For example, tailoring surface charge can permit penetration of biological 

membranes via electrostatic interactions in ocular or topical applications. The administration of 

nanomaterials via alternative routes for systemic delivery also offers various advantages including 

self-administration, being non-invasive (Sun et al., 2017), exploitation of high absorption surface 

areas such as the lung, and avoidance of first path-metabolism and enzymatic degradation (Mathias 

and Sridharan, 2017).   
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6.5 Concluding remarks 

NEs have a safe history in food, cosmetic, and pharmaceutical applications.  However, NE surface 

functionalisation is limited by the stabilisation process that takes place during emulsification. In this 

project, the use of novel TNEs was explored in both topical and IV delivery routes that allowed 

decoupling of physical stabilisation and functionalisation. TNEs showed promise as a platform for 

carrying hydrophobic drugs combined with the EMPs, that helped to overcome the physical barrier 

of skin. In contrast, the IV delivery of TNEs resulted in a short circulation time but an acceptable 

safety profile. These findings highlight the need for further research into the interfacial properties of 

TNEs to better understand molecular assembly. The spontaneous integration of DAMP4, that can be 

easily functionalised via genetic engineering or chemical modifications, at the interface enabled PEG 

in different masses and densities to coat the interface. These experiments revealed important 

information about the assembly and stability of TNEs, as well as the accessibility of targeting 

moieties. 

Variants of DAMP4 were genetically engineered using rational design that allowed site-specific 

bioconjugation of a wide range of molecules with almost 100% yield of DAMP4-PEG products. This 

allowed a controlled number of biomolecules to be displayed on the TNE interface and showed how 

the interfacial activities of biosurfactants can be affected by the number and mass of their conjugates. 

Further investigations into how interfacial properties of TNEs relate to the different biological 

environments encountered in various routes of administration, are required to advance the use of 

TNEs in future drug delivery systems.  

The potential of NPs in targeted drug delivery is yet to be realised, subsequently clinical translation 

of drug carrier candidates requires further research to better understand the surface design of 

nanomaterials, the physiology of different diseases, the biological complexity associated with each 

route of administration as well as the safety and biocompatibility of nanomaterials. Keeping the 

design of nanomaterial surfaces simple can improve the understanding of nanomaterial interactions 

with surrounding environments, and by addressing all of the considerations discussed above, better 

functional, affordable, safe, and biocompatible drug delivery candidates will be synthesised.  
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7 Appendix A 

Animal Ethics Approval Certificate: 

The targeting and biodistribution studies (Chapter 3) were performed in compliance with the 

Australian National Health and Medical Research Council guidelines for the care and use of 

laboratory animals, and with the approval of the EnGeneIC Animal Ethics Committee under ethics 

application number: AIBN/400/13/ARC/NHMRC (certificate attached in the following page).  
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